JPWO2019003776A1 - 電解液、電気化学デバイス、二次電池及びモジュール - Google Patents

電解液、電気化学デバイス、二次電池及びモジュール Download PDF

Info

Publication number
JPWO2019003776A1
JPWO2019003776A1 JP2019526722A JP2019526722A JPWO2019003776A1 JP WO2019003776 A1 JPWO2019003776 A1 JP WO2019003776A1 JP 2019526722 A JP2019526722 A JP 2019526722A JP 2019526722 A JP2019526722 A JP 2019526722A JP WO2019003776 A1 JPWO2019003776 A1 JP WO2019003776A1
Authority
JP
Japan
Prior art keywords
carbonate
mass
fluorinated
group
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019526722A
Other languages
English (en)
Other versions
JP7058652B2 (ja
Inventor
知哉 日高
知哉 日高
謙三 高橋
謙三 高橋
雅量 木下
雅量 木下
穣輝 山崎
穣輝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2019003776A1 publication Critical patent/JPWO2019003776A1/ja
Application granted granted Critical
Publication of JP7058652B2 publication Critical patent/JP7058652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高温でリチウムイオン二次電池等の電気化学デバイスを保存した場合でも、保存前と比べて、上記電気化学デバイスの抵抗をほとんど上昇させない電解液を提供する。亜リン酸トリス(トリメチルシリル)、並びに、ペンタフルオロプロピルエチレンカーボネート及びヘプタフルオロイソブチルエチレンカーボネートからなる群より選択される少なくとも1種のフッ素化飽和環状カーボネート(1)を含むことを特徴とする電解液である。

