JPWO2018179686A1 - 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法 - Google Patents

光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法 Download PDF

Info

Publication number
JPWO2018179686A1
JPWO2018179686A1 JP2019508597A JP2019508597A JPWO2018179686A1 JP WO2018179686 A1 JPWO2018179686 A1 JP WO2018179686A1 JP 2019508597 A JP2019508597 A JP 2019508597A JP 2019508597 A JP2019508597 A JP 2019508597A JP WO2018179686 A1 JPWO2018179686 A1 JP WO2018179686A1
Authority
JP
Japan
Prior art keywords
signal
wavelength
band
optical
wavelength interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019508597A
Other languages
English (en)
Other versions
JP6747580B2 (ja
Inventor
井上 貴則
貴則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2018179686A1 publication Critical patent/JPWO2018179686A1/ja
Application granted granted Critical
Publication of JP6747580B2 publication Critical patent/JP6747580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

使用される波長選択スイッチのポート数を抑制しつつ、異なる波長間隔の光信号を分波する。分岐手段(11)は、波長間隔の数だけ光信号を分岐する。各帯域分割手段(12)は、信号帯域がN個の分割帯域に分割され、かつ、奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する。合波手段(13a及び13b)は、同一信号帯域の帯域分割信号を合波し、分岐手段(14a及び14b)は、合波された信号を光受信機(20)に出力する。制御手段(15)は、各波長間隔の信号の信号配置を示す情報に基づいて帯域分割手段(12)に含まれる波長選択スイッチを制御することで、対応する波長間隔の信号が存在する信号帯域の信号を各帯域分割信号に含めさせる。

