JPWO2018174204A1 - 離水防止用粉末油脂組成物 - Google Patents

離水防止用粉末油脂組成物 Download PDF

Info

Publication number
JPWO2018174204A1
JPWO2018174204A1 JP2019506999A JP2019506999A JPWO2018174204A1 JP WO2018174204 A1 JPWO2018174204 A1 JP WO2018174204A1 JP 2019506999 A JP2019506999 A JP 2019506999A JP 2019506999 A JP2019506999 A JP 2019506999A JP WO2018174204 A1 JPWO2018174204 A1 JP WO2018174204A1
Authority
JP
Japan
Prior art keywords
fat
oil
composition
powdered
water separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019506999A
Other languages
English (en)
Other versions
JP7041124B2 (ja
Inventor
裕太郎 片岡
裕太郎 片岡
哲朗 岩沢
哲朗 岩沢
有本 真
真 有本
典子 村山
典子 村山
秀隆 上原
秀隆 上原
はるな 池田
はるな 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oillio Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oillio Group Ltd filed Critical Nisshin Oillio Group Ltd
Publication of JPWO2018174204A1 publication Critical patent/JPWO2018174204A1/ja
Application granted granted Critical
Publication of JP7041124B2 publication Critical patent/JP7041124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

本発明の課題は、食品素材からの離水を防止し、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として他の食品素材への水分移行を抑制することができる離水防止用粉末油脂組成物を提供することである。本発明は、次の(a)の条件を満たす粉末状の油脂組成物を含有する、離水防止用粉末油脂組成物である。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子は板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。