Description

本発明は、電解液、電気化学デバイス、二次電池、及び、モジュールに関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池の開発が進められている。また、リチウムイオン二次電池の適用分野が拡大するにつれて電池特性の改善が要望されている。特に今後、車載用にリチウムイオン二次電池が使われた場合、電池特性はますます重要となる。
特許文献1には、正極および負極と共に非水電解液を備え、前記正極は、4.5V以上の電位(対リチウム電位)において電極反応物質を吸蔵放出する電極化合物を含み、前記非水電解液は、1または2以上のケイ素酸素含有基(SiR−O−:3つのRのそれぞれは、1価の炭化水素基およびそのハロゲン化基のうちのいずれかである。)がケイ素以外の原子に結合されたシリル化合物を含む、二次電池が記載されている。
特許文献2には、リチウム塩と、非水溶媒と、式(I)
Figure 2019003776
(式中、R、R、およびRは、それぞれ独立に、置換および無置換のC〜C20アルキル基、置換および無置換のC〜C20アルケニル基、置換および無置換のC〜C20アルキニル基、ならびに置換および無置換のC〜C20アリール基からなる群より選択され、Xは、窒素または酸素であり、Yは、水素化物基、ハロ基、ヒドロキシ基、チオ基、アルキル基、アルケニル基、アルキニル基、アリール基、イミニル基、アルコキシ基、アルケノキシ基、アルキノキシ基、アリールオキシ基、カルボキシ基、アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、アルキルチオ基、アルケニルチオ基、アルキニルチオ基、アリールチオ基、シアノ基、N−置換アミノ基、アルキルカルボニルアミノ基、N−置換アルキルカルボニルアミノ基、アルケニルカルボニルアミノ基、N−置換アルケニルカルボニルアミノ基、アルキニルカルボニルアミノ基、N−置換アルキニルカルボニルアミノ基、アリールカルボニルアミノ基、およびN−置換アリールカルボニルアミノ基、ホウ素含有基、アルミニウム含有基、ケイ素含有基、リン含有基、および硫黄含有基からなる群より選択される。)で表される化合物と、を含み、高電圧電池において約4.2V超の電圧での電気化学的安定性を特徴とする、高電圧電池用電解液が記載されている。
特許文献3には、下記一般式[1]で表される有機ケイ素化合物0.01質量%〜15質量%と、電解質であるフッ素含有アルカリ金属塩0.1モル/リットル〜3モル/リットルと、を含有し、前記有機ケイ素化合物と前記フッ素含有アルカリ金属塩との反応により生成するフッ素化有機ケイ素化合物の含有量が0.2質量%以下であることを特徴とするリチウム二次電池用非水電解液が記載されている。
Figure 2019003776
[一般式[1]中、Mは、金属原子、リン原子、ホウ素原子、又はP=Oを表わす。Rは、炭素数1〜11のアルキルオキシ基、シリルオキシ基、又は炭素数1〜11のアルキルシリルオキシ基を表わす。nは、Mに結合するRの個数を表わし、Mの酸化数−1又はMの酸化数−3である。nが2以上の場合、Rは同一でも異なってもよい。R〜Rは、それぞれ独立に、炭素数1〜11のアルキル基、炭素数1〜11のアルケニル基、炭素数1〜11のアルキルオキシ基、または炭素数6〜11のアリール基を表わす。]
特許文献4には、下記の化学式1で示される化合物と;リチウム塩と;非水性有機溶媒と;を含むことを特徴とする、リチウム二次電池用電解質が記載されている。
A−[OSi(C2m+1・・・[化学式1]
(上記化学式1で、Aは、リン(P)またはホウ素(B)であり、mは0〜6の整数である)
特許文献5には、一般式[1]で表される化合物を含有する非水溶媒と電解質とからなることを特徴とするリチウム二次電池用非水電解液が記載されている。
Figure 2019003776
(ここで、Mは金属元素、リンまたはホウ素を表わす。Rは炭素数が1〜11のアルキルオキシ基、または、シリルオキシ基を表わし、nが2以上の場合Rは同一でも異なっていてもよい。R、R、Rは、互いに同一であっても異なっていてもよく、炭素数が1〜11のアルキル基、アルケニル基、アリール基またはアルキルオキシ基を表わす。nは、Mに結合するRの個数を表わし、Mの酸化数−1である。)
特開2015−133278号公報 特表2014−522078号公報 特許第5274563号公報 特開2008−130544号公報 特開2001−57237号公報
しかしながら、従来の電解液では、リチウムイオン二次電池等の電気化学デバイスに用いた場合、上記電気化学デバイスを高温で保存すると、抵抗が大きくなってしまう問題があった。
本発明は、上記現状に鑑みてなされたものであり、高温でリチウムイオン二次電池等の電気化学デバイスを保存した場合でも、保存前と比べて、上記電気化学デバイスの抵抗をほとんど上昇させない電解液を提供することを目的とする。
また、本発明は、高温で保存した場合でも、保存前と比べて、抵抗がほとんど上昇しないリチウムイオン二次電池等の電気化学デバイスを提供することを目的とする。
本発明者らが鋭意検討した結果、有機ケイ素化合物として、亜リン酸トリス(トリメチルシリル)を選択し、多くの溶媒及び添加剤のなかから、特定のフッ素化環状カーボネートを選択し、更に、両者を組み合わせることによって、上記の課題が見事に解決することを見出し、本発明を完成するに至った。
すなわち、本発明は、亜リン酸トリス(トリメチルシリル)、並びに、化合物(1−a)及び化合物(1−b)からなる群より選択される少なくとも1種のフッ素化飽和環状カーボネート(1)を含むことを特徴とする電解液である。
化合物(1−a):
Figure 2019003776
化合物(1−b):
Figure 2019003776
上記電解液は、更に、溶媒を含むことが好ましい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含むことが好ましい。
上記電解液において、亜リン酸トリス(トリメチルシリル)の含有量が上記溶媒に対して0.001〜10質量%であることが好ましい。
上記電解液において、フッ素化飽和環状カーボネート(1)の含有量が上記溶媒に対して0.001〜10質量%であることが好ましい。
上記電解液は、更に、ビニレンカーボネートを含むことが好ましい。
上記電解液は、更に、溶媒を含み、ビニレンカーボネートの含有量が上記溶媒に対して0.001〜10質量%であることが好ましい。
上記電解液は、更に、電解質塩を含むことが好ましい。
本発明は、上述の電解液を備えることを特徴とする電気化学デバイスでもある。
本発明は、上述の電解液を備えることを特徴とする二次電池でもある。
本発明は、上述の電気化学デバイス、又は、上述の二次電池を備えることを特徴とするモジュールでもある。
本発明の電解液によれば、上記電気化学デバイスを高温で保存した場合でも、抵抗の上昇を抑制できる。
本発明の電解液を備える電気化学デバイスは、高温で保存した場合でも、抵抗がほとんど上昇しない。
以下、本発明を具体的に説明する。
本発明の電解液は、亜リン酸トリス(トリメチルシリル)、並びに、化合物(1−a)及び化合物(1−b)からなる群より選択される少なくとも1種のフッ素化飽和環状カーボネート(1)を含むことを特徴とする。
亜リン酸トリス(トリメチルシリル)は、次の化学式で示される。
Figure 2019003776
化合物(1−a)は、次の化学式で示される。
Figure 2019003776
化学式(1−b)は、次の化学式で示される。
Figure 2019003776
本発明の電解液は、溶媒を含むことが好ましい。
本発明の電解液が溶媒を含む場合、亜リン酸トリス(トリメチルシリル)の含有量が上記溶媒に対して0.001〜10質量%であることが好ましい。上記含有量としては、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
本発明の電解液が溶媒を含む場合、フッ素化飽和環状カーボネート(1)の含有量が上記溶媒に対して0.001〜10質量%であることが好ましい。上記含有量としては、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
上記電解液中の上記溶媒の含有量としては、上記電解液に対して、90体積%以上が好ましく、95体積%以上がより好ましく、99.9体積%以下であってよい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含むことが好ましい。
上記溶媒は、上記非フッ素化飽和環状カーボネート及び上記フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)からなる群より選択される少なくとも1種の環状カーボネートと、上記非フッ素化鎖状カーボネート、上記フッ素化鎖状カーボネート、上記非フッ素化鎖状エステル、及び、上記フッ素化鎖状エステルからなる群より選択される少なくとも1種の鎖状化合物とを含むことも好ましい。
上記溶媒における上記環状カーボネートと上記鎖状化合物と体積比としては、10/90〜90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記溶媒は、上記非フッ素化飽和環状カーボネートと、上記非フッ素化鎖状カーボネート及び上記非フッ素化鎖状エステルからなる群より選択される少なくとも1種の非フッ素化鎖状化合物とを含むことも好ましい。この組み合わせは、上記電解液を比較的低電圧で作動する電気化学デバイスに用いる場合に好適である。
上記溶媒における上記非フッ素化飽和環状カーボネートと上記非フッ素化鎖状化合物との体積比としては、10/90〜90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記溶媒は、上記フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)と、上記フッ素化鎖状カーボネート及び上記フッ素化鎖状エステルからなる群より選択される少なくとも1種のフッ素化鎖状化合物とを含むことも好ましい。この組み合わせは、上記電解液を比較的高電圧で作動する電気化学デバイスに用いる場合に好適である。
上記溶媒における上記フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)と上記フッ素化鎖状化合物との体積比としては、10/90〜90/10が好ましく、20/80以上がより好ましく、25/75以上が更に好ましく、70/30以下がより好ましく、50/50以下が更に好ましい。
上記非フッ素化飽和環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等を挙げることができる。
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、プロピレンカーボネート、及び、ブチレンカーボネートからなる群より選択される少なくとも1種の化合物であることが好ましい。
上記非フッ素化飽和環状カーボネートとして、上述した化合物の1種を用いてもよいし、2種以上を併用してもよい。
上記フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)は、フッ素原子が付加した飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure 2019003776
(式中、X〜Xは同じか又は異なり、それぞれ−H、−CH、−C、−F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X〜Xの少なくとも1つは、−F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物(但し、フッ素化飽和環状カーボネート(1)を除く)が挙げられる。
上記フッ素化飽和環状カーボネートを含むと、本発明の電解液をリチウムイオン二次電池等に適用した場合に、負極に安定な被膜を形成することができ、負極での電解液の副反応を充分に抑制することができる。その結果、極めて安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、−O−で表される結合である。
誘電率、耐酸化性が良好な点から、X〜Xの1つ又は2つが、−F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X〜Xは、−H、−F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1〜20が好ましく、1〜17がより好ましく、1〜7が更に好ましく、1〜5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH−、CFH−、CF−が挙げられる。特に、CFH−又はCF−が高温保存特性上好ましい。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a−1):
−R− (a−1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1〜3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1〜16の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1〜6がより好ましく、1〜3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH−、CHCH−、CHCHCH−、CHCHCHCH−、
Figure 2019003776
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF−、CFCH−、CFCF−、CFCHCH−、CFCFCH−、CFCFCF−、CFCHCF−、CFCHCHCH−、CFCFCHCH−、CFCHCFCH−、CFCFCFCH−、CFCFCFCF−、CFCFCHCF−、CFCHCHCHCH−、CFCFCHCHCH−、CFCHCFCHCH−、CFCFCFCHCH−、CFCFCFCFCH−、CFCFCHCFCH−、CFCFCHCHCHCH−、CFCFCFCFCHCH−、CFCFCHCFCHCH−、HCF−、HCFCH−、HCFCF−、HCFCHCH−、HCFCFCH−、HCFCHCF−、HCFCFCHCH−、HCFCHCFCH−、HCFCFCFCF−、HCFCFCHCHCH−、HCFCHCFCHCH−、HCFCFCFCFCH−、HCFCFCFCFCHCH−、FCH−、FCHCH−、FCHCF−、FCHCFCH−、FCHCFCF−、CHCFCH−、CHCFCF−、CHCFCHCF−、CHCFCFCF−、CHCHCFCF−、CHCFCHCFCH−、CHCFCFCFCH−、CHCFCFCHCH−、CHCHCFCFCH−、CHCFCHCFCHCH−、CHCFCHCFCHCH−、HCFClCFCH−、HCFCFClCH−、HCFCFClCFCFClCH−、HCFClCFCFClCFCH−等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure 2019003776
Figure 2019003776
等が好ましく挙げられる。ただし、CH−やCF−という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1〜3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
−CH−、−CHF−、−CF−、−CHCl−、−CFCl−、−CCl
(ii)分岐鎖状の最小構造単位:
Figure 2019003776
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも−CH−、−CHCH−又は−CF−が好ましい。電解質塩の溶解性をより一層向上させることができる点から、−CH−又は−CHCH−がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式−(CX)−(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF−、HCFCF−、HCFCF−、CHCF−、CFCHF−、CHCF−、CFCFCF−、HCFCFCF−、HCFCFCF−、CHCFCF−、
Figure 2019003776
Figure 2019003776
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2〜17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2〜10がより好ましく、2〜7が更に好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
−CH−、−CHF−、−CF−、−CHCl−、−CFCl−、−CCl
(ii)分岐鎖状の最小構造単位:
Figure 2019003776
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b−1):