Description

本開示は、光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法に関し、更に詳しくは、相互に異なる波長間隔で、相互に異なる複数の波長の光信号が多重化された信号から光信号を分波する光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法に関する。
光通信システムにおいて、相互に異なる複数の波長の光を多重化して伝送する波長分割多重(WDM:Wavelength Division Multiplexing)伝送方式が知られている。WDM伝送方式において、伝送路の距離や伝送路の特性に応じて異なる波長間隔が適用されることがある。その結果、WDM伝送方式においては、同じ光伝送路に、相互に異なる複数の波長間隔が混在する場合がある。その場合、波長ごとに適切な波長間隔で光信号を分離する必要がある。また、システムの運用中に、ある波長又はある波長帯域の波長間隔が変更された場合にも、それに応じて適切な波長間隔で光信号を分離する必要がある。
相互に異なる波長間隔で複数の光信号が多重化されたWDM信号から所望の光信号を分岐し、及びWDM信号に光信号を挿入する光分岐挿入多重化装置が特許文献1に記載されている。図15は、特許文献1に記載の光分岐挿入多重化装置を示す。光分岐挿入多重化装置200において、光カプラ201及び波長選択スイッチ(WSS:Wavelength Selective Switch)202〜204は、光伝送路220から光信号をドロップするドロップ部を構成し、光カプラ210及びWSS212〜214は、光伝送路220に光信号を挿入(アド)するアド部を構成する。
ここでは、光伝送路220は、チャネル間隔が200GHz、100GHz、及び50GHzの光信号が多重化されたWDM信号を伝送する。200GHzのチャネル間隔は、1波あたり100Gbps(bit per second)の伝送速度で伝送を行う場合に使用される。また、100GHzのチャネル間隔は、1波あたり40Gbpsの伝送速度で伝送を行う場合に使用され、50GHzのチャネル間隔は、1波あたり10Gbpsの伝送速度で伝送を行う場合に使用される。
光カプラ201は、WDM信号をドロップ用のWSS202〜204と、波長ブロッカ(WB:Wavelength Blocker)221とに分岐する。WSS202は、チャネルが200GHz間隔で配置された光信号に対応した波長選択スイッチであり、200GHzの光周波数帯域を単位として信号光を分離し、分離された各信号光を選択してスイッチ可能に構成される。同様に、WSS203は、チャネルが100GHz間隔で配置された光信号に対応した波長選択スイッチであり、WSS204は、チャネルが50GHz間隔で配置された光信号に対応した波長選択スイッチである。WSS203〜204は、特定のチャネルの光信号を、トランスポンダ205〜207にドロップするために使用される。
各WSSは、各伝送速度に対応したトランスポンダに、対応する伝送速度(チャネル間隔)の光信号を出力する。より詳細には、WSS202は、チャネル間隔200GHzの光信号を、100Gbpsに対応したトランスポンダ205に出力する。WSS203は、チャネル間隔100GHzの光信号を、40Gbpsに対応したトランスポンダ206に出力する。WSS204は、チャネル間隔50GHzの光信号を、10Gbpsに対応したトランスポンダ207に出力する。
波長ブロッカ221は、25GHz間隔で任意の波長の信号光のレベルを調整する機能を有する。波長ブロッカ221は、WSS202〜204を用いてドロップされた信号光の波長帯域をブロックし、他の波長帯域の光を光カプラ210に透過する。波長ブロッカ221を透過したWDM信号は、光カプラ210に入力される。
光分岐挿入多重化装置200において、アド部の動作は、光信号の方向が逆向きになる点を除けばドロップ部の動作と同様である。各伝送速度に対応したトランスポンダ215〜217は、対応するチャネル間隔のWSS212〜214に光信号を出力する。光カプラ210は、各WSS212〜214から出力される光信号と波長ブロッカ221から出力される光信号とを合波する。
特開2012−23781号公報
上記したように、現在の光通信システムは、波長多重技術を用い、異なる波長の信号を束ねて送受信することで伝送容量を拡大している。現在の光伝送システムに採用されている波長間隔は、50GHzや37.5GHzが主流となっているが、将来的には、更に波長間隔を狭めた33.3GHz(100/3GHz)も採用が検討されている。
一般的に、波長間隔が狭いほど隣接する信号から影響を受けやすく、伝送品質が劣化することが知られており、光通信システムでは、伝送距離に応じて適切な波長間隔が選択されている。また近年のOADM(Optical add-drop multiplexer)技術を用い、異なるリンクを接続する波長が同一ファイバで伝送されることが多くなっており、ある送受信端において、異なる波長間隔を持つ波長多重信号が送受信されることがある。その場合、その送受信端において、異なる波長間隔を持つ波長多重信号を適切に合分波し、伝送路或いは受信機に送る必要がある。
異なる波長間隔を持つ波長多重信号の合分波について、一般的な構成では、波長間隔ごとに合分波装置を用意し、人手で適切な接続先が選択される。しかしながら、その場合、合分波装置を波長間隔の種類だけ用意する必要があり、コストがかさむ。この問題点に対し、特許文献1では、WSSを用いて波長を選択的に合分波しており、波長間隔ごとに合分波装置を用意する必要がない。しかしながら、特許文献1に記載の光分岐挿入多重化装置のドロップ部において、信号の全チャネル(全波長帯域)をドロップ可能とするためには、WSS202〜204に100ポート以上の出力ポートをもつ波長選択スイッチが必要となり、現実的ではない。
本開示は、上記事情に鑑み、使用される波長選択スイッチのポート数を抑制しつつ、異なる波長間隔の光信号の分波が可能な光分波装置、光信号受信装置、光信号送受信装置、及び光分波方法を提供することを目的とする。
上記課題を解決するために、本開示は、第1の態様として、相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、前記帯域分割手段を制御する制御手段とを備え、前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光分波装置を提供する。
また、本開示は、第2の態様として、相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、前記帯域分割手段を制御する制御手段と、前記第2の分岐手段で分岐された合波信号を受信する光受信機とを備え、前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光信号受信装置を提供する。
本開示は、更に、第3の態様として、光ファイバと、光ファイバの両端に配置された光合分波装置と、前記光合分波装置を介して光信号を送受信する光送受信機とを備え、前記光合分波装置は、相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、前記帯域分割手段を制御する制御手段とを有し、前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光信号送受信装置を提供する。
本開示は、第4の態様として、相互の異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐し、前記分岐した光信号のそれぞれについて、前記分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成し、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、前記合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐するものであり、前記帯域分割信号の生成では、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて波長選択スイッチを制御することで、対応する波長間隔の信号が存在する波長帯域の信号を前記帯域分割信号に含ませ、対応する波長間隔の信号が存在しない波長帯域の信号は前記波長選択スイッチで遮断させる光分波方法を提供する。
本開示の光分波装置、光信号受信装置、光信号送受信装置、及び光分波方法は、使用される波長選択スイッチのポート数を抑制しつつ、異なる波長間隔の光信号を分波することができる。
