JPWO2018158935A1 - 電力変換装置、および通信方法 - Google Patents

電力変換装置、および通信方法 Download PDF

Info

Publication number
JPWO2018158935A1
JPWO2018158935A1 JP2018521446A JP2018521446A JPWO2018158935A1 JP WO2018158935 A1 JPWO2018158935 A1 JP WO2018158935A1 JP 2018521446 A JP2018521446 A JP 2018521446A JP 2018521446 A JP2018521446 A JP 2018521446A JP WO2018158935 A1 JPWO2018158935 A1 JP WO2018158935A1
Authority
JP
Japan
Prior art keywords
communication
command
circuit
submodules
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018521446A
Other languages
English (en)
Other versions
JP6437164B1 (ja
Inventor
靖則 伊戸
靖則 伊戸
宗治 徳永
宗治 徳永
英明 大箸
英明 大箸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6437164B1 publication Critical patent/JP6437164B1/ja
Publication of JPWO2018158935A1 publication Critical patent/JPWO2018158935A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques

Abstract

電力変換装置(1)は、互いに直列接続された複数のサブモジュール(7)を含む電力変換回路部(2)と、各サブモジュールを保護するための保護指令を生成する保護装置(31A,31B)と、保護指令を各サブモジュールに出力する少なくとも1つの中継装置(32_1〜32_N)とを備える。中継装置は、保護装置と通信するための第1の通信回路(35)と、電力変換回路部と通信するための第2の通信回路(36)とを含む。第1の通信回路は、第1の通信路(37)を介して、停止指令を前記第2の通信回路に送信し、第2の通信路(38)を介して、停止指令とは異なる他の情報を第2の通信回路に送信する。第1の通信路を介した通信の通信速度は、第2の通信路を介した通信の通信速度よりも速い。