Description

本発明は、食品素材からの離水を防止し、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として他の食品素材への水分移行を抑制することができる離水防止用粉末油脂組成物、前記粉末油脂組成物を用いて製造した食品及び前記食品の製造方法、並びに、前記粉末油脂組成物を有効成分とする離水防止剤等に関する。
本願は、2017年3月23日に、日本に出願された特願2017−56754号に基づき優先権を主張し、その内容をここに援用する。
多くの食品素材は一定量の水分を保有しており、調理又は加工等の過程で離水を生じることがしばしばある。離水を生じると、食品素材が本来持っている食感や味覚、さらには外観等が損なわれることがある。例えば、冷凍した畜肉では、冷凍時に氷結晶が成長するので、解凍の際に畜肉から離水が生じて、畜肉本来の旨味等を損ねることがある。また、サラダ等の野菜にドレッシングをふりかけると、浸透圧によって野菜から水分が離水し、外へ浸み出してしまい、野菜の新鮮な食感、瑞々しさが失われることがある。さらに、アップルパイ等の果実のフィリングを含むパン・菓子類では、焼成時に、水分の多いフィリングから水分が離水し、生地へ移行してしまい、生地がふやけ、パリパリとした食感が失われ、商品価値が低下してしまうことがある。
そこで、従来から様々な離水防止剤が提案され使用されてきている。例えば、魚類ゼラチン粉末を、凝固前の食品素材に混合してなる、冷凍食品用離水防止剤が知られている(特許文献1)。また、こんにゃく粉、糖質及び澱粉を合せて調製した乾燥こんにゃく加工品を含む、加工食品用離水防止剤が知られている(特許文献2)。さらに、膨化穀類を含有する、加工食品用離水防止剤(特許文献3)が知られている。
しかしながら、これら離水防止剤は効果が十分ではなかったり、食品素材の食感や風味へ影響を与えることがあり、さらなる改良の余地があった。また、蛋白質あるいは糖質が中心であり、油脂を主原料とする離水防止剤については、あまり知られていないのが現状であった。
特許第2985953号公報 特開2004−215646号公報 特開2006−6236号公報
本発明は、食品素材からの離水を防止し、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として他の食品素材への水分移行を抑制することができる離水防止用粉末油脂組成物を提供することを目的とする。
本発明者らは、上記課題を解決するため、鋭意研究を行った結果、意外にも、特定の条件を満たす粉末油脂組成物を食品素材に配合すると、当該食品素材からの離水を防止することができ、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として他の食品素材への水分移行が抑制できることを見出し、本発明を完成させた。即ち、本発明は、以下の態様を含み得る。
〔1〕以下の(a)の条件を満たす粉末状の油脂組成物を含有する、離水防止用粉末油脂組成物。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末状の油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末状の油脂組成物の粒子は板状形状を有し、前記粉末状の油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。
〔2〕前記油脂成分がβ型油脂からなる、〔1〕に記載の離水防止用粉末油脂組成物。
〔3〕前記XXX型トリグリセリドが、前記油脂成分の全質量を100質量%とした場合、50質量%以上含有する、〔1〕又は〔2〕に記載の離水防止用粉末油脂組成物。
〔4〕前記炭素数xが16〜18から選択される整数である、〔1〕〜〔3〕のいずれか1つに記載の離水防止用粉末油脂組成物。
〔5〕 前記粉末状の油脂組成物のゆるめ嵩密度が、0.1〜0.4g/cm3である、〔1〕〜〔4〕のいずれか1つに記載の離水防止用粉末油脂組成物。
〔6〕 前記粉末油脂組成物の粒子のアスペクト比が、アスペクト比(2)が、2.5以上である、〔1〕〜〔5〕のいずれか1つに記載の離水防止用粉末油脂組成物。
〔7〕前記粉末状の油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、下記式から得られる冷却温度以上に保ち、冷却固化して得たβ型油脂を含有する、〔1〕〜〔6〕のいずれか1つに記載の離水防止用粉末油脂組成物。
冷却温度(℃) = 炭素数x × 6.6 ― 68
〔8〕前記粉末状の油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、前記β型油脂に対応するα型油脂の融点以上の温度に保ち、冷却固化して得たβ型油脂を含有する、〔1〕〜〔7〕のいずれか1つに記載の離水防止用粉末油脂組成物。
〔9〕前記粉末状の油脂組成物の平均粒径が20μm以下である、〔1〕〜〔8〕のいずれか1つに記載の離水防止用粉末油脂組成物。
〔10〕〔1〕〜〔9〕のいずれか1つに記載の離水防止用粉末油脂組成物を含有してなる、改良食品素材。
〔11〕前記食品素材100質量部に対して、前記離水防止用粉末油脂組成物を0.1〜10質量部含有してなる、〔10〕に記載の改良食品素材。
〔12〕食品素材に、〔1〕〜〔9〕のいずれか1つに記載の離水防止用粉末油脂組成物を配合する工程を有する、改良食品素材の製造方法。
〔13〕前記食品素材100質量部に対して、前記離水防止用粉末油脂組成物を0.1〜10質量部配合する、〔12〕に記載の改良食品素材の製造方法。
〔14〕〔1〕〜〔9〕のいずれか1つに記載の離水防止用粉末油脂組成物を有効成分として含有する、離水防止剤。
〔15〕〔10〕又は〔11〕に記載の改良食品素材もしくは〔14〕に記載の離水防止剤を原材料として含有する、改良食品。
本発明によれば、食品素材に、特定の条件を満たす離水防止用粉末油脂組成物を配合することによって、食品素材からの離水を防止し、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として他の食品素材への水分移行を抑制することができる。さらに、前記のような改良された食品素材を用いることによって、離水が防止された改良食品を誰でも簡便に製造することができる。また、本発明の離水防止用粉末油脂組成物は無味無臭であるため、食品素材本来が持つ風味への影響は少ない。特に、食品素材として野菜を選択し、離水防止用粉末油脂組成物を適用した場合、野菜の甘味を出したり、エグミを緩和することもできる。また、前記粉末油脂組成物は食品自体であるため、添加量も自由に調節できるので、食品の品質向上あるいは効率的な生産に資することができる。そして、本発明の離水防止用粉末油脂組成物は非常に細かい粒子径であるため、これを食してもざらつきや油っぽさを感じることがなく、食品素材本来の食感に与える影響は少ない。
本発明の冷凍豚肉に対する離水防止効果を示す写真である。 本発明のサラダに対する離水防止効果を示す写真である。 本発明のアップルパイに対する離水防止効果及び水分移行防止効果を示す図である。 本発明の冷凍野菜に対する離水防止効果(自然解凍時)を示す図表である。 本発明の冷凍野菜に対する離水防止効果(レンジ加熱時)を示す図表である。 本発明の製造実施例7の粉末油脂組成物(β型油脂)の外観写真である。 本発明の製造実施例7の粉末油脂組成物(β型油脂)の外観写真である。 本発明の製造比較例3の油脂組成物(α型油脂)の外観写真である。 本発明の製造実施例7の粉末油脂組成物(β型油脂)の顕微鏡写真である。 本発明の製造比較例3の油脂組成物(α型油脂)の顕微鏡写真である。 本発明の製造実施例7の粉末油脂組成物(β型油脂)のX線回折図である。 本発明の製造比較例3の油脂組成物(α型油脂)のX線回折図である。 芯物質表面に粉末油脂組成物を付着させたとき顕微鏡写真を模式的に示した図である。図中のAは芯物質で、Bは粉末油脂組成物で、線分abの長さ(芯物質表面に付着した粒子の付着面からの垂直方向の長さ)が、この粉末油脂組成物の厚さの値である。 粉末油脂組成物Aをガラスビーズ表面上に付着させたときの顕微鏡写真(1500倍)で、粒子の厚さとして測定した部分を直線で示している(2か所)。 粉末油脂組成物Aの顕微鏡写真(100倍)である。 粉末油脂組成物Aの顕微鏡写真(300倍)である。 粉末油脂Bの顕微鏡写真(100倍)である。 粉末油脂Bの顕微鏡写真(300倍)である。 粉砕前の粉末油脂組成物(製造実施例21)の外観の写真である。 粉砕前の粉末油脂組成物(製造実施例21)の電子顕微鏡写真(200倍)である。 粉末油脂組成物(製造実施例21)の電子顕微鏡写真(1)(1000倍)である。 粉末油脂組成物(製造実施例21)の電子顕微鏡写真(2)(1000倍)である。
以下、本発明の食品素材及び改良食品素材について順を追って記述する。
<食品素材>
本発明において「食品素材」とは、食品を製造するための原材料であって、離水が問題となるものであれば特に制限されない。例えば、畜肉類、魚介類、野菜類、果実類、麺類、ご飯類、パン類、及び海藻類などが挙げられる。本発明においては特に、畜肉類、魚介類、野菜類、果実類が好ましい。また、本発明における食品素材は、その状態は任意であって、例えば、冷凍状態、冷蔵状態等であってもよい。
また、本発明において「改良食品素材」とは、上記で定義した食品素材に対して、下記で定義する「粉末油脂組成物」ないし「油脂組成物」を配合させたものであり、前記「粉末油脂組成物」ないし「油脂組成物」を配合させていない食品素材に比べて、離水防止効果(又は水分移行防止効果)が付与された食品素材をいう。
なお、本発明における「離水」とは、水分の多い食品素材から、水分がしみだす現象をいう。本発明の離水防止用粉末油脂組成物は、食品素材からの離水(例えば、ドリップ)を防止し、その結果として他の食品素材への水分移行も防止していることから、離水防止と水分移行防止は一体としてみることもでき、見方によっては、離水防止用粉末油脂組成物は、水分移行防止用粉末油脂組成物であるということもできる。
<改良食品>
本発明における「改良食品」は、上記で定義した改良食品素材又は後述する離水防止剤を含有する食品(なお、改良食品は、改良食品素材そのものである場合もある。)であり、食品素材の離水によって生じる問題が解消もしくは軽減された食品であれば特に制限されない。本発明の「改良食品」としては、水分を多く含んでいるものが好ましく、例えば、フライ類、畜肉加工品、魚肉加工品、大豆加工品、卵加工品、サラダ類、菓子・パン類、デザート類、クリーム類、肉まん、餃子、春巻きなどの点心類、その他、つくだ煮、珍味、おにぎり、サンドイッチ等が挙げられる。本発明においては特に、畜肉加工品、サラダ類、菓子・パン類が好ましい。また、本発明における「改良食品」の状態は任意であって、例えば、冷凍状態、冷蔵状態等であってもよい。
<離水防止用粉末油脂組成物>
本発明は、以下の(a)の条件を満たす粉末状の油脂組成物(以下、単に「粉末油脂組成物」ともいう。)を含有する、離水防止用粉末油脂組成物に関する。
(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子は板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。本発明の離水防止用粉末油脂組成物は、上記の粉末油脂組成物の他、任意に乳化剤、香料、着色料、脱脂粉乳、全脂粉乳、ココアパウダー、砂糖、デキストリン等のその他の成分を含んでいてもよい。
離水防止用粉末油脂組成物中の上記(a)の条件を満たす粉末油脂組成物の含有量は、離水防止用粉末油脂組成物の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。離水防止用粉末油脂組成物の100質量%が、上記(a)の条件を満たす粉末油脂組成物であってよい。当該粉末油脂組成物は1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。
<油脂成分>
本発明の粉末油脂組成物は、油脂成分を含有する。当該油脂成分は、少なくともXXX型トリグリセリドを含み、任意にその他のトリグリセリドを含む。
上記油脂成分はβ型油脂を含む。ここで、β型油脂とは、油脂の結晶多形の一つであるβ型の結晶のみからなる油脂である。その他の結晶多形の油脂としては、β’型油脂及びα型油脂があり、β’型油脂とは、油脂の結晶多形の一つであるβ’型の結晶のみからなる油脂である。α型油脂とは、油脂の結晶多形の一つであるα型の結晶のみからなる油脂である。油脂の結晶には、同一組成でありながら、異なる副格子構造(結晶構造)を持つものがあり、結晶多形と呼ばれている。代表的には、六方晶型、斜方晶垂直型及び三斜晶平行型があり、それぞれα型、β’型及びβ型と呼ばれている。また、各多形の融点はα、β’、βの順に融点が高くなり、各多形の融点は、炭素数xの脂肪酸残基Xの種類により異なるので、以下、表1にそれぞれ、トリカプリン、トリラウリン、トリミリスチン、トリパルミチン、トリステアリン、トリアラキジン、トリベヘニンである場合の各多形の融点(℃)を示す。なお、表1は、Nissim Garti et al.、”Crystallization and Polymorphism of Fats and Fatty Acids”、Marcel Dekker Inc.、1988、pp.32-33に基づいて作成した。そして、表1の作成にあたり、融点の温度(℃)は小数点第1位を四捨五入した。また、油脂の組成とその各多形の融点がわかれば、少なくとも当該油脂中にβ型油脂が存在するか否かを検出することができる。
Figure 2018174204
これらの多形を同定する一般的な手法は、X線回折法があり、回折条件は下記のブラッグの式によって与えられる。
2dsinθ=nλ(n=1,2,3・・・)
この式を満たす位置に回折ピークが現れる。ここでdは格子定数、θは回折(入射)角、λはX線の波長、nは自然数である。短面間隔に対応する回折ピークの2θ=16〜27°からは、結晶中の側面のパッキング(副格子)に関する情報が得られ、多形の同定を行なうことができる。特にトリアシルグリセロールの場合、2θ=19、23、24°(4.6Å付近、3.9Å付近、3.8Å付近)にβ型の特徴的ピークが、21°(4.2Å)付近にα型の特徴的なピークが出現する。なお、X線回折測定は、例えば、20℃に維持したX線回折装置((株)リガク、試料水平型X線回折装置UItimaIV)を用いて測定される。X線の光源としてはCuKα線(1.54Å)が最もよく利用される。
さらに、上記油脂の結晶多形は、示差走査熱量測定法(DSC法)によっても予測することができる。例えば、β型油脂の予測は、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製、品番BSC6220)によって10℃/分の昇温速度で100℃まで昇温することにより得られるDSC曲線に基づいて油脂の結晶構造を予測することにより行われる。
ここで、油脂成分はβ型油脂を含むもの、又は、β型油脂を主成分(50質量%超)として含むものあればよく、好ましい態様としては、上記油脂成分がβ型油脂から実質的になるものであり、より好ましい態様は上記油脂成分がβ型油脂からなるものであり、特に好ましい態様は、上記油脂成分がβ型油脂のみからなるものである。上記油脂成分のすべてがβ型油脂である場合とは、示差走査熱量測定法によってα型油脂及び/又はβ’型油脂が検出されない場合である。別の好ましい態様としては、上記油脂成分(又は油脂成分を含む粉末油脂組成物)が、X線回折測定において、4.5〜4.7Å付近、好ましくは4.6Å付近に回折ピークを有し、表1のα型油脂及び/又はβ’型油脂の短面間隔のX線回折ピークがない、特に、4.2Å付近に回折ピークを有さない場合であり、かかる場合も上記油脂成分のすべてがβ型油脂であると判断できる。本発明の更なる態様として、上記油脂成分が全てβ型油脂であることが好ましいが、その他のα型油脂やβ’型油脂が含まれていてもよい。ここで、本発明における油脂成分が「β型油脂を含む」こと及びα型油脂+β型油脂に対するβ型油脂の相対的な量の指標は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率:[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](以下、ピーク強度比ともいう。)から想定できる。具体的には、上述のX線回折測定に関する知見をもとに、β型の特徴的ピークである2θ=19°(4.6Å)のピーク強度とα型の特徴的ピークである2θ=21°(4.2Å)のピーク強度の比率:19°/(19°+21°)[4.6Å/(4.6Å+4.2Å)]を算出することで上記油脂成分のβ型油脂の存在量を表す指標とし、「β型油脂を含む」ことが理解できる。本発明は、上記油脂成分が全てβ型油脂である(即ち、ピーク強度比=1)ことが好ましいが、例えば、該ピーク強度比の下限値が、例えば0.4以上、好ましくは、0.5以上、より好ましくは、0.6以上、さらに好ましくは、0.7以上、特に好ましくは、0.75以上、殊更好ましくは0.8以上であることが適当である。ピーク強度が0.4以上であれば、β型油脂を主成分が50質量%超であるとみなすことができる。該ピーク強度比の上限値は1であることが好ましいが、0.99以下、0.98以下、0.95以下、0.93以下、0.90以下、0.85以下、0.80以下等であってもかまわない。ピーク強度比は、上記下限値及び上限値のいずれか若しくは任意の組み合わせであり得る。