本開示の概略的な光分波装置を示すブロック図。 本開示が適用され得る光通信システム(光伝送システム)を示すブロック図。 本開示の第1実施形態に係る合分波装置の分波ブロックの構成を示すブロック図。 信号の帯域分割を示すブロック図。 ITU−Tで規定された波長間隔ごとの波長グリッドを示す図。 各波長間隔の奇数チャネルの波長グリッドを示す図。 各波長間隔の偶数チャネルの波長グリッドを示す図。 複数の波長間隔が混在したWDM信号の信号例を示す図。 インターリーバで分離された奇数チャネルの出力信号例を示す図。 インターリーバで分離された偶数チャネルの出力信号例を示す図。 奇数チャネルに対応したWSSの出力信号例を示す図。 偶数チャネルに対応したWSSの出力信号例を示す図。 光カプラで合波される信号の信号例を示す図。 本発明の第2実施形態に係る合分波装置における分波ブロックを示すブロック図。 特許文献1に記載の光分岐挿入多重化装置を示すブロック図。
本開示の実施の形態の説明に先立って、本開示の概要を説明する。図1は、本開示の概略的な光分波装置を示す。光分波装置10は、N及びMを2以上の整数として、分岐手段11、帯域分割手段12−1〜12−M、合波手段13a−1〜13a−N及び13b−1〜13b−N、分岐手段14a−1〜14a−N及び14b−1〜14b−N、並びに制御手段15を有する。なお、以下の説明において、特に区別する必要がない場合は、帯域分割手段12−1〜12−Mを、帯域分割手段12とも呼ぶ。合波手段13a−1〜13a−N及び13b−1〜13b−N、並びに、分岐手段14a−1〜14a−N及び14b−1〜14b−Nについても、同様である。
分岐手段(第1の分岐手段)11は、相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも波長間隔の数だけ分岐する。分岐手段11は、例えば、波長間隔の数をMとして、帯域分割手段12−1〜12−Mに、光信号を分岐する。各帯域分割手段12は、M個の波長間隔のそれぞれに対応して配置される。各帯域分割手段12は、各波長間隔について、分岐手段11で分岐された光信号の信号帯域(波長帯域)を所定帯域幅で分割し、かつ、各波長間隔における奇数チャネルと偶数チャネルとを分離する。各帯域分割手段12は、帯域の分割数をNとして、奇数チャネルが含まれるN個の帯域分割信号と、偶数チャネルが含まれるN個の帯域分割信号とを生成する。各帯域分割手段12は、波長選択スイッチを含む。
合波手段13a及び13bは、帯域分割手段12で分割された信号帯域ごとに、奇数チャネル及び偶数チャネルのそれぞれに対応して配置される。ここでは、合波手段13aは奇数チャネルに対応して配置され、合波手段13bは偶数チャネルに対応して配置されているものとする。合波手段13aは、各波長間隔の奇数チャネルが含まれる帯域分割信号を、分割された帯域ごとに合波する。合波手段13bは、各波長間隔の偶数チャネルが含まれる帯域分割信号を、分割された帯域ごとに合波する。より詳細には、合波手段13a−1〜13a−Nは、それぞれ帯域分割手段12−1〜12−Mが出力する、奇数チャネルが含まれる同一信号帯域のM個の帯域分割信号を合波する。同様に、合波手段13b−1〜13b−Nは、それぞれ帯域分割手段12−1〜12−Mが出力する、偶数チャネルが含まれる同一信号帯域のM個の帯域分割信号を合波する。
分岐手段(第2の分岐手段)14a及び14bは、合波手段13a及び13bと同様に、分割された信号帯域ごとに、奇数チャネル及び偶数チャネルのそれぞれに対応して配置される。分岐手段14a及び14bは、それぞれ合波手段13a及び13bで合波された合波信号を例えば複数の光受信機20に分岐する。より詳細には、分岐手段14a−1〜14a−Nは、それぞれ合波手段13a−1〜13a−Nを用いて合波された各波長間隔の奇数チャネルが含まれる合波信号を複数の光受信機20に分岐する。分岐手段14b−1〜14b−Nは、それぞれ合波手段13b−1〜13b−Nを用いて合波された各波長間隔の奇数チャネルが含まれる合波信号を複数の光受信機20に分岐する。
制御手段15は、帯域分割手段12を制御する。本開示では、特に、制御手段15は、光信号における各波長間隔の信号の信号配置を示す情報に基づいて帯域分割手段12に含まれる波長選択スイッチを制御する。制御手段15は、波長選択スイッチを制御することで、波長選択スイッチに、対応する波長間隔の信号が存在する信号帯域の信号を帯域分割手段12から合波手段13a及び13b側に出力させ、対応する波長間隔の信号が存在しない信号帯域の信号は遮断させる。
本開示では、分岐手段11を用いて波長間隔の数だけ光信号を分岐し、各帯域分割手段12において、信号帯域をN個の分割帯域に分割する。このとき、帯域分割手段12は、奇数チャネルと偶数チャネルとを分離して、それぞれに対応する帯域分割信号を生成する。制御手段15は、各波長間隔の信号の信号配置を示す情報に基づいて帯域分割手段12に含まれる波長選択スイッチを制御することで、対応する波長間隔の信号が存在する信号帯域の信号を各帯域分割信号に含めさせる。合波手段13a及び13bは、同一信号帯域の帯域分割信号を合波し、分岐手段14a及び14bは、合波された信号を光受信機20に出力する。このようにすることで、光受信機20は、光信号に異なる波長間隔の信号が含まれる場合でも、所望の波長(チャネル)の光信号を受信することが可能である。
本開示では、帯域分割手段12に含まれる波長選択スイッチの出力ポート数は分割する信号帯域の数だけあればよく、光受信機20の数だけ出力ポートを有している必要がない。このため、本開示は、特許文献1と比較して、低コストで異なる波長間隔の光信号を分波することが可能である。
以下、図面を参照しつつ、本開示の実施の形態を詳細に説明する。図2は、本開示が適用され得る光通信システム(光伝送システム)を示す。光通信システム100は、例えば海底ケーブルシステムとして構成されており、合分波装置110、光送受信機120、監視装置130、光ファイバ140、光海底中継器150、及び光海底分岐装置160を有する。
合分波装置110は、合波ブロックと分波ブロックとを有する。合分波装置110は、合波ブロックにおいて、複数の光送受信機120から入力された複数の波長の光信号を合波し、光ファイバ140に出力する。また、合分波装置110は、分波ブロックにおいて、光ファイバ140から入力された、複数の波長の光信号が多重化されたWDM信号を分波し、光送受信機120に出力する。
光海底中継器150は、光増幅器などを含み、光ファイバ140を伝送される光信号を増幅する。光海底分岐装置160は、光信号の経路を分岐する。監視装置130は、異なる地点の光送受信機120間で送受信される光信号の設定及び監視を行う。監視装置130は、例えば光ファイバ140を伝送される光信号において、どの信号帯域にはどの波長間隔の光信号が含まれているかを示す情報を生成する。
図3は、本開示の第1実施形態に係る合分波装置110の分波ブロック(光分波装置)の構成を示す。合分波装置110は、分波ブロックとして、光カプラ(光カプラ1)111と、インターリーバ112−1〜112−3と、波長選択スイッチ(WSS)113a−1〜113a−3及び113b−1〜113b−3と、光カプラ(光カプラ2)114a−1〜114a−N及び114b−1〜114b−Nと、光カプラ(光カプラ3)115a−1〜115a−N及び115b−1〜115b−Nと、コントローラ116とを有する。
なお、以下の説明では、主に光信号の受信側においてWDM信号を分波する分波ブロックについて説明する。合分波装置110における送信側の合波ブロック(光合波装置)の構成は、信号の流れが逆になる点を除けば、図3に示される光分波装置と同様でよい。また、以下の説明において、特に区別する必要がない場合は、インターリーバ112−1〜112−3を、インターリーバ112とも呼ぶ。WSS113a、光カプラ114a及び114b、並びに光カプラ115a及び115bについても同様である。
さらに、図3では、例として光信号に50GHz、37.5GHz、及び33.3GHzの波長間隔の光信号が含まれる場合を想定しているが、それ以外の波長間隔を適用することもできる。波長間隔の数については、3つには限定されず、2つであってもよいし、4以上あってもよい。
光カプラ111は、光ファイバ140(図1を参照)から入力される光信号(WDM信号)を、少なくとも、光信号に適用される波長間隔の数だけ分岐する。光カプラ111は、例えば光信号に適用されている波長間隔の数、又は将来適用される波長間隔を想定して現在適用されている波長間隔よりも多い数だけ光信号を分岐する。図3の例では、光カプラ111は、光信号を、波長間隔50GHzに対応したインターリーバ112−1、波長間隔37.5GHzに対応したインターリーバ112−2、及び波長間隔33.3GHzに対応したインターリーバ112−3に分岐する。光カプラ111は、図1の分岐手段11に対応する。