Description

本開示は、交流と直流との間で電力変換を行なう電力変換装置、および電力変換装置に用いられる通信方法に関する。
電力系統に接続される大容量の電力変換装置としてモジュラーマルチレベル変換器(MMC:Modular Multilevel Converter)が知られている。モジュラーマルチレベル変換器は、交流の各相について、高電位側直流端子に接続された上アームと低電位側直流端子に接続された下アームとを有する。各アームは、複数のサブモジュールがカスケードに接続されることによって構成されている。
例えば、特開2015−130746号公報(特許文献1)は、交流を直流に、または、直流を交流に変換可能な電力変換回路を含む電力変換装置を開示している。電力変換回路は、複数の単位変換器を直列に接続して構成したアームを有する。電力変換装置は、各単位変換器を統括して制御する第1の制御装置と、第1の制御装置にデイジーチェーン接続される複数の第2の制御装置と、第2の制御装置に接続されて、各単位変換器をそれぞれ制御する第3の制御装置とをさらに含む。
特開2015−130746号公報
電力系統の事故などによっていずれかのアームに過電流が流れたことが検出された場合には、回路故障を防ぐために、各サブモジュールを構成する半導体スイッチングをオフするための停止指令をできるだけ早く各サブモジュールに送信する必要がある。特許文献1では、中央制御装置が、各中間制御装置に対して、1種類の通信フレームに集約した共通指令を送信し、各中間制御装置が各セル制御装置を分散制御することにより、通信フレーム長を短くして通信伝送遅延を減らすことを検討している。しかしながら、特許文献1には、当該停止指令をできるだけ早く各サブモジュールに送信するための構成については何ら教示されていない。
本開示のある局面における目的は、過電流検出時に各サブモジュールに停止指令をできるだけ短時間で伝送することが可能な電力変換装置を提供することである。
ある実施の形態に従うと、直流回路と交流回路との間で電力変換を行なう電力変換装置が提供される。電力変換装置は、互いに直列接続された複数のサブモジュールを含む電力変換回路部と、各サブモジュールを保護するための保護指令を生成する保護装置と、保護指令を各サブモジュールに出力する少なくとも1つの中継装置とを備える。保護指令は、各サブモジュールの動作を停止させるための停止指令を含む。中継装置は、保護装置と通信するための第1の通信回路と、電力変換回路部と通信するための第2の通信回路とを含む。第1の通信回路は、第1の通信路を介して、停止指令を第2の通信回路に送信し、第2の通信路を介して、停止指令とは異なる他の情報を第2の通信回路に送信する。第1の通信回路および第2の通信回路間における、第1の通信路を介した通信の通信速度は、第1の通信回路および第2の通信回路間における、第2の通信路を介した通信の通信速度よりも速い。
他の実施の形態に従うと、直流回路と交流回路との間で電力変換を行う電力変換装置が提供される。電力変換装置は、互いに直列接続された複数のサブモジュールを含む電力変換回路部と、各サブモジュールを運転制御するための制御指令を生成する制御装置と、制御指令を各サブモジュールに出力する複数の中継装置とを備える。制御指令は、各サブモジュールの動作の同期をとるための同期指令を含む。制御装置は、リング型のネットワークを介して、複数の中継装置に接続されている。各中継装置は、スター型のネットワークを介して、複数のサブモジュールのうちの予め定められた数のサブモジュールと接続されている。制御装置は、制御指令のうちの同期指令以外の他の指令を含む第1の通信フレームと、制御指令のうちの同期指令を含む第2の通信フレームとを複数の中継装置に送信する。
さらに他の実施の形態に従うと、直流回路と交流回路との間で電力変換を行う電力変換装置において用いられる通信方法が提供される。電力変換装置は、互いに直列接続された複数のサブモジュールを含む電力変換回路部と、各サブモジュールを保護するための保護指令を生成する保護装置と、保護指令を各サブモジュールに出力する少なくとも1つの中継装置とを備える。保護指令は、各サブモジュールの動作を停止させるための停止指令を含む。中継装置は、保護装置と通信するための第1の通信回路と、電力変換回路部と通信するための第2の通信回路とを含む。通信方法は、第1の通信回路が、第1の通信路を介して、停止指令を第2の通信回路に送信するステップと、第1の通信回路が、第2の通信路を介して、停止指令とは異なる他の情報を第2の通信回路に送信するステップとを含む。第1の通信回路および第2の通信回路間における、第1の通信路を介した通信の通信速度は、第1の通信回路および第2の通信回路間における、第2の通信路を介した通信の通信速度よりも速い。
本開示によると、過電流検出時に各サブモジュールに停止指令をできるだけ短時間で伝送することが可能となる。
実施の形態1に従う電力変換装置の概略構成図である。 図1の各レグ回路を構成するサブモジュールの一例を示す回路図である。 実施の形態1に従う指令生成部の具体的な構成を示すブロック図である。 実施の形態1に従う制御装置の構成例を示すブロック図である。 実施の形態1に従う中継装置の構成および動作を説明するための図である。 実施の形態1に従う通信フレーム構成を模式的に示す図である。 実施の形態2に従う通信方式およびその利点を説明するための図である。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
実施の形態1.
[電力変換装置の構成]
図1は、実施の形態1に従う電力変換装置の概略構成図である。図1を参照して、電力変換装置1は、互いに直列接続された複数のサブモジュール(図1中の「セル」に対応)7を含むモジュラーマルチレベル変換器によって構成されている。なお、「サブモジュール」は、「変換器セル」とも呼ばれる。電力変換装置1は、直流回路14と交流回路12との間で電力変換を行なう。具体的には、電力変換装置1は、電力変換回路部2と、指令生成部3とを含む。
電力変換回路部2は、正極直流端子(すなわち、高電位側直流端子)Npと、負極直流端子(すなわち、低電位側直流端子)Nnとの間に互いに並列に接続された複数のレグ回路4u,4v,4w(不特定のものを示す場合、レグ回路4と記載する)を含む。
レグ回路4は、交流を構成する複数相の各々に設けられる。レグ回路4は、交流回路12と直流回路14との間に接続され、両回路間で電力変換を行なう。図1には、交流回路12が3相交流系統の場合が示され、U相、V相、W相にそれぞれ対応して3個のレグ回路4u,4v,4wが設けられている。
レグ回路4u,4v,4wにそれぞれ設けられた交流入力端子Nu,Nv,Nwは、連系変圧器13を介して交流回路12に接続される。交流回路12は、例えば、交流電源などを含む交流電力系統である。図1では、図解を容易にするために、交流入力端子Nv,Nwと連系変圧器13との接続は図示していない。
各レグ回路4に共通に接続された高電位側直流端子Npおよび低電位側直流端子Nnは、直流回路14に接続される。直流回路14は、例えば、直流送電網などを含む直流電力系統または他の電力変換装置の直流端子である。後者の場合、2台の電力変換装置を連結することによって定格周波数などが異なる交流電力系統間を接続するためのBTB(Back To Back)システムが構成される。
図1の連系変圧器13を用いる代わりに、連系リアクトルを介して交流回路12に接続した構成としても良い。さらに、交流入力端子Nu,Nv,Nwに代えてレグ回路4u,4v,4wにそれぞれ一次巻線を設け、この一次巻線と磁気結合する二次巻線を介してレグ回路4u,4v,4wが連系変圧器13または連系リアクトルに交流的に接続するようにしてもよい。この場合、一次巻線を下記のリアクトル8A,8Bとしてもよい。すなわち、レグ回路4は、交流入力端子Nu,Nv,Nwまたは上記の一次巻線など、各レグ回路4u,4v,4wに設けられた接続部を介して電気的に(すなわち直流的または交流的に)交流回路12と接続される。
レグ回路4uは、高電位側直流端子Npから交流入力端子Nuまでの上アーム5と、低電位側直流端子Nnから交流入力端子Nuまでの下アーム6とを含む。上アーム5と下アーム6との接続点である交流入力端子Nuが連系変圧器13と接続される。高電位側直流端子Npおよび低電位側直流端子Nnが直流回路14に接続される。レグ回路4v,4wについても同様の構成を有しているので、以下、レグ回路4uを代表として説明する。
