JPWO2018181966A1 - 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 - Google Patents

光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 Download PDF

Info

Publication number
JPWO2018181966A1
JPWO2018181966A1 JP2019509396A JP2019509396A JPWO2018181966A1 JP WO2018181966 A1 JPWO2018181966 A1 JP WO2018181966A1 JP 2019509396 A JP2019509396 A JP 2019509396A JP 2019509396 A JP2019509396 A JP 2019509396A JP WO2018181966 A1 JPWO2018181966 A1 JP WO2018181966A1
Authority
JP
Japan
Prior art keywords
light
optical
layer
unit
optical sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019509396A
Other languages
English (en)
Other versions
JP7205463B2 (ja
Inventor
柏木 剛
剛 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2018181966A1 publication Critical patent/JPWO2018181966A1/ja
Priority to JP2022210570A priority Critical patent/JP7428230B2/ja
Application granted granted Critical
Publication of JP7205463B2 publication Critical patent/JP7205463B2/ja
Priority to JP2024007794A priority patent/JP2024054147A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Abstract

所望の出光角度制御を効率よく行うことができる光学シートを提供することを目的とし、光学機能層は、一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う光透過部の間に配置される光吸収部と、を有し、光学要素層は、上記の一方向に対して光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する。

Description

本発明は、入射した光の出射方向を制御する光学シート、並びにこれを備える光制御部材、面光源装置、映像源ユニット、及び表示装置に関する。
カーナビゲーション、テレビ、パソコンのモニタ等の表示装置には、表示すべき映像を出射する映像源が備えられるとともに、映像光の質を高めて観察者側に提供するための光学シートが具備されている。
映像光の出射方向は正面、又は、正面から上下左右の角度方向とされることが多く、これにより所望の位置から画面に映し出された映像を視認することができる。また、覗き見防止等、必要に応じて出光方向を制限することも行われている。
このように出光角度を制御する光学シートとして例えば特許文献1〜特許文献3が開示されている。
特開2006−171701号公報 特開2014−059565号公報 特開2012−113054号公報
近年における機器の多様化により、映像光の出射方向をこれまでとは異なるように、又は、より細かく制御することが必要となってきた。例えばカーナビゲーションについてみると、車内では人が座る位置が概ね決まっているため、必ずしも広い視野角を必要とせず、人が存在する位置、特に運転者に向けて映像を出射すればよい。従って、映像光は正面よりも斜め上方に出射されることで運転者が見やすくなる。しかし一方であまり上方に向けて映像を出光してしまうとフロントガラスへの映像の映りこみの問題が生じる。このような出光角度は車種等により異なるため細かい出光角度の制御が必要となる。例えば上記特許文献を例に挙げれば次のような問題点を含んでいる。
例えば特許文献1に記載のような光学シートを用いて視野角を制御すると細かな視野角制御をすることが難しかった。または、制御したとしても映像光の利用効率が低下してしまう問題があった。
例えば特許文献2に記載のような光学シートでは、所望する方向への映像光の出射性能は高いが、それ以外の方向への映像光の出射が制限されてしまう。これにより、特に大きな画面を有する表示装置にした場合に、画面の中央は明るいものの画面の外周部分における明るさが中央部に比べて相対的に暗くなることがあった。特に画面を正面に対して斜め方向から見たときにその傾向がさらに顕著に表れる。
例えば特許文献3に記載のような技術では、光透過部と光吸収部の形状をシートの中央部と外周部とで大きく変える必要があり、必ずしも細かく光の制御をすることができるものではなかった。また、この場合、製造上の困難性が高まり、精度のよい形状を作製するのが難しい。
そこで本発明は、所望の出光角度制御を効率よく行うことができる光学シートを提供することを課題とする。また、この光学シートを備える光制御部材、面光源装置、映像源ユニット、及び表示装置を提供する。
以下、本発明について説明する。
本発明の1つの態様は、複数の層が積層されてなる光学シートであって、複数の層の1つである光学機能層と、複数の層の他の1つである光学要素層と、を備え、光学機能層は、一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う光透過部の間に配置される光吸収部と、を有し、光学要素層は、一方向に対して光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する、光学シートである。
ここで「光学シートの正面視」とは光学シートをその出光側となる面からみたときの視点を意味する。そして「光学シートの正面視で0°以上45°以下」とは光学シートの正面視で光学シートを見たときに、光透過部が延びる方向(一方向)に対して単位光学要素が0°以上45°以下の角度を有するように延びていることを意味する。
光透過部は台形断面を有し、長い下底が単位光学要素側に向いているように構成してもよい。
単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、主屈折面は光学機能層の出光面の法線方向に対して45°より大きく89°以下で傾斜する面としてもよい。
主屈折面と光学機能層の出光面の法線との成す角が、シート中央側の単位光学要素とシート外周側の単位光学要素とで異なるように構成してもよく、このときには光学要素層がリニアフレネルレンズからなるようにすることもできる。
単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、主屈折面は、光学機能層の層面に対して0°より大きく17°より小さい角度で傾斜するように構成してもよい。
光透過部は台形断面を有し、短い上底が単位光学要素側に向いているように構成してもよい。
単位光学要素の表面には粗面が形成されてもよい。
光透過部の配列ピッチをP(μm)、単位光学要素の配列ピッチをP(μm)、a、bを1以上10以下の整数とし、
=|(a・P・b・P)/(a・P−b・P)|
として、あるP、Pに対する全てのa、bの組み合わせから得られるPのうち最も大きなものをPmx(μm)としたとき、前記Pmxが10000(μm)以下であるように構成してもよい。
光源と、該光源よりも観察者側に配置される上記の光学シートと、を備える面光源装置を提供することができる。
上記の光学シートが2枚以上配置され、一方の光学シートの光透過部が延びる方向と、他方の光学シートの光透過部が延びる方向と、が光学シートの正面視で交差するように配置される、光制御部材とすることができる。
光源と、該光源よりも観察者側に配置される上記光制御部材と、を備える面光源装置を提供することができる。
上記の面光源装置と、該面光源装置の出光側に配置された液晶パネルと、を備える映像源ユニットを提供することができる。
光透過部、光吸収部、及び単位光学要素は、延びる方向が水平方向であり、配列される方向が鉛直方向である映像源ユニットとしてもよい。
また、上記の映像源ユニットが筐体に収められた表示装置を提供することができる。
本発明によれば、出光角度制御を効率よく行うことができる。
映像源ユニット10を説明する分解斜視図である。 映像源ユニット10の断面を示す分解図である。 映像源ユニット10の他の断面を示す分解図である。 光学シート30に注目して拡大した断面図である。 光学シート30をさらに拡大した断面図である。 光学シート30の変形例を説明する図である。 光学シート30を透過する光の光路例について説明する図である。 出光側光制御層35を備える場合の出光角度の制御について説明する図である。 出光側光制御層135を備える形態について説明する図である。 出光側光制御層135による光路例を説明する図である。 出光側光制御層135を備える場合の出光角度の変化について説明する図である。 映像源ユニット210を説明する分解斜視図である。 映像源ユニット210の断面を示す分解図である。 映像源ユニット210の他の断面を示す分解図である。 第二の光学シート230に注目して拡大した断面図である。 第二の光学シート230の一部をさらに拡大した断面図である。 第一の光学シート30における光路例を説明する図である。 第二の光学シート230における光制御を説明する図である。 映像源ユニット310を説明する分解斜視図である。 映像源ユニット310の断面を示す分解図である。 映像源ユニット310の他の断面を示す分解図である。 光学シート330に注目して拡大した図である。 光学シート330をさらに拡大した図である。 光学シート330を透過する光路について説明する図である。 光学シート330の出光特性について説明する図である。 試験例Aにおける光源の特性を表した図である。 試験例Aの結果を表した図である。 試験例Aの結果を表した図である。 試験例Aの結果を表した図である。 試験例Bにおける光源の特性を表した図である。 図31(a)、図31(b)は試験例Bの結果を表した図である。 図25(a)、図25(b)は試験例Bの結果を表した図である。 単位光学要素の表面に粗面を形成する場面を表した図である。 試験例Eの光学シートの構成について説明する図である。 図35(a)、図35(b)、図35(c)は、試験例Eの結果を表したグラフである。
以下、本発明を図面に示す形態に基づき説明する。ただし、本発明はこれら形態に限定されるものではない。なお、各図面では分かりやすさのため、形状を拡大、変形、誇張して表すことがあり、繰り返しとなる符号は一部を省略することがある。
図1は第1の形態を説明する図であり、光学シート30を含む映像源ユニット10の分解斜視図である。また、図2には、図1にII−IIで示した線(鉛直方向に沿った線)に沿って切断した映像源ユニット10の分解断面図の一部、図3にはIII−IIIで示した線(水平方向に沿った線)に沿って切断した映像源ユニット10の分解断面図の一部を表した。なお、ここでいう鉛直方向及び水平方向は、光学シート30が表示装置に配置され、この表示装置が使用される姿勢における向きを意味する。
このような映像源ユニット10は、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット10を作動させる電源、及び映像源ユニット10を制御する電子回路等、映像源ユニット10として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。以下映像源ユニット10について説明する。
映像源ユニット10は、液晶パネル15、面光源装置20、及び機能フィルム40を備えている。本形態で光学シート30は、面光源装置20に含まれている。図1〜図3には、表示装置が設置された姿勢における向きを併せて表示している。
液晶パネル15は、観察者側に配置された上偏光板13と、面光源装置20側に配置された下偏光板14と、上偏光板13と下偏光板14との間に配置された液晶層12と、を有している。上偏光板13、下偏光板14は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(吸収軸に平行な方向)の偏光成分(例えば、S波)を吸収する機能を有している。
液晶層12は、複数の画素が層面に沿った方向に2次元的に縦横に配列されており、一つの画素を形成する領域毎に電界印加できる。そして電界印加された画素の配向が変化する。これにより、面光源装置20側(すなわち入光側)に配置された下偏光板14を透過した透過軸に平行な偏光成分(例えばP波)は、電界印加された画素を通過する際にその偏光方向を90°回転させ、その一方で、電界印加されていない画素を通過する際にその偏光方向を維持する。このため、画素への電界印加の有無によって、下偏光板14を透過した偏光成分(例えばP波)が、出光側に配置された上偏光板13をさらに透過するか、あるいは、上偏光板13で吸収されて遮断されるか、を制御することができる。
このようにして液晶パネル15は、面光源装置20からの光の透過または遮断を画素毎に制御して映像を表現する構造を有している。
液晶パネルにはいくつかの種類があるが、本形態ではその種類は特に限定されることはなく、公知の型の液晶パネルを用いることができる。具体的には例えばTN、STN、VA、MVA、IPS、OCB等が挙げられる。
次に面光源装置20について説明する。
面光源装置20は、液晶パネル15を挟んで観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図1〜図3よりわかるように、本形態の面光源装置20は、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光学シート30及び反射シート39を有している。
導光板21は、図1〜図3よりわかるように、基部22及び裏面光学要素23を有している。導光板21は透光性を有する材料により形成された全体として板状の部材である。本形態で導光板21の観察者側となる一方の板面側は平滑面とされ、これとは反対側である他方の板面側は裏面とされ、当該裏面に複数の裏面光学要素23が配列されている。
基部22、裏面光学要素23をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることができる。これには例えば脂環式構造を有する重合体樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体、メタクリル酸メチル−スチレン共重合体、ABS樹脂、ポリエーテルスルホン等の熱可塑性樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)等を挙げることができる。
基部22は、その内部を光が導光されるとともに、裏面光学要素23のベースとなる部位で、適切な厚さを有する板状である。
裏面光学要素23は、基部22の裏面側に形成される突出した要素であり、本形態では三角柱状である。本形態で裏面光学要素23は、突出した頂部の稜線が水平方向に延びる柱状であり、複数の裏面光学要素23が当該延びる方向に直交する方向(鉛直方向)に配列されている。本形態の裏面光学要素23は断面が三角形であるがこれに限定されることはなく、多角形、半球状、球の一部、レンズ形状等いずれの形状の断面であってもよい。
複数の裏面光学要素23の配列方向は導光方向であることが好ましい。すなわち、光源25から離隔する方向に配列され、光源25が配列される方向、又は1つの長い光源であれば該光源が延びる方向に平行に各裏面光学要素23の稜線が延びている。
なお、本件明細書における「三角形形状」とは、厳密な意味での三角形形状のみでなく、製造技術における限界や成型時の誤差等を含む略三角形形状を含む。また同様に、本件明細書において用いる、その他の形状や幾何学的条件を特定する用語、例えば、「平行」、「直交」、「楕円」、「円」等の用語も、厳密な意味に縛られることなく、同様の光学的機能を期待し得る程度の誤差を含めて解釈する。
このような構成を有する導光板21は、押し出し成型により、又は、基部22上に裏面光学要素23を賦型することにより製造することができる。なお、押し出し成型で製造された導光板21においては、基部22、及び裏面光学要素23が一体的に形成され得る。また、賦型によって導光板21を製造する場合、裏面光学要素23が、基部22と同一の樹脂材料であっても、異なる材料であってもよい。
図1〜図3に戻って、光源25について説明する。光源25は、導光板21の基部22が有する側面(端面)のうち、裏面光学要素23が配列される方向の一方側の側面(端面)に配置される。光源の種類は特に限定されるものではないが、線状の冷陰極管等の蛍光灯、点状のLED(発光ダイオード)、又は白熱電球等の種々の態様で構成できる。本形態で光源25は複数のLEDからなり、不図示の制御装置により各LEDの点灯および消灯、並びに/又は、各LEDの点灯時の明るさを個別に独立して調節できるように構成されている。
なお、本形態では上記のように光源25は一方側の側面(端面)に配置される例を示したが、さらにこの側面(端面)とは反対側となる側面(端面)にも光源が配置される形態であってもよい。この場合には裏面光学要素の形状も当該光源の配置に適するように公知の例に倣って形成する。
次に光拡散板26について説明する。光拡散板26は、導光板21の出光側に配置され、ここに入射した光を拡散させて出射する機能を有する層である。これにより、導光板21から出射した光の均一性をさらに高め、導光板21に存在する傷を目立たなくすることができる。
光拡散板の具体的態様は、公知の光拡散板を用いることができ、例えば母材の中に光拡散剤を分散させた形態を挙げることができる。
光拡散板26は、本形態のようにプリズム層27の支持板として用いることもできる。また、導光板21の出光面が平滑の場合には、光拡散板26を導光板21に貼り合わせて一体としてもよい。
プリズム層27は、図1〜図3よりわかるように、光拡散板26よりも液晶パネル15側に設けられ、該液晶パネル15側に向けて凸である単位プリズム27aを具備する層である。本形態で単位プリズム27aは、本形態では三角形断面を有して導光板21の導光方向に直交する方向(本形態では水平方向)に延びる形態を有している。そして、複数の単位プリズム27aが導光板21の導光方向(本形態では鉛直方向)に配列されている。これにより光学機能層32で光を制御する方向(本形態では鉛直方向)に光を集光することができ、光学機能層32で光を効率よく全反射させることが可能となるため、光の利用効率を高めることができる。
ただし、このようなプリズム層の単位プリズムの断面形状は、必要とする機能に応じて公知の形状(三角形、四角形、その他の多角形)を適用することができる。当該形状により上記のように集光することもできるし、逆に光をさらに拡散させることもできる。