<XXX型トリグリセリド>
本発明の油脂成分は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む。当該XXX型トリグリセリドは、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有するトリグリセリドであり、各脂肪酸残基Xは互いに同一である。ここで、当該炭素数xは10〜22から選択される整数であり、好ましくは12〜22から選択される整数、より好ましくは14〜20から選択される整数、更に好ましくは16〜18から選択される整数である。
脂肪酸残基Xは、飽和あるいは不飽和の脂肪酸残基であってもよい。具体的な脂肪酸残基Xとしては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸等の残基が挙げられるがこれに限定するものではない。脂肪酸としてより好ましくは、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸及びベヘン酸であり、さらに好ましくは、ミリスチン酸、パルミチン酸、ステアリン酸、及びアラキジン酸であり、殊更好ましくは、パルミチン酸及びステアリン酸である。
当該XXX型トリグリセリドの含有量は、油脂成分の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。XXX型トリグリセリドは1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。XXX型トリグリセリドが2種類以上の場合は、その合計値がXXX型トリグリセリドの含有量となる。
<その他のトリグリセリド>
本発明の油脂成分は、本発明の効果を損なわない限り、上記XXX型トリグリセリド以外の、その他のトリグリセリドを含んでいてもよい。その他のトリグリセリドは、複数の種類のトリグリセリドであってもよく、合成油脂であっても天然油脂であってもよい。合成油脂としては、トリカプリル酸グリセリル等が挙げられる。天然油脂としては、例えば、ココアバター、ヒマワリ油、菜種油、大豆油、綿実油等が挙げられる。本発明の油脂成分中の全トリグリセリドを100質量%とした場合、その他のトリグリセリドは、1質量%以上、例えば、5〜50質量%程度含まれていても問題はない。その他のトリグリセリドの含有量は、例えば、0〜30質量%、好ましくは0〜18質量%、より好ましくは0〜15質量%、更に好ましくは0〜8質量%である。
<その他の成分>
本発明の粉末油脂組成物は、上記トリグリセリド等の油脂成分の他、任意に乳化剤、香料、着色料、脱脂粉乳、全脂粉乳、ココアパウダー、砂糖、デキストリン等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、粉末油脂組成物の全質量を100質量%とした場合、0〜70質量%、好ましくは0〜65質量%、より好ましくは0〜30質量%である。その他の成分は、その90質量%以上が、平均粒径が1000μm以下である紛体であることが好ましく、平均粒径が500μm以下の紛体であることがより好ましい。なお、ここでいう平均粒径は、レーザー回折散乱法(ISO133201及びISO9276-1)によって測定した値(d50)である。
但し、本発明の好ましい粉末油脂組成物は、実質的に上記油脂成分のみからなることが好ましく、かつ、油脂成分は、実質的にトリグリセリドのみからなることが好ましい。また、「実質的に」とは、油脂組成物中に含まれる油脂成分以外の成分または油脂成分中に含まれるトリグリセリド以外の成分が、粉末油脂組成物または油脂成分を100質量%とした場合、例えば、0〜15質量%、好ましくは0〜10質量%、より好ましくは0〜5質量%であることを意味する。
<粉末油脂組成物の特性>
本発明の粉末油脂組成物は、常温(20℃)で粉末状の固体である。
本発明の粉末油脂組成物のゆるめ嵩密度は、例えば実質的に油脂成分のみからなる場合、0.05〜0.6g/cm3、好ましくは0.1〜0.5g/cm3であり、より好ましくは0.1〜0.4g/cm3又は0.15〜0.4g/cm3であり、さらに好ましくは0.2〜0.3g/cm3である。ここで「ゆるめ嵩密度」とは、粉体を自然落下させた状態の充填密度である。ゆるめ嵩密度(g/cm3)の測定は、例えば、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物の適量を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めることができる。また、ゆるめ嵩密度は、(株)蔵持科学器械製作所のカサ比重測定器を使用し、JIS K-6720(又はISO 1060-1及び2)に基づいて測定したカサ比重から算出することもできる。具体的には、試料120mLを、受器(内径40mm×高さ85mmの100mL円柱形容器)の上部開口部から38mmの高さの位置から、該受器に落とす。受器から盛り上がった試料はすり落とし、受器の内容積(100mL)分の試料の質量(Ag)を秤量し、以下の式からゆるめ嵩密度を求めることができる。
ゆるめ嵩密度(g/mL)=A(g)/100(mL)
測定は3回行ってその平均値を取ることが好ましい。
また、ゆるめ嵩密度は、次の方法でも測定することができる。
ゆるめ嵩密度(g/cm)は、ホソカワミクロン(株)のパウダテスタ(model PT−X)で測定することができる。
具体的には、パウダテスタに試料を仕込み、試料を仕込んだ上部シュートを振動させ、試料を自然落下により下部の測定用カップに落とす。測定用カップから盛り上がった試料はすり落とし、受器の内容積(100cm)分の試料の質量(Ag)を秤量し、以下の式からゆるめ嵩密度を求める。
ゆるめ嵩密度(g/cm)=A(g)/100(cm
また、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物の適量を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、1mL当たりの当該粉末油脂組成物の質量(g)を算出することでも求めることができる。
また、本発明の粉末油脂組成物は、その粒子が板状形状の形態を有し、例えば、0.5〜200μm、好ましくは1〜100μm、より好ましくは1〜60μm、殊更好ましくは、1〜30μm、殊更より好ましくは、20μm以下、殊更さらにより好ましくは、1〜20μmの平均粒径(有効径)を有する。ここで、当該平均粒径(有効径)は、粒度分布測定装置(例えば、日機装株式会社製 Microtrac MT3300ExII)でレーザー回折散乱法(ISO133201、ISO9276-1)によって測定した値(d50)である。
有効径とは、測定対象となる結晶の実測回折パターンが、球形と仮定して得られる理論的回折パターンに適合する場合の、当該球形の粒径を意味する。このように、レーザー回折散乱法の場合、球形と仮定して得られる理論的回折パターンと、実測回折パターンを適合させて有効径を算出しているので、測定対象が板状形状であっても球状形状であっても同じ原理で測定することができる。ここで、板状形状は、アスペクト比が1.1以上であることが好ましく、より好ましくは、1.2以上のアスペクト比であり、さらに好ましくは1.2〜3.0、特に好ましくは、1.3〜2.5、殊更好ましくは1.4〜2.0のアスペクト比である。なお、ここでいうアスペクト比とは、粒子図形に対して、面積が最小となるように外接する長方形で囲み、その長方形の長辺の長さと短辺の長さの比と定義される。また、粒子が球状形状の場合は、アスペクト比は1.1より小さくなる。従来技術である、極度硬化油等の常温で固体脂含量の高い油脂を溶解し直接噴霧する方法では、粉末油脂組成物の粒子が表面張力によって、球状形状となり、アスペクト比は1.1未満となる。そして、前記アスペクト比は、例えば、光学顕微鏡や走査型電子顕微鏡などによる直接観察により、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測することによって、計測した個数の平均値として求めることができる。
本発明の粉末油脂組成物の別の特徴は、その粒子のアスペクト比(2)を用いて表現することも可能である。
本発明におけるアスペクト比(2)とは、粒子の長径を厚さで除した値〔=長径/厚さ〕のことである。
粒子が、完全な球形の場合には、アスペクト比(2)の値は1〔=1/1〕であり、粒子の扁平度合いが増す(厚さが薄くなる)ほどアスペクト比(2)の値は大きくなる。
粒子のアスペクト比(2)は、例えば、以下の(a)及び(b)の方法で測定することができる。
(a)粒子の電子顕微鏡写真から、1個1個の粒子について長径、及び厚さを測定できる場合
電子顕微鏡写真に写った1個1個の粒子について、長径及び厚さ(縦及び横)を測定し、それぞれの粒子について、アスペクト比(2)を求め、その平均値を粒子のアスペクト比(2)とする。
例えば、粒子が球形のような場合に、この測定方法を用いることができる。
(b)粒子の電子顕微鏡写真から、1つ1つの粒子について長径、又は厚さを測定できない場合
例えば、粒子が扁平な形や板状形状の場合、電子顕微鏡写真に写った1個1個の粒子について、長径を測定することはできるが、厚さは写真では見えないことが多く、写真からは直接測定することが難しい。
このような場合、粒子をガラスビーズのような芯物質の表面に付着させて電子顕微鏡写真を撮り、芯物質表面に付着した粒子の付着面からの垂直方向の長さを、粒子の厚さとして測定し、この値を厚さとして用いる。
これを図13の模式図で説明すると、図13のAは芯物質、Bはアスペクト比(2)を測定する粒子で、線分abの長さ(芯物質表面に付着した粒子の付着面からの垂直方向の長さ)が、この粒子の厚さの値である。
また、長径の値は、上述のレーザー回折散乱法に基づいて測定した平均粒径(d50)を用いる。
このようにして測定した粒子の長径と厚さの値から、アスペクト比(2)〔=長径/厚さ〕を求めることができる。
本発明の粉末油脂組成物の粒子のアスペクト比(2)は、2.5以上であることが好ましく、より好ましくは、2.5〜100であり、さらに好ましくは3〜50であり、さらにより3〜20であり、特に好ましくは3〜15である。
<粉末油脂組成物の製造方法>
本発明の粉末油脂組成物は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂組成物原料を溶融状態とし、特定の冷却温度に保ち、冷却固化することにより、噴霧やミル等の粉砕機による機械粉砕等特別の加工手段を採らなくても、粉末状の油脂組成物(粉末油脂組成物)を得ることができる。より具体的には、(a)上記XXX型トリグリセリドを含む油脂組成物原料を準備し、任意に工程(b)として、工程(a)で得られた油脂組成物原料を加熱し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得、さらに(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る。なお、冷却後に得られる固形物に対して、ハンマーミル、カッターミル等、公知の粉砕加工手段を適用して、該粉末油脂組成物を生産することもできる。
上記工程(d)の冷却は、例えば、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度であって、かつ、次式:
冷却温度(℃) = 炭素数x × 6.6 ― 68
から求められる冷却温度以上の温度で行われる。このような温度範囲で冷却すれば、β型油脂を効率よく生成でき、細かい結晶ができるので、粉末油脂組成物を容易に得ることができる。なお、前記「細かい」とは、一次粒子(一番小さい大きさの結晶)が、例えば20μm以下、好ましくは、15μm以下、より好ましくは10μm以下の場合をいう。また、このような温度範囲で冷却しないと、β型油脂が生成せず、油脂組成物原料よりも体積が増加した空隙を有する固形物ができない場合がある。さらに、本発明では、このような温度範囲で冷却することによって、静置した状態でβ型油脂を生成させ、粉末油脂組成物の粒子を板状形状とさせたものであり、冷却方法は、本発明の粉末油脂組成物を特定するために有益なものである。本発明の離水防止用粉末油脂組成物の好ましい平均粒径として、例えば、20μm以下の平均粒径を挙げることができる。平均粒径の測定方法は上述したとおりである。さらに、20μm以下の細かい粒子は人間の感覚では感じとることが困難であるため、20μm以下の粒子を用いることで、ざらついた食感を与えることなく、融点の高い粉末油脂組成物を離水防止のために添加することができる。
さらに詳細に、粉末油脂組成物の製造方法について説明をする。
本発明の粉末油脂組成物は、以下の工程、
(a)XXX型トリグリセリドを含む油脂組成物原料を準備する工程、
(b)工程(a)で得られた油脂組成物原料を任意に加熱等し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得る任意の工程、(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る工程、
を含む方法によって製造することができる。
また、上記工程(b)と(d)の間に、工程(c)として粉末生成を促進するための任意工程、例えば(c1)シーディング工程、(c2)テンパリング工程、及び/又は(c3)予備冷却工程を含んでいてもよい。さらに上記工程(d)で得られる粉末油脂組成物は、工程(d)の冷却後に得られる固形物を粉砕して粉末状の油脂組成物を得る工程(e)によって得られるものであってもよい。以下、上記工程(a)〜(e)について説明する。
(a)原料準備工程
工程(a)で準備されるXXX型トリグリセリドを含む油脂組成物原料は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む通常のXXX型トリグリセリド等の油脂の製造方法に基づいて製造され、もしくは容易に市場から入手され得る。ここで、上記炭素数x及び脂肪酸残基Xで特定されるXXX型トリグリセリドは、最終的に得られる目的の油脂成分のものと結晶多形以外の点で同じである。当該原料にはβ型油脂が含まれていてもよく、例えば、β型油脂の含有量が0.1質量%以下、0.05質量%以下、又は0.01質量%以下含んでいてもよい。但し、β型油脂は、当該原料を加熱等により溶融状態にすることにより消失するので、当該原料は溶融状態の原料であってもよい。当該原料が、例えば溶融状態である場合に、β型油脂を実質的に含まないことは、XXX型トリグリセリドに限らず、実質的に全ての油脂成分がβ型油脂ではない場合も意味し、β型油脂の存在は、上述したX線回折測定によりβ型油脂に起因する回折ピーク、示差走査熱量測定法によるβ型油脂の確認等によって確認することができる。「β型油脂を実質的に含まない」場合のβ型油脂の存在量は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](ピーク強度比)から想定できる。上記油脂組成物原料の当該ピーク強度比は、例えば0.2以下であり、好ましくは、0.15以下であり、より好ましくは、0.10以下である。油脂組成物原料には、上述したとおりのXXX型トリグリセリドを1種類又は2種以上含んでいてもよく、好ましくは1種類又は2種類であり、より好ましくは1種類である。
具体的には、例えば、上記XXX型トリグリセリドは、脂肪酸または脂肪酸誘導体とグリセリンを用いた直接合成によって製造することができる。XXX型トリグリセリドを直接合成する方法としては、(i)炭素数Xの脂肪酸とグリセリンとを直接エステル化する方法(直接エステル合成)、(ii)炭素数xである脂肪酸Xのカルボキシル基がアルコキシル基と結合した脂肪酸アルキル(例えば、脂肪酸メチル及び脂肪酸エチル)とグリセリンとを塩基性または酸性触媒条件下にて反応させる方法(脂肪酸アルキルを用いたエステル交換合成)、(iii)炭素数xである脂肪酸Xのカルボキシル基の水酸基がハロゲンに置換された脂肪酸ハロゲン化物(例えば、脂肪酸クロリド及び脂肪酸ブロミド)とグリセリンとを塩基性触媒下にて反応させる方法(酸ハライド合成)が挙げられる。
XXX型トリグリセリドは前述の(i)〜(iii)のいずれの方法によっても製造できるが、製造の容易さの観点から、(i)直接エステル合成又は(ii)脂肪酸アルキルを用いたエステル交換合成が好ましく、(i)直接エステル合成がより好ましい。