上アーム5は、カスケード接続された複数のサブモジュール7と、リアクトル8Aとを含む。当該複数のサブモジュール7およびリアクトル8Aは互いに直列接続されている。
同様に、下アーム6は、カスケード接続された複数のサブモジュール7と、リアクトル8Bとを含む。当該複数のサブモジュール7およびリアクトル8Bは互いに直列接続されている。
リアクトル8Aが挿入される位置は、レグ回路4uの上アーム5のいずれの位置であってもよく、リアクトル8Bが挿入される位置は、レグ回路4uの下アーム6のいずれの位置であってもよい。リアクトル8A,8Bはそれぞれ複数個あってもよい。各リアクトルのインダクタンス値は互いに異なっていてもよい。さらに、上アーム5のリアクトル8Aのみ、もしくは、下アーム6のリアクトル8Bのみを設けてもよい。
リアクトル8A,8Bは、交流回路12または直流回路14などの事故時に事故電流が急激に増大しないように設けられている。しかし、リアクトル8A,8Bのインダクタンス値を過大なものにすると電力変換器の効率が低下するという問題が生じる。したがって、事故時においては、各サブモジュール7の全てのスイッチング素子をできるだけ短時間でオフすることが好ましい。
図1の電力変換装置1は、さらに、制御に使用される電気量(電流、電圧など)を計測する検出器として、交流電圧検出器10と、交流電流検出器16と、直流電圧検出器11A,11Bと、各レグ回路4に設けられたアーム電流検出器9A,9Bとを含む。
これらの検出器によって検出された信号は、指令生成部3に入力される。指令生成部3はこれらの検出信号に基づいて各サブモジュールの運転状態を制御するための運転指令15pu,15nu,15pv,15nv,15pw,15nwを出力する。また、指令生成部3は、各サブモジュールからセルキャパシタ電圧の検出値を表す信号17を受信する。
本実施の形態の場合、運転指令15pu,15nu,15pv,15nv,15pw,15nwは、U相上アーム、U相下アーム、V相上アーム、V相下アーム、W相上アーム、およびW相下アームにそれぞれ対応して生成されている。以下の説明では、運転指令15pu,15nu,15pv,15nv,15pw,15nwについて、総称する場合または不特定のものを示す場合、運転指令15と記載する。
なお、図1では図解を容易にするために、各検出器から指令生成部3に入力される信号の信号線と、指令生成部3および各サブモジュール間で入出力される信号の信号線とは、一部まとめて記載されているが、実際には検出器ごとおよびサブモジュール7ごとに設けられている。各サブモジュールと指令生成部3との間の信号線は、送信用と受信用とが別個に設けられていてもよい。また、本実施の形態の場合、これらの信号は耐ノイズ性の観点から光ファイバを介して伝送される。
以下、各検出器について具体的に説明する。交流電圧検出器10は、交流回路12のU相の交流電圧値Vacu、V相の交流電圧値Vacv、およびW相の交流電圧値Vacwを検出する。交流電流検出器16は、交流回路12のU相の交流電流値Iacu、V相の交流電流値Iacv、およびW相の交流電流値Iacwを検出する。直流電圧検出器11Aは、直流回路14に接続された高電位側直流端子Npの直流電圧値Vdcpを検出する。直流電圧検出器11Bは、直流回路14に接続された低電位側直流端子Nnの直流電圧値Vdcnを検出する。
U相用のレグ回路4uに設けられたアーム電流検出器9Aおよび9Bは、上アーム5に流れる上アーム電流Ipuおよび下アーム6に流れる下アーム電流Inuをそれぞれ検出する。同様に、V相用のレグ回路4vに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipvおよび下アーム電流Invをそれぞれ検出する。W相用のレグ回路4wに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipwおよび下アーム電流Inwをそれぞれ検出する。
[サブモジュールの構成例]
図2は、図1の各レグ回路を構成するサブモジュールの一例を示す回路図である。図2に示すサブモジュール7は、ハーフブリッジ型の変換回路20HBと、エネルギー蓄積器としての直流コンデンサ24と、ゲート制御部21と、電圧検出部27と、送受信部28とを含む。
ハーフブリッジ型の変換回路20HBは、互いに直列接続されたスイッチング素子22A,22Bと、ダイオード23A,23Bとを含む。ダイオード23A,23Bは、スイッチング素子22A,22Bとそれぞれ逆並列(すなわち、並列かつ逆バイアス方向)に接続される。直流コンデンサ24は、スイッチング素子22A,22Bの直列接続回路と並列に接続され、直流電圧を保持する。スイッチング素子22A,22Bの接続ノードは高電位側の入出力端子26Pと接続される。スイッチング素子22Bと直流コンデンサ24の接続ノードは低電位側の入出力端子26Nと接続される。
ゲート制御部21は、図1の指令生成部3から受信した運転指令15に従って動作する。ゲート制御部21は、通常動作時(すなわち、入出力端子26P,26N間に零電圧または正電圧を出力する場合)には、スイッチング素子22A,22Bの一方をオン状態とし、他方をオフ状態となるように制御を行なう。スイッチング素子22Aがオン状態であり、スイッチング素子22Bがオフ状態のとき、入出力端子26P,26N間には直流コンデンサ24の両端間の電圧が印加される。逆に、スイッチング素子22Aがオフ状態であり、スイッチング素子22Bがオン状態のとき、入出力端子26P,26N間は0Vとなる。
したがって、図2に示すサブモジュール7は、スイッチング素子22A,22Bを交互にオン状態とすることによって、零電圧または直流コンデンサ24の電圧に依存した正電圧を出力することができる。ダイオード23A,23Bは、スイッチング素子22A,22Bに逆方向電圧が印加されたときの保護のために設けられている。
一方、図1の指令生成部3によってアーム電流の過電流が検出された場合には、ゲート制御部21は、回路保護のためにスイッチング素子22A,22Bの両方をオフにする。この結果、たとえば、直流回路14の地絡事故の場合には、事故電流がダイオード23Bを流れる。
電圧検出部27は、直流コンデンサ24の両端24P,24Nの間の電圧を検出する。以下の説明では、直流コンデンサ24の電圧をセルキャパシタ電圧とも称する。送受信部28は、図1の指令生成部3から受信した運転指令15をゲート制御部21に伝達するとともに、電圧検出部27によって検出されたセルキャパシタ電圧を表す信号17を指令生成部3に送信する。
上記のゲート制御部21、電圧検出部27、および送受信部28は、専用回路によって構成してもよいし、FPGA(Field Programmable Gate Array)などを利用して構成してもよい。
各スイッチング素子22A,22B,22C,22Dには、オン動作とオフ動作の両方を制御可能な自己消弧型のスイッチング素子が用いられる。スイッチング素子22A,22B,22C,22Dは、例えば、IGBT(Insulated Gate Bipolar Transistor)またはGCT(Gate Commutated Turn-off thyristor)である。
なお、上記で説明したサブモジュール7の構成は一例であって、他の構成のサブモジュール7を本実施の形態に適用してもよい。例えば、サブモジュール7は、フルブリッジ型の変換回路、またはスリークオーターブリッジ型の変換回路を用いて構成されていてもよい。
[指令生成部の構成]
図3は、実施の形態1に従う指令生成部の具体的な構成を示すブロック図である。図3を参照して、指令生成部3は、制御装置30と、保護装置31A,31Bと、複数の中継装置32_1〜32_Nとを含む。図3では、図1の電力変換回路部2のうちU相用のレグ回路4uのみが代表的に示されているが、他のレグ回路4v,4wについても同様である。保護装置31A,31Bについて、総称する場合または不特定のものを示す場合、保護装置31と記載する。中継装置32_1〜32_Nについて、総称する場合または不特定のものを示す場合、中継装置32と記載する。