各インターリーバ112は、光信号を、それぞれの波長間隔に適合した奇数チャネルと偶数チャネルとに分離する。インターリーバは、光通信システムの分野で広く知られているものであり、入力された信号を、チャネル間隔の2倍の波長間隔をもつ偶数チャネルと奇数チャネルとに分離する。インターリーバ112−1は、波長間隔50GHzにおける奇数チャネルに対応する信号帯域の信号をWSS113a−1に出力し、偶数チャネルに対応する信号帯域の信号をWSS113b−1に出力する。インターリーバ112−2は、波長間隔37.5GHzにおける奇数チャネルに対応する信号帯域の信号をWSS113a−2に出力し、偶数チャネルに対応する信号帯域の信号をWSS113b−2に出力する。インターリーバ112−3は、波長間隔33.3GHzにおける奇数チャネルに対応する信号帯域の信号をWSS113a−3に出力し、偶数チャネルに対応する信号帯域の信号をWSS113b−3に出力する。
WSS113aは奇数チャネルに対応した波長選択スイッチであり、WSS113bは偶数チャネルに対応した波長選択スイッチである。波長選択スイッチは、光通信システムの分野で広く知られているものであり、ある波長分解能のもと、入力された信号のうち任意の波長の信号を任意のポートに出力することが可能に構成されている。WSS113a及び113bは、信号が配置された全帯域を所定の帯域幅で分割する。WSS113a及び113bは、帯域の分割数をNとした場合、例えば1×Nの入出力ポートを有する波長選択スイッチとして構成される。WSS113a及び113bの入力ポートはインターリーバ112の出力に光学的に結合され、N個の出力ポートのそれぞれは光カプラ114a及び114bに光学的に結合される。インターリーバ112と、WSS113a及び113bとは、図1の帯域分割手段12に対応する。
図4は、信号の帯域分割を示す。WSS113a及び113bは、例えば光信号の全帯域をN分割し、N個の出力ポートのそれぞれから、信号帯域が分割された光信号(帯域分割信号)を出力する。WSS113a及び113bは、例えば、信号帯域を600GHz単位で分割し、600GHzの帯域幅を有する帯域1〜帯域Nの帯域分割信号のそれぞれを、各出力ポートから出力する。WSS113aが出力する各帯域分割信号には、対応する波長間隔における偶数チャネルの信号帯域の信号が含まれ、WSS113bが出力する各帯域分割信号には、対応する波長間隔における奇数チャネルの信号帯域の信号が含まれる。
図3に戻り、光カプラ114a及び114bは、それぞれWSS113a及び113bで分割される信号帯域の数だけ配置される。各光カプラ114a及び114bは、それぞれWSS113a及び113bの出力ポートのうち、同一帯域に対応する出力ポートから出力される帯域分割信号を合波する。例えば、光カプラ114a−1は、WSS113aが出力する帯域1(図4を参照)の信号帯域の光信号と、WSS113a−2が出力する帯域1の信号帯域の光信号と、WSS113a−3が出力する帯域1の光信号とを合波する。光カプラ114a及び114bは、図1の合波手段13a及び13bに対応する。
光カプラ115a及び115bは、それぞれ光カプラ114a及び114に対応して配置される。各光カプラ115a及び115bは、それぞれ光カプラ114a及び114bで合波された光信号(帯域分割信号)を、所定の数だけ分岐する。光カプラ115a及び115bは、例えば、光カプラ114a及び114bの出力を、その出力に含まれる信号(チャネル)の数だけ分岐する。光カプラ115a及び115bの出力ポートには、光送受信機120が接続される。光カプラ115a及び115bは、図1の分岐手段14a及び14bに対応する。
光送受信機120は、光カプラ115a又は115bを介して、分割された信号帯域のそれぞれに含まれる光信号を受信する。光送受信機120は、例えばデジタルコヒーレント受信方式で光信号を受信する受信機を含む。光送受信機120は、局所光の波長を制御し、局所光を光信号に干渉させることで受信する波長(チャネル)を選択する。監視装置130は、各光送受信機120に、受信波長及び送信波長と、波長間隔とを設定する。
コントローラ116は、WSS113a及び113bを制御する。コントローラ116は、監視装置130から、各光送受信機120に設定された受信波長と波長間隔との設定情報を取得する。この設定情報は、伝送路を伝送される光信号における各波長間隔の信号の信号配置を示す情報に相当する。別の言い方をすると、設定情報は、各チャネルはどの波長間隔に対応しているかを示す情報を示す。コントローラ116は、WSS113a及び113bを制御し、各WSS113a及び113bから、対応する波長間隔の信号が存在する信号帯域の信号を光カプラ114a及び114b側に出力させ、対応する波長間隔の信号が存在しない信号帯域の信号は遮断させる。コントローラ116は、図1の制御手段15に対応する。
以下、具体例を用いて説明する。図5は、ITU−T(International Telecommunication Union Telecommunication Standardization Sector)で規定された波長間隔ごとの波長グリッドを示す。図5の(a)は波長間隔が50GHzの場合の波長グリッドを示し、(b)は波長間隔が37.5GHzの場合の波長グリッドを示し、(c)は波長間隔が33.3GHzの場合の波長グリッドを示す。
ITU−Tでは、波長グリッドは、波長間隔に依存せず、193.1THzを基準に定められている。例えば波長間隔が50GHzの場合は、nを正の整数として、193.1±0.050×n(THz)が波長グリッドとなる。波長間隔が37.5GHzの場合は、193.1±0.0375×n(THz)が波長グリッドとなり、波長間隔が33.3GHzの場合は、193.1±(0.1/3)×n(THz)が波長グリッドとなる。波長間隔として、50GHz、37.5GHz、及び33.3GHzの3つを考えた場合、図4に示されるように、波長間隔の最小公倍数である300GHzごとに波長グリッドの中心周波数が一致する。
図6は、各波長間隔の奇数チャネルの波長グリッドを示す。また、図7は、各波長間隔の偶数チャネルの波長グリッドを示す。図6の(a)及び図7の(a)は、それぞれ波長間隔が50GHzの場合の奇数チャネル及び偶数チャネルの波長グリッドを示す。図6の(b)及び図7の(b)は、それぞれ波長間隔が37.5GHzの場合の奇数チャネル及び偶数チャネルの波長グリッドを示す。図6の(c)及び図7の(c)は、それぞれ波長間隔が33.3GHzの場合の奇数チャネル及び偶数チャネルの波長グリッドを示す。
各インターリーバ112(図3を参照)は、光カプラ111から入力された光信号のうち、図6の(a)〜(c)に示される奇数チャネルの波長グリッドに対応した信号帯域の信号を各WSS113aに出力する。また、各インターリーバ112は、光カプラ111から入力された光信号のうち、図7の(a)〜(c)に示される奇数チャネルの波長グリッドに対応した信号帯域の信号を各WSS113bに出力する。
より詳細には、インターリーバ112−1は、図4の(a)に示される50GHz間隔の信号を、100GHz間隔の偶数チャネルと奇数チャネルとに分離し、WSS113a−1及び113b−1にそれぞれ出力する。また、インターリーバ112−2は、図4の(b)に示される37.5GHz間隔の信号を、70GHz間隔の偶数チャネルと奇数チャネルとに分離し、WSS113a−2及び113b−2にそれぞれ出力する。インターリーバ112−3は、図4の(c)に示される33.3GHz間隔の信号を、66.7(200/3)GHz間隔の偶数チャネルと奇数チャネルとに分離し、WSS113a−3及び113b−3にそれぞれ出力する。
ここで、WSS113a及び113bにおける信号帯域の分割について説明する。WSS113a及び113bは、例えば12.5GHzの波長分解能で、任意の波長の信号を任意のポートに出力可能であるとする。WSS113a及び113bの波長分解能は、12.5GHzよりも更に小さくてもよい。
図6の(a)〜(c)及び図7の(a)〜(c)を参照すると、奇数チャネル及び偶数チャネルに分離された信号は、それぞれ、WDM信号に適用される波長間隔の最小公倍数の2倍である600GHz間隔で、周期性を持つことがわかる。本実施形態では、WSS113a及び113bは、信号帯域全体を、適用される波長間隔の最小公倍数の2倍の帯域で複数の帯域に分割し、それぞれのポートに出力する。
上記信号帯域の分割に際して、各分割帯域の境界には信号が配置されない波長が選択される。この境界波長は計算で求めることができる。具体的に、奇数チャネルについて、境界周波数は、iを全信号帯域をカバーするために必要な正及び負の整数として、(193.1+0.6×i+0.0375)THzで計算される。この式で計算された境界周波数は、奇数チャネルに対応する各WSS113aに適用される。一方、偶数チャネルについては、境界周波数は、(193.1+0.6×i)THzで計算される。この式で計算された境界周波数は、偶数チャネルに対応する各WSS113bに適用される。