XXX型トリグリセリドを(i)直接エステル合成によって製造するには、製造効率の観点から、グリセリン1モルに対して脂肪酸Xまたは脂肪酸Yを3〜5モルを用いることが好ましく、3〜4モルを用いることがより好ましい。
XXX型トリグリセリドの(i)直接エステル合成における反応温度は、エステル化反応によって生ずる生成水が系外に除去できる温度であればよく、例えば、120℃〜300℃が好ましく、150℃〜270℃がより好ましく、180℃〜250℃がさらに好ましい。反応を180〜250℃で行うことで、特に効率的にXXX型トリグリセリドを製造することができる。
XXX型トリグリセリドの(i)直接エステル合成においては、エステル化反応を促進する触媒を用いても良い。触媒としては酸触媒、及びアルカリ土類金属のアルコキシド等が挙げられる。触媒の使用量は、反応原料の総質量に対して0.001〜1質量%程度であることが好ましい。
XXX型トリグリセリドの(i)直接エステル合成においては、反応後、水洗、アルカリ脱酸及び/又は減圧脱酸、及び吸着処理等の公知の精製処理を行うことで、触媒や原料未反応物を除去することができる。更に、脱色・脱臭処理を施すことで、得られた反応物をさらに精製することができる。
上記油脂組成物原料中に含まれるXXX型トリグリセリドの量は、例えば、当該原料中に含まれる全トリグリセリドの全質量を100質量%とした場合、100〜50質量%、好ましくは95〜55質量%、より好ましくは90〜60質量%である。さらに殊更好ましくは85〜65質量%である。
<その他のトリグリセリド>
XXX型トリグリセリドを含む油脂組成物原料となるその他のトリグリセリドとしては、上記XXX型トリグリセリドの他、本発明の効果を損なわない限り、各種トリグリセリドを含めてもよい。その他のトリグリセリドとしては、例えば、上記XXX型トリグリセリドの脂肪酸残基Xの1つが脂肪酸残基Yに置換したX2Y型トリグリセリド、上記XXX型トリグリセリドの脂肪酸残基Xの2つが脂肪酸残基Yに置換したXY2型トリグリセリド等を挙げることができる。
上記その他のトリグリセリドの量は、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜100質量%、好ましくは0〜70質量%、より好ましくは1〜40質量%である。
また、本発明の油脂組成物原料としては、上記XXX型トリグリセリドを直接合成する代わりに、天然由来のトリグリセリド組成物に対し水素添加、エステル交換又は分別を行ったものを使用してもよい。天然由来のトリグリセリド組成物としては、例えば、ナタネ油、大豆油、ヒマワリ油、ハイオレイックヒマワリ油、サフラワー油、パームステアリン及びこれらの混合物等を挙げることができる。特に、これらの天然由来のトリグリセリド組成物の硬化油、部分硬化油、極度硬化油が好ましいものとして挙げられる。さらに好ましくは、ハードパームステアリン、ハイオレイックヒマワリ油極度硬化油、菜種極度硬化油、大豆極度硬化油が挙げられる。
さらに、本発明の油脂組成物原料としては、市販されている、トリグリセリド組成物又は合成油脂を挙げることができる。例えば、トリグリセリド組成物としては、ハードパームステアリン(日清オイリオグループ株式会社製)、菜種極度硬化油(横関油脂工業株式会社製)、大豆極度硬化油(横関油脂工業株式会社製)を挙げることができる。また、合成油脂としては、トリパルミチン(東京化成工業株式会社製)、トリステアリン(シグマアルドリッチ製)、トリステアリン(東京化成工業株式会社製)、トリアラキジン(東京化成工業株式会社製)トリベヘニン(東京化成工業株式会社製)を挙げることができる。
その他、パーム極度硬化油は、XXX型トリグリセリドの含量が少ないので、トリグリセリドの希釈成分として使用できる。
<その他の成分>
上記油脂組成物原料としては、上記トリグリセリドの他、任意に部分グリセリド、脂肪酸、抗酸化剤、乳化剤、水などの溶媒等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜5質量%、好ましくは0〜2質量%、より好ましくは0〜1質量%である。
上記油脂組成物原料は、成分が複数含まれる場合、任意に混合してもよい。混合は、均質な反応基質が得られる限り公知のいかなる混合方法を用いてもよいが、例えば、パドルミキサー、アジホモミキサー、ディスパーミキサー等で行うことができる。
当該混合は、必要に応じて加熱下で混合してもよい。加熱は、後述の工程(b)における加熱温度と同程度であることが好ましく、例えば、50〜120℃、好ましくは60〜100℃、より好ましくは70〜90℃、さらに好ましくは80℃で行われる。
(b)溶融状態の前記油脂組成物を得る工程
上記(d)工程の前に、上記工程(a)で準備された油脂組成物原料は、準備された時点で溶融状態にある場合、加熱せずにそのまま冷却されるが、準備された時点で溶融状態にない場合は、任意に加熱され、該油脂組成物原料中に含まれるトリグリセリドを融解して溶融状態の油脂組成物原料を得る。
ここで、油脂組成物原料の加熱は、上記油脂組成物原料中に含まれるトリグリセリドの融点以上の温度、特にXXX型トリグリセリドを融解できる温度、例えば、70〜200℃、好ましくは、75〜150℃、より好ましくは80〜100℃であることが適当である。また、加熱は、例えば、0.1〜3時間、好ましくは、0.3〜2時間、より好ましくは0.5〜1時間継続することが適当である。
(d)溶融状態の油脂組成物を冷却して粉末油脂組成物を得る工程
上記工程(a)又は(b)で準備された溶融状態の油脂組成物原料は、さらに冷却固化されて、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を形成する。
ここで、「溶融状態の油脂組成物原料を冷却固化」するためには、冷却温度の上限値として、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度に保つことが必要である。「油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度」とは、例えば、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、β型油脂の融点は74℃であるので(表1)、当該融点より1〜30℃低い温度(即ち44〜73℃)、好ましくは当該融点より1〜20℃低い温度(即ち54〜73℃)、より好ましくは当該融点より1〜15℃低い温度(即ち59〜73℃)、特に好ましくは、1℃、2℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃または10℃低い温度である。
より好ましくは、β型油脂を得るためには、冷却温度の下限値として、以下の式から求められる冷却温度以上に保つことが適当である。
冷却温度(℃) = 炭素数x × 6.6 ― 68
(式中、炭素数xは、油脂組成物原料中に含まれるXXX型トリグリセリドの炭素数x)
このような冷却温度以上とするのは、XXX型トリグリセリドを含有するβ型油脂を得るために、当該油脂の結晶化の際、冷却温度をβ型油脂以外のα型油脂やβ’型油脂が結晶化しない温度に設定する必要があるためである。冷却温度は、主にXXX型トリグリセリドの分子の大きさに依存するので、炭素数xと最適な冷却温度の下限値との間には一定の相関関係があることが理解できる。
例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、冷却温度の下限値は50.8℃以上となる。従って、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、「溶融状態の油脂組成物原料を冷却固化」する温度は、50.8℃以上72℃以下がより好ましいこととなる。
また、XXX型トリグリセリドが2種以上の混合物である場合は、炭素数xが小さい方の冷却温度に合わせてその下限値を決定することができる。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が16のパルミチン酸残基を3つ有するXXX型トリグリセリドと炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドとの混合物である場合、冷却温度の下限値は小さい方の炭素数16に合わせて37.6℃以上となる。
別の態様として、上記冷却温度の下限値は、XXX型トリグリセリドを含む油脂組成物原料の、当該β型油脂に対応するα型油脂の融点以上の温度であることが適当である。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、当該ステアリン酸残基を3つ有するXXX型トリグリセリドのα型油脂の融点は55℃であるから(表1)、かかる場合の「溶融状態の油脂組成物原料を冷却固化」する温度は、55℃以上72℃以下が好ましいこととなる。
さらに別の態様として、溶融状態にある油脂組成物原料の冷却は、例えばxが10〜12のときは最終温度が、好ましくは−2〜46℃、より好ましくは12〜44℃、更に好ましくは14〜42℃の温度になるように冷却することによって行われる。冷却における最終温度は、例えばxが13又は14のときは、好ましくは24〜56℃、より好ましくは32〜54℃、更に好ましくは40〜52℃であり、xが15又は16のときは、好ましくは36〜66℃、より好ましくは44〜64℃、更に好ましくは52〜62℃であり、xが17又は18のときは、好ましくは50〜72℃、より好ましくは54〜70℃、更に好ましくは58〜68℃であり、xが19又は20のときは、好ましくは62〜80℃、より好ましくは66〜78℃、更に好ましくは70〜77℃であり、xが21又は22のときは、好ましくは66〜84℃、より好ましくは70〜82℃、更に好ましくは74〜80℃である。上記最終温度において、例えば、好ましくは2時間以上、より好ましくは4時間以上、更に好ましくは6時間以上であって、好ましくは2日間以下、より好ましくは24時間以下、更に好ましくは12時間以下、静置することが適当である。
(c)粉末生成促進工程
さらに、工程(d)の前、上記工程(a)又は(b)と(d)との間に、(c)粉末生成を促進するための任意工程として、工程(d)で使用する溶融状態の油脂組成物原料に対し、シーディング法(c1)、テンパリング法(c2)及び/又は(c3)予備冷却法による処理を行ってもよい。これらの任意工程(c1)〜(c3)は、いずれか単独で行ってもよいし、複数の工程を組み合わせて行ってもよい。ここで、工程(a)又は(b)と工程(d)との間とは、工程(a)又は(b)中、工程(a)又は(b)の後であって工程(d)の前、工程(d)中を含む意味である。
シーディング法(c1)及びテンパリング法(c2)は、本発明の粉末油脂組成物の製造において、溶融状態にある油脂組成物原料をより確実に粉末状とするために、最終温度まで冷却する前に、溶融状態にある油脂組成物原料を処置する粉末生成促進方法である。 ここで、シーディング法(c1)とは、粉末の核(種)となる成分を溶融状態にある油脂組成物原料の冷却時に少量添加して、粉末化を促進する方法である。具体的には、例えば、工程(b)で得られた溶融状態にある油脂組成物原料に、当該油脂組成物原料中のXXX型トリグリセリドと炭素数が同じXXX型トリグリセリドを好ましくは80質量%以上、より好ましくは90質量%以上含む油脂粉末を核(種)となる成分として準備する。この核となる油脂粉末を、溶融状態にある油脂組成物原料の冷却時、当該油脂組成物原料の温度が、例えば、最終冷却温度±0〜+10℃、好ましくは+5〜+10℃の温度に到達した時点で、当該溶融状態にある油脂組成物原料100質量部に対して0.1〜1質量部、好ましくは0.2〜0.8質量部添加することにより、油脂組成物の粉末化を促進する方法である。
また、テンパリング法(c2)とは、溶融状態にある油脂組成物原料の冷却において、最終冷却温度で静置する前に一度、工程(d)の冷却温度よりも低い温度、例えば5〜20℃低い温度、好ましくは7〜15℃低い温度、より好ましくは10℃程度低い温度に、好ましくは10〜120分間、より好ましくは30〜90分間程度冷却することにより、油脂組成物の粉末化を促進する方法である。
さらに、予備冷却法(c3)とは、前記工程(a)又は(b)で得られた溶融状態の油脂組成物原料を、工程(d)にて冷却する前に、前記XXX型トリグリセリドを含む油脂組成物原料を準備した時の温度と前記油脂組成物原料の冷却時の冷却温度との間の温度で一旦冷却する方法、言い換えれば、工程(a)又は(b)の溶融状態の温度よりも低く、工程(d)の冷却温度よりも高い温度で一旦予備冷却する方法である。(c3)予備冷却法に続いて、工程(d)の油脂組成物原料の冷却時の冷却温度で冷却することが行われる。工程(d)の冷却温度より高い温度とは、例えば、工程(d)の冷却温度よりも2〜40℃高い温度、好ましくは3〜30℃高い温度、より好ましくは4〜30℃高い温度、さらに好ましくは5〜10℃程度高い温度であり得る。前記予備冷却する温度を低く設定すればするほど、工程(d)の冷却温度における本冷却時間を短くすることができる。すなわち、予備冷却法とは、シーディング法やテンパリング法と異なり、冷却温度を段階的に下げるだけで油脂組成物の粉末化を促進できる方法であり、工業的に製造する場合に利点が大きい。
(e)固形物を粉砕して粉末油脂組成物を得る工程
上記工程(d)の冷却によって粉末油脂組成物を得る工程は、より具体的には、工程(d)の冷却によって得られる固形物を粉砕して粉末油脂組成物を得る工程(e)によって行われてもよい。
詳細に説明すると、まず、上記油脂組成物原料を融解して溶融状態の油脂組成物を得、その後冷却して溶融状態の油脂組成物原料よりも体積が増加した空隙を有する固形物を形成する。空隙を有する固形物となった油脂組成物は、軽い衝撃を加えることで粉砕でき、固形物が容易に崩壊して粉末状となる。
ここで、軽い衝撃を加える手段は特に特定されないが、振る、篩に掛ける等により、軽く振動(衝撃)を与えて粉砕する(ほぐす)方法が、簡便で好ましい。
なお、該固形物を公知の粉砕加工手段により粉砕してもよい。このような粉砕加工手段の一例としては、ハンマーミル、カッターミル等が挙げられる。
<改良食品素材中の離水止用粉末油脂組成物の含有量>
本発明の離水防止用粉末油脂組成物は、食品素材100質量部に対して、好ましくは0.1〜10質量部で含有される。より好ましくは、0.2〜8質量%であり、さらに好ましくは、0.3〜5質量%である。
食品素材100質量部に対して、本発明の離水防止用粉末油脂組成物を0.1質量部以上含有させれば、本発明の所望の離水防止効果(又は水分移行防止効果)が得られる。また、食品素材100質量部に対して、10質量部以下で含有させると、物性や食感への悪い影響が出ないので好ましい。
なお、上記離水防止用粉末油脂組成物は食品の製造過程で熱により溶融することもあり得るので、上記離水防止用粉末油脂組成物に代えて、溶融状態の上記離水防止用「油脂組成物」を加えることも可能である。当該離水防止用油脂組成物の含有量は上記離水防止用粉末油脂組成物で定義したのと同様である。
<改良食品素材の製造方法>
本発明の改良食品素材は、食品素材に本発明の離水防止用粉末油脂組成物を配合する工程を有することにより製造することができる。ここで、「配合」とは、本発明の離水防止用粉末油脂組成物と食品素材とを混合して、食品素材の表面に前記粉末油脂組成物を付着させてもよいし、本発明の離水防止用粉末油脂組成物を食品素材に直接練り込んでもよく、また、これらの方法によって限定されない。
食品素材に対する本発明の離水防止用粉末油脂組成物の使用量や、上記離水防止用粉末油脂組成物に代えて、溶融状態の上記離水防止用油脂組成物を配合することができること等は上記で定義したとおりである。
<改良食品の製造方法>
本発明の改良食品は、上述した改良食品素材や後述する離水防止剤を原材料として含有させることで製造することができる。ここで、「含有させる」とは、本発明の改良食品素材と他の食品素材とを組み合わせて、1つの改良食品としてもよいし、本発明の改良食品素材を他の食品素材の中に直接練り込んで一体としてもよく、また、これらの方法によって限定されない。また場合によっては、改良食品は、改良食品素材そのものであってもよい。
食品素材に対する本発明の離水防止用粉末油脂組成物の使用量や、上記離水防止用粉末油脂組成物に代えて、溶融状態の上記離水防止用油脂組成物を配合することができること等は上記で定義したとおりである。
<離水防止剤(又は水分移行防止剤)>
ところで、以上述べたように、本発明で用いる離水防止用粉末油脂組成物は、食品素材からの離水を防止し、食品素材本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として、他の食品素材への水分移行を抑制することができるから、本発明は、上記離水防止用粉末油脂組成物を有効成分とする、食品素材の離水防止剤(水分移行防止剤)にも関する。以下に示すように、本発明の離水防止剤を食品の製造工程中で用いることにより、当該食品からの離水を防止するとともに、食品本来の品質、新鮮な食感、ジューシーさや瑞々しさを保持し、その結果として、他の食品素材への水分移行を抑制することができる。