−(ORn1− (b−1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1〜6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1〜4のアルキレン基;n1は1〜3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b−1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C−(Rn2−(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1〜5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH−、CF−、HCF−及びHCF−が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH−、CFCF−、CFCHCH−、CFCFCH−、CFCFCF−、CFCHCF−、CFCHCHCH−、CFCFCHCH−、CFCHCFCH−、CFCFCFCH−、CFCFCFCF−、CFCFCHCF−、CFCHCHCHCH−、CFCFCHCHCH−、CFCHCFCHCH−、CFCFCFCHCH−、CFCFCFCFCH−、CFCFCHCFCH−、CFCFCHCHCHCH−、CFCFCFCFCHCH−、CFCFCHCFCHCH−、HCFCH−、HCFCF−、HCFCHCH−、HCFCFCH−、HCFCHCF−、HCFCFCHCH−、HCFCHCFCH−、HCFCFCFCF−、HCFCFCHCHCH−、HCFCHCFCHCH−、HCFCFCFCFCH−、HCFCFCFCFCHCH−、FCHCH−、FCHCF−、FCHCFCH−、CHCF−、CHCH−、CHCFCH−、CHCFCF−、CHCHCH−、CHCFCHCF−、CHCFCFCF−、CHCHCFCF−、CHCHCHCH−、CHCFCHCFCH−、CHCFCFCFCH−、CHCFCFCHCH−、CHCHCFCFCH−、CHCFCHCFCHCH−、CHCHCFCFCHCH−、CHCFCHCFCHCH−等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure 2019003776
等が挙げられる。
ただし、CH−やCF−という分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b−1)の−(ORn1−において、n1は1〜3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、−CH−、−CHF−、−CF−、−CHCH−、−CFCH−、−CFCF−、−CHCF−、−CHCHCH−、−CHCHCF−、−CHCFCH−、−CHCFCF−、−CFCHCH−、−CFCFCH−、−CFCHCF−、−CFCFCF−等が例示できる。
分岐鎖状のものとしては、
Figure 2019003776
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1〜17であることが好ましい。より好ましくは、炭素数1〜6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C−(Rn3−O−(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1〜5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a−1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
〜Xの少なくとも1つが−Fであるフッ素化飽和環状カーボネートの具体例として、
Figure 2019003776
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
他に、
Figure 2019003776
等も使用できる。
〜Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て−Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure 2019003776
Figure 2019003776
Figure 2019003776
等が挙げられる。
〜Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て−Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure 2019003776
Figure 2019003776
Figure 2019003776
Figure 2019003776
Figure 2019003776
Figure 2019003776
等が挙げられる。
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
Figure 2019003776
Figure 2019003776
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート及びトリフルオロメチルエチレンカーボネートからなる群より選択される少なくとも1種がより好ましい。
上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR (B)
(式中、Rfは、炭素数1〜7のフッ素化アルキル基であり、Rは、炭素数1〜7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
本発明の電解液は、高電圧下でも好適に使用できる点で、上記フッ素化鎖状カーボネートを含むことが好ましい。
Rfは、炭素数1〜7のフッ素化アルキル基であり、Rは、炭素数1〜7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf及びRは、低粘性である点で、炭素数が2〜7であることが好ましく、2〜4であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
炭素数が1のフッ素化アルキル基としては、CFH−、CFH−、CF−等が挙げられる。特に、CFH−又はCF−が高温保存特性上好ましい。
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d−1):
−R− (d−1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1〜3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1〜6の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1〜6がより好ましく、1〜3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH−、CHCH−、CHCHCH−、CHCHCHCH−、
Figure 2019003776
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF−、CFCH−、CFCF−、CFCHCH−、CFCFCH−、CFCFCF−、CFCHCF−、CFCHCHCH−、CFCFCHCH−、CFCHCFCH−、CFCFCFCH−、CFCFCFCF−、CFCFCHCF−、CFCHCHCHCH−、CFCFCHCHCH−、CFCHCFCHCH−、CFCFCFCHCH−、CFCFCFCFCH−、CFCFCHCFCH−、CFCFCHCHCHCH−、CFCFCFCFCHCH−、CFCFCHCFCHCH−、HCF−、HCFCH−、HCFCF−、HCFCHCH−、HCFCFCH−、HCFCHCF−、HCFCFCHCH−、HCFCHCFCH−、HCFCFCFCF−、HCFCFCHCHCH−、HCFCHCFCHCH−、HCFCFCFCFCH−、HCFCFCFCFCHCH−、FCH−、FCHCH−、FCHCF−、FCHCFCH−、FCHCFCF−、CHCFCH−、CHCFCF−、CHCFCHCF−、CHCFCFCF−、CHCHCFCF−、CHCFCHCFCH−、CHCFCFCFCH−、CHCFCFCHCH−、CHCHCFCFCH−、CHCFCHCFCHCH−、CHCFCHCFCHCH−、HCFClCFCH−、HCFCFClCH−、HCFCFClCFCFClCH−、HCFClCFCFClCFCH−等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure 2019003776
Figure 2019003776
等が好ましく挙げられる。ただし、CH−やCF−という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1〜3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
−CH−、−CHF−、−CF−、−CHCl−、−CFCl−、−CCl
(ii)分岐鎖状の最小構造単位:
Figure 2019003776
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも−CH−、−CHCH−又は−CF−が好ましい。電解質塩の溶解性をより一層向上させることができる点から、−CH−又は−CHCH−がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式−(CX)−(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基としては、具体的には、例えば、CFCF−、HCFCF−、HCFCF−、CHCF−、CFCH−、CFCFCF−、HCFCFCF−、HCFCFCF−、CHCFCF−、
Figure 2019003776
Figure 2019003776
等が挙げられる。
なかでも、RfとRのフッ素化アルキル基としては、CF−、CFCF−、(CFCH−、CFCH−、CCH−、CFCFCH−、HCFCFCH−、CFCFHCFCH−が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CFCH−、CFCFCH−、HCFCFCH−がより好ましい。
がフッ素原子を含まないアルキル基の場合は炭素数1〜7のアルキル基である。Rは、低粘性である点で、炭素数が1〜4であることが好ましく、1〜3であることがより好ましい。
上記フッ素原子を含まないアルキル基としては、例えば、CH−、CHCH−、(CHCH−、C−等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH−、CHCH−が好ましい。
上記フッ素化鎖状カーボネートは、フッ素含有率が20〜70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、30質量%以上がより好ましく、35質量%以上が更に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本発明においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
Figure 2019003776
上記非フッ素化鎖状エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
上記フッ素化鎖状エステルとしては、一般式(3):
Rf31COORf32
(式中、Rf31は炭素数1〜4のフッ素化アルキル基、Rf32は炭素数1〜4のフッ素原子を含んでいてもよいアルキル基)で示されるフッ素化鎖状エステルが、他溶媒との相溶性や耐酸化性が良好な点から好ましい。
Rf31としては、例えばHCF−、CF−、CFCF−、HCFCF−、CHCF−、CFCH−等が例示でき、なかでもHCF−、CF−、CFCF−、CFCH−が粘度、耐酸化性が良好な点から特に好ましい。
Rf32としては、例えば、CH−、C−、CF−、CFCF−、(CFCH−、CFCH−、CFCHCH−、CFCFHCFCH−、CCH−、CFHCFCH−、CCHCH−、CFCFCH−、CFCFCFCH−等が例示でき、なかでもCH−、C−、CFCH−、CFCHCH−が、他溶媒との相溶性が良好な点から特に好ましい。
上記フッ素化鎖状エステルの具体例としては、例えばCFCHC(=O)OCH、HCFC(=O)OCH、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CF等の1種又は2種以上が例示でき、なかでもCFCHC(=O)OCH、HCFC(=O)OCH、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CFが、他溶媒との相溶性及びレート特性が良好な点から特に好ましい。
本発明の電解液は、高温保存後にも抵抗が上昇しにくいばかりか、保存前よりも抵抗を低下させることも可能であることから、更に、ビニレンカーボネートを含むことも好ましい。
上記ビニレンカーボネートの含有量としては、上記溶媒に対して0.001〜10質量%が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
本発明の電解液は、電解質塩を含むことが好ましい。
上記電解質塩としては、アルカリ金属塩、アルカリ土類金属塩、アルミニウムをカチオンとする金属塩、アンモニウム塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
リチウムイオン二次電池用電解液の電解質塩としては、アルカリ金属塩が好ましく、リチウム塩がより好ましい。
上記リチウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のフルオロリン酸リチウム類;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、式:LiPF(C2n+16−a(式中、aは0〜5の整数であり、nは1〜6の整数である)で表される塩(例えばLiPF(CF、LiPF(C)、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
なかでも、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、LiBFCF、LiBF、及び、式:LiPF(C2n+16−a(式中、aは0〜5の整数であり、nは1〜6の整数である)で表される塩からなる群より選択される少なくとも1種であることが好ましい。
式:LiPF(C2n+16−aで表される塩としては、例えば、LiPF(CF、LiPF(C、LiPF(C、LiPF(C、LiPF(CF、LiPF(C、LiPF(C、LiPF(C(ただし、式中のC、Cで表されるアルキル基は、直鎖、分岐構造のいずれであってもよい。)等が挙げられる。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi、LiPFとLiPO等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
これらの中では、LiPFとFSOLi、LiPFとLiPOの併用がその効果が顕著である理由から好ましく、その中でもLiPFとLiPOの併用が微量の添加で著しい効果が発現する為に特に好ましい。
LiPFとLiBF、LiPFとFSOLiを併用する場合、上記電解液全体100質量%に対するLiBF或いはFSOLiの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常30質量%以下、好ましくは20質量%以下である。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。
有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。
この場合には、電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り特に制限されない。
電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、更に好ましくは2.0mol/L以下である。
リチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
電気二重層キャパシタ用電解液の電解質塩としては、アンモニウム塩が好ましい。
上記アンモニウム塩としては、以下(IIa)〜(IIe)が挙げられる。
(IIa)テトラアルキル4級アンモニウム塩
一般式(IIa):
Figure 2019003776