上記境界周波数の計算は、WDM信号に適用される波長間隔に応じて、例えばコントローラ116が行う。コントローラ116は、計算した境界周波数を境界として信号帯域が複数の帯域に分割されるように、WSS113a及び113bを制御する。コントローラ116は、例えば、適用される波長間隔が変化した場合は、その変化に応じて、境界周波数を計算し直してもよい。コントローラ116は、例えばWDM信号に適用される波長間隔が50GHzと37.5GHzのみである場合は、WSS113a及び113bにおいて300GHz間隔で帯域分割が行われるように、WSS113a及び113bを制御する。コントローラ116は、WDM信号に適用される波長間隔に33.3GHzが追加された場合は、WSS113a及び113bにおいて600GHz間隔で帯域分割が行われるように、WSS113a及び113bを制御する。
図8は、複数の波長間隔が混在したWDM信号の信号例を示す。この例では、紙面に向かって左側から、50GHzの波長間隔、33.3GHzの波長間隔、37.5GHzの波長間隔、33.3GHzの波長間隔、及び50GHzの波長間隔の波長グリッドで、複数チャネルの光信号が多重化されている。光カプラ111(図3を参照)には、例えば図8に示される複数の波長間隔の光信号が多重化されたWDM信号が入力される。
図9は、各インターリーバ112で分離された奇数チャネルの出力信号例を示す。また、図10は、各インターリーバ112で分離された偶数チャネルの出力信号例を示す。図9の(a)及び図10の(a)は、それぞれ波長間隔50GHzに対応するインターリーバ112−1の出力信号例を示す。図9の(b)及び図10の(b)は、それぞれ波長間隔37.5GHzに対応するインターリーバ112−2の出力信号例を示す。図9の(c)及び図10の(c)は、それぞれ波長間隔33.3GHzに対応するインターリーバ112−3の出力信号例を示す。
例えば各インターリーバ112への入力信号として、図8に示されるWDM信号を考える。その場合、インターリーバ112−1は、入力信号を、図9の(a)及び図10の(a)に示されるように奇数チャネルと偶数チャネルとに分離する。また、インターリーバ112−2は、入力信号を、図9の(b)及び図10の(b)に示されるように奇数チャネルと偶数チャネルとに分離する。インターリーバ112−3は、入力信号を、図9の(c)及び図10の(c)に示されるように奇数チャネルと偶数チャネルとに分離する。
インターリーバ112−1は、波長間隔50GHzに対応したインターリーバであり、図6の(a)及び図7の(a)にそれぞれ示される奇数チャネル及び偶数チャネルの信号帯域ごとに、信号を分離する。インターリーバ112−1に入力される信号に、対応する波長間隔50GHzとは異なる波長間隔37.5GHz及び33.3GHzが含まれている場合、図9の(a)及び図10の(a)に示されるように、インターリーバ112−1の出力信号には、対応しない波長間隔37.5GHz及び33.3GHzの不要な信号も含まれる。同様に、インターリーバ112−2の出力信号には、図9の(b)及び図10の(b)に示されるように、不要な波長間隔50GHz及び33.3GHzの信号も含まれ、インターリーバ112−3の出力信号には、図9の(c)及び図10の(c)に示されるように、不要な波長間隔50GHz及び37.5GHzの信号も含まれる。
上記、各インターリーバ112から出力される不要な信号は、光送受信機120における正常な受信の妨げとなる。そこで、本実施形態では、波長選択スイッチの波長選択特性を利用し、WSS113において、信号帯域の分割だけでなく、不要信号の遮断も行う。前提として、光送受信機120を設置して運用する際は、監視装置130を用いて、各光送受信機120に、事前に波長と波長間隔とが設定されているものとする。監視装置130は、コントローラ116を通じて、各光送受信機120の波長と波長間隔との情報に基づいて各WSS113a及び113bを制御し、不要な信号をブロックするように設定する。
コントローラ116は、例えば、対応する波長間隔の信号が存在する信号帯域、及び何れの波長間隔の信号も存在しない信号帯域を、WSS113a及び113bの出力ポートから出力させる。コントローラ116は、例えば、対応する波長間隔とは異なる波長間隔に信号が存在する信号帯域は、WSS113a及び113bの出力ポートから出力させずに遮断させる。例えば193.1THzを中心波長とする波長グリッドに50GHz波長間隔の信号が配置されている場合、コントローラ116は、50GHzの波長間隔に対応したWSS113a−1の所定の出力ポートから、193.1THzを中心に±25GHzの信号帯域の信号を出力させる。このとき、コントローラ116は、他の波長間隔に対応したWSS113a−2及び113b−3については、193.1THzを中心に±25GHzの信号帯域の信号をブロックさせる。
図11は、奇数チャネルに対応したWSS113aの出力信号例を示す。また、図12は、偶数チャネルに対応したWSS113bの出力信号例を示す。図11の(a)及び図12の(a)は、それぞれ波長間隔50GHzに対応するWSS113a−1及び113b−1の出力信号例を示す。図11の(b)及び図12の(b)は、それぞれ波長間隔37.5GHzに対応するWSS113a−2及び113b−2の出力信号例を示す。図11の(c)及び図12の(c)は、それぞれ波長間隔33.3GHzに対応するWSS113a−3及び113b−3の出力信号例を示す。
図11の(a)〜(c)及び図12の(a)〜(c)において、白色で示す領域はWSS113a及び113bの出力ポートから信号が出力される信号帯域を表し、グレーで示す領域は、WSS113a及び113bにおいて信号が遮断される信号帯域を表す。コントローラ116は、例えばある境界波長から次の境界波長の間に含まれる波長を、WSS113a及び113bのそれぞれの1つの出力ポートから出力するように、WSS113a及び113bを制御する。ただし、コントローラ116は、各WSS113a及び113bにおいて、対応する波長間隔とは異なる波長間隔に信号が存在する波長は、当該出力ポートから出力させない。
例えば、コントローラ116は、図11の(a)及び図12の(a)に示されるように、50GHzの波長間隔に対応するWSS113a−1及び113b−1において、図8に示されるWDM信号において50GHzの波長間隔の信号が存在する信号帯域を、各WSSの出力ポートから出力させる。このとき、コントローラ116は、WDM信号において他の波長間隔の信号が存在する信号帯域がWSS113a−1及び113b−1においてブロックされるようにWSS113a−1及び113b−1を制御する。
また、コントローラ116は、図11の(b)及び図12の(b)に示されるように、37.5GHzの波長間隔に対応するWSS113a−2及び113b−2において、WDM信号において37.5GHzの波長間隔の信号が存在する信号帯域を、各WSSの出力ポートから出力させる。このとき、コントローラ116は、WDM信号において他の波長間隔の信号が存在する信号帯域がWSS113a−2及び113b−2においてブロックされるようにWSS113a−2及び113b−2を制御する。
コントローラ116は、図11の(c)及び図12の(c)に示されるように、33.3GHzの波長間隔に対応するWSS113a−3及び113b−3において、WDM信号において33.3GHzの波長間隔の信号が存在する信号帯域を、各WSSの出力ポートから出力させる。このとき、コントローラ116は、WDM信号において他の波長間隔の信号が存在する信号帯域がWSS113a−3及び113b−3においてブロックされるようにWSS113a−1及び113b−1を制御する。各WSS113a及び113bにて、不要帯域を遮断しつつ、例えば600GHz間隔で出力する出力ポートを振り分けることで、不要帯域の遮断と信号帯域の分割とを同時に行うことができる。
図13の(a)及び(b)は、それぞれ光カプラ114a及び114bで合波される信号の信号例を示す。光カプラ114aは、図11の(a)〜(c)に示される各波長間隔に対応したWSS113aの出力信号を合波することで、図13の(a)に示される奇数チャネルの合波信号を生成する。また、光カプラ114bは、図12の(a)〜(c)に示される各波長間隔に対応したWSS113bの出力信号(偶数チャネル)を合波することで、図13の(a)に示される偶数チャネルの合波信号を生成する。各WSS113a及び113bは、対応する波長間隔とは異なる波長間隔の信号が含まれる帯域の信号を遮断する。このため、光カプラ114a及び114bは、不要な信号が含まれない状態で、WDM信号に含まれる各波長間隔の信号を合波することができる。