本発明の離水防止剤(又は水分移行防止剤)は、上述の離水防止用粉末油脂組成物を有効成分として含有する。本発明の離水防止剤は、上記の離水防止用粉末油脂組成物を、好ましくは60質量%以上含有し、より好ましくは80質量%以上含有し、さらに好ましくは100質量%以上含有する。
また、本発明の離水防止剤(又は水分移行防止剤)は、有効成分であると上述した離水防止用粉末油脂組成物を含有したものであればよく、この他に本発明の効果を損なわない範囲で、大豆油、菜種油などの油脂、デキストリン、澱粉等の賦形剤、品質改良剤等の他の成分を含有させたものであってもよい。
但し、本発明の好ましい離水防止剤(又は水分移行防止剤)は、実質的に当該離水防止用粉末油脂組成物のみからなることが好ましい。また「実質的に」とは、離水防止剤中に含まれる粉末油脂組成物以外の成分が、離水防止剤を100質量%とした場合、例えば、好ましくは0〜15質量%、より好ましくは0〜10質量%、さらに好ましくは0〜5質量%であることを意味する。
次に、実施例および比較例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに何ら制限されるものではない。また。以下において「%」とは、特別な記載がない場合、質量%を示す。
[分析方法]
・トリグリセリド組成
ガスクロマトグラフィー分析条件
DB1-ht(0.32mm×0.1μm×5m)Agilent Technologies社(123-1131)
注入量 :1.0μL
注入口 :370℃
検出器 :370℃
スプリット比 :50/1 35.1kPa コンスタントプレッシャー
カラムCT :200℃(0min hold)〜(15℃/min)〜370℃(4min hold)
・X線回折測定
X線回折装置UltimaIV(株式会社リガク社製)を用いて、CuKα(λ=1.542Å)を線源とし、Cu用フィルタ使用、出力1.6kW、操作角0.96〜30.0°、測定速度2°/分の条件で測定した。この測定により、XXX型トリグリセリドを含む油脂成分におけるα型油脂、β’型油脂、及びβ型油脂の存在を確認した。4.6Å付近のピークのみを有し、4.1〜4.2Å付近のピークを有しない場合は、油脂成分のすべてがβ型油脂であると判断した。
なお、上記X線回折測定の結果から、ピーク強度比=[β型の特徴的ピークの強度(2θ=19°(4.6Å))/(α型の特徴的ピークの強度(2θ=21°(4.2Å))+β型の特徴的ピークの強度(2θ=19°(4.6Å)))]をβ型油脂の存在量を表す指標として測定した。
・ゆるめ嵩密度
実施例等で得られた粉末油脂組成物のゆるめ嵩密度(g/cm3)は、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めた。
・結晶(顕微鏡写真)
3Dリアルサーフェスビュー顕微鏡VE-8800(株式会社キーエンス製)にて得られた粉末油脂組成物の結晶の撮影を行った。得られた顕微鏡写真を図4(製造実施例7)及び図5(製造比較例3)に示す。
・アスペクト比
走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ製)により直接観察し、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製 Mac−View)を用いて、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測し、計測した個数の平均値として測定した。
・アスペクト比(2)
(a)粉末油脂B(理研ビタミン株式会社製:商品名「スプレーファットNR100」)の粒子のアスペクト比(2)
この粉末油脂は、ほとんどが球形で、粒子の電子顕微鏡写真から1個1個の粒子について直接長径、及び厚さを測定することができるので、3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で撮影した写真に写った1個1個の粒子について、長径及び厚さ(縦及び横)を測定し、それぞれの粒子について、アスペクト比(2)を求め、計20個の粒子のアスペクト比(2)の平均値を、粒子のアスペクト比(2)とした。
(b)本発明の粉末油脂組成物の粒子のアスペクト比(2)
本発明の粉末油脂組成物は、板状形状であるため、顕微鏡写真から粒子の厚さを測定することが難しい。したがって、粒子の厚さは、粉末油脂組成物をガラスビーズに付着させたときの顕微鏡写真から測定した。また、長径の値は、レーザー回折散乱法に基づいて測定した平均粒径(d50)を用いた。
具体的には、ガラスビーズ(アズワン株式会社製、型番BZ−01、寸法0.105〜0.125mmφ)に粉末油脂組成物を添加、混合することで、ガラスビーズ表面に粉末油脂組成物を付着させ、その様子を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で撮影した。ガラスビーズ表面に付着した1個の粉末油脂組成物の粒子の付着面から垂直方向の長さを、その粒子の厚さとして測定し、計25個の粒子の厚さの平均値を取り、その値を粉末油脂組成物の粒子の厚さの値とした。
図14は、後述する粉末油脂組成物Aの粒子の厚さの測定に使用した電子顕微鏡写真(1500倍)の1つで、この写真では、写真中の直線で示した部分(2か所)の長さ(ガラスビーズ表面に付着した粒子の付着面からの垂直方向の長さ)を、粉末油脂組成物の粒子の厚さとして測定した。
また、長径の値は、上述のレーザー回折散乱法に基づいて測定した平均粒径(d50)を用いた。
このようにして測定した粉末油脂組成物の粒子の長径と厚さの値から、アスペクト比(2)〔=長径/厚さ〕を求めた。
・平均粒径(d50)
粒度分布測定装置(日機装株式会社製 Microtrac MT3300ExII)でレーザー回折散乱法(ISO133201,ISO9276-1)に基づいて測定した。なお、測定した平均粒径は、d50の値である。
・水のしみ出し面積比率
画像処理ソフト「Image J」(オープンソース)を用いて、以下の手順で測定した。
(1)画像データ中の色画用紙の部分をペイントソフトでトリミングし、200×220ピクセルのbitmap形式画像に変換した。
(2)水のしみ出しの状態とかかわりのない陰影などを、ノイズとして補正した
(3)「ImageJ」にて色画用紙が水のしみ出しによって変色している領域を特定し、変色していない部分の面積を上記ソフトによって測定した(この測定値をAとする)。
(4)水のしみ出しの面積比率を、以下の式によって算出した。
・水のしみ出し面積比率(%) A´=[1−{A/(200×220)}]×100
<原料油脂>
(1)粉末油脂組成物A(離水防止用粉末油脂組成物)
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物を機械粉砕することで粉末状の結晶組成物である粉末油脂組成物A(ゆるめ嵩密度:0.2g/cm、粒子のアスペクト比1.6、粒子のアスペクト比(2):4.6、平均粒径8.0μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物Aを3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物Aの粒子の形状は板状形状であった。
この粉末油脂組成物Aの顕微鏡写真を、図15(100倍)、及び図16(300倍)に示す。
以下の試験では、この粉末油脂組成物Aを用いた。
(2)粉末油脂B
粉末油脂Bとして、市販の粉末油脂(理研ビタミン株式会社製:スプレーファットNR100)を用いた。
この粉末油脂Bは、ビーズ状の球形粉末であり、油脂をカプセルに閉じ込めた水に容易に分散し、ゆるめ嵩密度は0.5g/cm、粒子のアスペクト比は1.1、粒子のアスペクト比(2)は1.1、平均粒径は86μmであった。また、この粉末油脂BをX線回折分析した結果、回折ピークが4.6で、強度比が0.91であった。X線回折測定回折ピーク、及びピーク強度比から、この粉末油脂は、β型油脂を含むものであることがわかる。
粉末油脂Bを3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂Bの粒子の形状は板状形状ではなく、球状であった。
この粉末油脂Bの顕微鏡写真を、図17(100倍)、及び図18(300倍)に示す。
以下の試験では、この粉末油脂組Bを用いた。
[試験例1]解凍時の離水防止効果
<冷凍豚肉の製造>
下記表2の配合に従って、実施例1の冷凍豚肉(改良食品素材)及び比較例1〜2の冷凍豚肉(食品素材)を製造した。より詳細には、1枚30gとなるように切り出したロース豚肉を6枚用意し、それぞれ2枚に対して粉末油脂組成物(実施例1)A又は粉末油脂B(比較例1)を0.3g付着させ(豚肉100重量部に対して1質量部に相当)、残りの2枚には前記油脂を全く付着させない(比較例2)で、−20℃の業務用冷凍庫で一晩凍らせた。その後、解凍時の離水(ドリップ)を確認するため、常温(20℃)において、上記した6枚の冷凍豚肉をゆっくり解凍させた。冷凍前のロース豚肉の状態と、解凍後の離水の状態(色画用紙に付着した水のしみ出し)とを図1に示した。また、表3には、冷凍豚肉が示した水のしみ出し(色画用紙への水染みの大きさ)を比較した数値(水のしみ出し面積比率)を示した。なお、水のしみ出しは、画像解析ソフト「ImageJ」を使用し、水のしみ出し面積比率の測定は上記した方法を用いて計算した。なお、表3の数値(水のしみ出し面積比率)は、大きければ大きいほど、水のしみ出しの量が多いことを示す。
Figure 2018174204
Figure 2018174204
<冷凍豚肉における離水防止効果>
図1及び表2〜3から明らかであるように、実施例1の冷凍豚肉は、比較例1〜2の冷凍豚肉と比較して、明らかに解凍時の水分の染み出し(ドリップ発生)が抑制されていた。したがって、本発明の粉末油脂組成物Aは、解凍時における食品素材からの離水を効果的に防止できることがわかった。このような性質は、様々な冷凍食品の解凍時のドリップを抑制するために使用することができる。
[試験例2]浸透圧による離水防止効果
<サラダの製造>
下記表4の配合に従って、実施例2のサラダ(改良食品)及び比較例3のサラダ(食品)を製造した。より詳細には、市販のカップサラダ((株)サラダファームSFK社製)80gに対し、粉末油脂組成物Aを0.8gまぶした後、これにフレンチドレッシング10gを加えて混合した(混合時にはビニール袋を使用)。これを実施例2とした。一方、同じ市販のカップサラダ((株)サラダファームSFK社製)80gに対し、粉末油脂組成物Aを一切まぶさないで、フレンチドレッシング10gを加えて混合した(混合時にはビニール袋を使用)。これを比較例3とした。ドレッシングを混合した後の実施例2及び比較例3のサラダを常温(20℃)で4時間静置した。また、ドレッシングを混合した後4時間の状態を図2に示した。
Figure 2018174204
上記で得たサラダを用いて食感や味覚の評価を行った。専門パネラー4名がサラダを食して、得られた生野菜の食感や味覚について、以下の基準に従い評価した。評価結果は表4に示した。
<シャキシャキ感の評価>
○:生野菜のシャキシャキ感が強く感じられた。
△:生野菜のシャキシャキ感がやや弱く感じられた。
×:生野菜のシャキシャキ感がほとんど感じられなかった。
<瑞々しさの評価>
○:生野菜の瑞々しさが強く感じられた。
△:生野菜の瑞々しさが弱く、やや水っぽく感じられた。
×:生野菜の瑞々しさがなく、水っぽく感じられた。
<サラダにおける離水防止効果>
図2及び表4から明らかであるように、実施例2のサラダは、比較例3のサラダと比較して、ドレッシングの浸透圧による離水が抑制され、シャキシャキとした食感と生野菜の瑞々しさが残されていた。したがって、本発明の粉末油脂組成物Aは、保存時における食品素材からの離水を効果的に防止できることがわかった。このような性質は、水分の多い食品素材から浸透圧による離水を抑制するために使用することができる。
[試験例3]焼成時における離水防止効果及び水分移行防止効果
<アップルパイの製造>
下記表5の配合に従って、実施例3のアップルパイ(改良食品)及び比較例4のアップルパイ(食品)を製造した。より詳細には、リンゴの皮を剥いて、約5mm幅に切って一口サイズとした。これを鍋に移して、砂糖を入れて中火で煮込み、しんなりしてきたら、弱火にして水分がなくなるように煮詰めた。水分がなくなったら粗熱をとり、シナモンシュガーを混ぜた。このようにして得られたアップルプレザーブ(フィリング)100質量部に対して粉末油脂組成物Aを1質量部となるようにまぶしたもの(実施例3)とまぶしていないもの(比較例4)とを用意した。別途、自然解凍した冷凍パイシート(ベラミーズ社製:冷凍パイシート(ニュージーランド産バター100%使用)、9.5×9.5cm)に、上述したアップルプレザーブを35g包みこみ、四方を押圧により結着させ、焼成前のアップルパイの上側に適度な切込みを入れて、卵黄を適量塗った後、クッキングシートを置いた角皿の上にこれを置いて、上火200℃、下火200℃に調整したオーブンで、20分間焼成した。焼成から1日後のアップルパイを2つに割った断面の様子を図3に示した。
Figure 2018174204
上記で得たアップルパイについて、生地の浮き(特に底部)や食感の評価を行った。通常、水分の多いフィリングと同時に焼成したアップルパイでは、特に底部の生地の浮きが悪くなる(つまり、生地の層が詰まった状態となり、パリパリとした食感が損なわれる)。また、専門パネラー4名が焼成から一日後のアップルパイを観察し、又は食して、得られた生地の浮きや食感について、以下の基準に従い評価した。評価結果は表5に示した。
<底部の生地浮きの評価>
○:アップルパイの底部の生地浮きが良い。
△:アップルパイの底部の生地浮きがやや良い。
×:アップルパイの底部の生地浮きが悪い。
<食感の評価>
○:パリパリとした食感が強く感じられ、パイ層の硬さがしっかり感じられた。
△:パリパリとした食感がやや弱く、パイ層の硬さも弱く感じられた。
×:パリパリとした食感が感じられず、全体的にしっとりと感じられた。
<アップルパイにおける離水防止効果及び水分移行防止効果>
図3及び表5から明らかであるように、実施例3のアップルパイは、比較例4のアップルパイと比較して、焼成時にアップルプリザーブからの離水及びパイ生地への水分移行が抑制され、パイ生地(特に底部)の浮きが改善されていた。すなわち、底部の生地層が何層もあることが確認できた。したがって、本発明の粉末油脂組成物Aは、焼成時における食品素材からの離水及び水分移行を効果的に防止できることがわかった。このような性質は、菓子・パン類の焼成時におけるフィリングからの離水及び生地への水分移行を抑制するために使用することができる。
[試験例4]自然解凍時及びレンジ加熱時による離水防止効果
<冷凍野菜の製造>
下記表6〜9にあるように、実施例4〜9の冷凍野菜(改良食品素材)及び比較例5〜6の冷凍野菜(食品素材)を用意した。より詳細には、大根(生)は、1/2本の根の方を使用し、1cm幅のいちょう切りにした。パプリカ(生)は黄色のものを4×1×1cmとなるように切った。きゅうり棒(生)は5cmの長さとなるように拍子切りした。きゅう薄(生)は5mm幅の斜め薄切りとした。じゃが芋(生)は、メークイーンを4×1×1cmとなるように切った。人参(生)は5×1×1cmとなるように拍子切りした。玉ねぎ(生)は5mm幅となるようにくし切りした。前述したそれぞれの野菜に対して、粉末油脂組成物Aを0質量%(比較例5、6)、0.15質量%(実施例4、7)、0.3質量%(実施例5、8)及び0.5質量%(実施例6、9)となるように添加して混合した(混合時にはビニール袋を使用)。そして、−20℃の業務用冷凍庫で一晩凍らせた。その後、解凍時の離水(ドリップ)を確認するため、常温(20℃)において、自然解凍させた(実施例4〜6、比較例5)。また、所定の条件で電子レンジを用いてレンジ加熱した(実施例7〜9、比較例6)。冷凍品の質量と解凍品の質量との差から、歩留まり(質量%)を測定し、その結果を表6〜9にまとめた。また、冷凍野菜の種類別に、自然解凍の歩留まり(質量%)及びレンジ加熱の歩留まり(質量%)の結果をそれぞれ図4及び5に示した。図4では、左側から順に比較例5、実施例4、5、6の数値が並んでいる。一方、図5では、左側から順に比較例6、実施例7、8、9の数値が並んでいる。
なお、電子レンジの加熱条件は、大根(生)が500W/1分であり、パプリカ(生)が500W/40秒であり、じゃが芋(生)が500W/1分20秒(上段)と500W/1分30秒+15分蒸らし(下段)であり、人参(生)が500W/1分10秒である。