電力変換装置1では、制御装置30および保護装置31によって、多数(例えば、2000台程度)のサブモジュール7の動作が制御される。典型的には、制御装置30および保護装置31に直接接続できる通信ケーブルの数には限界がある。そのため、制御装置30および保護装置31の各々と、すべてのサブモジュール7とを直接接続するのが困難な場合も多い。また、制御装置30および保護装置31の各々と、すべてのサブモジュール7とを接続できたとしても、通信ケーブルの数が膨大となりコストが増大する。
そこで、本実施の形態に係る電力変換装置1では、制御装置30と各サブモジュール7との間、および保護装置31と各サブモジュール7との間に複数の中継装置32を設ける。制御装置30および保護装置31の各々は、リング型のネットワークを介して、複数の中継装置32に接続される。各中継装置32は、予め定められた数のサブモジュール7にスター接続される。各中継装置32は、例えば、1つのアームを構成する複数のサブモジュール7にスター接続される。このように、リング型のネットワークトポロジと、スター型のネットワークトポロジとを組み合わせることにより、制御装置30および保護装置31と、各サブモジュール7との間のネットワークが構築される。
制御装置30は、図1の各検出器で検出された交流電圧値Vacu,Vacv,Vacw(総称する場合、交流電圧値Vacと記載する)、交流電流値Iacu,Iacv,Iacw(総称する場合、交流電流値Iacと記載する)、直流電圧値Vdcp,Vdcn(総称する場合、直流電圧値Vdcと記載する)、上アーム電流Ipu,Ipv,Ipw、下アーム電流Inu,Inv,Inw、およびセルキャパシタ電圧Vcapに基づいて、通常動作時に各サブモジュール7を運転制御するための制御指令を生成し、当該生成した制御指令を各中継装置32に送信する。制御指令は、電圧指令(例えば、各レグ回路4u,4v,4wにおける上アーム5の出力電圧指令値および下アーム6の出力電圧指令値)と、各サブモジュール7の動作の同期をとるための同期指令とを含む。
セルキャパシタ電圧Vcapは、各サブモジュール7において検出された直流コンデンサ24の電圧値が中継装置32においてアーム回路ごとに平均化されたものである。制御装置30のより具体的な構成例については、図4で説明する。
保護装置31は、各サブモジュール7を保護するための保護指令を生成する。具体的には、保護装置31は、レグ回路4u,4v,4wの上アーム5を流れる上アーム電流Ipu,Ipv,Ipw、および下アーム6を流れる下アーム電流Inu,Inv,Inwの少なくとも1つが閾値を超えているか否か、すなわち、各アームの少なくとも1つに過電流が流れているか否かを判定する。
保護装置31は、各アーム電流の少なくとも1つが閾値を超えている場合には、各サブモジュール7の動作を停止させるための停止指令を含む保護指令を生成し、当該保護指令を各中継装置32に送信する。一方、保護装置31は、すべてのアーム電流が閾値未満である場合には、保護指令を生成しないか、あるいは、制御指令に基づいて各サブモジュール7を動作させる通常運転指令を含む保護指令を生成してもよい。
中継装置32は、制御装置30から制御指令を受信し、保護装置31から保護指令を受信する。中継装置32は、制御指令および保護指令の少なくとも一方を含む運転指令15を各サブモジュール7に出力する。本実施の形態の場合、運転指令15に含まれる制御指令は上アーム5ごと、および下アーム6ごとに設定されているが、保護指令は各サブモジュール7で共通である。図1および図2で説明したように各サブモジュール7は、運転指令15に従って動作する。中継装置32のより詳細な構成例については図5で説明する。
制御装置30は、予め定められた周期T1(例えば、電気角1.875°)ごとに、制御指令を中継装置32に送信する。系統周波数が60Hzである場合、電気角1.875°は、86.8μ秒に相当する。制御装置30におけるアーム電圧の指令値の演算にはある程度の時間がかかる。そのため、制御装置30が、周期T1ごとに制御指令を送信する場合、保護装置31は周期T1よりも短い周期T2(例えば、数μ秒)ごとに保護指令を送信する。
中継装置32は、周期T1よりも短い周期T3(例えば、数μ秒)ごとに運転指令15を各サブモジュール7に送信する。
制御指令、保護指令および運転指令15は、耐ノイズ性を高めるために光ファイバを介して伝送するようにしてもよい。また、制御装置30、保護装置31、および中継装置32は、専用回路によって構成してもよいし、その一部または全部をFPGA(Field Programmable Gate Array)および/またはマイクロプロセッサによって構成してもよい。なお、制御装置30および保護装置31は、例えば、ディジタル保護リレー装置で構成されていてもよい。
[制御装置の構成例]
図4は、実施の形態1に従う制御装置30の構成例を示すブロック図である。図4を参照して、制御装置30は、交流電圧指令生成部40と、直流電圧指令生成部41と、循環電流指令生成部42と、コンデンサ電圧指令生成部43と、アーム電圧指令生成部44とを含む。
交流電圧指令生成部40は、交流電圧検出器10によって検出されたU相、V相、W相の交流電圧値Vacu,Vacv,Vacwと、交流電流検出器16によって検出されたU相、V相、W相の交流電流値Iacu,Iacv,Iacwとに基づいて、各相の交流電圧指令値を生成する。交流電圧指令生成部40は、例えば、PID制御器(Proportional-Integral-Differential Controller)などのフィードバック制御器によって構成される。
直流電圧指令生成部41は、各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて直流電流値Idcを演算する。具体的には、上アーム電流Ipu,Ipv,Ipwの和をIdc_pとし、下アーム電流Inu,Inv,Inwの和をIdc_nとすれば、直流電流値Idcは、以下の式(1)によって計算できる。
Idc=(Idc_p+Idc_n)/2 ・・・(1)
直流電圧指令生成部41は、直流電圧検出器11A,11Bで検出された直流電圧値Vdcp,Vdcnと、算出した直流電流値Idcとに基づいて、直流電圧指令値を生成する。直流電圧指令生成部41は、例えば、PID制御器などのフィードバック制御器によって構成される。
循環電流指令生成部42は、まず、レグ回路4u,4v,4wにそれぞれ流れる循環電流Iccu,Iccv,Iccwを各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて計算する。循環電流は、複数のレグ回路4の間を循環する電流である。例えば、U相レグ回路4uを流れる循環電流Iccuは、以下の式(2)によって計算できる。
Iccu=(Ipu+Inu)/2−Idc/3 ・・・(2)
上式(2)の第1項はレグ回路4uの上アーム5および下アーム6に共通に流れる電流を表す。上記(2)の第2項は、直流電流値Idcが各レグ回路に均等に流れると仮定したときのU相レグ回路4uの分担分を表す。循環電流Iccv,Iccwについても同様に計算することができる。
循環電流指令生成部42は、算出された各相の循環電流Iccu,Iccv,Iccwと、アーム回路ごとに平均化されたセルキャパシタ電圧Vcapとに基づいて各相の循環電流の指令値を算出する。循環電流指令生成部42は、例えば、PID制御器などのフィードバック制御器によって構成される。
コンデンサ電圧指令生成部43は、アーム回路ごとに平均化されたセルキャパシタ電圧Vcapと、各相の上アーム電流Ipu,Ipv,Ipwおよび下アーム電流Inu,Inv,Inwに基づいて、各サブモジュール7の直流コンデンサの電圧指令値を生成する。コンデンサ電圧指令生成部43は、例えば、PID制御器などのフィードバック制御器によって構成される。
アーム電圧指令生成部44は、上記の各指令生成部を合成することによって、各相の上アーム5および下アーム6用のアーム電圧指令値Vprefu,Vnrefu,Vprefv,Vnrefv,Vprefw,Pnrefwを生成する。各相のアーム電圧指令値Vprefu,Vnrefu,Vprefv,Vnrefv,Vprefw,Pnrefwは、制御指令(電圧指令)として中継装置32に伝送される。以下の説明において、いずれの相であるかを特定しない場合には、単にアーム電圧指令値Vpref,Vnrefと記載する場合がある。