光送受信機120には、光カプラ115a又は115bを介して図13の(a)又は(b)に示される合波信号が入力される。合波信号には、波長及び波長間隔が異なる複数の信号が含まれている。現在の光通信システムに広く適用されているコヒーレント受信機では、受信機が有する局所光の波長を受信したい信号波長と一致させることで、入力された複数の信号のうち、特定の波長信号を選択して受信することが可能である。光カプラ115a及び115bは、例えば光カプラ114a及び114bにて合波される信号に含まれ得る信号の最大数以上の出力ポートを有しており、光送受信機120は光カプラ115a及び115bの任意の出力ポートに接続される。光送受信機120は、分割された信号帯域において、任意の波長の光信号を受信することができる。
本実施形態では、合分波装置110は、光カプラ111において、相互の異なる複数の波長間隔の信号が多重化された光信号を、少なくとも波長間隔の数だけ分岐する。インターリーバ112は、分岐された光信号のそれぞれについて奇数チャネルと偶数チャネルとを分離し、WSS113a及び113bは、分離された奇数チャネル及び偶数チャネルの光信号の信号帯域が所定帯域幅で分割された帯域分割信号を生成する。光カプラ114a及び114bは、それぞれ各波長間隔の奇数チャネル及び偶数チャネルが含まれる帯域分割信号を分割された信号帯域ごとに合波する。光カプラ115a及び115bは、それぞれ合波された各波長間隔の奇数チャネル及び偶数チャネルが含まれる合波信号を光送受信機120に分岐する。
本実施形態において、コントローラ116は、光信号における各波長間隔の信号の信号配置を示す情報に基づいてWSS113a及び113bをそれぞれ制御することで、対応する波長間隔の信号が存在する信号帯域の信号を帯域分割信号に含ませ、対応する波長間隔の信号が存在しない信号帯域の信号はWSS113a及び113bで遮断させる。このようにすることで、異なる波長間隔の光信号が多重化されたWDM信号を、波長間隔に応じて分波することができる。合分波装置110は、一部の波長又は一部の波長帯域内の波長間隔が変更された場合も、WSS113a及び113bで遮断する信号帯域を適切に制御することで、波長間隔に応じた分波が可能である。
本実施形態では、WSS113a及び113bは、分割された信号帯域の数だけ出力ポートを有している。一般に、波長選択スイッチは、ポート数が多くなるほど実現が困難であり、また高価になる。比較として、特許文献1では、例えば100波の信号を受信するには、出力ポート数100の波長選択スイッチが必要であり、そのような多数の出力ポートを有する波長選択スイッチは現実的ではない。本実施形態では、WSS113a及び113bに要求される出力ポート数は、受信する信号の数よりも少なくてもよいため、コストを抑えつつ、波長間隔に応じた分波が実現できる。
次いで、本開示の第2実施形態を説明する。図14は、第2実施形態に係る合分波装置における分波ブロックを示す。本実施形態に係る合分波装置110bは、インターリーバ112並びにWSS113a及び113b(図3を参照)に代えて、WSS117を有する点で、第1実施形態に係る合分波装置110と相違する。その他の点は、第1実施形態と同様でよい。WSS117は、WDM信号に適用される波長間隔のそれぞれに対応して配置される。
本実施形態において、WSS117は、WSS113a及び113bと同様に、信号帯域を複数の分割帯域に分割する。また、WSS117は、光カプラ111で分岐された光信号を、奇数チャネルと偶数チャネルとに分離するインターリーバとしても機能する。WSS117は、例えば1×2Nの入出力ポートを有する波長選択スイッチとして構成される。WSS117の入力ポートはインターリーバ112の出力に光学的に結合される。WSS117の2N個の出力ポートのうち、N個の出力ポートは光カプラ114aに光学的に結合され、別のN個の出力ポートは光カプラ114bに光学的に結合される。WSS117は、例えばポート番号1番からN番までの出力ポートから、奇数チャネルの信号が含まれる帯域分割信号を光カプラ114aに出力する。また、WSS117は、ポート番号N+1番から2N番までの出力ポートから、偶数チャネルの信号が含まれる帯域分割信号を光カプラ114bに出力する。
本実施形態では、WSS117は、帯域分割及び不要信号のブロックに加えて、奇数チャネルと偶数チャネルとの分離も行う。WSS117にインターリーバの機能を持たせることで、インターリーバを別途配置する必要がなくなる。その他の効果は、第1実施形態と同様である。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
なお、上記各実施形態において、コントローラ116で実施される処理は、合分波装置110が有するASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)若しくはCPU(Central Processing Unit)又はこれらの組み合わせを含むコンピュータ・システムを用いて実現することができる。具体的には、コントローラ116の機能は、波長選択スイッチが行う帯域分割の境界周波数の計算や、遮断信号帯域の決定などの処理に関する命令群を含むプログラムをコンピュータ・システムに実行させることで、実現できる。
上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
この出願は、2017年3月31日に出願された日本出願特願2017−070502を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10:光分波装置
11:分岐手段(第1の分岐手段)
12:帯域分割手段
13a、13b:合波手段
14a、14b:分岐手段
15:制御手段
20:光受信機
100:光通信システム
110:合分波装置
111:光カプラ
112:インターリーバ
113a、113b:波長選択スイッチ(WSS)
114a、114b:光カプラ
115a、115b:光カプラ
116:コントローラ
120:送受信機
130:監視装置
140:光ファイバ
150:光海底中継器
160:光海底分岐装置
分岐手段(第2の分岐手段)14a及び14bは、合波手段13a及び13bと同様に、分割された信号帯域ごとに、奇数チャネル及び偶数チャネルのそれぞれに対応して配置される。分岐手段14a及び14bは、それぞれ合波手段13a及び13bで合波された合波信号を例えば複数の光受信機20に分岐する。より詳細には、分岐手段14a−1〜14a−Nは、それぞれ合波手段13a−1〜13a−Nを用いて合波された各波長間隔の奇数チャネルが含まれる合波信号を複数の光受信機20に分岐する。分岐手段14b−1〜14b−Nは、それぞれ合波手段13b−1〜13b−Nを用いて合波された各波長間隔の偶数チャネルが含まれる合波信号を複数の光受信機20に分岐する。
図4は、信号の帯域分割を示す。WSS113a及び113bは、例えば光信号の全帯域をN分割し、N個の出力ポートのそれぞれから、信号帯域が分割された光信号(帯域分割信号)を出力する。WSS113a及び113bは、例えば、信号帯域を600GHz単位で分割し、600GHzの帯域幅を有する帯域1〜帯域Nの帯域分割信号のそれぞれを、各出力ポートから出力する。WSS113aが出力する各帯域分割信号には、対応する波長間隔における奇数チャネルの信号帯域の信号が含まれ、WSS113bが出力する各帯域分割信号には、対応する波長間隔における偶数チャネルの信号帯域の信号が含まれる。
光カプラ115a及び115bは、それぞれ光カプラ114a及び114bに対応して配置される。各光カプラ115a及び115bは、それぞれ光カプラ114a及び114bで合波された光信号(帯域分割信号)を、所定の数だけ分岐する。光カプラ115a及び115bは、例えば、光カプラ114a及び114bの出力を、その出力に含まれる信号(チャネル)の数だけ分岐する。光カプラ115a及び115bの出力ポートには、光送受信機120が接続される。光カプラ115a及び115bは、図1の分岐手段14a及び14bに対応する。
ITU−Tでは、波長グリッドは、波長間隔に依存せず、193.1THzを基準に定められている。例えば波長間隔が50GHzの場合は、nを正の整数として、193.1±0.050×n(THz)が波長グリッドとなる。波長間隔が37.5GHzの場合は、193.1±0.0375×n(THz)が波長グリッドとなり、波長間隔が33.3GHzの場合は、193.1±(0.1/3)×n(THz)が波長グリッドとなる。波長間隔として、50GHz、37.5GHz、及び33.3GHzの3つを考えた場合、図5に示されるように、波長間隔の最小公倍数である300GHzごとに波長グリッドの中心周波数が一致する。
次いで、本開示の第2実施形態を説明する。図14は、第2実施形態に係る合分波装置における分波ブロックを示す。本実施形態に係る合分波装置110aは、インターリーバ112並びにWSS113a及び113b(図3を参照)に代えて、WSS117を有する点で、第1実施形態に係る合分波装置110と相違する。その他の点は、第1実施形態と同様でよい。WSS117は、WDM信号に適用される波長間隔のそれぞれに対応して配置される。