Figure 2018174204
Figure 2018174204
Figure 2018174204
Figure 2018174204
<冷凍野菜における離水防止効果>
図4〜5及び表6〜9から明らかであるように、実施例4〜9の冷凍野菜では、本発明の粉末油脂組成物Aを添加したいずれかの質量%において、その歩留まり(質量%)が比較例5〜6の粉末油脂組成物Aを添加していない冷凍野菜の歩留まり(質量%)よりも高くなっており、実施例4〜9において、それぞれの冷凍野菜において解凍時の水分の染み出し(ドリップ発生)が抑制されていることが確認できた。
冷凍野菜の官能評価によれば、冷凍大根や冷凍パプリカを自然解凍したものは、ハリがあり水分を保持した瑞々しい食感で甘味があり、レンジ加熱したものもハリ、ふっくら感がある食感で甘味があった。冷凍きゅうり棒や冷凍きゅうり薄を自然解凍したものは冷凍パプリカを自然解凍したものと同様の食感であった。冷凍人参を自然解凍したものは、生っぽい食感で甘味があり、レンジ加熱したものは繊維っぽさが緩和され良い食感となり甘味が出た。冷凍じゃが芋をレンジ加熱したものは、いずれもシャリシャリした食感であるが、本発明の粉末油脂組成物Aの添加量が多いほど、シャリシャリ感が弱くなった。冷凍玉ねぎを自然解凍したものは、他の野菜と同様の傾向を示したが、無添加の比較例もある程度の食感は保っていた。
このように本発明の粉末油脂組成物Aは、細胞壁を強固として水分を保持するような食感を維持するとともに、野菜のエグミを緩和し甘味を向上させることが確認できた。また、いずれの冷凍野菜においても粉っぽさや油っぽさはさほど感じられなかった。
さらに、本発明の粉末油脂組成物の製造実施例を以下に示す。これらの製造実施例により得られた粉末状の組成物も、前記実施例同様に、離水防止用粉末油脂組成物として使用することができる。
(製造実施例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比:2.0、平均粒径:119μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.90)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例2):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径99μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.88)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例3):x=16、(c2)テンパリング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、30℃恒温槽にて0.01時間冷却した後、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径87μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例4):x=16、(c1)シーディング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて品温が60℃になるまで冷却した後、トリパルミチン油脂粉末を原料油脂に対して、0.1質量%添加し、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径92μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例5):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:99.6質量%、トリステアリン、シグマアルドリッチ製)3gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径30μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.93)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例6):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径31μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.88)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例7):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径54μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例8):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径60μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.91)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例9):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:84.1質量%、日清ひまわり油(S)(ハイオレイックヒマワリ油)、日清オイリオグループ株式会社製)を定法により完全水素添加処理を行い水素添加物(XXX型:83.9質量%)を得た。得られたハイオレイックヒマワリ油極度硬化油25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径48μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例10):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)18.75gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)6.25gを混合し、原料油脂とした(XXX型:53.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径63μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.78)を得た。なお、パーム極度硬化油は、XXX型トリグリセリドの含量が極めて少ないので、希釈成分として使用した(以下、同様)。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例11):x=18、(c1)シーディング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、70℃恒温槽にて品温が70℃になるまで冷却した後、トリステアリン油脂粉末を原料油脂に対して、0.1質量%添加し、70℃恒温槽にて12時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径36μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.88)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例12):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて0.1時間冷却した後、65℃恒温槽にて6時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径50μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.90)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例13):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて0.01時間冷却した後、65℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径52μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例14):x=18、(c3)予備冷却法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、原料油脂を70℃になるまで70℃の恒温槽で保持し、65℃恒温槽にて8時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径60μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例15):x=20
1位〜3位にアラキジン酸残基(炭素数20)を有するトリグリセリド(XXX型:99.5質量%、トリアラキジン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、72℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径42μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.92)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例16):x=22
1位〜3位にベヘン酸残基(炭素数22)を有するトリグリセリド(XXX型:97.4質量%、トリベヘニン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、79℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径52μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.93)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例17):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社)12.5gを混合し、原料油脂とした(XXX型:93.8%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径74μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.90)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造実施例18):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:75.3%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物である粉末油脂組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径77μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.88)を得た。
得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
(製造比較例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、25℃恒温槽にて4時間冷却したところ、完全に固化し(X線回折測定回折ピーク:4.1Å、ピーク強度比:0.10)、粉末状の結晶組成物である粉末油脂組成物には至らなかった。
(製造比較例2):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回折ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物である粉末油脂組成物には至らなかった。
(製造比較例3):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて3時間冷却したところ、完全に固化し(X線回折測定回折ピーク:4.1Å、ピーク強度比:0.11)、粉末状の結晶組成物である粉末油脂組成物には至らなかった。
(製造比較例4):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)12.5gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.7質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回折ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物である粉末油脂組成物には至らなかった。
上記製造実施例及び製造比較例の結果を表10及び表11にまとめる。
Figure 2018174204
Figure 2018174204
また、次の製造実施例により得られた粉末状油脂組成物も、前記実施例同様に、ドライウォーター用粉末油脂組成物として使用することができる。
(製造実施例19):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、フレーク状、横関油脂工業株式会社製)1000gを80℃にて約12時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物を機械粉砕することで粉末油脂組成物(ゆるめ嵩密度:0.2g/cm、粒子のアスペクト比:1.4、粒子のアスペクト比(2):3.7、平均均粒径:6.4μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。X線回折測定回折ピーク、及びピーク強度比から、得られた粉末油脂組成物の油脂成分は、β型油脂を含むものであることがわかった。
また、得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
なお、ゆるめ嵩密度、アスペクト比、アスペクト比(2)、平均粒径、及びX線回折の測定は、上述した方法で行った。
(製造実施例20):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、フレーク状、横関油脂工業株式会社製)1000gを80℃にて約12時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物を機械粉砕することで粉末油脂組成物(ゆるめ嵩密度:0.2g/cm、粒子のアスペクト比:1.5、粒子のアスペクト比(2):3.5、平均粒径:7.4μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.89)を得た。X線回折測定回折ピーク、及びピーク強度比から、得られた粉末油脂組成物の油脂成分は、β型油脂を含むものであることがわかった。
また、得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。
なお、ゆるめ嵩密度、アスペクト比、アスペクト比(2)、平均粒径、及びX線回折の測定は、上述した方法で行った。
(製造実施例21):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、フレーク状、横関油脂工業株式会社製)1000gを80℃にて約12時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物を機械粉砕することで粉末油脂組成物(ゆるめ嵩密度:0.2g/cm、粒子のアスペクト比:1.4、粒子のアスペクト比(2):7.2、平均粒径14.4μm、X線回折測定回折ピーク:4.6Å、ピーク強度比:0.90)を得た。X線回折測定回折ピーク、及びピーク強度比から、得られた粉末油脂組成物の油脂成分は、β型油脂を含むものであることがわかった。
粉砕前の粉末油脂組成物を目視で観察したところ、体積が増加した空隙を有する固形物であった。図19は、粉砕前の粉末油脂組成物の外観の写真である。また、粉砕前の粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、板状形状の粒子が多数重なっていた。図20は、粉砕前の粉末油脂組成物の電子顕微鏡写真(200倍)ある。
また、得られた粉末油脂組成物を3Dリアルサーフェスビュー顕微鏡VE−8800(株式会社キーエンス製)で観察したところ、粉末油脂組成物の粒子の形状は板状形状であった。図21及び図22は、粉末油脂組成物の電子顕微鏡写真(1000倍)である。
なお、ゆるめ嵩密度、アスペクト比、アスペクト(2)、平均粒径、及びX線回折の測定は、上述した方法で行った。