(式中、R1a、R2a、R3a及びR4aは同じか又は異なり、いずれも炭素数1〜6のエーテル結合を含んでいてもよいアルキル基;Xはアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましく例示できる。また、このアンモニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1〜4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
具体例としては、一般式(IIa−1):
Figure 2019003776
(式中、R1a、R2a及びXは前記と同じ;x及びyは同じか又は異なり0〜4の整数で、かつx+y=4)で示されるテトラアルキル4級アンモニウム塩、一般式(IIa−2):
Figure 2019003776
(式中、R5aは炭素数1〜6のアルキル基;R6aは炭素数1〜6の2価の炭化水素基;R7aは炭素数1〜4のアルキル基;zは1又は2;Xはアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、などがあげられる。アルキルエーテル基を導入することにより、粘性の低下を図ることができる。
アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えばAlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えばCFCOO、CFSO 、(CFSO、(CSOなどが挙げられる。
これらのうち、耐酸化性やイオン解離性が良好な点から、BF 、PF 、AsF 、SbF が好ましい。
テトラアルキル4級アンモニウム塩の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtNCSO、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeNCSO、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム塩等が挙げられ、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム塩などが挙げられる。
(IIb)スピロ環ビピロリジニウム塩
一般式(IIb−1):
Figure 2019003776
(式中、R8a及びR9aは同じか又は異なり、いずれも炭素数1〜4のアルキル基;Xはアニオン;n1は0〜5の整数;n2は0〜5の整数)で示されるスピロ環ビピロリジニウム塩、一般式(IIb−2):
Figure 2019003776
(式中、R10a及びR11aは同じか又は異なり、いずれも炭素数1〜4のアルキル基;Xはアニオン;n3は0〜5の整数;n4は0〜5の整数)で示されるスピロ環ビピロリジニウム塩、又は、一般式(IIb−3):
Figure 2019003776
(式中、R12aおよびR13aは同じかまたは異なり、いずれも炭素数1〜4のアルキル基;Xはアニオン;n5は0〜5の整数;n6は0〜5の整数)で示されるスピロ環ビピロリジニウム塩が好ましく挙げられる。また、このスピロ環ビピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1〜4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)の場合と同じである。なかでも、解離性が高く、高電圧下での内部抵抗が低い点から、BF 、PF 、(CFSOまたは(CSOが好ましい。
スピロ環ビピロリジニウム塩の好ましい具体例としては、例えば、
Figure 2019003776
などが挙げられる。
このスピロ環ビピロリジニウム塩は溶媒への溶解性、耐酸化性、イオン伝導性の点で優れている。
(IIc)イミダゾリウム塩
一般式(IIc):
Figure 2019003776
(式中、R14a及びR15aは同じか又は異なり、いずれも炭素数1〜6のアルキル基;Xはアニオン)
で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1〜4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure 2019003776
等が挙げられる。
このイミダゾリウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IId):N−アルキルピリジニウム塩
一般式(IId):
Figure 2019003776
(式中、R16aは炭素数1〜6のアルキル基;Xはアニオン)
で示されるN−アルキルピリジニウム塩が好ましく例示できる。また、このN−アルキルピリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1〜4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure 2019003776
などが挙げられる。
このN−アルキルピリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IIe)N,N−ジアルキルピロリジニウム塩
一般式(IIe):
Figure 2019003776
(式中、R17a及びR18aは同じか又は異なり、いずれも炭素数1〜6のアルキル基;Xはアニオン)
で示されるN,N−ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N−ジアルキルピロリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1〜4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure 2019003776
Figure 2019003776
などが挙げられる。
このN,N−ジアルキルピロリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
これらのアンモニウム塩のうち、(IIa)、(IIb)及び(IIc)が溶解性、耐酸化性、イオン伝導性が良好な点で好ましく、さらには
Figure 2019003776
(式中、Meはメチル基;Etはエチル基;X、x、yは式(IIa−1)と同じ)が好ましい。
また、電気二重層キャパシタ用電解質塩として、リチウム塩を用いてもよい。リチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
更に容量を向上させるために、マグネシウム塩を用いてもよい。マグネシウム塩としては、例えば、Mg(ClO、Mg(OOC等が好ましい。
電解質塩が上記アンモニウム塩である場合、濃度は、0.6モル/リットル以上であることが好ましい。0.6モル/リットル未満であると、低温特性が悪くなるだけでなく、初期内部抵抗が高くなってしまう。上記電解質塩の濃度は、0.9モル/リットル以上であることがより好ましい。
上記濃度は、低温特性の点で、3.0モル/リットル以下であることが好ましく、2モル/リットル以下であることがより好ましい。
上記アンモニウム塩が、4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF)の場合、その濃度は、低温特性に優れる点で、0.8〜1.9モル/リットルであることが好ましい。
また、4フッ化ホウ酸スピロビピロリジニウム(SBPBF)の場合は、0.7〜2.0モル/リットルであることが好ましい。
本発明の電解液は、更に、重量平均分子量が2000〜4000であり、末端に−OH、−OCOOH、又は、−COOHを有するポリエチレンオキシドを含有することが好ましい。
このような化合物を含有することにより、電極界面の安定性が向上し、電気化学デバイスの特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電気化学デバイスの特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンオキシドカルボン酸とポリエチレンオキシドジカルボン酸の混合物であることが好ましい。
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000〜4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
上記ポリエチレンオキシドの含有量は、電解液中1×10−6〜1×10−2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電気化学デバイスの特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10−6mol/kg以上であることがより好ましい。
本発明の電解液は、更に、不飽和環状カーボネート、過充電防止剤、その他の公知の助剤等を含有していてもよい。これにより、電気化学デバイスの特性の低下を抑制することができる。
上記不飽和環状カーボネートは、不飽和結合を含む環状カーボネート、すなわち、環状カーボネートであって、分子内に炭素−炭素不飽和結合を少なくとも1つ有するものである。不飽和環状カーボネートとしては、ビニレンカーボネート類(但し、ビニレンカーボネートを除く)、芳香環又は炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類(但し、ビニレンカーボネートを除く)としては、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。
なかでも、不飽和環状カーボネートとしては、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネートが好ましい。また、ビニルエチレンカーボネート、エチニルエチレンカーボネートは更に安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。上記不飽和環状カーボネートの含有量は、本発明における溶媒100質量%中0.001質量%以上が好ましく、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上である。また、上記含有量は、5質量%以下が好ましく、より好ましくは4質量%以下、更に好ましくは3質量%以下である。上記範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
また、不飽和環状カーボネートとしては、上述のような非フッ素化不飽和環状カーボネートの他、フッ素化不飽和環状カーボネートも好適に用いることができる。フッ素化不飽和環状カーボネートは、不飽和結合とフッ素原子とを有する環状カーボネートである。
フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
なかでも、フッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
上記フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、フッ素化不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
フッ素化不飽和環状カーボネートの含有量は、通常、電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、また、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
この範囲内であれば、電解液を用いた電気化学デバイスが十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
本発明の電解液においては、電解液を用いた電気化学デバイスが過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。
これらは1種を単独で用いても、2種以上を併用してもよい。
2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
本発明の電解液には、公知のその他の助剤を用いることができる。
その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。
これらは1種を単独で用いても、2種以上を併用してもよい。
これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
その他の助剤は、電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。
この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。
その他の助剤の配合量は、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、更に好ましくは1質量%以下である。
本発明の電解液は、コハク酸骨格を持つ酸無水物を含むことができる。上記コハク酸骨格を持つ酸無水物としては、無水コハク酸、無水マレイン酸、シトラコン酸、2−メチルコハク酸、2,3−ジメチルコハク酸、2−フルオロコハク酸、2,3−ジフルオロコハク酸等が挙げられる。このうち、無水コハク酸又は無水マレイン酸が好ましい。
上記コハク酸骨格を持つ酸無水物の含有量は、電解液中0.1〜10質量%であることが好ましく、0.5質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、環状スルホン酸化合物を含むことができる。上記環状スルホン酸化合物としては、例えば、1,3−プロパンスルトン、1,4−ブタンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン等が挙げられる。なかでも、高温特性を向上させることができる点で、本発明の電解液は、1,3−プロパンスルトン、及び/又は、1,4−ブタンスルトンを含有することが好ましい。
上記環状スルホン酸化合物の含有量は、電解液中0.1〜10質量%であることが好ましく、0.5質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、環状カルボン酸エステル、エーテル化合物、窒素含有化合物、ホウ素含有化合物、有機ケイ素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤等を更に含有してもよい。
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電気化学デバイスの特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電気化学デバイスの大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電気化学デバイスの大電流放電特性を良好な範囲としやすくする。
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、例えば、下記式(E):
Figure 2019003776
(式中、X15〜X20は同じか又は異なり、いずれも−H、−F、−Cl、−CH又はフッ素化アルキル基;ただし、X15〜X20の少なくとも1つはフッ素化アルキル基である)で示される含フッ素ラクトンが挙げられる。
15〜X20におけるフッ素化アルキル基としては、例えば、−CFH、−CFH、−CF、−CHCF、−CFCF、−CHCFCF、−CF(CF等が挙げられ、耐酸化性が高く、安全性向上効果がある点から−CHCF、−CHCFCFが好ましい。
15〜X20の少なくとも1つがフッ素化アルキル基であれば、−H、−F、−Cl、−CH又はフッ素化アルキル基は、X15〜X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1〜3箇所、更に好ましくは1〜2箇所である。
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも−CHCF、−CHCFCFであることが好ましい。フッ素化アルキル基以外のX15〜X20は、−H、−F、−Cl又はCHであり、特に電解質塩の溶解性が良好な点から−Hが好ましい。
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(F):
Figure 2019003776
(式中、A及びBはいずれか一方がCX2627(X26及びX27は同じか又は異なり、いずれも−H、−F、−Cl、−CF、−CH又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X21及びX22は同じか又は異なり、いずれも−H、−F、−Cl、−CF又はCH;X23〜X25は同じか又は異なり、いずれも−H、−F、−Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)で示される含フッ素ラクトン等も挙げられる。
式(F)で示される含フッ素ラクトンとしては、下記式(G):
Figure 2019003776