また、単位プリズムが延びる方向及び配列される方向は上記形態に限定されることなく他の形態であってもよい。例えば単位プリズムが導光板の導光方向に延び、複数の単位プリズムが導光板の導光方向に対して直交する方向に配列される形態であってもよい。
反射型偏光板28は、入射した光を直交する二つの偏光成分(P波およびS波)に分解し、一方の方向(透過軸に平行な方向)の偏光成分(例えば、P波)を透過させ、当該一方の方向に直交する他方の方向(反射軸に平行な方向)の偏光成分(例えば、S波)を反射する機能を有している。このような反射型偏光板の構造は公知のものを適用することができる。
次に光学シート30について説明する。図4には図2の視点で光学シート30の一部を拡大して表した。図1〜図4よりわかるように、光学シート30は、シート状に形成された基材層31と、基材層31の一方の面(本形態では導光板21側の面)に設けられた光学機能層32と、基材層31の他方の面(本形態では液晶パネル15側の面)に配置された光制御層としての出光側光制御層35と、を備えている。
基材層31は光学機能層32、及び出光側光制御層35を支持する平板状のシート状部材である。
基材層31をなす材料としては、種々の材料を使用することができる。ただし、表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料を用いることができる。これには例えばポリエチレンテレフタレート樹脂(PET)、トリアセチルセルロース樹脂(TAC)、メタクリル樹脂、ポリカーボネート樹脂等を挙げることができる。この中でも面光源装置20と下偏光板14との組み合わせを考慮して複屈折(リタデーション)の少ないTAC、メタクリル樹脂、ポリカーボネート樹脂を用いることが好ましい。さらには、車載用途などのように高い耐熱性が求められる用途では、ガラス転移点が高いポリカーボネート樹脂が望ましい。具体的にはポリカーボネート樹脂のガラス転移点は143℃であり、一般に105℃での耐久性が求められる車載用途に適している。
光学機能層32は基材層31の一方の面(本形態では導光板21側の面)に積層された層で、光透過部33、及び光吸収部34を有して構成されている。光学機能層32は、図4に示した断面を有して紙面奥/手前側(本形態では映像源ユニット10を正面視したときの水平方向)に延びる形状を備え、層面に沿って当該延びる方向とは異なる方向(本形態では鉛直方向)に光透過部33と光吸収部34とが交互に配列されている。
光透過部33は、光を透過させることを主要の機能とする部位であり、本形態では図2、図4に表れる断面において、基材層31側に長い下底、その反対側(導光板21側)に短い上底を有する略台形の断面形状を有する要素である。
光透過部33は、基材層31の層面に沿って当該断面を維持して一方向(本形態では水平方向)に延びるとともに、この延びる方向とは異なる方向(本形態では鉛直方向)に間隔を有して複数配列される。そして、隣り合う光透過部33の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部33の上底側(導光板21側)に長い下底を有し、光透過部33の下底側(基材層31側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部34が形成される。
本形態では、複数の光透過部33がその下底側(基材層側31)でシート状の土台部32aにより連結されている。
光透過部33は屈折率がNとされている。このような光透過部33は、光透過部構成組成物を硬化させることにより形成することができる。屈折率Nの値は特に限定されることはないが、後述するように台形断面の斜面における光吸収部34との界面で適切に光を反射(全反射を含む。)する観点から屈折率は1.47以上であることが好ましい。ただし、屈折率が高すぎる材料は割れやすい場合が多いので屈折率は1.61以下であることが好ましい。より好ましくは1.49以上1.56以下、さらに好ましくは1.56である。
光吸収部34は隣り合う光透過部33の間に形成された上記の間隔(溝)に形成される間部として機能し、間隔(溝)の断面形状と同様の断面形状となる。従って短い上底が液晶パネル15側(基材層31側)を向き、長い下底がその反対側(本形態では導光板21側)となる。そして光吸収部34は、屈折率がNとされるとともに、光を吸収することができるように構成されている。具体的には屈折率がNである透明樹脂に光吸収粒子が分散される。屈折率Nは、光透過部33の屈折率Nよりも低い屈折率とされる。このように、光吸収部34の屈折率を光透過部33の屈折率より小さくすることにより、条件を満たして光透過部33に入射した光を光吸収部34との界面で適切に全反射させることができる。また、全反射条件を満たさない場合にも一部の光は当該界面で反射する。
屈折率Nの値は特に限定されることはなく、当該全反射を適切に行えることを前提に1.47以上であることが好ましい。ただし、屈折率が高すぎる材料は割れやすい場合が多いので屈折率は1.61以下であることが好ましい。より好ましくは1.49以上1.56以下、さらに好ましくは1.49である。
光透過部33の屈折率Nと光吸収部34の屈折率Nとの屈折率の差は特に限定されるものではないが、0より大きく0.14以下が好ましく、0.05以上0.14以下であることがより好ましい。屈折率差を大きくすることにより、より多くの光を全反射させることができる。
光学機能層32は、特に限定されることはないが、例えば次のような形状とすることができる。図5には図4の一部をさらに拡大した図を表した。
図5に示したθ11は、光透過部33と光吸収部34との界面のうち、光学シート30が図1のような姿勢とされた際に光吸収部34の上側となる界面34aと、光学機能層32の層面の法線と、のなす角である。θ12は、同姿勢で光透過部33及び光吸収部34の界面のうち光吸収部34の下側となる界面34bと、光学機能層32の層面の法線と、のなす角である。
θ11は、0°以上10°以下であることが好ましい。θ11が0°より大きいとは導光板21側(入光側)から液晶パネル15側(出光側、基材層31側)に向けて下がるように傾斜することを意味する。
θ12は、0°以上10°以下であることが好ましい。θ12が0°より大きいとは導光板21側(入光側)から液晶パネル15側(出光側、基材層31側)に向けて上がるように傾斜することを意味する。
θ11、及びθ12の角度の大きさの関係は必要に応じて設定することができる。
また、図4にPで表した光透過部33及び光吸収部34のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがより好ましい。そして図4にDで示した光吸収部34の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
本形態では光透過部33と光吸収部34との界面が断面において一直線状となる例を示したが、これに限らず折れ線状、凸である曲線状、凹である曲線状等であってもよい。また、複数の光透過部33及び光吸収部34で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
上記では、光透過部33及び光吸収部34が延びる方向が水平である例を説明したが、モアレ発生を抑制する観点から、光透過部33及び光吸収部34が延びる方向は、液晶層12の画素の配列方向に対して、映像源ユニットの正面視で角度を有していることが好ましい(バイアス角α)。このバイアス角αの具体的な角度はモアレの発生を防止できれば特に限定されることはないが、1°以上10°以下であることが好ましい。
次に出光側光制御層35について説明する。出光側光制御層35は光制御層として機能し、光学機能層32と組み合わされることで両者が相まって光の向きを制御する。
本形態では出光側光制御層35は光学機能層32から出光した光に対して光の向きを制御して出射する。すなわち、本形態で出光側光制御層35は、光学機能層32で制御された光の向きをさらに制御して、出光される光が所望の出光角度となるようにする。
そのため、出光側光制御層35は、支持層35a及び光学要素層35bを有して構成されている。
支持層35aは光学要素層35bの支持体として機能する透明なシート状の部材である。支持層35aは上記した基材層31や光透過部33と同様の材料により構成することができる。
光学要素層35bは、光学機能層32から出射した光の向きを変更する層であり、支持層35aの面のうち光学機能層32側とは反対側の面に複数の単位光学要素35cが配列されてなる。
単位光学要素35cは、光学機能層32で制御した光に対してさらに方向制御を行う。本形態では図1〜図3の姿勢で、視野角度を鉛直方向上方へ効率よくシフトさせるように制御する。図4、図5には単位光学要素35cの断面形状が表れている。
本形態で単位光学要素35cは具体的に次のような構造を備えている。
単位光学要素35cは、基材層31を挟んで光学機能層32側とは反対側に突出する三角形断面を有する三角柱状であり、当該断面を有してその稜線が光透過部33及び光吸収部34が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度を有して(バイアス角α≠0°)延びる突条で構成されている。そして複数の単位光学要素35cが、当該延びる方向とは異なる方向に配列されている。
単位光学要素35cの稜線が光透過部33及び光吸収部34が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光学シート30の正面視で、光学機能層32の光透過部33が延びる方向と、単位光学要素35cの稜線が延びる方向とは0°より大きく45°以下のバイアス角αで相対的に傾斜するように延びていることが好ましい。これにより光透過部33及び光吸収部34による配列構造と、単位光学要素35cの配列構造と、によるモアレの発生を防止することができる。また、この角度αを45°より大きくすると、単位光学要素35cによる光方向制御の効率が低下してしまう。より好ましい角度αは1°以上10°以下である。
そして各単位光学要素35cは図5からわかるように、主屈折面35dとライズ面35eとを有している。この主屈折面35d及びライズ面35eが三角柱の2つの面を形成し、他の1つの面が支持層35aに重なって該支持層35aに固定されている。
本形態では、主屈折面35dは図1〜図5の姿勢で、光学機能層32から出光した光をさらに上方に向けるように光の向きを変える屈折面である。これによれば出光の範囲を鉛直方向上方に効率よく移行させることができる。この場合、主屈折面35dは、下方に向かうにつれて光学機能層32に近づくように傾斜している(ここではこの方向を正(+)の方向の傾きとする。)。従って、1つの単位光学要素35cでは主屈折面35dが下、ライズ面35eが上となる。そして主屈折面35dの傾斜は、光学機能層32の法線方向に対して図5に示したθ21の角度を有する。
θ21の具体的角度は45°より大きく90°未満(主屈折面の傾斜角度の絶対値が45°より大きく90°未満)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角制御)のための光の制御を行うことができる。θ21が45°以下であると主屈折面35dで全反射が起こりやすく、出光されない光が多くなる虞がある。また、θ21が90°以上であると主屈折面として機能をほとんど発揮できない。
より好ましいθ21は80°以上89°以下である。θ21をこの範囲とすることにより、ライズ面35eを小さく抑えることができ、ライズ面35eによる迷光の発生を少なくすることが可能である。
ライズ面35eは、主屈折面35dを形成するために必要とされる面である。
図5にθ22で表したライズ面35eの傾斜角度は、光学機能層32の層面に沿った方向に対して80°以上100°以下であることが好ましい。製造上の観点から80°以上90°以下がより好ましい。また、θ22が80°未満、及び100°より大きくなるとライズ面35eによる迷光が多くなる虞がある。
単位光学要素35cの頂角は上記θ21及びθ22からおのずと決まるものであるが、45°以上90°未満であることが好ましい。
図4にPで示した単位光学要素35cのピッチは、モアレピッチを小さくすることで仮にモアレが発生しても見え難くする観点から、小さいほうが好ましく、具体的にはピッチPが50μm以下であることが好ましい。
また光学機能層32の方が光学要素層35bより製造難易度が高いことから、光学機能層32の光透過部33のピッチP(図4参照)より、単位光学要素35cのピッチPの方が小さい方が望ましい。さらに望ましくは、PはPの1/2以下である。最も望ましくはPを、P/2、P/3、P/4など、等倍ピッチにしたときには、光透過部33の端部と単位光学要素35cの端部とができるだけ一致しないことである。言い換えると、PとPとの最小公倍数は大きい方が望ましい。
一方、単位光学要素35cが小さくなると、精度が低下することからPは10μm以上であることが好ましい。
より好ましくは光透過部33の配列ピッチをP(μm)、単位光学要素35cの配列ピッチをP(μm)としたとき、Pmx(μm)が10000(μm)以下である。これによりモアレの発生をより確実に防止することができる。ここで、Pmxは次のように得ることができる。
mxはPに基づいて得ることができ、Pは次式で表される。
=|(a・P・b・P)/(a・P−b・P)|
ここで、P≧Pであり、a、bは1以上10以下の整数である。そしてP、Pについて等倍(1倍)ピッチから10倍ピッチまでの全ての組み合わせを考慮する。これにより整数倍ピッチを考慮した広い範囲でモアレ発生について評価することができる。
そして、あるP、Pの組み合わせに対してa、bを変更した全ての組み合わせのP中で最大のPがPmxである。
図4にDで示した単位光学要素35cの支持層35aからの突出高さは、1μm以上10μm以下であることが好ましい。これより小さくなると、加工精度が悪化して筋状の線が視認される不具合が起こることがあり、これより大きいと、光吸収部34と単位光学要素35cとでモアレが生じやすくなる。
上記形態では、複数の単位光学要素35cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素35cの間に間隔を設け、この部分は支持層35aの面が露出する態様であってもよい。
また、本形態では単位光学要素35cの主屈折面35dが図4、図5に表れる断面において直線状であるが必ずしもこれに限らず、断面において凹状や凸状の曲線や折れ線状であってもよい。
また、主屈折面35d及びライズ面35eを粗面としてもよい。これにより光を散乱してモアレの発生を抑制することができる。主屈折面35d及びライズ面35eを粗面とする方法は特に限定されることはないが、単位光学要素に対して直接ブラスト処理をしたり、単位光学要素を成形する型にブラスト処理をしたりすることが挙げられる。
そして、複数の単位光学要素35cが必ずしも全て同じ形状である必要はなく、適宜変更してもよい。
また、本形態では出光側光制御層35に支持層35aを設けたが、支持層35aは必ずしも設ける必要はない。例えば図6に変形例の出光側光制御層35’を表したように、光学要素層35bを基材層31に直接形成してもよい。
このとき、基材層31の面のうち光学要素層35bとの界面を形成する面を粗面とするとともに、基材層31の屈折率と光学要素層35bの屈折率を異なるものとすることができる。これによれば、粗面により光が散乱し、モアレの発生を抑制することが可能である。
このような出光側光制御層35の支持層35a及び光学要素層35b(単位光学要素35c)は、上記した基材層31や光透過部33と同様の材料により構成することができる。
光学シート30は例えば次のように作製できる。
はじめに基材層31の一方の面に光透過部33を形成する。これは、光透過部33の形状を転写できる形状を表面に有する金型ロールと、これに対向するように配置されたニップロールとの間に、基材層31となる基材シートを挿入する。このとき、金型ロールとニップロールとの間に間隔を設けることによりこれが土台部32aとなる。そして、基材シートと金型ロールとの間に光透過部を構成する組成物を供給しながら金型ロール及びニップロールを回転させる。これにより金型ロールの表面に形成された光透過部に対応する溝(光透過部形状を反転した形状)に光透過部を構成する組成物が充填され、該組成物が金型ロールの表面形状に沿ったものとなる。
ここで、光透過部を構成する組成物としては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等の電離放射線硬化型の樹脂を挙げることができる。
金型ロールと基材シートとの間に挟まれ、ここに充填された光透過部を構成する組成物に対し、基材シート側から光照射装置により硬化させるための光を照射する。これにより、組成物を硬化させ、その形状を固定させることができる。そして、離型ロールにより金型ロールから基材層31および成形された光透過部33を離型する。
次に光吸収部34を形成する。光吸収部34を形成するには、まず、上記形成した光透過部33間の間隔(溝)に光吸収部を構成する組成物を充填する。その後、余剰分の当該組成物をドクターブレード等で掻き落とす。そして、残った組成物に光透過部33側から紫外線を照射することによって硬化させ、光吸収部34を形成することができる。
光吸収部として用いられる材料は特に限定されないが、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、及びブタジエン(メタ)アクリレート等の光硬化型樹脂の中に着色された光吸収粒子が分散されている組成物を挙げることができる。
また光吸収粒子を分散させる代わりに顔料や染料により光吸収部全体を着色することもできる。
光吸収粒子を用いる場合には、カーボンブラック等の光吸収性の着色粒子が好ましく用いられるが、これらに限定されるものではなく、映像光の特性に合わせて特定の波長を選択的に吸収する着色粒子を使用してもよい。具体的には、カーボンブラック、グラファイト、黒色酸化鉄等の金属塩、染料、顔料等で着色した有機微粒子や着色したガラスビーズ等を挙げることができる。特に、着色した有機微粒子が、コスト面、品質面、入手の容易さ等の観点から好ましく用いられる。着色粒子の平均粒子径は1.0μm以上20μm以下であることが好ましく、1.0μm以上10μm以下であることがより好ましく、1.0μm以上4.0μm以下であることがさらに好ましい。
ここで「平均粒子径」とは、光吸収粒子を100個電子顕微鏡で観察してその直径を計り、算術平均した直径を意味する。
一方、光学機能層32とは別に支持層35aの一方の面に光学要素層35bを積層した出光側光制御層35を作製しておく。これは光学機能層32において基材層31に光透過部33を積層する方法に倣って、同じ要領で作製することが可能である。ただし、バイアス角αを0°でない角度とする場合には、光学要素層35bを形成するロール金型のうち単位光学要素35cを成形する溝がロール金型の外周面に沿って螺旋状(ネジ溝状)で形成されたものであることが好ましい。これにより精度の観点及び効率の観点から適切なバイアス角αを付与することができる。