Claims (10)

  1. 相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、
    前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、
    前記帯域分割手段を制御する制御手段とを備え、
    前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、
    前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光分波装置。
  2. 前記複数の帯域分割手段のそれぞれは、各波長間隔における奇数チャネルと偶数チャネルとを分離するインターリーバを更に含む請求項1に記載の光分波装置。
  3. 前記複数の帯域分割手段のそれぞれは前記波長選択スイッチを2つ含んでおり、一方の波長選択スイッチは、前記インターリーバを用いて分離された奇数チャネルが含まれる光信号を所定帯域幅で分割し、他方の波長選択スイッチは、前記インターリーバを用いて分離された偶数チャネルが含まれる光信号を所定帯域幅で分割する請求項2に記載の光分波装置。
  4. 前記複数の波長選択スイッチのぞれぞれは、前記インターリーバの出力に光学的に結合される第1のポートと、前記分割する信号帯域の数に対応した第2のポートとを含む請求項3に記載の光分波装置。
  5. 前記複数の波長選択スイッチのそれぞれは、前記奇数チャネルと前記偶数チャネルとを分離するインターリーバとしても機能する請求項1に記載の光分波装置。
  6. 前記複数の波長選択スイッチのそれぞれは、前記第1の分岐手段の出力に光学的に結合される第1のポートと、前記分割する信号帯域の数に対応した第2のポートと、前記分割する信号帯域の数に対応した第3のポートを含み、前記第2のポートのそれぞれから、前記所定帯域幅で分割された、奇数チャネルに対応する波長の光信号を出力し、前記第3のポートのそれぞれから、前記所定帯域幅で分割された、偶数チャネルに対応する波長の光信号を出力する請求項5に記載の光分波装置。
  7. 前記複数の波長選択スイッチのそれぞれは、前記光信号を、各波長間隔の奇数チャネルと偶数チャネルとに分離された信号のそれぞれにおいて信号が存在しない波長を境界波長とする信号帯域に分割する請求項1から6何れか1項に記載の光分波装置。
  8. 相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、
    前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、
    前記帯域分割手段を制御する制御手段と、
    前記第2の分岐手段で分岐された合波信号を受信する光受信機とを備え、
    前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、
    前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光信号受信装置。
  9. 光ファイバと、
    光ファイバの両端に配置された光合分波装置と、
    前記光合分波装置を介して光信号を送受信する光送受信機とを備え、
    前記光合分波装置は、
    相互に異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐する第1の分岐手段と、
    前記複数の波長間隔のそれぞれに対応して配置され、各波長間隔について、前記第1の分岐手段で分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成する複数の帯域分割手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、前記帯域分割手段が出力する、各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波する複数の合波手段と、
    前記分割された信号帯域ごとに、前記奇数チャネル及び前記偶数チャネルのそれぞれに対応して配置され、各合波手段を用いて合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐する複数の第2の分岐手段と、
    前記帯域分割手段を制御する制御手段とを有し、
    前記複数の帯域分割手段のそれぞれは波長選択スイッチを含み、
    前記制御手段は、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて前記波長選択スイッチを制御し、前記波長選択スイッチに、対応する波長間隔の信号が存在する波長帯域の信号を前記合波手段側に出力させ、対応する波長間隔の信号が存在しない波長帯域の信号は遮断させる光信号送受信装置。
  10. 相互の異なる複数の波長間隔の信号が多重化された光信号を、少なくとも前記波長間隔の数だけ分岐し、
    前記分岐した光信号のそれぞれについて、前記分岐された光信号の信号帯域が所定帯域幅で分割され、かつ各波長間隔における奇数チャネルと偶数チャネルとが分離された帯域分割信号を生成し、
    各波長間隔の奇数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、
    各波長間隔の偶数チャネルが含まれる帯域分割信号を前記分割された信号帯域ごとに合波し、
    前記合波された各波長間隔の奇数チャネルが含まれる合波信号と、各波長間隔の偶数チャネルが含まれる合波信号とを、それぞれ複数の通信装置に分岐するものであり、
    前記帯域分割信号の生成では、前記光信号における各波長間隔の信号の信号配置を示す情報に基づいて波長選択スイッチを制御することで、対応する波長間隔の信号が存在する波長帯域の信号を前記帯域分割信号に含ませ、対応する波長間隔の信号が存在しない波長帯域の信号は前記波長選択スイッチで遮断させる光分波方法。
JP2019508597A 2017-03-31 2018-01-16 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法 Active JP6747580B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017070502 2017-03-31
JP2017070502 2017-03-31
PCT/JP2018/000983 WO2018179686A1 (ja) 2017-03-31 2018-01-16 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法