なお、上記で説明した制御装置30の構成は一例であって、他の構成の制御装置を本実施の形態に適用することができる。
[中継装置の構成および動作]
図5は、実施の形態1に従う中継装置32の構成および動作を説明するための図である。図5を参照して、中継装置32は、制御装置30および保護装置31と通信するための通信回路35と、各サブモジュール7と通信するための通信回路36と、専用通信路37A,37B,37Cと、データ通信路38とを含む。なお、専用通信路37A,37B,37Cについて、総称する場合または不特定のものを示す場合、専用通信路37と記載する。
通信回路35は、リング型のネットワークを介して、制御装置30と通信フレーム51を送受信する。また、通信回路35は、リング型のネットワークを介して、保護装置31Aと通信フレーム52Aを送受信し、保護装置31Bと通信フレーム52Bを送受信する。なお、通信フレーム52A,52Bについて、総称する場合または不特定のものを示す場合、通信フレーム52と記載する。通信回路36は、スター型のネットワークを介して、通信フレーム55を各サブモジュール7に送信する。ここで、通信フレーム51,52,55は、図6に示すような構成を有する。
図6は、実施の形態1に従う通信フレーム構成を模式的に示す図である。図6を参照して、通信フレームは、フラグ領域61と、ヘッダ領域62と、データ本体が格納されるペイロード領域63と、誤り検出情報が格納されるFCS(Frame Check Sequence)領域64とを含む。ヘッダ領域62には、通信コマンド、シーケンス番号、データ長等の情報が格納される。ペイロード領域63は、専用指令フィールド66と、データフィールド67とを含む。
図5および図6を参照して、制御装置30と中継装置32間で送受信される通信フレーム51のペイロード領域63には、制御指令および制御結果が格納される。具体的には、通信フレーム51の専用指令フィールド66には、制御指令のうちの同期指令が格納され、データフィールド67には、制御指令のうち同期指令以外の他の指令が格納される。他の指令は、電圧指令(例えば、各レグ回路4u,4v,4wの上アーム5の出力電圧指令値および下アーム6の出力電圧指令値)を含む。制御結果は、例えば、セルキャパシタ電圧Vcap等である。
保護装置31から送信される通信フレーム52のペイロード領域63には、保護指令のデータが格納される。具体的には、通信フレーム52の専用指令フィールド66には、保護指令のうちの停止指令が格納され、データフィールド67には、保護指令のうちの他の指令およびサブモジュールの状態情報が格納される。他の指令は、例えば、通常運転指令を含んでもよい。状態情報は、例えば、サブモジュールの動作状態、停止状態および故障情報などを含んでもよい。なお、通信フレーム52のデータフィールド67には、何のデータも格納されない構成であってもよい。この場合、保護指令は、実質的に停止指令と同一となる。
通信回路35は、制御装置30から受信した通信フレーム51の専用指令フィールド66から同期指令を抽出し、専用通信路37Aを介して、当該同期指令を通信回路36に送信する。同期指令は、専用信号に変換されて通信回路35から通信回路36に送信される。また、通信回路35は、通信フレーム51のデータフィールド67から電圧指令を抽出し、当該電圧指令を内部メモリに格納する。通信回路35は、予め定められた周期T4ごとに、内部メモリに格納された電圧指令を読み出して、データ通信路38を介して、通信回路36に送信する。
通信回路35は、保護装置31Aから受信した通信フレーム52Aの専用指令フィールド66から停止指令を抽出し、専用通信路37Bを介して、当該停止指令を通信回路36に送信する。停止指令は、専用信号に変換されて通信回路35から通信回路36に送信される。また、通信回路35は、通信フレーム52のデータフィールド67から他の指令を抽出し、当該他の指令を内部メモリに格納する。通信回路35は、予め定められた周期T4ごとに、内部メモリに格納された他の指令を読み出すとともに、データ通信路38を介して、通信回路36に送信する。なお、通信回路35は、保護装置31Bから受信した通信フレーム52Bから停止指令を抽出し、専用通信路37Bを介して、当該停止指令を通信回路36に送信する。
上記のように、電圧指令、および保護指令のうちの他の指令は、内部メモリに一旦格納され、周期T4ごとにデータ通信路38を介して送信される。一方、同期指令および停止指令は、内部メモリに格納されることなく、通信フレームから抽出されたらすぐに(すなわち、周期T4に関係なく)専用通信路37を介して送信される。
そのため、例えば、通信回路35が通信フレーム51を受信した場合、データ通信路38を介して送信される電圧指令よりも、専用通信路37Aを介して送信される同期指令の方が通信回路36に早く到達する。具体的には、通信回路35および通信回路36間における、専用通信路37を介した通信の通信速度は、通信回路35および通信回路36間における、データ通信路38を介した通信の通信速度よりも速い。換言すると、専用通信路37を用いた通信方式は、データ通信路38を用いた通信方式よりも通信速度が速い通信方式である。
通信回路36は、専用通信路37を介して、同期指令に対応する専用信号と、停止指令に対応する専用信号とを受信して、内部メモリに格納する。通信回路36は、データ通信路38を介して、電圧指令および他の指令(例えば、通常運転指令)を受信して、内部メモリに格納する。
通信回路36は、周期T3ごとに運転指令15を含む通信フレーム55を各サブモジュール7に送信する。具体的には、通信回路36から送信される通信フレーム55のペイロード領域63には、運転指令15が格納される。詳細には、通信フレーム55の専用指令フィールド66には、同期指令および停止指令が格納され、データフィールド67には、電圧指令、および保護指令のうちの他の指令が格納される。
通信回路36は、周期T3ごとに、内部メモリに格納された最新の情報(具体的には、同期指令、停止指令、電圧指令、および他の指令のうちの少なくとも1つ)を上記のように通信フレーム55の各領域に格納して、当該通信フレーム55を各サブモジュール7に送信する。
そのため、専用通信路37を用いて停止指令および同期指令を送信する構成は、専用通信路37の代わりにデータ通信路38を用いてこれらを送信する構成と比較して、保護装置31から各サブモジュール7に停止指令が到達する時間、および制御装置30から各サブモジュール7に同期指令が到達する時間を大幅に短くすることができる。
また、通信回路36は、各サブモジュール7からセルキャパシタ電圧の検出値を表す信号17を受信する。例えば、通信回路36は、各サブモジュール7の電圧検出部27で検出された直流コンデンサ24の電圧(すなわち、信号17)をアーム回路ごとに平均化することによって、セルキャパシタ電圧Vcapを計算する。セルキャパシタ電圧Vcapは、内部メモリに格納される。
通信回路36は、周期T4で、セルキャパシタ電圧Vcapを読み出して、データ通信路38を介して通信回路35に送信する。通信回路35は、通信フレーム51のデータフィールド67にセルキャパシタ電圧Vcapを格納して、当該通信フレーム51を制御装置30に送信する。セルキャパシタ電圧Vcapは、制御結果として、制御装置30によって制御指令を生成するために利用される。
<利点>
実施の形態1によると、系統事故等による過電流検出時における各サブモジュール7の動作の停止をより高速化でき、各サブモジュール7を適切に保護できる。また、各サブモジュール7の制御機能に関して、制御装置30が発行する同期信号を速やかに各サブモジュール7に伝達できるため、高速制御応答が可能となる。
実施の形態2.
図4で説明したように、制御装置30は、各中継装置32とリング型のネットワークで接続されている。リング型接続の場合、通信フレーム51は、複数の中継装置32を経由しながら送信される。そのため、制御装置30からある中継装置32に通信フレーム51が到達する時間と、制御装置30から他の中継装置32に通信フレーム51が到達する時間とは異なる。すなわち、各中継装置32間において、通信フレーム51に含まれる同期指令の到達時間にも差が生じる。