そして、基材層31の面のうち光学機能層32が配置された側とは反対側の面と、出光側光制御層35の支持層35aの面のうち、光学要素層35bが配置された側とは反対側の面とを粘着剤により貼り付けて一体化し、光学シート30を得る。
図1〜図3に戻って、面光源装置20の反射シート39について説明する。反射シート39は、導光板21の裏面から出射した光を反射して、再び導光板21内に光を入射させるための部材である。反射シート39は、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等のいわゆる鏡面反射を可能とするものを好ましく適用することができる。
機能フィルム40は、液晶パネル15の出光側に配置され、映像光の質を向上させたり、映像源ユニット10を保護したりする機能を有する層である。これには例えば反射防止フィルム、防眩フィルム、ハードコートフィルム、色調補正フィルム、光拡散フィルム等を挙げることができ、これらが単独又は複数組み合わされて構成されている。
次に、以上のような構成を備える映像源ユニット10の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。
まず、図2に示すように、光源25から出射した光は、導光板21の側面(端面)である入光面から導光板21内に入射する。図2には、一例として、光源25から導光板21に入射した光L21、L22の光路例が示されている。
図2に示すように、導光板21に入射した光L21、L22は、導光板21の出光側面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、導光方向(図2の紙面下方向)へ進んでいく。
ただし、導光板21の裏面には裏面光学要素23が配置されている。このため、図2に示すように、導光板21内を進む光L21、L22は、裏面光学要素23によって進行方向が変わり、全反射臨界角未満の入射角度で出光面、及び裏面に入射することもある。この場合に当該光は、導光板21の出光面及びその反対側の裏面から出射し得る。
出光面から出射した光L21、L22は、導光板21の出光側に配置された光拡散板26へと向かう。一方、裏面から出射した光は、導光板21の背面に配置された反射シート39で反射され、再び導光板21内に入射して導光板21内を進むことになる。
導光板21内を進行する光と、裏面光学要素23で向きを変えられて全反射臨界角未満の入射角度で出光面に達する光は、導光板21内の導光方向に沿った各区域において生じる。このため、導光板21内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板21の出光面から出射する光の導光方向に沿った光量分布を均一化させることができる。
導光板21から出射した光は、その後、光拡散板26に達し均一性が高められる。そしてプリズム層27により必要に応じて拡散又は集光されプリズム層27を出光した光は反射型偏光板28に達する。ここでは、反射型偏光板28の透過軸に沿った偏光方向の光は反射型偏光板28を透過し光学シート30に向かう。
一方、反射型偏光板28の反射軸に沿った偏光方向の光は図2に点線矢印で示したように反射して導光板21側に戻される。戻された光は、導光板21、裏面光学要素23、又は反射シート39で反射して再び反射型偏光板28の側に進行する。この反射の際に一部の光の偏光方向が変化しており、その一部は反射型偏光板28を透過する。他の光は再び導光板側に戻される。このように反射型偏光板28で反射した光も反射を繰り返すことで反射型偏光板28を透過できるようになる。これにより光源25からの光の利用率が高められる。
ここで、反射型偏光板28を出射した光は、その偏光方向が下偏光板14の透過軸に沿った方向になっており、下偏光板14を透過する偏光状態の光となっている。
反射型偏光板28を出射した光は光学シート30に達する。光学シート30に入射した光は次のような光路を有して進行する。図7に光学シート30における光路例を表した。
光透過部33と光吸収部34とが交互に配列される方向(本形態では鉛直方向)に関して、図2に示した光L21、光L22、及び図7に示した光L71、光L72のように、光透過部33と光吸収部34との界面のうち、光吸収部34の上側となる界面34aに向かう。そして当該界面34aで全反射して、観察者側に向かう斜め上方の光となり、所望の方向への光の制御がなされる。
このとき、光透過部33と光吸収部34との界面のうち光吸収部34の下側である界面34bが、観察者側に向かうにつれて斜め上方となるように傾斜していれば、光L21、光L22、光L71、光L72のような光の進行を光吸収部34が阻害し難くなり、より多くの光を所望の方向に導くことができる。
また、図7に示したL73は、観察者側に向けて斜め上方に進むとともに、光透過部33と光吸収部34との界面34bで全反射することなく該界面を透過する角度で進行するので、界面34bを透過して光吸収部34に吸収される。
これにより、所望の角度以上の視野角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合や質の低下を生じる可能性が高いのでこのような光を吸収することができる。
光学機能層32を透過した光は、さらに光学要素層35bにて光の向きが変更される。具体的には、本形態では、図7に示した光L71、光L72のように、主屈折面35dで光L71、L72がさらに上方に向けて屈折して出射される。これによりさらに出光範囲を上方に移行(シフト)させることができる。
従って、本形態の光学シート30によれば、図8に示したように、出光側光制御層35がない場合(図8のA)に比べて、光学シート30(図8のB)の方がより鉛直方向上方への角度への出光を効率よく高めることができる。図8は、横軸に鉛直方向におけるシート面法線に対する出光角度を表し、正が上方、負が下方である。また縦軸にはある輝度を100%としたときの相対輝度を表した。このような出光角度の調整は光学機能層のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対して光学シート30のように、さらに光学要素層35bを備えることで効率よく出光角度の制御を行うことが可能となる。
そしてこのように光を制御するための光学要素層35bは上記のように簡易な構成であり、このような簡易な構成で効果を有するものとなる。
なお、本形態において光学機能層32の上記θ11、及びθ12(図5参照)をθ11<θ12とすることにより、より広い範囲で視野角の制御をすることができる。
光学シート30を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置20からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
図9は第2の形態を説明する図であり、図5に相当する。本形態では出光側光制御層35の代わりに光制御層としての出光側光制御層135が適用されている。他の部位は上記した映像源ユニット10と同じなので、ここでは出光側光制御層135の構成及びその作用について説明する。
出光側光制御層135は光学機能層32から出光した光に対して光の向きを制御して出射する。そのため、出光側光制御層135は、支持層35a及び光学要素層135bを有して構成されている。支持層35aは、上記した出光側光制御層35の支持層35aと同様である。
光学要素層135bは、光学機能層32から出射した光の向きを変更する層であり、支持層35aの面のうち光学機能層32側とは反対側の面に複数の単位光学要素135cが配列されてなる。
本形態で単位光学要素135cは具体的に次のような構造を備えている。単位光学要素135cは、光学機能層32側とは反対側に突出する三角断面を有する三角柱状であり、当該断面を有してその稜線が光透過部33及び光吸収部34が延びる方向に対して平行(バイアス角α=0°)、又はバイアス角度(バイアス角α≠0°)を有して延びる突条で構成されている。そして複数の単位光学要素135cが、当該延びる方向とは異なる方向に配列されている。単位光学要素135cと光透過部33とのバイアス角αの考え方は上記した単位光学要素35cと同じである。
そして各単位光学要素135cは図9からわかるように、主屈折面135dとライズ面135eとを有している。この主屈折面135dとライズ面135eが三角柱の2つの面を形成し、他の1つの面が支持層35aに重なって該支持層35aに固定されている。
本形態では、主屈折面135dは図1と同様の姿勢で、光学機能層32から上方に向けて出光した光の角度を、正面方向に近づけるように変える屈折面である。これによれば鉛直方向の出光角度を所望の方向に調整できる。この場合、主屈折面135dは、下方に向かうにつれて光学機能層32から離隔する方向に傾斜している(ここではこの方向を負(−)の方向とする。)。従って1つの単位光学要素135cでは主屈折面135dが上、ライズ面135eが下となる。
そして主屈折面135dの傾斜角は、図9に示したように光学機能層32の出光面の法線方向に対してθ31の角度を有している。
θ31の具体的角度は−89°以上−45°より小さい(傾斜角度の絶対値としては45°より大きく89°以下)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角制御)のための光の制御を行うことができる。θ31が−45°以上であると主屈折面135dで全反射して出光されない光が多くなる虞がある。また、θ31が−89°より小さくなると主屈折面として機能をほとんど発揮できない。
より好ましいθ31は−89°以上−80°以下(傾斜角度の絶対値としては80°以上89°以下)である。θ31をこの範囲とすることによりライズ面135eが小さくなり、ライズ面135eによる迷光を減らすことができる。
単位光学要素135cのその他の形状的な観点における好ましい態様は上記した単位光学要素35cと同様に考えることができる。
次に出光側光制御層135を備えた映像源ユニットの作用について説明する。図10に光路例を示した。なお、他の部位における光路は上記した映像源ユニット10の通りなのでここでは説明を省略する。
光学機能層32を透過した光は、さらに光学要素層135bにて光の向きが変更される。具体的には、本形態では、図10に示した光L101、光L102のように、主屈折面135dで光L101、L102が正面側に近づくように屈折して出射される。これにより出光角度を所望の方向に制御する。
従って、出光側光制御層135を備える光学シートによれば、図11に示したように、出光側光制御層135がない場合(図11のA)に比べて、視野角度を効率よく移行(シフト)させることができる(図11のC)。図11は、横軸に鉛直方向におけるシート面法線に対する出光角度を表し、正が上方、負が下方である。また縦軸にはある輝度を100%としたときの相対輝度を表した。このような出光角度の調整は光学機能層のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対してさらに出光側光制御層135を備えることにより効率よく視野角度の制御を行うことが可能となる。
そしてこのように光を制御するための光学要素層135bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
図12は第3の形態を説明する図であり、光学シート230を含む映像源ユニット210の分解斜視図である。また、本形態では、上記した光学シート30を光学シート230より入光側(導光板21側)に配置し、光学シート30及び光学シート230の2枚の光学シートで光制御部材229としている。本形態ではわかり易さのため、光学シート30を第一の光学シート30、光学シート230を第二の光学シート230と表記することがある。
図13には、図12にXIII−XIIIで示した線(鉛直方向に沿った線)に沿って切断した映像源ユニット210の分解断面図の一部、図14には図12にXIV−XIVで示した線(水平方向に沿った線)に沿って切断した映像源ユニット210の分解断面図を表した。なお、ここでいう鉛直方向及び水平方向は、光制御部材229が表示装置に配置され、この表示装置が使用される姿勢における向きを意味する。
このような映像源ユニット210も、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット210を作動させる電源、及び映像源ユニット210を制御する電子回路等、映像源ユニット210として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。以下映像源ユニット210について説明する。
映像源ユニット210は、液晶パネル15、面光源装置220、及び機能フィルム40を備えている。本形態で第一の光学シート230及びこれを含む光制御部材229は、面光源装置20に具備されている。図12〜図14には、表示装置が設置された姿勢における向きを併せて表示している。
ここで、液晶パネル15及び機能フィルム40は、上記第1の形態の映像源ユニット10と同様に考えることができるので、ここでは同じ符号を付して説明を省略する。
面光源装置220は、液晶パネル15を挟んで観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図12〜図14よりわかるように、本形態の面光源装置220は、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光制御部材229及び反射シート39を有している。
ここで光制御部材229以外は、上記第1の形態の映像源ユニット10に含まれる面光源装置20と同様に考えることができるので、ここでは同じ符号を付して説明を省略する。
本形態で光制御部材229は、第一の光学シート30及び第二の光学シート230を有して構成されている。これら2枚の光学シートは、第一の光学シート30は導光板21側、第二の光学シート230は液晶パネル15側に配置されている。
ここで第一の光学シート30は、上記面光源装置20に含まれる光学シート30と同様に考えることができるのでここでは同じ符号を付して説明を省略する。
図15には図14の視点で第二の光学シート230の一部を拡大して表した。図12〜図15よりわかるように、第二の光学シート230は、シート状に形成された基材層231と、基材層231の一方の面(本形態では第一の光学シート30側の面)に設けられた光学機能層232と、基材層231の他方の面(本形態では液晶パネル15側の面)に配置された光制御層としての出光側光制御層235と、を備えている。
ここで基材層231は光学シート30の基材層31と同様に考えることができる。
光学機能層232は基材層231の一方の面(本形態では第一の光学シート30側の面)に積層された層で、光透過部233、及び光吸収部234を有して構成されている。光学機能層232は、図14、図15に示した断面を有して紙面奥/手前側(本形態では映像源ユニット210を正面視したときの鉛直方向)に延びる形状を備え、層面に沿って当該延びる方向とは異なる方向(本形態では水平方向)に光透過部233と光吸収部234とが交互に配列されている。
光透過部233は、光を透過させることを主要の機能とする部位であり、本形態では図14、図15に表れる断面において、基材層231側に長い下底、その反対側(第一の光学シート30側)に短い上底を有する略台形の断面形状を備える要素である。
光透過部233は、基材層231の層面に沿って当該断面を維持して一方向(本形態では鉛直方向)に延びるとともに、この延びる方向とは異なる方向(本形態では水平方向)に間隔を有して複数配列される。そして、隣り合う光透過部34の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部233の上底側(第一の光学シート30側)に長い下底を有し、光透過部233の下底側(基材層231側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部234が形成される。
本形態では、複数の光透過部233がその下底側(基材層231側)でシート状の土台部232aにより連結されている。
このような構成により第一の光学シート30の光透過部33が延びる方向と第二の光学シート230の光透過部233が延びる方向とは光学シートの正面視において交差するように配置されている。
光透過部233及び光吸収部234の屈折率については、光学シート30の光透過部33及び光吸収部34と同様に考えることができる。
光学機能層232は、特に限定されることはないが、例えば次のような形状とすることができる。図16には図15の一部(図15の上部)をさらに拡大した図を表した。
図16に示したθ41は、光透過部233と光吸収部234との界面のうち、第二の光学シート230が図12のような姿勢とされた際に水平方向左右の一方側における界面234aと、光学機能層232の層面の法線と、のなす角である。θ42は、同姿勢で光透過部233と光吸収部234との界面のうち、第二の光学シート230が図12のような姿勢とされた際に水平方向左右の他方側における界面234bと、光学機能層232の層面の法線と、のなす角である。
本形態でθ41、θ42は、0°以上10°以下であることが好ましい。θ41、及びθ42の角度の大きさの関係は必要に応じて設定することができる。
また、図15にPで表した光透過部233及び光吸収部235のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがより好ましい。そして図15にDで示した光吸収部234の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
本形態では光透過部233と光吸収部234との界面が断面において一直線状となる例を示したが、これに限らず折れ線状、凸である曲線状、凹である曲線状等であってもよい。また、複数の光透過部233及び光吸収部234で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
上記では、光透過部233及び光吸収部235が延びる方向が鉛直である例を説明したが、モアレ発生を抑制する観点から、光透過部233及び光吸収部234が延びる方向は、液晶層12の画素の配列方向に対して、映像源ユニットの正面視で角度を有していることが好ましい(バイアス角α)。このバイアス角αの具体的な角度はモアレの発生を防止できれば特に限定されることはないが、1°以上10°以下であることが好ましい。
次に出光側光制御層235について説明する。出光側光制御層235は光学機能層232から出光した光に対して光の向きを制御して出射する。本形態で出光側光制御層235は、光学機能層232で制御された光の向きを制御して、出光される光が所望の出光角度となるようにする。より具体的には、シート外周部側から出射される光が、シート法線方向よりも中央側に傾く方向に進行するように光を制御する。
そのため、出光側光制御層235は、支持層235a及び光学要素層235bを有して構成されている。
支持層235aは光学要素層235bの支持体として機能する透明なシート状の部材であり、光学シート30の支持層35aと同様に考えることができる。
光学要素層235bは、光学機能層232から出射した光の向きを変更する層であり、支持層235aの面のうち光学機能層232側とは反対側の面に複数の単位光学要素235cが配列されてなる。