Publications (2)

Publication Number Publication Date
JPWO2018179686A1 true JPWO2018179686A1 (ja) 2020-01-23
JP6747580B2 JP6747580B2 (ja) 2020-08-26

Family

ID=63677484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019508597A Active JP6747580B2 (ja) 2017-03-31 2018-01-16 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法

Country Status (5)

Country Link
US (1) US11115146B2 (ja)
EP (1) EP3605888B1 (ja)
JP (1) JP6747580B2 (ja)
CN (1) CN110546901B (ja)
WO (1) WO2018179686A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3661083A4 (en) * 2017-07-28 2020-09-02 Nec Corporation LIGHT WAVELENGTH SEPARATION DEVICE, AND LIGHT WAVELENGTH SEPARATION METHOD
US20220224618A1 (en) * 2021-01-12 2022-07-14 Dell Products L.P. Transceiver with integrated visual indicator for port link and activity
CN118018883A (zh) * 2022-11-09 2024-05-10 华为技术有限公司 波长通道分配方法、通道分配设备及通道分配系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366056B1 (ko) * 2000-08-12 2002-12-27 한국과학기술원 4단자 파장선택 광경로 설정기 및 그를 이용한 양방향 애드/드롭 장치
JP4647074B2 (ja) * 2000-10-04 2011-03-09 富士通株式会社 波長多重光通信システム
US20040252996A1 (en) * 2003-06-10 2004-12-16 Nortel Networks Limited Flexible banded MUX/DEMUX architecture for WDM systems
JP2005065019A (ja) * 2003-08-18 2005-03-10 Fujitsu Ltd 波長分割多重伝送システム
JP4152932B2 (ja) * 2004-09-17 2008-09-17 富士通株式会社 光分波方法および光合波方法、並びに、それを用いた光伝送装置
JP4522894B2 (ja) * 2005-03-11 2010-08-11 富士通株式会社 波長分割多重通信システム。
JP5725287B2 (ja) * 2011-02-28 2015-05-27 日本電気株式会社 光合成分岐システム及び光合成分岐方法
JP5437344B2 (ja) 2011-10-28 2014-03-12 日本電信電話株式会社 光分岐挿入多重化装置
JP5312553B2 (ja) * 2011-10-28 2013-10-09 日本電信電話株式会社 光分岐挿入多重化装置
WO2013097185A1 (zh) * 2011-12-30 2013-07-04 华为技术有限公司 波分复用/解复用器、自注入光纤激光器和光网络系统
EP2790341B1 (de) * 2013-04-08 2023-03-22 Deutsche Telekom AG Verfahren zum Multiplexen und/oder Demultiplexen und optisches Netzelement
JP6294278B2 (ja) 2015-10-07 2018-03-14 株式会社三共 遊技機

Also Published As

Publication number Publication date
US11115146B2 (en) 2021-09-07
CN110546901A (zh) 2019-12-06
EP3605888A4 (en) 2020-04-29
CN110546901B (zh) 2020-12-29
WO2018179686A1 (ja) 2018-10-04
EP3605888B1 (en) 2021-03-10
US20210105080A1 (en) 2021-04-08
EP3605888A1 (en) 2020-02-05
JP6747580B2 (ja) 2020-08-26

Similar Documents

Publication Publication Date Title
JP4937983B2 (ja) 光伝送装置
JP6015365B2 (ja) 伝送装置及び伝送方法
US20120128347A1 (en) Optical switching device, optical add device, and optical drop device
US20160381441A1 (en) Optical transmission device, optical transmission system, and optical transmission method
JP5807338B2 (ja) 光伝送装置および光フィルタ回路
JP6747580B2 (ja) 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法
JP4152932B2 (ja) 光分波方法および光合波方法、並びに、それを用いた光伝送装置
US11095387B2 (en) Add/drop multiplexer, network system, transmission method, non-transitory computer readable medium, and management device
JP2010098544A (ja) 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法
JP2010074565A (ja) 光分岐挿入多重化装置
US11489612B2 (en) Light wavelength separation device and light wavelength separation method
JP5666690B2 (ja) トランスポンダアグリゲータシステムおよび動作方法
US8849113B2 (en) Wavelength selective switch and optical transmission apparatus
JP7176567B2 (ja) 光伝送装置、光通信システム及び光信号の伝送方法
JP7268690B2 (ja) 光伝送装置、端局装置、光通信システム及び光通信方法
CN111837347B (zh) 光传输设备、光通信系统和光通信方法
EP1427122B1 (en) Bidirectional wavelength division multiplexing self-healing ring network
EP2928097A1 (en) Optical switching
US20050095001A1 (en) Method and system for increasing network capacity in an optical network

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6747580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350