Claims (15)

  1. 以下の(a)の条件を満たす粉末状の油脂組成物を含有する、離水防止用粉末油脂組成物。
    (a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末状の油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末状の油脂組成物の粒子は板状形状を有し、前記粉末状の油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。
  2. 前記油脂成分がβ型油脂からなる、請求項1に記載の離水防止用粉末油脂組成物。
  3. 前記XXX型トリグリセリドが、前記油脂成分の全質量を100質量%とした場合、50質量%以上含有する、請求項1又は2に記載の離水防止用粉末油脂組成物。
  4. 前記炭素数xが16〜18から選択される整数である、請求項1〜3のいずれか1項に記載の離水防止用粉末油脂組成物。
  5. 前記粉末状の油脂組成物のゆるめ嵩密度が、0.1〜0.4g/cm3である、である、請求項1〜4のいずれか1項に記載の離水防止用粉末油脂組成物。
  6. 前記粉末油脂組成物の粒子のアスペクト比(2)が、2.5以上である、請求項1〜5のいずれか1項に記載の離水防止用粉末油脂組成物。
  7. 前記粉末状の油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、下記式から得られる冷却温度以上に保ち、冷却固化して得たβ型油脂を含有する、請求項1〜6のいずれか1項に記載の離水防止用粉末油脂組成物。
    冷却温度(℃) = 炭素数x × 6.6 ― 68
  8. 前記粉末状の油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、前記β型油脂に対応するα型油脂の融点以上の温度に保ち、冷却固化して得たβ型油脂を含有する、請求項1〜7のいずれか1項に記載の離水防止用粉末油脂組成物。
  9. 前記粉末状の油脂組成物の平均粒径が20μm以下である、請求項1〜8のいずれか1項に記載の離水防止用粉末油脂組成物。
  10. 請求項1〜9のいずれか1項に記載の離水防止用粉末油脂組成物を含有してなる、改良食品素材。
  11. 前記食品素材100質量部に対して、前記離水防止用粉末油脂組成物を0.1〜10質量部含有してなる、請求項10に記載の改良食品素材。
  12. 食品素材に、請求項1〜9のいずれか1項に記載の離水防止用粉末油脂組成物を配合する工程を有する、改良食品素材の製造方法。
  13. 前記食品素材100質量部に対して、前記離水防止用粉末油脂組成物を0.1〜10質量部配合する、請求項12に記載の改良食品素材の製造方法。
  14. 請求項1〜9のいずれか1項に記載の離水防止用粉末油脂組成物を有効成分として含有する、離水防止剤。
  15. 請求項10又は11に記載の改良食品素材もしくは請求項14に記載の離水防止剤を原材料として含有する、改良食品。
JP2019506999A 2017-03-23 2018-03-22 離水防止用粉末油脂組成物 Active JP7041124B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017056754 2017-03-23
JP2017056754 2017-03-23
PCT/JP2018/011540 WO2018174204A1 (ja) 2017-03-23 2018-03-22 離水防止用粉末油脂組成物