本形態では、光学要素層235bは支持層235aに配置されているが、これに限らず光学要素層235bが基材層231の面のうち光学機能層232が配置された側とは反対側の面に直接配置されてもよい。この場合には出光側光制御層は支持層を有することなく光学要素層235bのみから構成される。
本形態で光学要素層235bは、光学機能層232で制御した光に対して複数の単位光学要素235cが配列された方向(本形態では水平方向)において、シート外周側に出射された光が、シート法線方向よりも中央側に傾く方向に出光されるように光の向きを変更する層である。
単位光学要素235cは、図14〜図16に表れているように光学機能層232側とは反対側に突出する三角断面を有する三角柱状であり、当該断面を有してその稜線が光透過部233及び光吸収部234が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度(バイアス角α≠0°)を有して延びる(本形態では鉛直方向に延びる)突条で構成されている。そして複数の単位光学要素235cが、当該延びる方向とは異なる方向(本形態では水平方向)に配列されている。
単位光学要素235cの稜線が光透過部233及び光吸収部234が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光制御部材229の正面視で、光学機能層232の光透過部233が延びる方向と、単位光学要素235cの稜線が延びる方向とは0°<α≦45°で相対的に傾斜するように延びていることが好ましい。これにより光透過部233及び光吸収部234による配列構造と、単位光学要素235cの配列構造と、によりモアレが発生することを防止することができる。αを45°より大きくすると、単位光学要素235cによる光の方向制御の効率が低下してしまう。より好ましい角度は1°≦α≦10°である。
図15からわかるように、本形態の光学要素層235bは、単位光学要素235cが配列された方向において、単位光学要素235cの断面形状が、光学要素層235bの一端側と他端側とで、シート中央を挟んで対称であるとともに、当該一端側と他端側との間はシート中央部分には単位光学要素235cを有さない部位が具備される(図15のWの部分)。すなわちこの部分は平坦であり、単位光学要素の主屈折面のシート面法線に対する角度(図16のθ51)が90°である部位であるともいえる。
なお、このような単位光学要素を有しない部位は必ずしも設けられる必要はなく、対称となる単位光学要素235cがシート中央を挟んで隣り合うように構成されてもよい。ただし、このようにシート中央を挟んで隣り合う単位光学要素が対称に存在するとその境界部に線が現れ、これが視認されてしまう虞がある。従って、少なくともシート中央には単位光学要素が存在せず、平坦であることが好ましい。このようにシート中央において線が発生しないようにするために、例えば光学要素層235を形成するための金型を切削加工により作製する際に、このシート中央となるべき部分の金型表面は、この部分を切削工具が跨ぐように重ねて加工すればよい。
このような複数の単位光学要素235cの配列は、例えばリニアフレネルレンズに倣って構成することもできる。
単位光学要素235cは図16からわかるように、主屈折面235dとライズ面235eとを有している。この主屈折面235d及びライズ面235eが三角柱の2つの面を形成し、他の1つの面が支持層235aに重なって該支持層235aに固定されている。
本形態では、主屈折面235dは、図12〜図16の姿勢で、水平方向において、光学機能層232から出光した光を、シート法線に対して中央側に傾いた角度で進行するように向きを変える屈折面である。これによれば単位光学要素235cが配列される方向(本形態では水平方向)において、画面端部から出射された光が中央側に向くので画面中央を正面視する観察者に向けて画面端部の光が向かうことから、観察者が画面端部で出射した光も明るく観察することができる。この場合、1つの主屈折面235dに注目すると、シート中央側に向かうにつれて光学機能層232から遠ざかる方向(より突出する方向)に傾斜している。従って、1つの単位光学要素235cに注目すると主屈折面235dがシート外周側、ライズ面235eがシート中央側となる。そして主屈折面235dの傾斜は、光学機能層232の法線方向に対して図16に示したようにθ51の角度を有している。
θ51の具体的角度は45°より大きく90°未満(主屈折面の傾斜角度の絶対値が45°より大きく90°未満)であることが好ましい。これにより、確実に所望の方向における輝度向上(出光角度制御)のための光の制御を行うことができる。θ51が45°以下であると主屈折面235dで全反射して出光されない光が多くなる虞がある。また、θ51が90°以上であると主屈折面として機能をほとんど発揮できない。より好ましいθ51は80°以上89°以下である。θ51をこの範囲とすることによりライズ面235eが小さくなり、ライズ面235eによる迷光の発生を少なくすることができる。
そしてこのθ51は、単位光学要素235cが配列される方向(本形態では水平方向)において、中央側の単位光学要素235cと外周側の単位光学要素235cとで異なることが好ましい。これによりさらに精度よく光の制御を行うことができる。より好ましくは、中央側の単位光学要素235cから外周側の単位光学要素235cにかけてθ51が小さくなるように構成されている。これにより、中央側への光の進行方向の制御を効率的に行うことができる。
ライズ面235eは、主屈折面235dを形成するために必要とされる面である。
図16にθ52で表したライズ面235eの傾斜角度は、光学機能層232の出光面に沿った方向に対して80°以上100°以下であることが好ましい。製造上の観点から80°以上90°以下がより好ましい。また、θ52が80°未満、及び100°より大きくなるとライズ面235eによる迷光が多くなる虞がある。
単位光学要素235cの頂角は上記θ51及びθ52からおのずと決まるものであるが、45°以上90°未満であることが好ましい。
図15にPで示した単位光学要素235cのピッチは、モアレピッチを小さくすることで仮にモアレが発生しても見え難くする観点から、小さいほうが好ましく、具体的にはピッチPが50μm以下であることが好ましい。
また光学機能層232の方が光学要素層235bより製造難易度が高いことから、光学機能層232の光透過部233のピッチP(図15参照)より、単位光学要素235cのピッチPの方が小さい方が望ましい。さらに望ましくは、PはPの1/2以下である。最も望ましくはPを、P/2、P/3、P/4など、等倍ピッチにしたときには、光透過部233の端部と単位光学要素235cの端部とができるだけ一致しないことである。言い換えると、PとPとの最小公倍数は大きい方が望ましい。
一方、単位光学要素235cが小さくなると、精度が低下することからPは10μm以上であることが好ましい。
より好ましくは光透過部233の配列ピッチをP(μm)、単位光学要素235cの配列ピッチをP(μm)としたとき、Pmx(μm)が10000(μm)以下である。Pmxは上記と同様に考えることができる。
図15にDで示した単位光学要素235cの支持層235aからの突出高さは、1μm以上10μm以下であることが好ましい。これより小さくなると、加工精度が悪化して筋状の線が視認される不具合が起こることがあり、これより大きいと、光吸収部234と単位光学要素235cとでモアレが生じやすくなる。
上記形態では、複数の単位光学要素235cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素235cの間に間隔を設け、この部分は支持層235aの面が露出する態様であってもよい。
また、本形態では単位光学要素235cの主屈折面235dが図14〜図16に表れる断面において直線状であるが必ずしもこれに限らず、凹状や凸状の曲線や折れ線状であってもよい。
また、主屈折面235d及びライズ面235eを粗面としてもよい。これにより光を散乱してモアレの発生を抑制することができる。主屈折面235d及びライズ面235eを粗面とする方法は特に限定されることはないが、単位光学要素に対して直接ブラスト処理をしたり、単位光学要素を成形する型にブラスト処理をしたりすることが挙げられる。
そして、複数の単位光学要素235cが必ずしも全て同じ形状である必要はなく、適宜変更してもよい。
また、本形態では出光側光制御層235に支持層235aを設けたが、上記したように支持層235aは必ずしも設ける必要はなく、光学要素層235bを基材層231に直接形成してもよい。このとき、基材層231の面のうち光学要素層235bとの界面を形成する面を粗面とするとともに、基材層231の屈折率と光学要素層235bの屈折率を異なるものとすることができる。これによれば、粗面により光が散乱し、モアレの発生を抑制することが可能である。
また、出光側光制御層は、必ずしも基材層や光学機能層に一体である必要はなく、別体で設けられてもよい。従って出光側光制御層と、基材層又は光学機能層と、の間に空気層が形成されてもよいし、別の機能層が配置されてもよい。
このような出光側光制御層235の支持層235a及び光学要素層235b(単位光学要素235c)は、上記した光学シート30の支持層35a及び光学要素層35bと同様の材料により構成することができる。
また、第二の光学シート230も光学シート30に倣って上記したように製造することができる。
次に、以上のような構成を備える映像源ユニット210の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。また、光源25から出射して光制御部材229に達するまでについては、上記映像源ユニット10で説明した光路例と同様なので説明を省略する(図2参照)。
光制御部材229に入射した光は初めに第一の光学シート30に入射し、次のような光路を有して進行する。図17に第一の光学シート30における光路例を表した。
光透過部33と光吸収部34とが交互に配列される方向(本形態では鉛直方向)に関して、図17に示した光L171、光L172のように、光透過部33と光吸収部34との界面のうち、光吸収部34の上側となる界面34aに向かう。そして当該界面34aで全反射して、観察者側斜め上方の光となり、所望の方向への光の制御がなされる。
このとき、光透過部33と光吸収部34との界面のうち光吸収部34の下側である界面34bが、観察者側へ斜め上方に向かうように傾斜していれば、光L171、光L172のような光の進行を光吸収部34が阻害し難くなり、より多くの光を所望の方向に導くことができる。
また、図17に示した光L173は、観察者側斜め上方であるとともに、光透過部33と光吸収部34との界面34bで全反射することなく該界面を透過する角度で進行するので、界面34bを透過して光吸収部34に吸収される。
これにより、所望の角度以上の出光角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合や映像の質の低下を生じる可能性が高いのでこのような光を吸収することができる。
光学機能層32を透過した光は、さらに光学要素層35bにて光の向きが変更される。具体的には、本形態では、図17に示した光L171、光L172のように、主屈折面35dで光L171、L172がさらに上方に向けて屈折して出射される。これによりさらに出光角度を上方に移行(シフト)させることができる。
従って、本形態の第一の光学シート30でも、図8に示したように、出光側光制御層35がない場合(図8のA)に比べて、第一の光学シート30(図8のB)の方がより鉛直方向上方への出光角度への出光を効率よく高めることができる。このような出光角度の調整は光学機能層32のみで行うことは難しく、又は行ったとしても輝度の低下等の不具合が伴うことが多い。これに対して第一の光学シート30のように、さらに光学要素層35bを備えることで効率よく出光角度の制御を行うことが可能となる。
そしてこのように光を制御するための光学要素層35bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
第一の光学シート30を出射した光は第二の光学シート230に達する。第二の光学シート230に入射した光は次のような光路を有して進行する。図15に第二の光学シート230における光路例を表した。
光透過部233と光吸収部234とが交互に配列される方向(本形態では水平方向)に関して、図15に示した光L151〜光L156は光透過部233と光吸収部234との界面で全反射して光の向きがシート面法線に近づくように変えられる。これにより光学要素層235bでの所望した光の制御がしやすくなる。
光L157は、もともと水平方向において正面方向に近い方向に進む光であり、光吸収部234に到達することなく光透過部233を透過する。
また、図15に示した光L158は、水平方向において正面に対して大きな角度で進行する光である。この光は、光透過部233と光吸収部234との界面で全反射することなく該界面を透過する角度で進行するので、界面を透過して光吸収部234に吸収される。
これにより、所望の角度以上で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合を生じる可能性が高いのでこのような光を吸収することができる。
光学機能層232を透過した光は、さらに光学要素層235bにて光の向きが変更される。具体的には、本形態では、図15に示した光L151、光L152、光L153、光L154のように、主屈折面235dで単位光学要素235cが配列される方向(本形態では水平方向)において、シート面法線に対して中央側に傾斜して光が進行するように光を出射することができる。
なお光L155、L156、L157は単位光学要素235cを備えていない部分を透過するので、水平方向において正面に近い光が出射されそのまま正面の観察者へと光が提供される。
図18(a)、図18(b)は水平方向におけるシートからの出射光の特徴を説明する図である。図18(a)、図18(b)では、横軸に水平方向におけるシート面法線方向に対する光の出射角度を表し、正が正面に対して右方、負が左方である。縦軸はある輝度を100%としたときの相対輝度である。
図18(a)は出光側光制御層235が設けられていない一つの例を表す。この場合には、光学機能層で出光角度が規制された状態のまま出光されるため、シート面法線に対して小さい傾斜を有する方向にしか(図18(a)の例では概ね−30°以上+30°以下の範囲の方向にしか)出光されない。従って、画面が広い場合や画面を少し斜めから見た場合に、特に画面の外周端部等に暗くなる部位が生じることがあった。
これに対して図18(b)は本形態のように出光側光制御層235を具備した例である。出光側光制御層235のシート外周端部に配置された単位光学要素235cにより図18(b)にC、Cで示したように、シート外周端部の一方側の単位光学要素235c(C)及び他方側の単位光学要素235c(C)のそれぞれから出射された光の出射方向のピークをシート面法線方向(0°方向)にシフトするように制御することができる。また、両外周端部の単位光学要素235cの間に形成された、単位光学要素235cが配置されていないシート中央部分ではDで示したように、そのまま光がシート面法線方向に近い方向で出光される。これにより、画面端部から出射された光も、観察者が見ている方向に向かうように傾斜しているため、画面が広い場合や画面を少し斜めから見た場合にも、画面の外周端部等に暗くなる部位が生じることを防止できる。
このような出光方向角度の調整は光学機能層232のみで行うことは難しく、又は行ったとしても輝度の低下や構造の複雑化を要する等の不具合が伴うことが多い。これに対して第二の光学シート230のように、光学要素層235bを備えることで効率よく出光角度の制御を行うことが可能となる。
そしてこのように光を制御するための光学要素層235bは上記のように簡易な構成であり、このような簡易な構成で効果を奏するものとなる。
このような光制御部材229を光が透過することにより、鉛直方向には所望の方向へ光を出射しつつ、水平方向には外周端部から出射された光を制御することが可能となる。そしてこのような制御を簡易な構成で効率よく行うことができる。
光制御部材229を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置220からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
本形態では、第一の光学シート30及び第二の光学シート230を組み合わせて光制御部材229として適用した例を説明したが、必ずしも両者は組み合わされている必要はなく、第一の光学シート30及び第二の光学シート230がそれぞれ単独で適用されてもよい。光制御の態様によってそれぞれの光学シートを使い分けても、組み合わせてもよい。
図19は第4の形態を説明する図であり、光学シート330を含む映像源ユニット30の分解斜視図である。また、図20には図19にXX−XXで示した線に沿って切断した映像源ユニット310の分解断面図の一部、図21にはXXI−XXIで示した線に沿って切断した映像源ユニット310の分解断面図の一部を表した。
このような映像源ユニット310も、詳細な説明は省略するが、不図示の筐体に、該映像源ユニット310を作動させる電源、及び映像源ユニット310を制御する電子回路等、映像源ユニット310として動作するために必要とされる通常の機器とともに納められて表示装置とされている。本形態は映像源ユニットの一態様として液晶映像源ユニット、表示装置の一態様として液晶表示装置を説明する。
映像源ユニット310は、液晶パネル15、面光源装置320、及び機能フィルム40を備えている。本形態で光学シート330は、面光源装置320に含まれている。図19〜図21には、表示装置が設置された姿勢における向きを併せて表示している。
ここで液晶パネル15、及び機能フィルム40については映像源ユニット10と同じであるため同じ符号を付して説明を省略する。
面光源装置320は、液晶パネル15より観察者側とは反対側に配置され、液晶パネル15に対して面状の光を出射する照明装置である。図19〜図21よりわかるように、本形態の面光源装置320も、エッジライト型の面光源装置として構成され、導光板21、光源25、光拡散板26、プリズム層27、反射型偏光板28、光学シート330及び反射シート39を有している。
ここで、光学シート330以外については、上記した映像源ユニット10の面光源装置20と同じであるため、光学シート330以外の構成については面光源装置30と同じ符号を付して説明を省略する。ただし、本形態ではプリズム層27の単位プリズム27aが導光板の導光方向に延び、複数の単位プリズム27aが導光板の導光方向に対して直交する方向に配列される形態である。
図22には図20の視点で光学シート330の一部を拡大して表した図を表した。図19〜図22よりわかるように、光学シート330は、シート状に形成された基材層31と、基材層31の一方の面(本形態では導光板21側の面)に設けられた光学機能層332と、光制御層として機能する入光側光制御層335と、を備えている。
ここで基材層31は上記した映像源ユニット10の光学シート30に具備された基材層31と同じであるため同じ符号を付して説明を省略する。