(式中、A、B、Rf12、X21、X22及びX23は式(F)と同じである)で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(H):
Figure 2019003776
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンと、下記式(I):
Figure 2019003776
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure 2019003776
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
上記エーテル化合物としては、炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
また、上記エーテル化合物としては、フッ素化エーテルも好適に用いることができる。
上記フッ素化エーテルとしては、下記一般式(K):
Rf−O−Rf (K)
(式中、Rf及びRfは同じか又は異なり、炭素数1〜10のアルキル基又は炭素数1〜10のフッ素化アルキル基である。ただし、Rf及びRfの少なくとも一方は、フッ素化アルキル基である。)で表されるフッ素化エーテル(K)が挙げられる。フッ素化エーテル(K)を含有させることにより、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。
上記一般式(K)においては、Rf及びRfの少なくとも一方が炭素数1〜10のフッ素化アルキル基であればよいが、電解液の難燃性及び高温高電圧での安定性、安全性を一層向上させる観点から、Rf及びRfが、ともに炭素数1〜10のフッ素化アルキル基であることが好ましい。この場合、Rf及びRfは同じであってもよく、互いに異なっていてもよい。
なかでも、Rf及びRfが、同じか又は異なり、Rfが炭素数3〜6のフッ素化アルキル基であり、かつ、Rfが炭素数2〜6のフッ素化アルキル基であることがより好ましい。
RfおよびRfの合計炭素数が少な過ぎるとフッ素化エーテルの沸点が低くなりすぎ、また、Rf又はRfの炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性が低減する。Rfの炭素数が3又は4、Rfの炭素数が2又は3のとき、沸点およびレート特性に優れる点で有利である。
上記フッ素化エーテル(K)は、フッ素含有率が40〜75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化エーテル(K)のフッ素含有率は、フッ素化エーテル(K)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化エーテル(K)の分子量}×100(%)により算出した値である。
Rfとしては、例えば、CFCFCH−、CFCFHCF−、HCFCFCF−、HCFCFCH−、CFCFCHCH−、CFCFHCFCH−、HCFCFCFCF−、HCFCFCFCH−、HCFCFCHCH−、HCFCF(CF)CH−等が挙げられる。
また、Rfとしては、例えば、CFCFCH−、CFCFHCF−、CFHCFCF−、CFHCFCH−、CFCFCHCH−、CFCFHCFCH−、CFHCFCFCF−、CFHCFCFCH−、CFHCFCHCH−、CFHCF(CF)CH−、CFHCF−、CFHCH−、CHCF−等が挙げられる。
上記フッ素化エーテル(K)の具体例としては、例えばHCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。
なかでも、片末端又は両末端にHCF−又はCFCFH−を含むものが分極性に優れ、沸点の高いフッ素化エーテル(K)を与えることができる。フッ素化エーテル(K)の沸点は、67〜120℃であることが好ましい。より好ましくは80℃以上、更に好ましくは90℃以上である。
このようなフッ素化エーテル(K)としては、例えば、CFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCFCFHCF、HCFCFCHOCHCFCFH、CFCFHCFCHOCFCFHCF、HCFCFCHOCFCFH、CFCFCHOCFCFH等の1種又は2種以上が挙げられる。
なかでも、高沸点、他の溶媒との相溶性や電解質塩の溶解性が良好な点で有利なことから、HCFCFCHOCFCFHCF(沸点106℃)、CFCFCHOCFCFHCF(沸点82℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることが好ましく、HCFCFCHOCFCFHCF(沸点106℃)及びHCFCFCHOCFCFH(沸点92℃)からなる群より選択される少なくとも1種であることがより好ましい。
炭素数3〜6の環状エーテルとしては、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
上記窒素含有化合物としては、ニトリル、含フッ素ニトリル、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド等が挙げられる。また、1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサジリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等も使用できる。
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
上記有機ケイ素含有化合物としては、例えば、(CH−Si、(CH−Si−Si(CH等が挙げられる。
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11−233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11−283669号公報に記載された環状のアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
上記不燃(難燃)化剤としては、(CHO)P=O、(CFCHO)P=O、(HCFCHO)P=O、(CFCFCHP=O、(HCFCFCHP=O等が好ましい。
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
このようなフッ素原子を含む界面活性剤としては、例えば、下記式:
RfCOO
(式中、Rfは炭素数3〜10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1〜3のアルキル基)である)で表される含フッ素カルボン酸塩や、下記式:
RfSO
(式中、Rfは炭素数3〜10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもHまたは炭素数が1〜3のアルキル基)である)で表される含フッ素スルホン酸塩等が好ましい。
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01〜2質量%であることが好ましい。
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ−ブチロラクトン、γ−バレロラクトン、アセトニトリル、プロピオニトリル等が挙げられる。
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。
また、本発明の電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8−222270号公報、特開2002−100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4−506726号公報、特表平8−507407号公報、特開平10−294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11−35765号公報、特開平11−86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
そのほか、本発明の電解液は、特願2004−301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
このイオン伝導性化合物は、式(1−1):
A−(D)−B (1−1)
[式中、Dは式(2−1):
−(D1)−(FAE)−(AE)−(Y)− (2−1)
(式中、D1は、式(2a):
Figure 2019003776
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(2b):
Figure 2019003776
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(2c):
Figure 2019003776
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)で示されるエーテル単位;
Yは、式(2d−1)〜(2d−3):
Figure 2019003776
の少なくとも1種を含む単位;
nは0〜200の整数;mは0〜200の整数;pは0〜10000の整数;qは1〜100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、−COOH基、−OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は−COOH基、−OR、エステル基及びカーボネート基ではない)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
本発明の電解液には必要に応じて、さらに他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
本発明の電解液は、HFを0.5〜70ppm含有することが好ましい。HFを含有することにより、添加剤の被膜形成を促進させることができる。HFの含有量が少なすぎると、負極上での添加剤の被膜形成能力が下がり、電気化学デバイスの特性が低下する傾向がある。また、HF含有量が多すぎると、HFの影響により電解液の耐酸化性が低下する傾向がある。本発明の電解液は、上記範囲のHFを含有しても、電気化学デバイスの高温保存性回復容量率を低下させることがない。
HFの含有量は、1ppm以上がより好ましく、2.5ppm以上が更に好ましい。HFの含有量はまた、60ppm以下がより好ましく、50ppm以下が更に好ましく、30ppm以下が特に好ましい。
HFの含有量は、中和滴定法により測定することができる。
本発明の電解液は、上述した成分を用いて、任意の方法で調製するとよい。
本発明の電解液は、例えば、二次電池、リチウムイオン二次電池や電気二重層キャパシタ等の電気化学デバイスに好適に適用することができる。このような本発明の電解液を備えた電気化学デバイスもまた、本発明の一つである。
電気化学デバイスとしては、リチウムイオン二次電池、キャパシタ(電気二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ等が挙げられ、リチウムイオン二次電池、電気二重層キャパシタが好適である。
上記電気化学デバイスを備えたモジュールも本発明の一つである。
本発明はまた、本発明の電解液を備える二次電池でもある。上記二次電池は、リチウムイオン二次電池であってよい。以下に、本発明の電気化学デバイス又は二次電池の例として、リチウムイオン二次電池又は電気二重層キャパシタの場合を説明する。
上記リチウムイオン二次電池は、正極、負極、及び、上述の電解液を備えていてよい。
<正極>
正極は、正極活物質を含む正極活物質層と、集電体とから構成される。
上記正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。なかでも、正極活物質としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をNa、K、B、F、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の元素で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.33Co0.33Mn0.33、LiNi0.45Co0.10Al0.45、LiMn1.8 Al0.2、LiMn1.5Ni0.5等が挙げられる。
なかでも、上記リチウム含有遷移金属複合酸化物としては、高電圧にした場合でもエネルギー密度が高いLiMn1.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2が好ましい。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属複合酸化物としては、例えば、
式:LiMn2−b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式:LiNi1−c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又は、
式:LiCo1−d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が挙げられる。
なかでも、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、またはLiNi1/3Co1/3Mn1/3が好ましい。
その他の上記正極活物質として、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV等が挙げられる。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、さらに好ましくは3.5g/cm以下である。
なお、本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、さらに好ましくは0.3m/g以上であり、また、好ましくは50m/g以下、より好ましくは40m/g以下、さらに好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
上記リチウムイオン二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5〜7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33などのLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50〜99質量%が好ましく、80〜99質量%がより好ましい。また、正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、エチレン−プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系溶媒としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.5g/cm以上、より好ましくは2g/cm以上、さらに好ましくは2.2g/cm以上であり、また、好ましくは5g/cm以下、より好ましくは4.5g/cm以下、さらに好ましくは4g/cm以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
本発明の電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合剤層に対向する正極合剤層の幾何表面積であり、集電体箔を介して両面に正極合剤層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合剤層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
<負極>
負極は、負極活物質を含む負極活物質層と、集電体とから構成される。
上記負極活物質としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金;リチウム含有金属複合酸化物材料等を挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましく、天然黒鉛、人造黒鉛、人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、負極活物質層が少なくとも2種以上の異なる配向性の炭素質が接する界面を有している炭素質材料、から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよくより好ましい。また、これらの炭素材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料としては、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素剤、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−ヘキサン等の低分子有機溶剤に溶解させた溶液及びこれらの炭化物等が挙げられる。