また、中継装置32は、各サブモジュール7とスター型で接続(一対一で接続)されている。そのため、中継装置32と各サブモジュール7間の通信ケーブル長が同じであれば、各サブモジュール7間において、中継装置32から送信される通信フレーム55の到達時間に差は生じない。このことから、各中継装置32間における同期指令の到達時間差が、各サブモジュール7の同期タイミングのずれ(ジッタ)に反映される。そこで、実施の形態2では、各中継装置32間における同期指令の到達時間差を低減するための構成について説明する。
図7は、実施の形態2に従う通信方式およびその利点を説明するための図である。具体的には、図7(a)は、比較例に従う通信方式を説明するための図である。図7(b)は、実施の形態2に従う通信方式を説明するための図である。
図7(a)を参照して、比較例に従う通信方式は、電圧指令、同期指令および制御結果を同一の通信フレームで通信する方式である。具体的には、当該通信フレームのペイロード領域には、電圧指令、同期指令および制御結果が格納される。当該通信フレームの構成は、実施の形態1で説明した通信フレーム51の構成と実質的に同一である。
この場合、制御装置30から送信された通信フレーム81は、中継装置32_1(図7中の中継装置(1)に対応)に最初に到達する。次に、通信フレーム81は、中継装置32_1から中継装置32_2に送信される。以降、通信フレーム81は、複数の中継装置32を経由して中継装置32_Nに到達した後、中継装置32_Nから制御装置30に送信される。制御装置30から送信された通信フレームが最初に到達する先頭の中継装置32_1と、当該通信フレームが最後に到達する末尾の中継装置32_Nとの間における当該通信フレームの到達時間差はTaである。
図7(b)を参照して、実施の形態2に従う通信方式は、電圧指令、同期指令および制御結果をそれぞれ異なる通信フレームを用いて通信する方式である。実施の形態2に従う通信方式では、制御装置30は、電圧指令を含む通信フレーム91と、同期指令を含む通信フレーム93と、制御結果を含む通信フレーム95とを各中継装置32に送信する。
具体的には、まず、電圧指令専用の通信フレーム91が、制御装置30から各中継装置32_1〜32_Nに送信され、中継装置32_Nから制御装置30に送信される。通信フレーム91は、フラグ領域と、ヘッダ領域と、ペイロード領域と、FCS領域とを含む。通信フレーム91のペイロード領域のデータフィールド(図6参照)には、制御装置30により電圧指令が格納される。なお、通信フレーム91のペイロード領域には同期指令は格納されない。そのため、当該ペイロード領域は、データフィールドのみを有し、専用指令フィールドを有さなくてもよい。または、当該ペイロード領域は、無効値を格納した専用指令フィールドを有してもよい。
次に、同期指令専用の通信フレーム93が、制御装置30から各中継装置32_1〜32_Nに送信され、中継装置32_Nから制御装置30に送信される。通信フレーム93は、フラグ領域と、ヘッダ領域と、ペイロード領域と、FCS領域とを含む。ペイロード領域の専用指令フィールドには、制御装置30により同期指令が格納される。なお、通信フレーム93のペイロード領域には電圧指令および制御結果が格納されないため、当該ペイロード領域は、専用指令フィールドのみを有し、データフィールドを有さなくてもよい。
ここで、中継装置32_1と中継装置32_Nとの間における通信フレーム93の到達時間差はTbであり、到達時間差Taよりも短い。これは、ペイロード領域に同期指令のみが格納される通信フレーム93は、ペイロード領域に電圧指令、同期指令および制御結果が格納される通信フレーム81と比較して通信フレーム長が短いためである。これにより、各中継装置32間における同期指令の到達時間差を低減できるため、各サブモジュール7の同期タイミングのずれであるジッタを低減できる。
最後に、制御結果専用の通信フレーム95が、制御装置30から各中継装置32_1〜32_Nに送信され、中継装置32_Nから制御装置30に送信される。通信フレーム95は、フラグ領域と、ヘッダ領域と、ペイロード領域と、FCS領域とを含む。通信フレーム95のペイロード領域のデータフィールドには、中継装置32により制御結果が格納される。なお、通信フレーム95のペイロード領域には同期指令が格納されない。そのため、当該ペイロード領域は、専用指令フィールドのみを有し、データフィールドを有さなくてもよい。または、当該ペイロード領域は、無効値を格納した専用指令フィールドを有してもよい。
上記では、制御装置30が、通信フレーム91,93,95の順に送信する構成について説明したが、当該構成に限られない。具体的には、制御装置30が、通信フレーム91を各中継装置32に送信した後に、通信フレーム93を各中継装置32に送信する構成であればよい。制御装置30は、例えば、通信フレーム95,91,93の順に送信する構成であってもよいし、通信フレーム91,95,93の順に送信する構成であってもよい。
あるいは、制御装置30は、ペイロード領域に電圧指令および制御結果が格納される通信フレームと、ペイロード領域に同期指令が格納される通信フレーム93とを送信する構成であってもよい。この場合、制御装置30は、電圧指令および制御結果が格納される通信フレーム、通信フレーム93の順に送信する。
<利点>
実施の形態2によると、制御装置30と各中継装置32とがリング型のネットワークで接続されている場合であっても、同期指令が各サブモジュール7に到達する時間をできるだけ短くすることができる。これにより、各サブモジュール7間において、同期指令の到達時間差を低減でき、同期タイミングのジッタを抑えることができる。
[その他の実施の形態]
上述した実施の形態では、電力変換装置1が複数の中継装置32を含む構成について説明したが、当該構成に限られない。例えば、電力変換装置1が1つの中継装置32を含む構成であってもよい。この場合、制御装置30および保護装置31の各々と、中継装置32とは、ポイントツーポイント型のネットワークを介して接続される。
上述した実施の形態では、図3において、U相用のN台の中継装置32_1〜32〜Nを1つのリング型通信回線で接続する構成について説明したが、当該構成に限られず、N台の中継装置を複数の通信回線で接続する構成であってもよい。例えば、1つのリング型通信回線に接続される中継装置の台数を最大4台とし、8台の中継装置を接続する場合、第1のリング型通信回線には4台の中継装置が接続され、第2のリング通信回線には残りの4台の中継装置が接続される。
上述した実施の形態では、保護装置31が、各アームの少なくとも1つに過電流が流れていると判定した場合に、停止指令を含む保護指令を各中継装置32に送信する構成について説明したが、当該構成に限られない。例えば、保護装置31は、過電流以外の電力系統の異常(例えば、過電圧、不足電圧、周波数異常等)を検出した場合に、当該保護指令を各中継装置32に送信する構成であってもよい。
上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。
また、上述した実施の形態において、その他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電力変換装置、2 電力変換回路部、3 指令生成部、4u,4v,4w レグ回路、5 上アーム、6 下アーム、7 サブモジュール、8A,8B リアクトル、9A,9B アーム電流検出器、10 交流電圧検出器、11A,11B 直流電圧検出器、12 交流回路、13 連系変圧器、14 直流回路、15nu,15nv,15nw,15pu,15pv,15pw 運転指令、16 交流電流検出器、17 信号、20HB 変換回路、21 ゲート制御部、22A,22B,22C,22D スイッチング素子、23A,23B ダイオード、24 直流コンデンサ、26N,26P 入出力端子、27 電圧検出部、28 送受信部、30 制御装置、31A,31B 保護装置、32 中継装置、35,36 通信回路、37A,37B,37C 専用通信路、38 データ通信路、40 交流電圧指令生成部、41 直流電圧指令生成部、42 循環電流指令生成部、43 コンデンサ電圧指令生成部、44 アーム電圧指令生成部、51,52A,52B,55,81,91,93,95 通信フレーム、61 フラグ領域、62 ヘッダ領域、63 ペイロード領域、64 FCS領域、66 専用指令フィールド、67 データフィールド。