光学機能層332は基材層31の一方の面(本形態では導光板21側の面)に積層された層で、層面に沿って光透過部333と光吸収部334とが交互に配列されている。
光学機能層332は、図22に示した断面を有して紙面奥/手前側(映像源ユニット310を正面視したときの水平方向)に延びる形状を備える。すなわち、図22に表れる断面において、略台形である光透過部333と、隣り合う2つの光透過部333の間に形成された断面が略台形の光吸収部334と、を具備している。
光透過部333は光を透過させることを主要の機能とする部位であり、本形態では図20、図22に表れる断面において、基材層31側に長い下底、その反対側(導光板21側、入光側光制御層335側)に短い上底を有する略台形の断面形状を有する要素である。光透過部333は、基材層31の層面に沿って当該断面を維持して上記した方向(本形態では水平方向)に延びるとともに、この延びる方向とは異なる方向(本形態では鉛直方向)に間隔を有して配列される。そして、隣り合う光透過部333の間には、略台形断面を有する間隔(溝)が形成されている。従って、当該間隔(溝)は、光透過部333の上底側(導光板21側、入光側光制御層335側)に長い下底を有し、光透過部333の下底側(液晶パネル15側、基材層31側)に短い上底を有する台形断面を有し、ここに後述する必要な材料が充填されることにより光吸収部334が形成される。なお、本形態では隣り合う光透過部333は長い下底側でシート状の連結部332aで連結されている。
光透過部333、光吸収部334を構成する材料や屈折率に関する考え方は上記した光学シート30の光透過部33及び光吸収部334と同じである。
図23には、光透過部333と光吸収部334との界面が光学機能層332の層面の法線に対して成す角θ61、θ62を説明する図を示した。図23は図22の一部をさらに拡大したものである。
θ61は、光透過部333と光吸収部334との界面のうち、光学シート330が図19のような姿勢とされた際に光吸収部334の上側となる界面334aと、光学機能層332の層面の法線と、のなす角である。θ62は、同姿勢で光透過部333及び光吸収部334の界面のうち光吸収部334の下側となる界面334bと、光学機能層332の層面の法線と、のなす角である。
本形態でθ61は、0°以上10°以下であることが好ましい。θ61が0°より大きいとは導光板21側(入光側、入光側光制御層335)から液晶パネル15側(出光側、基材層31側)に向けて下がるように傾斜することを意味する。より好ましくは4.0°以下であり、さらに好ましくは1.0°以下、特に好ましいのは0°である。
θ61を0°より小さくすると製造が困難となる。θ61を10°より大きくすると入光側光制御層335との組み合わせで、光学機能層332による光の向きの制御の効果が小さくなる。また、θ61を10°よりも大きくすると、光吸収部334の配列方向の大きさ(光吸収部の幅、図23の紙面上下方向大きさ)が大きくなり、光の透過率が低下する不具合が生じる傾向にある。
θ62は、0°以上10°以下であることが好ましい。θ62が0°より大きいとは導光板21側(入光側、入光側光制御層335)から液晶パネル15側(出光側、基材層31側)に向けて上がるように傾斜することを意味する。より好ましくは5.0°以下であり、さらに好ましくは3.0°以下である。これにより、光の透過率低下を防止しつつも、上方に向かう光を多くすることができる。θ62を10°よりも大きくすると、光吸収部334の配列方向における大きさ(光吸収部の幅、図23の紙面上下方向大きさ)が大きくなり、光の透過率が低下する不具合が生じる傾向にあり、上方へ向かう光の低減を招くことがある。
θ61、及びθ62の角度の大きさの関係は、θ61<θ62であることが好ましい。これにより、映像源ユニット310から提供される映像光の視野角に関し、上側の視野角を下側の視野角よりも広くすることができる。
また、光学機能層332では、特に限定されることはないが、例えば次のように光透過部333及び光吸収部334が形成される。すなわち、図22にPで表した光透過部333及び光吸収部334のピッチは20μm以上100μm以下であることが好ましく、30μm以上100μm以下であることがよりに好ましい。そして図22にDで示した光吸収部334の厚さは50μm以上150μm以下であることが好ましく、60μm以上150μm以下であることがより好ましい。これらの範囲内とすることにより、光の透過と光の吸収とのバランスをより適切にすることができる。
本形態では光透過部333と光吸収部334との界面が断面において一直線状となる例を示したが、これに限らず当該界面が折れ線状、凸である曲面状、凹である曲面状等であってもよい。また、複数の光透過部333及び光吸収部334で断面形状が同じであってもよいし、規則性を有して異なる断面形状であってもよい。
次に入光側光制御層335について説明する。入光側光制御層35は光制御層として機能し、光学機能層332に入光する光の向きを予め変更し、入光側光制御層335と光学機能層332とで所望の方向への光の出射を制御する。
本形態で入光側光制御層335は、光学シート330の法線方向に進行する光を所望の方向に向かうように光の向きを変えるように構成されている。より具体的に本形態では図19〜図22の姿勢で、光学シート330の法線方向観察者側に進行する光に対して観察者側斜め下方に向かうように光の向きを変えるように機能する。これにより後述するように光透過部333と光吸収部334との上側界面334aで反射させ、斜め上方に向かう光にすることができる。
そのため、入光側光制御層335は、支持層335a及び光学要素層335bを有して構成されている。
支持層335aは光学要素層335bの支持体として機能する透明なシート状の部材である。支持層335aは基材層31や光透過部333と同様の材料により構成することができる。
光学要素層335bは、光学機能層332に入光する光の向きを変更する層であり、支持層335aの面のうち光学機能層332が配置される側の面とは反対側の面に複数の単位光学要素335cが配列されてなる層である。単位光学要素335cは、上記のように光学シート330の法線方向に進行する光を一方向に向かうように光の向きを変えるように構成されており、本形態では図19〜図22の姿勢で、光学シート330の法線方向に進行する光に対して斜め下方に向かうように光の向きを変えるように構成されている。
本形態で単位光学要素335cは具体的に次のような構造を備えている。
単位光学要素335cは、光学機能層332を挟んで基材層31側とは反対側に突出する三角形断面を有する三角柱状であり、当該断面を有してその稜線が光透過部333及び光吸収部334が延びる方向と同じ(バイアス角α=0°)又は光学シートの正面視で角度を有して(バイアス角α≠0°)延びる突条で構成されている。そして複数の単位光学要素335cが、当該延びる方向とは異なる方向に配列されている。
単位光学要素335cの稜線が光透過部333及び光吸収部334が延びる方向に対して光学シートの正面視で角度を有して延びるように構成されている場合(バイアス角α≠0°)には、光学シート330の正面視で、光学機能層332の光透過部333が延びる方向と、単位光学要素335cの稜線が延びる方向とは0°より大きく45°以下のバイアス角αで相対的に傾斜するように延びていることが好ましい。これにより光透過部333及び光吸収部334による配列構造と、単位光学要素335cの配列構造と、によるモアレの発生を防止することができる。また、この角度αを45°より大きくすると、単位光学要素335cによる光方向制御の効率が低下してしまう。より好ましい角度αは1°以上10°以下である。
そして、単位光学要素335cは図23からわかるように、主屈折面335dとライズ面335eとを有して構成されている。この主屈折面335d及びライズ面335eが三角柱の2つの面を形成し、他の1つの面が支持層335aに重なって該支持層335aに固定されている。
主屈折面335dは図19〜図23の姿勢で、光学シート330の法線方向に進行する光に対して斜め下方に向かうように光の向きを変えるように機能する屈折面である。従って、主屈折面335dは鉛直方向上側において支持層335a(光学機能層332)に近く、鉛直方向下側において支持層335a(光学機能層332)から離隔するように傾斜している。そして図23にθ71で表した傾斜は、光学機能層332の入光面332bに沿った方向に対して角度を有している。θ71の具体的角度は0°より大きく17°より小さいことが好ましい。これにより、より確実に所望の方向における輝度向上のための光の制御を行うことができる。
ライズ面335eは、主屈折面335dを形成するために必要とされる面である。ただし、後で説明するように、当該ライズ面335eから入射する光はここで屈折され、光吸収部334に吸収され易い角度で光学機能層332を進行するので、出射させたくない方向の光をより確実に遮断する機能も有する。
θ72で表したライズ面335eの傾斜は、光学機能層332の入光面332bに沿った方向に対して90°以下であることが好ましい。この角度が90°以上となると製造が難しくなる。一方、θ72は73°以上であることが好ましい。これにより、主屈折面335dとライズ面335eとの成す角を90°又はこれに近い角度とすることができ、主屈折面335dの法線方向から主屈折面335dに入射した光が、ライズ面335eに対して平行に近い方向で進むことができるため、ライズ面335eで反射して迷光となることを抑制することができる。
図22にPで示した単位光学要素335cのピッチは、光吸収部334のピッチPよりも小さいことが好ましく、Pに対して2/3、2/5など、整数倍ピッチにならないことがさらに好ましい。これにより、光吸収部334と単位光学要素335cとによるモアレの発生を防止することができる。また、より好ましくは、上記の条件を満たしつつPが3μm以上である。Pがこれより小さくなると加工精度が悪化する不具合がある。
また、図22にDで示した単位光学要素335cの支持層335aからの突出高さは、1μm以上15μm以下であることが好ましい。これより小さくなると、加工精度が悪化する不具合があり、これより大きいと、光吸収部334と単位光学要素335cとでモアレが生じやすくなる。
上記形態では、複数の単位光学要素335cが隙間なく連続して配置されているが、これに限らず隣り合う単位光学要素335cの間に間隔を設け、この部分は支持層335aの面が露出する態様であってもよい。
また、複数の単位光学要素335cが必ずしも同じ形状である必要はなく、適宜変更してもよい。
このような入光側光制御層335の支持層335a及び光学要素層335b(単位光学要素335c)は、上記した基材層31や光透過部33と同様の材料により構成することができる。
次に、以上のような構成を備える映像源ユニット310の作用について、光路例を示しつつ説明する。ただし当該光路例は説明のための概念的なものであり、反射や屈折の程度を厳密に表したものではない。
まず、図20に示すように、光源25から出射した光は、導光板21の側面(端面)である入光面から導光板21内に入射する。図20には、一例として、光源25から導光板21に入射した光L201、L202の光路例が示されている。
図20に示すように、導光板21に入射した光L201、L202は、導光板21の出光側面及びその反対側の裏面において、空気との屈折率差による全反射を繰り返し、導光方向(図20の紙面下方向)へ進んでいく。
ただし、導光板21の裏面には裏面光学要素23が配置されている。このため、図20に示すように、導光板21内を進む光L201、L202は、裏面光学要素23によって進行方向が変わり、全反射臨界角未満の入射角度で出光面、及び裏面に入射することもある。この場合に当該光は、導光板21の出光面及びその反対側の裏面から出射し得る。
出光面から出射した光L201、L202は、導光板21の出光側に配置された光拡散板26へと向かう。一方、裏面から出射した光は、導光板21の背面に配置された反射シート39で反射され、再び導光板21内に入射して導光板21内を進むことになる。
導光板21内を進行する光と、裏面光学要素23で向きを変えられて全反射臨界角未満の入射角度で出光面に達する光は、導光板21内の導光方向に沿った各区域において生じる。このため、導光板21内を進んでいる光は、少しずつ、出光面から出射するようになる。これにより、導光板21の出光面から出射する光の導光方向に沿った光量分布を均一化させることができる。
導光板21から出射した光は、その後、光拡散板26に達し均一性が高められる。そしてプリズム層27により必要に応じて拡散又は集光されプリズム層27を出光した光は反射型偏光板28に達する。ここでは、反射型偏光板28の透過軸に沿った偏光方向の光は反射型偏光板28を透過し光学シート330に向かう。
一方、反射型偏光板28の反射軸に沿った偏光方向の光は図20に点線矢印で示したように反射して導光板21側に戻される。戻された光は、導光板21、裏面光学要素23、又は反射シート39で反射して再び反射型偏光板28の側に進行する。この反射の際に一部の光の偏光方向が変化しており、その一部は反射型偏光板28を透過する。他の光は再び導光板側に戻される。このように反射型偏光板28で反射した光も反射を繰り返すことで反射型偏光板28を透過できるようになる。これにより光源25からの光の利用率が高められる。
ここで、反射型偏光板28を出射した光は、その偏光方向が下偏光板14の透過軸に沿った方向になっており、下偏光板14を透過する偏光状態の光となっている。
反射型偏光板28を出射した光は光学シート330に達する。光学シート330に入射した光は次のような光路を有して進行する。図24には光学シート330における光路例を表した。
図20に示した光L201、光L202、及び図24に示した光L241、光L242は、単位光学要素335cの主屈折面335dに入射し、当該主屈折面335dへの入射角度に応じて屈折、又は屈折することなく主屈折面335dを透過する(主屈折面335dの傾斜面に直交する方向から入射した光は屈折することなく主屈折面335dを透過する(光L242)。)。これにより多くの光が観察者側斜め下方に向いた光となり、これが光透過部333と光吸収部334との界面のうち、光吸収部334の上側となる界面334aに向かう。そして当該界面334aで全反射して、観察者側斜め上方の光となり、所望の方向への光の制御がなされる。特に界面334aの傾斜角θ61(図23参照)が0°であればより上方へ光を向かわせることができる。一方、θ61を調整することにより上方でありつつも所望の範囲に光を向かわせることも可能である。
このとき、光透過部333と光吸収部334との界面のうち光吸収部334の下側である界面334bが、観察者側斜め上方に向かうように傾斜していれば、光L201、光L202、光L241、光L242のような光の進行を光吸収部334が阻害し難くなり、より多くの光を所望の方向に導くことができる。
従って、光学シート330では、図23にθ71で表した主屈折面335cの傾斜角と、図23にθ61で表した界面334aの傾斜角との組み合わせにより、光を効率よく所望の方向に導くことを容易に行うことができる。いずれか一方では、導く光の方向に限界があり、組み合わせにより相乗的に作用してより容易に光の進行方向を制御することが可能となる。
また、図20に示した光L203、図24に示したL243は、単位光学要素335cのライズ面335eに入射し、当該ライズ面335eへの入射角度に応じて屈折又は屈折することなくライズ面335eを透過する。このようにしてライズ面335eを透過した光は、その多くが観察者側斜め上方であるとともに、光透過部333と光吸収部334との界面334bで全反射することなく該界面を透過する角度で進行するので、界面334bを透過して光吸収部334に吸収される。
これにより、所望の角度以上の視野角で出射する光を効率よく吸収して遮断することができ、さらに光の進行方向制御を効率よく行うことができる。
また、このような光は液晶パネルに入射して、コントラスト低下や色の反転のような不具合を生じる可能性が高いのでこのような光を吸収することができる。
光学シート330を出射した光は、液晶パネル15の下偏光板14に入射する。下偏光板14は、入射光のうち、一方の偏光成分を透過させ、その他の偏光成分を吸収する。下偏光板14を透過した光は、画素毎への電界印加の状態に応じて、選択的に上偏光板13を透過するようになる。このようにして、液晶パネル15によって、面光源装置320からの光を画素毎に選択的に透過させることにより、液晶表示装置の観察者が、映像を観察することができるようになる。その際、映像光は機能性フィルム40を介して観察者に提供され、映像の質が高められている。
以上のように、光学シート330によれば、光学要素層335bにおける屈折、及び光透過部333と光吸収部334との界面334aでの全反射により、光学シート330に入射した光を上方向へ出射しやすくなっており、下方向への出射は制限されている。すなわち、例えば光学シート330を用いることにより、入射した光をドライバー視点となる上方向に効率よく出射し、上方向に出射する光の輝度を向上させることができる。一方で、大きく上方に出射する光を光吸収部で吸収し易くしているので、フロントガラスへの写り込みを防止することが可能となる。
従って、本形態の光学シートを液晶表示装置に用いることにより、従来の光学シートを使用した場合に比べ、容易に光を制御して、ドライバー視点での視認性を向上させることができる。
これによれば例えば図25に示したような出光特性を容易に実現できる。図25は横軸に鉛直方向の視野角、縦軸に相対輝度を表したグラフである。横軸は正(+)が鉛直方向上方、負(−)が鉛直方向下方を表している。
図25からわかるように、鉛直方向の視野角を見た場合に、図25にDで示した位置からわかるように相対輝度のピークが+20°(鉛直方向上方20°)近傍となっている。すなわち、正面(0°)とは異なる観察者の視点となる方向に輝度ピークがあるように光が制御されている。さらに図25にEで示した位置からわかるように、+50°(鉛直方向上方50°)近傍にて急激に相対輝度が低下している。すなわち、自動車におけるフロントガラスへの映り込みの原因となるような大きく上方に進行する光をより確実に遮断することができる。
以下には、上記した各形態について光学シート、及び映像源ユニットを構成してその性能を試験した。
{試験例A}
実施例Aでは、映像源ユニット10の例に倣って、光学シートの出光方向制御の観点で試験を行った。
[試験例Aの光学シートの構成]
<試験例A
試験例Aでは、出光側光制御層35を備える映像源ユニット10の例に倣って図5に表したθ21を変更した光学シートを作製した。θ21以外の光学シートの具体的な形状は次のとおりである。
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・光透過部、及び光吸収部のピッチ(図4のP):39μm
・光吸収部上底幅(図4のW):4μm
・光吸収部下底幅(図4のW):10μm
・光吸収部上側傾斜角(図5のθ11):3°
・光吸収部下側傾斜角(図5のθ12):0°
・光吸収部の厚さ(図4のD):102μm
・光学機能層の厚さ:127μm