上記負極活物質として用いられる金属材料(但し、リチウムチタン複合酸化物を除く)としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として作動しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。
具体的には、Si単体、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、LiSiOあるいはスズ単体、SnSiO、LiSnO、MgSn、SnO(0<w≦2)が挙げられる。
また、SiまたはSnを第一の構成元素とし、それに加えて第2、第3の構成元素を含む複合材料が挙げられる。第2の構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム及びジルコニウムのうち少なくとも1種である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウム及びリンのうち少なくとも1種である。
特に、高い電池容量および優れた電池特性が得られることから、上記金属材料として、ケイ素またはスズの単体(微量の不純物を含んでよい)、SiO(0<v≦2)、SnO(0≦w≦2)、Si−Co−C複合材料、Si−Ni−C複合材料、Sn−Co−C複合材料、Sn−Ni−C複合材料が好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記)が好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
上記リチウムチタン複合酸化物としては、一般式:
LiTi
[式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
で表される化合物であることが好ましい。
上記組成の中でも、
(i)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(ii)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(iii)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(i)ではLi4/3Ti5/3、(ii)ではLiTi、(iii)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅が好ましい。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚すぎると、電池全体の容量が低下し過ぎることがあり、逆に薄すぎると取扱いが困難になることがある。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、合金材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合剤層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
<セパレータ>
上記リチウムイオン二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本発明の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、本発明の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
上記リチウムイオン二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
また、上述の二次電池を備えたモジュールも本発明の一つである。
また、正極、負極、及び、上述の電解液を備え、上記正極は、正極集電体及び正極活物質を含む正極活物質層を備えており、上記正極活物質は、Mnを含むことを特徴とする二次電池も、好適な態様の一つである。Mnを含む正極活物質を含む正極活物質層を備えることから、上記二次電池は、高温保存特性により一層優れる。
上記Mnを含む正極活物質としては、エネルギー密度が高く、高出力な二次電池を提供できる点から、LiMn1.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2が好ましい。
上記正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極活物質層は、更に、導電材、増粘剤及び結着剤を含んでもよい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、エチレン−プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
上記正極集電体は、高温保存特性がより一層改善することから、弁金属又はその合金で構成されていることが好ましい。上記弁金属としては、アルミニウム、チタン、タンタル、クロム等が挙げられる。上記正極集電体は、アルミニウム又はアルミニウムの合金で構成されていることがより好ましい。
上記二次電池は、高温保存特性がより一層改善することから、上記正極集電体と電気的に接続されている部分のうち電解液と接触する部分についても、弁金属又はその合金で構成されていることが好ましい。特に、電池外装ケース、及び、上記電池外装ケースに収容されるリード線や安全弁などのうち正極集電体と電気的に接続されていて、かつ非水電解液と接触する部分は、弁金属又はその合金で構成することが好ましい。弁金属又はその合金により被覆したステンレスを使用してもよい。
上記正極の製造方法は、上述したとおりであり、例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを上記正極集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記負極の構成は上述したとおりである。
上記電気二重層キャパシタは、正極、負極、及び、上述の電解液を備えていてよい。
上記電気二重層キャパシタでは、正極及び負極の少なくとも一方は分極性電極であり、分極性電極及び非分極性電極としては特開平9−7896号公報に詳しく記載されている以下の電極が使用できる。
本発明で用いる活性炭を主体とする分極性電極は、好ましくは大比表面積の不活性炭と電子伝導性を付与するカーボンブラック等の導電剤とを含むものである。分極性電極は種々の方法で形成することができる。例えば、活性炭粉末とカーボンブラックとフェノール系樹脂を混合し、プレス成形後不活性ガス雰囲気中及び水蒸気雰囲気中で焼成、賦活することにより、活性炭とカーボンブラックからなる分極性電極を形成できる。好ましくは、この分極性電極は集電体と導電性接着剤などで接合する。
また、活性炭粉末、カーボンブラック及び結合剤をアルコールの存在下で混練してシート状に成形し、乾燥して分極性電極とすることもできる。この結合剤には、例えばポリテトラフルオロエチレンが用いられる。また、活性炭粉末、カーボンブラック、結合剤及び溶媒を混合してスラリーとし、このスラリーを集電体の金属箔にコートし、乾燥して集電体と一体化された分極性電極とすることもできる。
活性炭を主体とする分極性電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、例えば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする分極性電極の負極とを組合せた構成、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする負極、又はリチウム金属やリチウム合金の負極と、活性炭を主体とする分極性の正極とを組合せた構成も可能である。
また、活性炭に代えて又は併用して、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラックなどの炭素質材料を用いてもよい。
非分極性電極としては、好ましくはリチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とするものとし、この炭素材料にリチウムイオンを吸蔵させたものを電極に使用する。この場合、電解質にはリチウム塩が使用される。この構成の電気二重層キャパシタによれば、さらに高い4Vを超える耐電圧が得られる。
電極の作製におけるスラリーの調製に用いる溶媒は結合剤を溶解するものが好ましく、結合剤の種類に合わせ、N−メチルピロリドン、ジメチルホルムアミド、トルエン、キシレン、イソホロン、メチルエチルケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、エタノール、メタノール、ブタノール又は水が適宜選択される。
分極性電極に用いる活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。これらのうち大きい容量を得られる点で石油コークス系活性炭又はフェノール樹脂系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法などがあり、より大きな容量が得られる点で溶融KOH賦活処理法による活性炭を使用するのが好ましい。
分極性電極に用いる好ましい導電剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、金属ファイバ、導電性酸化チタン、酸化ルテニウムがあげられる。分極性電極に使用するカーボンブラック等の導電剤の混合量は、良好な導電性(低い内部抵抗)を得るように、また多すぎると製品の容量が減るため、活性炭との合計量中1〜50質量%とするのが好ましい。
また、分極性電極に用いる活性炭としては、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500〜3000m/gの活性炭を使用するのが好ましい。また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極を構成するための好ましい炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカ、気層成長炭素繊維、フルフリルアルコール樹脂の焼成品又はノボラック樹脂の焼成品があげられる。
集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタン又はタンタルが好ましく使用できる。これらのうち、ステンレス又はアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極の集電体としては、好ましくはステンレス、銅又はニッケルが使用される。
また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料にあらかじめリチウムイオンを吸蔵させるには、(1)粉末状のリチウムを、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料に混ぜておく方法、(2)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極上にリチウム箔を載せ、電極と電気的に接触させた状態で、この電極をリチウム塩を溶かした電解液中に浸漬することによりリチウムをイオン化させ、リチウムイオンを炭素材料中に取り込ませる方法、(3)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極をマイナス側に置き、リチウム金属をプラス側に置いてリチウム塩を電解質とする電解液中に浸漬し、電流を流して電気化学的に炭素材料中にリチウムをイオン化した状態で取り込ませる方法がある。
電気二重層キャパシタとしては、巻回型電気二重層キャパシタ、ラミネート型電気二重層キャパシタ、コイン型電気二重層キャパシタなどが一般に知られており、上記電気二重層キャパシタもこれらの形式とすることができる。
例えば巻回型電気二重層キャパシタは、集電体と電極層の積層体(電極)からなる正極及び負極を、セパレータを介して巻回して巻回素子を作製し、この巻回素子をアルミニウム製などのケースに入れ、電解液、好ましくは非水系電解液を満たしたのち、ゴム製の封口体で封止して密封することにより組み立てられる。
セパレータとしては、従来公知の材料と構成のものが使用できる。例えば、ポリエチレン多孔質膜、ポリプロピレン繊維やガラス繊維、セルロース繊維の不織布などがあげられる。
また、公知の方法により、電解液とセパレータを介してシート状の正極及び負極を積層したラミネート型電気二重層キャパシタや、ガスケットで固定して電解液とセパレータを介して正極及び負極をコイン型に構成したコイン型電気二重層キャパシタとすることもできる。
本発明の電解液は、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池用や、電気二重層キャパシタ用の電解液として有用である。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
表1及び表2に記載の略号は、それぞれ、次の化合物を表す。また、表1及び表2に記載の溶媒の混合割合は、溶媒中の各成分の体積の割合(体積%)であり、添加剤の混合割合は、電解液中の溶媒の質量に対する各添加剤の質量の割合(質量%)である。
A エチレンカーボネート
B エチルメチルカーボネート
C ジメチルカーボネート
D プロピオン酸エチル
E フルオロエチレンカーボネート
F ビニレンカーボネート
G CHOCOOCHCF
H CHFCOOCH
I CFCHCOOCH
J 亜リン酸トリストリメチルシリル
K トリフルオロメチルエチレンカーボネート
L 4−(2,2,3,3,3−ペンタフルオロプロピル)1,3−ジオキソラン−2−オン
M 4−(2,3,3,3−テトラフルオロ−2−トリフルオロメチルプロピル)1,3−ジオキソラン−2−オン
表1に記載の実施例及び比較例
表1に記載の組成になるように、各成分を混合し、これにLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
(正極の作製1)
正極活物質としてLiNi1/3Mn1/3Co1/3、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN−メチル−2−ピロリドンディスパージョンを用い、活物質、導電材、結着剤の固形分比が92/3/5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表1に記載の組成を有する電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(抵抗上昇率の測定)
上記電池をSOC50%まで充電し、5Cレートにて放電し、その時の電圧降下(V)を、対応する電流値(A)で除してIV抵抗(Ω)を算出した。その後、同電池を4.2Vまで充電し、60℃で4週間の期間、開回路状態で保存した。保存した電池をSOC50%まで調整し、前記状態で5Cレートにて放電し、その時の電圧降下(V)を、対応する電流値(A)で除してIV抵抗(Ω)を算出した。実施例では保存前と保存後の値の比を算出し、その中で実施例4の値を100としてそれぞれの実施例と比較する。
上記のSOCとは充電状態を示し、SOC100%は4.2Vまで充電した際の容量である。例えばSOC50%とはSOC100%の半分の容量を示す。
結果を表1に示す。
Figure 2019003776
表2に記載の実施例及び比較例
表2に記載の組成になるように、各成分を混合し、これにLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。
(正極の作製2)
正極活物質としてLiNi0.5Mn1.5、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN−メチル−2−ピロリドンディスパージョンを用い、活物質、導電材、結着剤の固形分比が92/3/5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表2に記載の組成を有する電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(抵抗上昇率の測定)
上記電池をSOC50%まで調整し、5Cレートにて放電し、その時の電圧降下(V)を、対応する電流値(A)で除してIV抵抗(Ω)を算出した。その後、同電池を4.9Vまで充電し、60℃で4週間の期間、開回路状態で保存した。保存した電池をSOC50%まで調整し、前記状態で5Cレートにて放電し、その時の電圧降下(V)を、対応する電流値(A)で除してIV抵抗(Ω)を算出した。実施例では保存前と保存後の値の比を算出し、その中で実施例27の値を100としてそれぞれの実施例と比較する。
上記のSOCとは充電状態を示し、SOC100%は4.9Vまで充電した際の容量である。例えばSOC50%とはSOC100%の半分の容量を示す。
結果を表2に示す。
Figure 2019003776