Publications (2)

Publication Number Publication Date
JPWO2018174204A1 true JPWO2018174204A1 (ja) 2020-01-23
JP7041124B2 JP7041124B2 (ja) 2022-03-23

Family

ID=63586036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506999A Active JP7041124B2 (ja) 2017-03-23 2018-03-22 離水防止用粉末油脂組成物

Country Status (2)

Country Link
JP (1) JP7041124B2 (ja)
WO (1) WO2018174204A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309465B2 (ja) * 2018-09-28 2023-07-18 日清オイリオグループ株式会社 焼き菓子用餡
JP7336882B2 (ja) * 2019-04-19 2023-09-01 日清オイリオグループ株式会社 餅とり粉用粉末油脂組成物、及び餅生地の硬化抑制剤。

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013582A1 (ja) * 2014-07-22 2016-01-28 日清オイリオグループ株式会社 粉末油脂組成物、粉末油脂組成物を含む食品及びこれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354138B1 (en) * 2015-09-24 2023-07-12 The Nisshin OilliO Group, Ltd. Powdery fat or oil composition and method for producing same
WO2017126668A1 (ja) * 2016-01-21 2017-07-27 日清オイリオグループ株式会社 液状成分の増粘剤
WO2017126667A1 (ja) * 2016-01-21 2017-07-27 日清オイリオグループ株式会社 液状成分の粉末化剤

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013582A1 (ja) * 2014-07-22 2016-01-28 日清オイリオグループ株式会社 粉末油脂組成物、粉末油脂組成物を含む食品及びこれらの製造方法

Also Published As

Publication number Publication date
JP7041124B2 (ja) 2022-03-23
WO2018174204A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP7000218B2 (ja) 粉末油脂含有接着性組成物を含む吸湿防止剤又は固結化防止剤。
JP6914068B2 (ja) バッター液用粉末油脂組成物
JP7041124B2 (ja) 離水防止用粉末油脂組成物
WO2018174203A1 (ja) 製菓製パン用粉末油脂組成物
JP2019110852A (ja) 油脂被覆粉末糖
JP2021016320A (ja) 香味油組成物、及びそれを含有する食品
JP7309463B2 (ja) 油ちょう食品の打ち粉用粉末油脂組成物、及び油ちょう食品の打ち粉
JP7336882B2 (ja) 餅とり粉用粉末油脂組成物、及び餅生地の硬化抑制剤。
JP6762653B2 (ja) 水産練り製品用粉末油脂組成物
JP6877828B2 (ja) 餅類用粉末油脂組成物
JP7076905B2 (ja) 粉末油脂組成物付着パン粉、及びそれを用いた油ちょう済食品
JP6599246B2 (ja) フライバッター液用粉末油脂組成物
JP7309465B2 (ja) 焼き菓子用餡
JP6877827B2 (ja) 麺類用粉末油脂組成物
JP2020010677A (ja) 麺皮食品
JP2020099312A (ja) フィリング用粉末油脂組成物、及びそれを含有するフィリング
JP2021027822A (ja) サンドイッチ用焼成パンの製造方法、及びサンドイッチ
JP6861540B2 (ja) 含気泡油脂組成物
JP7466986B2 (ja) 油脂組成物
JP6877826B2 (ja) 麺皮用粉末油脂組成物
JP6599247B2 (ja) ノンフライ揚げ物用粉末油脂組成物
JP2023044533A (ja) 食品組成物
JP2023019814A (ja) 食品素材剪断物の製造方法
JP2019187383A (ja) トッピング用粉末油脂組成物
JP2022122702A (ja) ペースト状成分含有粉末組成物、及びペースト状成分の粉末化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R150 Certificate of patent or registration of utility model

Ref document number: 7041124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150