・土台部の厚さ:25μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):5°
(出光側光制御層)
・ライズ面の角度(図5のθ22):90°
・単位光学要素のピッチ(図4のP):18μm
・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
・上記バイアス角αに対する傾斜角(バイアス角α):3°
ここで、バイアス角αは、光学シートの正面視でバイアス角αと同じ方向に回転するような角度である(以下の例も同様である。)。従って本例では単位光学要素が延びる方向が液晶層の画素配列方向に対する傾斜角はα+α=8°となる。
・主屈折面の角度(図5のθ21):85°(試験例A−1)、80°(試験例A−2)、70°(試験例A−3)、60°(試験例A−4)
<試験例A
試験例Aでは、図9に示した出光側光制御層135を備える映像源ユニットの例に倣ってθ31を変更した光学シートを作製した。出光側光制御層135以外の構成は試験例Aと同じである。またライズ面の角度も90°で一定とした。そして、主屈折面の角度(図9のθ31)は、85°(試験例A−1)、80°(試験例A−2)、70°(試験例A−3)、60°(試験例A−4)である。
<試験例A
試験例Aでは、試験例A−2の光学シートに対して、ライズ面の角度(図5のθ22に相当)を80°(試験例A−1)、及び100°(試験例A−2)とした。それ以外は試験例A−2と同じである。
<試験例A
試験例Aは、試験例Aの光学シートから出光側光制御層を除外した構成の光学シートである。他の部位は試験例Aの光学シートと同じとした。
[試験例Aの評価方法]
上記各光学シートをモデル化し、シミュレーションで出光角度と各出光角度における輝度の関係を得た。シミュレーションソフトとして、Light Tools(Synopsys社)を用いた。光源の特性を図26に示した。図26の横軸は鉛直方向における視野角度(正が上方、負が下方)、縦軸には視野角度が0°のときの輝度を100%として相対輝度を表した。
[試験例Aの結果]
図27には試験例A、図28に試験例A、図29に試験例Aの結果を示した。図27〜図29では試験例AのグラフをAで表した。
そして図27では試験例A−1をA−1、試験例A−2をA−2、試験例A−3をA−3、試験例A−4をA−4で表した。
同様に図28では試験例A−1をA−1、試験例A−2をA−2、試験例A−3をA−3、試験例A−4をA−4で表した。
そして図29では試験例A−1をA−1、試験例A−2をA−2と表記した。また図29には合わせてA−2も表示してある。
各グラフは、横軸に鉛直方向における視野角度を表し、正が上方、負が下方である。また縦軸には図26に示した光源特性を100%としたときの相対輝度を表した。
これら図からわかるように、試験例A、A、Aにかかる光学シートにより、試験例Aにかかる光学シートに比べて出光角度を所望の方向に細かく、効率よく制御することができた。
試験例A−3、試験例A−4、試験例A−3、試験例A−4のように出光角を大きく移行(シフト)するように変更した場合、及び、試験例A−1、試験例A−2のようにライズ面の角度を90°より大きく、又は小さくした場合には出光角度が+又は−側の60°〜90°の範囲で相対輝度が増えることがある。これらはライズ面における迷光であると考えられる。ただし、このような迷光は偏光板で多くを吸収することができるため、不具合とは成り難い。
{試験例B}
試験例Bでは、映像源ユニット210の例に倣って、光学シートの出光方向制御の観点で試験した。
[試験例Bの光制御部材の構成]
試験例Bでは、光制御部材229の例に倣って光制御部材を作製した。具体的な態様は次の通りである。
<第一の光学シート>
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・光透過部、及び光吸収部のピッチ(図4のP):47μm
・光吸収部上底幅(図4のW):3μm
・光吸収部下底幅(図4のW):22μm
・光吸収部上側傾斜角(図5のθ11):4.5°
・光吸収部下側傾斜角(図5のθ12):4.5°
・光吸収部の厚さ(図4のD):120μm
・光学機能層の厚さ:145μm
・土台部の厚さ:25μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
(出光側光制御層)
・主屈折面の傾斜角度(図5のθ21):70°
・ライズ面の傾斜角度(図5のθ22):90°
・支持層の厚さ:25μm
・単位光学要素のピッチ(図4のP):26μm
・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:5°
<第二の光学シート>
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・光透過部、及び光吸収部のピッチ(図15のP):47μm
・光吸収部上底幅(図15のW):3μm
・光吸収部下底幅(図15のW):22μm
・光吸収部一方側傾斜角(図16のθ41):4.5°
・光吸収部他方側傾斜角(図16のθ42):4.5°
・光吸収部の厚さ(図15のD):120μm
・光学機能層の厚さ:145μm
・土台部の厚さ:25μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
(出光側光制御層)
・単位光学要素が配置されない部位:単位光学要素の配列方向において中央を挟んで対称に5.0mm(図14、図15のW、左右に2.5mmずつ。)
・主屈折面の傾斜角度(図16のθ51):シート中央側において90°(実質上単位光学要素がない部位)からシート最端部において68°となるように、連続的に変化(第二の光学シートのうち単位光学要素が配列される方向の大きさ(図15のW)は300mm)
・ライズ面の傾斜角度(図16のθ52):90°
・支持層の厚さ:25μm
・単位光学要素のピッチ(図15のP):26μm
・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:5°
<光制御部材>
以上の第一の光学シートを光透過部が延びる方向を水平方向となるように配置し、第一の光学シートより出光側となるように重ねて第二の光学シートを配置して光制御部材とした。このとき、第二の光学シートの光透過部の延びる方向が鉛直方向となるようにした(図12参照)。
[試験例Bの光制御部材の構成]
試験例Bでは、上記試験例Bにかかる光制御部材に対して第一の光学シートの出光側光制御層及び第二の光学シートの出光側光制御層を除外した光制御部材を用いた。
[試験例Bの評価方法]
試験例Bの光制御部材をモデル化し、シミュレーションで鉛直方向及び水平方向における各出光角度と輝度との関係を得た。
シミュレーションソフトとして、Light Tools(Synopsys社)を用いた。光源の特性を図30に示した。図30の横軸は鉛直方向及び水平方向における出光角度、縦軸には出光角度が0°のときの輝度を100%とした相対輝度を表した。
[試験例Bの結果]
図31は試験例Bの光制御部材における評価結果を表した。図31(a)の横軸は鉛直方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。図31(b)の横軸は水平方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。
図32は試験例Bの光制御部材における評価結果を表した。図32(a)の横軸は鉛直方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。図32(b)の横軸は水平方向における出光角度、縦軸には図30の100%に対する相対輝度を表している。
図31(a)と図32(a)との対比からわかるように、第一の光学シートのような光学要素層を設けることにより光の出光角度をシフトさせるように制御することができた。
また、図31(b)と図32(b)との対比からわかるように、第二の光学シートのような光学要素層を設けることで、図18(b)により説明した通りに水平方向において光の出光角を制御することができた。
{試験例C}
試験例Cでは、映像源ユニット10、映像源ユニット210の例に倣って、出光方向制御に加えて、粗面によってモアレ発生を防止する観点で試験した。
[試験例Cの光学シートの構成]
<試験例C
試験例Cでは、出光側光制御層35を備える映像源ユニット10の例に倣って図5に表したθ21、及び屈折面及びライズ面の面粗度を変更した光学シートを作製した。他の部位における具体的な形態は次のとおりである。
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・光透過部、及び光吸収部のピッチ(図4のP):39μm
・光吸収部上底幅(図4のW):4μm
・光吸収部下底幅(図4のW):10μm
・光吸収部上側傾斜角(図5のθ11):3°
・光吸収部下側傾斜角(図5のθ12):0°
・光吸収部の厚さ(図4のD):102μm
・光学機能層の厚さ:127μm
・土台部の厚さ:25μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):0°
(出光側光制御層)
・ライズ面の角度(図5のθ22):90°
・単位光学要素のピッチ(図4のP):18μm
・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
・上記バイアス角αに対する傾斜角(バイアス角α):4°
・主屈折面の角度(図5のθ21、4種類):85°、80°、70°、60°
・主屈折面及びライズ面の粗面の形成(2種類):平均粒子径10μmのガラスによりブラストした成形金型で成形、平均粒子径2μmのアルミナによりブラストした成形金型で成形(図33参照)
上記ブラスト処理をした金型(図33参照)を用いて「4種類のθ21×2種類の粗面=合計8種類」の単位光学要素を成形し、それぞれについて光学シートを作製した。
<試験例C
試験例Cでは、試験例Cの光学シートに代えて、上記第二の光学シート230の例に倣った光学シートを備える映像源ユニットを作製した。具体的な形態は次の通りである。
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・光透過部、及び光吸収部のピッチ(図15のP):47μm
・光吸収部上底幅(図15のW):3μm
・光吸収部下底幅(図15のW):22μm
・光吸収部一方側傾斜角(図16のθ41):4.5°
・光吸収部他方側傾斜角(図16のθ42):4.5°
・光吸収部の厚さ(図15のD):120μm
・光学機能層の厚さ:145μm
・土台部の厚さ:25μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
・光透過部及び光吸収部が液晶層の画素配列方向に対する傾斜角(バイアス角α):0°
(出光側光制御層)
・単位光学要素が配置されない部位:単位光学要素の配列方向において中央を挟んで対称に5.0mm(図14、図15のW、左右に2.5mmずつ。)
・主屈折面の傾斜角度(図16のθ51):シート中央側において90°(実質上単位光学要素がない部位)からシート最端部において68°となるように、連続的に変化(第二の光学シートのうち単位光学要素が配列される方向の大きさ(図15のW)は300mm)
・ライズ面の傾斜角度(図16のθ52):90°
・支持層の厚さ:25μm
・単位光学要素のピッチ(図15のP):18μm
・単位光学要素の材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
・光透過部が延びる方向に対する単位光学要素が延びる方向のバイアス角α:4°
・屈折面及びライズ面の粗面の形成(2種類):平均粒子径10μmのガラスによりブラストした成形金型で成形、平均粒子径2μmのアルミナによりブラストした成形金型で成形(図33参照)
上記ブラスト処理をした金型を用いて2種類の粗面の単位光学要素を成形し、それぞれについて光学シートを作製した。
<試験例C
試験例Cでは、試験例Cの光学シートの形態に対して、主屈折面及びライズ面に粗面を形成しない光学シートとした。
<試験例C
試験例Cでは、試験例Cの光学シートの形態に対して、主屈折面及びライズ面に粗面を形成しない光学シートとした。
[試験例Cの評価・結果]
試験例Cにかかる映像源ユニットに対して目視によりモアレ観察を行った。その結果、粗面を形成しなかった試験例C、及び試験例Cで軽微なモアレが観察された。一方、粗面を形成した試験例C及び試験例Cにはモアレは観察されなかった。
なお、出光方向の制御についてはいずれについても適切におこなうことができた。
{試験例D}
試験例Dでは、映像源ユニット10の例に倣って、出光方向制御に加えて、光透過部(光吸収部)の配列ピッチと、単位光学要素の配列ピッチとの関係を変えてモアレ発生の観点で試験した。
上記試験例Cの形態に対して、単位光学要素のピッチ(図4のP)を変更してモアレの発生を目視で観察した。表1に条件及び結果を示す。表1においてPは光透過部(光吸収部)のピッチ(μm)、Pが単位光学要素のピッチ(μm)である。
発明者はPに基づいて次のように得られるPmxに注目した。
は次のように求められる。
=|(a・P・b・P)/(a・P−b・P)|
ここで、P≧Pであり、a、bは1以上10以下の整数である。そして、P、Pについて等倍(1倍)ピッチから10倍ピッチまでの組み合わせを考慮する。これにより整数倍ピッチを考慮した広い範囲でモアレ発生について評価することができる。
そして、あるP、Pの組み合わせに対してa、bを変更した全ての組み合わせのPの中で最大のPをPmxとした。本例ではPを39μmとし、Pを変更した例を表す。
このPmxに対して、結果としてモアレが観察された場合を「有り」、モアレが観察されなかった場合を「なし」と表記した。
Figure 2018181966
表1からわかるように、Pmxが10000(μm)以下であるようにピッチ(P、P)を調整することでモアレの発生を防止することができる。
{試験例E}
試験例Eでは、図19〜図23に示した光学シート330に倣った光学シート及びこれに対比する光学シートを作製して試験を行った。
[試験例Eの光学シートの構成]
<試験例E
(基材層)
・材料:ポリカーボネート樹脂
・厚さ:130μm
(光学機能層)
・ピッチ(図22のP):39μm
・光吸収部上底幅(図22のW):4μm
・光吸収部下底幅(図22のW):10μm
・光吸収部上側傾斜角(図23のθ61):0°
・光吸収部下側傾斜角(図23のθ62):3°
・光吸収部の厚さ(図22のD):102μm
・光学機能層の厚さ:127μm
・光透過部の材料及び屈折率:屈折率1.56の紫外線硬化型ウレタンアクリレート樹脂
・光吸収部の材料及び屈折率:屈折率1.49の紫外線硬化型ウレタンアクリレート樹脂にカーボンブラックを含有した平均粒子径4μmのアクリルビーズを20質量%分散
(入光側光制御層)
・支持層の厚さ(図23の支持層335aの厚さ):130μm
・単位光学要素のピッチ(図22のP):30μm
・単位光学要素の主屈折面の傾斜角(図23のθ71):5°
・ライズ面の傾斜角(図23のθ72):90°
・材料:屈折率1.50の紫外線硬化型ウレタンアクリレート樹脂
<試験例E
単位光学要素の主屈折面の傾斜角(図23のθ71)を10°として他の構成は試験例Eに同じとした。
<試験例E
単位光学要素の主屈折面の傾斜角(図23のθ71)を20°として他の構成は試験例Eに同じとした。
<試験例E
図34に表したように単位光学要素の主屈折面の傾斜が、下から上に向けて光源側に傾くように構成し、図34にθ81に表す主屈折面の角度を5°とした。これを単位光学要素の主屈折面の傾斜角が「−5°」であるとする。これ以外は試験例Eと同じである。
<試験例E
単位光学要素の主屈折面の傾斜角(図23のθ71)を0°、すなわち光学要素層を形成しない構成として、他は試験例Eと同じとした。
[表示装置の構成]
上記試験例Eにかかる光学シートを用い、図19に示した例に倣って他の構成部材を配置して面光源装置とした。
[評価方法]
<測定位置>
各試験例に対して次の3種類の視野角における輝度を測定し、図19に示した例の面光源装置から光学シートを除外して光源を点灯した場合における各種類の輝度を100%としたときに対する輝度比で表した。
(1)画面中央から画面法線方向における輝度(正面輝度)による輝度比。
(2)画面中央から水平方向40°、及び鉛直方向上20°の視野角(いわゆるドライバー視点)における輝度による輝度比。ドライバー視点は、カーナビゲーション等の表示装置が自動車の運転席と助手席との中間部に配置された場合において、運転席から表示装置を見た場合における視点の位置を意味する。
(3)画面中央から水平方向に0°、及び鉛直方向上に40°〜80°(5°刻み)の視野角における合計輝度による輝度比(映り込みの原因となる光)。
<輝度の測定方法>
輝度は自動変角輝度計(GP−500 村上色彩研究所)を用いて上記(1)〜(3)の各視野角における透過光の輝度を測定した。
[結果]
上記各視野角における輝度比を表2に表した。また、この結果に基づいて図35にグラフを表した。図35(a)が(1)の結果、図35(b)が(2)の結果、図35(c)が(3)の結果である。各図には主屈折面傾斜角(図23のθ71)が0°の輝度比の水準を点線で表した。
Figure 2018181966
(1)の視野角では、図35(a)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも高い輝度比であることが好ましい。高いことにより正面輝度が高いことを意味する。
(2)の視野角では、図35(b)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも高い輝度比であることが好ましい。高いことによりドライバー視点による輝度が高いことを意味する。
(3)の視野角では、図35(c)に直線矢印で示したように、主屈折面傾斜角が0°のときよりも低い輝度比であることが好ましい。低いことによりカーナビゲーション等の表示装置が自動車の運転席と助手席との中間部に配置された場合において、フロントガラスへの映り込みを抑制することができることを意味する。
以上の観点から、(1)〜(3)の好ましい結果をいずれも満たすのは、2つの一点鎖線の間であり、具体的には、入光側光制御層に備えられる単位光学要素の主屈折面の傾斜角(図23のθ71)が0°より大きく17°より小さい形態である。これによれば複数の光学的特性をバランスよく満たすように光を制御することを容易に行うことができるようになる。
10、210、310 映像源ユニット
15 液晶パネル
20、220、320 面光源装置
21 導光板
25 光源
26 光拡散板
27 プリズム層
28 反射型偏光板
30、230、330 光学シート
31、231 基材層
32、232、332 光学機能層
33、233、333 光透過部
34、234、334 光吸収部
35、135、235 出光側光制御層(光制御層)
35b、135b、235b、335b 光学要素層
35c、135c、235c、335c 単位光学要素
35d、135d、235d、335d 主屈折面
35e、135e、235e、335e ライズ面
335 入光側光制御層(光制御層)