Claims (11)

  1. 亜リン酸トリス(トリメチルシリル)、並びに、化合物(1−a)及び化合物(1−b)からなる群より選択される少なくとも1種のフッ素化飽和環状カーボネート(1)を含むことを特徴とする電解液。
    化合物(1−a):
    Figure 2019003776
    化合物(1−b):
    Figure 2019003776
  2. 更に、溶媒を含む請求項1記載の電解液。
  3. 前記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート(但し、フッ素化飽和環状カーボネート(1)を除く)、非フッ素化鎖状カーボネート、フッ素化鎖状カーボネート、非フッ素化鎖状エステル、及び、フッ素化鎖状エステルからなる群より選択される少なくとも1種を含む請求項2記載の電解液。
  4. 亜リン酸トリス(トリメチルシリル)の含有量が前記溶媒に対して0.001〜10質量%である請求項2又は3記載の電解液。
  5. フッ素化飽和環状カーボネート(1)の含有量が前記溶媒に対して0.001〜10質量%である請求項2、3又は4記載の電解液。
  6. 更に、ビニレンカーボネートを含む請求項1、2、3、4又は5記載の電解液。
  7. 更に、溶媒を含み、ビニレンカーボネートの含有量が前記溶媒に対して0.001〜10質量%である請求項6記載の電解液。
  8. 更に、電解質塩を含む請求項1、2、3、4、5、6又は7記載の電解液。
  9. 請求項1、2、3、4、5、6、7又は8記載の電解液を備えることを特徴とする電気化学デバイス。
  10. 請求項1、2、3、4、5、6、7又は8記載の電解液を備えることを特徴とする二次電池。
  11. 請求項9記載の電気化学デバイス、又は、請求項10記載の二次電池を備えることを特徴とするモジュール。
JP2019526722A 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール Active JP7058652B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017128995 2017-06-30
JP2017128995 2017-06-30
PCT/JP2018/020786 WO2019003776A1 (ja) 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール

Publications (2)

Publication Number Publication Date
JPWO2019003776A1 true JPWO2019003776A1 (ja) 2019-12-12
JP7058652B2 JP7058652B2 (ja) 2022-04-22

Family

ID=64741333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526722A Active JP7058652B2 (ja) 2017-06-30 2018-05-30 電解液、電気化学デバイス、二次電池及びモジュール

Country Status (8)

Country Link
US (1) US11374259B2 (ja)
EP (1) EP3627609B1 (ja)
JP (1) JP7058652B2 (ja)
KR (1) KR102395567B1 (ja)
CN (1) CN110495039B (ja)
HU (1) HUE066529T2 (ja)
PL (1) PL3627609T3 (ja)
WO (1) WO2019003776A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110495040B (zh) 2017-06-30 2022-11-01 大金工业株式会社 电解液、电化学器件、二次电池和组件
EP3627609B1 (en) 2017-06-30 2024-02-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, secondary cell, and module
CN114121500A (zh) * 2020-08-28 2022-03-01 诺莱特电池材料(苏州)有限公司 一种超级电容器用电解液及超级电容器
CN115842154A (zh) * 2021-12-02 2023-03-24 宁德时代新能源科技股份有限公司 二次电池及包含其的用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133902A1 (ja) * 2011-03-31 2012-10-04 ダイキン工業株式会社 電解液
JP2015133278A (ja) * 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018016246A1 (ja) * 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
WO2018016245A1 (ja) * 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622534A1 (de) * 1986-07-04 1988-01-07 Hoechst Ag Neue polyfluorierte cyclische carbonate, verfahren zu ihrer herstellung und ihrer verwendung
GB9007104D0 (en) 1990-03-29 1990-05-30 Dowty Electronic Components A battery and a method of manufacture therefor
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
JPH086630A (ja) 1994-06-21 1996-01-12 Kobe Steel Ltd 生産スケジュール作成装置
JPH08222270A (ja) 1994-12-13 1996-08-30 Japan Energy Corp イオン伝導体
JP3496338B2 (ja) 1995-06-16 2004-02-09 旭硝子株式会社 電気二重層キャパシタ
JPH10294131A (ja) 1997-04-18 1998-11-04 Asahi Glass Co Ltd ポリマー電解質を有するリチウム電池
JPH1135765A (ja) 1997-07-24 1999-02-09 Sharp Corp 高分子固体電解質とその製造方法
JP2001057237A (ja) 1999-08-19 2001-02-27 Mitsui Chemicals Inc リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
JP2002100405A (ja) 2000-09-20 2002-04-05 Hitachi Chem Co Ltd ゲル状高分子固体電解質用樹脂組成物およびゲル状高分子固体電解質
JP2004301934A (ja) 2003-03-28 2004-10-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法
KR100804696B1 (ko) 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
JP5274563B2 (ja) 2008-08-06 2013-08-28 三井化学株式会社 リチウム二次電池用非水電解液、リチウム二次電池及びその製造方法、並びにリチウム二次電池用混合型非水電解液
KR101147240B1 (ko) * 2009-11-10 2012-05-21 삼성에스디아이 주식회사 리튬 이차 전지
US20120231325A1 (en) 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US9350048B2 (en) 2011-03-23 2016-05-24 Samsung Sdi Co., Ltd. Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US20120315534A1 (en) 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
CN104025353A (zh) 2011-10-04 2014-09-03 旭化成株式会社 用于电池组电解质的材料及使用方法
US20130224604A1 (en) * 2012-02-27 2013-08-29 Samsung Sdi Co., Ltd. Electrolyte for secondary lithium battery and secondary lithium battery including same
WO2014050873A1 (ja) * 2012-09-28 2014-04-03 ダイキン工業株式会社 電解液、電気化学デバイス、リチウム電池、及び、モジュール
US10243242B2 (en) * 2013-12-20 2019-03-26 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JP6197943B2 (ja) 2014-03-28 2017-09-20 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
KR20160049077A (ko) 2014-10-24 2016-05-09 전자부품연구원 실릴 포스파이트계 소재를 함유하는 전해질 및 그를 포함하는 리튬 이차 전지
CN105098244A (zh) * 2015-08-06 2015-11-25 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105591158B (zh) * 2016-03-21 2019-01-15 东莞市杉杉电池材料有限公司 一种三元正极材料锂离子电池及其电解液
CN110495040B (zh) 2017-06-30 2022-11-01 大金工业株式会社 电解液、电化学器件、二次电池和组件
EP3627609B1 (en) 2017-06-30 2024-02-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, secondary cell, and module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133902A1 (ja) * 2011-03-31 2012-10-04 ダイキン工業株式会社 電解液
JP2015133278A (ja) * 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2018016246A1 (ja) * 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
WO2018016245A1 (ja) * 2016-07-22 2018-01-25 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール

Also Published As

Publication number Publication date
KR20200020826A (ko) 2020-02-26
EP3627609B1 (en) 2024-02-28
WO2019003776A1 (ja) 2019-01-03
EP3627609A4 (en) 2021-01-27
PL3627609T3 (pl) 2024-07-22
CN110495039B (zh) 2022-06-10
JP7058652B2 (ja) 2022-04-22
US11374259B2 (en) 2022-06-28
CN110495039A (zh) 2019-11-22
EP3627609A1 (en) 2020-03-25
US20200127331A1 (en) 2020-04-23
KR102395567B1 (ko) 2022-05-09
HUE066529T2 (hu) 2024-08-28

Similar Documents

Publication Publication Date Title
JP6319441B2 (ja) 電解液及び硫酸エステル塩の製造方法
JP6024745B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6458803B2 (ja) 電解液、及び、リン酸塩の製造方法
JP6024746B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6197943B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP5757374B1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6269817B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6123912B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6696591B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2018016245A1 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6696590B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2018186068A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2018016246A1 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP2017004692A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JPWO2019003780A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JPWO2016039118A1 (ja) 電解液及び新規なフッ素化リン酸エステル
JPWO2019003776A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP6583422B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2018106979A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2017004690A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2018116652A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2018101535A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2018179767A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201223

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210727

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210914

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220315

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220412

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220412

R150 Certificate of patent or registration of utility model

Ref document number: 7058652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150