Claims (9)

  1. 直流回路と交流回路との間で電力変換を行なう電力変換装置であって、
    互いに直列接続された複数のサブモジュールを含む電力変換回路部と、
    各前記サブモジュールを保護するための保護指令を生成する保護装置と、
    前記保護指令を各前記サブモジュールに出力する少なくとも1つの中継装置とを備え、
    前記保護指令は、各前記サブモジュールの動作を停止させるための停止指令を含み、
    前記中継装置は、
    前記保護装置と通信するための第1の通信回路と、
    前記電力変換回路部と通信するための第2の通信回路とを含み、
    前記第1の通信回路は、第1の通信路を介して、前記停止指令を前記第2の通信回路に送信し、第2の通信路を介して、前記停止指令とは異なる他の情報を前記第2の通信回路に送信し、
    前記第1の通信回路および前記第2の通信回路間における、前記第1の通信路を介した通信の通信速度は、前記第1の通信回路および前記第2の通信回路間における、前記第2の通信路を介した通信の通信速度よりも速い、電力変換装置。
  2. 各前記サブモジュールを運転制御するための制御指令を生成する制御装置をさらに備え、
    前記制御指令は、各前記サブモジュールの動作の同期をとるための同期指令を含み、
    前記中継装置は、前記制御指令を各前記サブモジュールに出力し、
    前記第1の通信回路は、前記第1の通信路を介して、前記同期指令を前記第2の通信回路に送信する、請求項1に記載の電力変換装置。
  3. 前記制御装置および前記保護装置の各々は、リング型のネットワークを介して、複数の前記中継装置に接続されている、請求項2に記載の電力変換装置。
  4. 前記中継装置は、スター型のネットワークを介して、前記複数のサブモジュールのうちの予め定められた数のサブモジュールと接続されている、請求項1〜請求項3のいずれか1項に記載の電力変換装置。
  5. 前記制御装置は、前記制御指令のうちの前記同期指令以外の他の指令を含む第1の通信フレームと、前記制御指令のうちの前記同期指令を含む第2の通信フレームとを複数の前記中継装置に送信する、請求項3に記載の電力変換装置。
  6. 前記電力変換回路部は、
    前記直流回路と接続された高電位側直流端子および低電位側直流端子と、
    前記交流回路の相にそれぞれ対応し、前記高電位側直流端子と前記低電位側直流端子との間に互いに並列に接続された複数のレグ回路とを含み、
    各前記レグ回路は、
    前記交流回路の対応する相と電気的に接続された接続部と、
    前記接続部と前記高電位側直流端子との間に直列に接続された複数の前記サブモジュールを含む上アームと、
    前記接続部と前記低電位側直流端子との間に直列に接続された複数の前記サブモジュールを含む下アームとを含み、
    前記他の指令は、前記上アームの出力電圧指令値および前記下アームの出力電圧指令値を含む、請求項5に記載の電力変換装置。
  7. 前記制御装置は、前記第1の通信フレームを複数の前記中継装置に送信した後に、前記第2の通信フレームを複数の前記中継装置に送信する、請求項6に記載の電力変換装置。
  8. 直流回路と交流回路との間で電力変換を行う電力変換装置であって、
    互いに直列接続された複数のサブモジュールを含む電力変換回路部と、
    各前記サブモジュールを運転制御するための制御指令を生成する制御装置と、
    前記制御指令を各前記サブモジュールに出力する複数の中継装置とを備え、
    前記制御指令は、各前記サブモジュールの動作の同期をとるための同期指令を含み、
    前記制御装置は、リング型のネットワークを介して、前記複数の中継装置に接続されており、
    各前記中継装置は、スター型のネットワークを介して、前記複数のサブモジュールのうちの予め定められた数のサブモジュールと接続されており、
    前記制御装置は、前記制御指令のうちの前記同期指令以外の他の指令を含む第1の通信フレームと、前記制御指令のうちの前記同期指令を含む第2の通信フレームとを複数の前記中継装置に送信する、電力変換装置。
  9. 直流回路と交流回路との間で電力変換を行う電力変換装置において用いられる通信方法であって、
    前記電力変換装置は、互いに直列接続された複数のサブモジュールを含む電力変換回路部と、各前記サブモジュールを保護するための保護指令を生成する保護装置と、前記保護指令を各前記サブモジュールに出力する少なくとも1つの中継装置とを備え、
    前記保護指令は、各前記サブモジュールの動作を停止させるための停止指令を含み、
    前記中継装置は、前記保護装置と通信するための第1の通信回路と、前記電力変換回路部と通信するための第2の通信回路とを含み、
    前記通信方法は、
    前記第1の通信回路が、第1の通信路を介して、前記停止指令を前記第2の通信回路に送信するステップと、
    前記第1の通信回路が、第2の通信路を介して、前記停止指令とは異なる他の情報を前記第2の通信回路に送信するステップとを含み、
    前記第1の通信回路および前記第2の通信回路間における、前記第1の通信路を介した通信の通信速度は、前記第1の通信回路および前記第2の通信回路間における、前記第2の通信路を介した通信の通信速度よりも速い、通信方法。
JP2018521446A 2017-03-03 2017-03-03 電力変換装置、および通信方法 Active JP6437164B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008497 WO2018158935A1 (ja) 2017-03-03 2017-03-03 電力変換装置、および通信方法