Claims (15)

  1. 複数の層が積層されてなる光学シートであって、
    前記複数の層の1つである光学機能層と、前記複数の層の他の1つである光学要素層と、を備え、
    前記光学機能層は、
    一方向に延び、当該一方向とは異なる方向に間隔を有して複数配列される光透過部と、隣り合う前記光透過部の間に配置される光吸収部と、を有し、
    前記光学要素層は、
    前記一方向に対して前記光学シートの正面視で0°以上45°以下の角度を有するように延び、当該延びる方向とは異なる方向に複数配列される突条である単位光学要素を具備する、光学シート。
  2. 前記光透過部は台形断面を有し、長い下底が前記単位光学要素側に向いている請求項1に記載の光学シート。
  3. 前記単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、
    前記主屈折面は前記光学機能層の出光面の法線方向に対して45°より大きく89°以下で傾斜する面である、請求項1又は2に記載の光学シート。
  4. 前記主屈折面と前記光学機能層の出光面の法線との成す角が、シート中央側の前記単位光学要素とシート外周側の前記単位光学要素とで異なる、請求項3に記載の光学シート。
  5. 前記光学要素層がリニアフレネルレンズからなる請求項4に記載の光学シート。
  6. 前記単位光学要素は、主屈折面及びライズ面を有する三角形断面を有し、
    前記主屈折面は、前記光学機能層の層面に対して0°より大きく17°より小さい角度で傾斜する、請求項1に記載の光学シート。
  7. 前記光透過部は台形断面を有し、短い上底が前記単位光学要素側に向いている請求項6に記載の光学シート。
  8. 前記単位光学要素の表面には粗面が形成されている請求項1乃至7のいずれかに記載の光学シート。
  9. 前記光透過部の配列ピッチをP(μm)、前記単位光学要素の配列ピッチをP(μm)、a、bを1以上10以下の整数とし、
    =|(a・P・b・P)/(a・P−b・P)|
    として、ある前記P、前記Pに対する全てのa、bの組み合わせから得られる前記Pのうち最も大きなものをPmx(μm)としたとき、前記Pmxが10000(μm)以下である、請求項1乃至8のいずれかに記載の光学シート。
  10. 請求項1乃至9のいずれかに記載の光学シートが2枚以上配置され、
    一方の前記光学シートの前記光透過部が延びる方向と、他方の前記光学シートの前記光透過部が延びる方向と、が前記光学シートの正面視で交差するように配置される、光制御部材。
  11. 光源と、該光源よりも観察者側に配置される請求項1乃至9のいずれかに記載の光学シートと、を備える面光源装置。
  12. 光源と、該光源よりも観察者側に配置される請求項10に記載の光制御部材と、を備える面光源装置。
  13. 請求項11又は12に記載の面光源装置と、該面光源装置の出光側に配置された液晶パネルと、を備える映像源ユニット。
  14. 前記光透過部、前記光吸収部、及び前記単位光学要素は、延びる方向が水平方向であり、配列される方向が鉛直方向である、請求項13に記載の映像源ユニット。
  15. 請求項13又は14に記載の映像源ユニットが筐体に収められた表示装置。
JP2019509396A 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置 Active JP7205463B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022210570A JP7428230B2 (ja) 2017-03-31 2022-12-27 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2024007794A JP2024054147A (ja) 2017-03-31 2024-01-23 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017073064 2017-03-31
JP2017073064 2017-03-31
JP2017096078 2017-05-12
JP2017096078 2017-05-12
JP2017166515 2017-08-31
JP2017166515 2017-08-31
PCT/JP2018/013792 WO2018181966A1 (ja) 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022210570A Division JP7428230B2 (ja) 2017-03-31 2022-12-27 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Publications (2)

Publication Number Publication Date
JPWO2018181966A1 true JPWO2018181966A1 (ja) 2020-02-06
JP7205463B2 JP7205463B2 (ja) 2023-01-17

Family

ID=63676252

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019509396A Active JP7205463B2 (ja) 2017-03-31 2018-03-30 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2022210570A Active JP7428230B2 (ja) 2017-03-31 2022-12-27 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2024007794A Pending JP2024054147A (ja) 2017-03-31 2024-01-23 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022210570A Active JP7428230B2 (ja) 2017-03-31 2022-12-27 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2024007794A Pending JP2024054147A (ja) 2017-03-31 2024-01-23 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Country Status (4)

Country Link
US (3) US11378837B2 (ja)
EP (1) EP3605157A4 (ja)
JP (3) JP7205463B2 (ja)
WO (1) WO2018181966A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181966A1 (ja) * 2017-03-31 2018-10-04 大日本印刷株式会社 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
CN115144938A (zh) * 2021-03-29 2022-10-04 上海近观科技有限责任公司 一种集成光学芯片的信号光收集结构
JP2023125175A (ja) 2022-02-28 2023-09-07 シャープディスプレイテクノロジー株式会社 照明装置及び表示装置
JP7418640B1 (ja) 2023-05-19 2024-01-19 大日本印刷株式会社 光学シート、面光源装置および表示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2009058660A (ja) * 2007-08-30 2009-03-19 Kuraray Co Ltd 光学シート
JP2009080153A (ja) * 2007-09-25 2009-04-16 Dainippon Printing Co Ltd 光学シート、表示装置及び光学シートの製造方法
JP2009294468A (ja) * 2008-06-05 2009-12-17 Dainippon Printing Co Ltd 映像表示装置、及び光学シート
JP2010160360A (ja) * 2009-01-08 2010-07-22 Sumitomo Electric Fine Polymer Inc 配光制御シート及びそれを利用した配光制御パネル並びに表示装置
JP2015075535A (ja) * 2013-10-07 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび表示装置
JP2016151711A (ja) * 2015-02-18 2016-08-22 大日本印刷株式会社 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017058471A (ja) * 2015-09-15 2017-03-23 大日本印刷株式会社 透過型スクリーン及び表示装置
JP2017138411A (ja) * 2016-02-02 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017138357A (ja) * 2016-02-01 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017219619A (ja) * 2016-06-06 2017-12-14 大日本印刷株式会社 映像源ユニット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171701A (ja) 2004-11-18 2006-06-29 Dainippon Printing Co Ltd 視野角制御シート及びこれを用いた液晶表示装置
JP4778261B2 (ja) 2005-04-26 2011-09-21 日本電気株式会社 表示装置及び端末装置
US7548371B2 (en) * 2005-12-13 2009-06-16 Sharp Kabushiki Kaisha Optical film, illuminator and display
WO2009041503A1 (ja) 2007-09-25 2009-04-02 Dai Nippon Printing Co., Ltd. 光学シート、映像源ユニット、表示装置、光学シートの製造方法、及び表示装置の製造方法
WO2009066473A1 (ja) * 2007-11-22 2009-05-28 Sharp Kabushiki Kaisha 液晶表示装置
EP2235570A4 (en) 2007-12-21 2014-10-15 3M Innovative Properties Co LIGHTING CONTROL FILM
KR20100135295A (ko) 2008-04-17 2010-12-24 스미토모덴키고교가부시키가이샤 배광 제어 패널, 이동체 탑재용 표시 장치, 배광 제어 시트, 광학 부품, 조명 장치 및 표시 장치
KR101821430B1 (ko) * 2010-07-12 2018-01-23 다이니폰 인사츠 가부시키가이샤 표시 장치
JP2012113054A (ja) 2010-11-22 2012-06-14 Dainippon Printing Co Ltd 光学シートとその作製方法、映像表示装置、及び金型ロールとその作製方法
JP2015075635A (ja) * 2013-10-09 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび背面投射型表示装置
WO2016063732A1 (ja) * 2014-10-23 2016-04-28 株式会社ダイセル フレネルレンズ、及びそれを備えた光学装置
WO2018181966A1 (ja) * 2017-03-31 2018-10-04 大日本印刷株式会社 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (ja) * 1997-07-31 1999-02-26 Nitto Denko Corp 光路制御板、面光源装置、偏光光源装置及び液晶表示装置
JP2009058660A (ja) * 2007-08-30 2009-03-19 Kuraray Co Ltd 光学シート
JP2009080153A (ja) * 2007-09-25 2009-04-16 Dainippon Printing Co Ltd 光学シート、表示装置及び光学シートの製造方法
JP2009294468A (ja) * 2008-06-05 2009-12-17 Dainippon Printing Co Ltd 映像表示装置、及び光学シート
JP2010160360A (ja) * 2009-01-08 2010-07-22 Sumitomo Electric Fine Polymer Inc 配光制御シート及びそれを利用した配光制御パネル並びに表示装置
JP2015075535A (ja) * 2013-10-07 2015-04-20 大日本印刷株式会社 透過型スクリーンおよび表示装置
JP2016151711A (ja) * 2015-02-18 2016-08-22 大日本印刷株式会社 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017058471A (ja) * 2015-09-15 2017-03-23 大日本印刷株式会社 透過型スクリーン及び表示装置
JP2017138357A (ja) * 2016-02-01 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017138411A (ja) * 2016-02-02 2017-08-10 大日本印刷株式会社 空間浮遊映像表示光学シート、空間浮遊映像表示装置
JP2017219619A (ja) * 2016-06-06 2017-12-14 大日本印刷株式会社 映像源ユニット

Also Published As

Publication number Publication date
EP3605157A1 (en) 2020-02-05
WO2018181966A1 (ja) 2018-10-04
US11378837B2 (en) 2022-07-05
JP7205463B2 (ja) 2023-01-17
EP3605157A4 (en) 2020-12-23
US20220299820A1 (en) 2022-09-22
JP7428230B2 (ja) 2024-02-06
US20230324735A1 (en) 2023-10-12
JP2023040121A (ja) 2023-03-22
US11747669B2 (en) 2023-09-05
US20210397041A1 (en) 2021-12-23
JP2024054147A (ja) 2024-04-16

Similar Documents

Publication Publication Date Title
JP7428230B2 (ja) 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
WO2015046439A1 (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP2020507128A (ja) ディスプレイアセンブリ用光制御フィルム
JP2013003276A (ja) 液晶表示装置
US20180128959A1 (en) Optical sheet, image source unit and image display device
US10228588B2 (en) Image source unit and display device
JP2015180952A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
US11635562B2 (en) Image source unit, and liquid crystal display device
JP6915296B2 (ja) 光学ユニット、面光源装置、映像源ユニット、及び液晶表示装置
JP6932977B2 (ja) 映像源ユニット、及び液晶表示装置
JP6922220B2 (ja) 光学シート、映像源ユニット、及び液晶表示装置
JP2018136423A (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP7135294B2 (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP7441397B2 (ja) 光学シート及び液晶表示装置
JP7418640B1 (ja) 光学シート、面光源装置および表示装置
JP2018041717A (ja) 面光源装置および表示装置
JP7244204B2 (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017198735A (ja) 光学シート、映像源ユニット及び液晶表示装置
JP7182846B2 (ja) 光学部材、液晶表示装置
JP2017045641A (ja) 面光源装置及び表示装置
JP2017059365A (ja) 導光板、面光源装置、映像源ユニット、及び表示装置
JP6110826B2 (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP2015087766A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP2019066622A (ja) 光学シート、面光源装置、映像源ユニット、及び表示装置
JP2017045642A (ja) 面光源装置及び表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150