Publications (2)

Publication Number Publication Date
JP6437164B1 JP6437164B1 (ja) 2018-12-12
JPWO2018158935A1 true JPWO2018158935A1 (ja) 2019-03-14

Family

ID=63369858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521446A Active JP6437164B1 (ja) 2017-03-03 2017-03-03 電力変換装置、および通信方法

Country Status (4)

Country Link
US (1) US10819217B2 (ja)
EP (1) EP3591830A4 (ja)
JP (1) JP6437164B1 (ja)
WO (1) WO2018158935A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201461B2 (en) * 2017-06-08 2021-12-14 Mitsubishi Electric Corporation Power control system and control device for restoring AC system from power failure
EP3654510A1 (en) * 2018-11-19 2020-05-20 Maschinenfabrik Reinhausen GmbH Pre-charging a modular multilevel converter
JP7237145B2 (ja) * 2019-03-28 2023-03-10 三菱電機株式会社 制御装置および制御システム
US11632060B2 (en) * 2019-04-02 2023-04-18 Mitsubishi Electric Corporation Power conversion device
US11171575B2 (en) * 2019-04-22 2021-11-09 The Regents Of The University Of California Modular multilevel converter topologies
JP6608103B1 (ja) * 2019-05-21 2019-11-20 三菱電機株式会社 電力変換装置
JP6755436B1 (ja) * 2019-12-17 2020-09-16 三菱電機株式会社 電力変換システム
US11682968B2 (en) * 2020-04-09 2023-06-20 Virginia Tech Intellectual Properties, Inc. Control of power converters having integrated capacitor blocked transistor cells
EP4216421A1 (en) * 2020-09-18 2023-07-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133067A (ja) 1982-02-03 1983-08-08 Nec Corp ロ−カルエリアネツトワ−ク方式
JP2933640B2 (ja) * 1989-07-28 1999-08-16 三菱電機株式会社 交流電力変換器制御装置
JP2600960B2 (ja) 1990-03-16 1997-04-16 日本電気株式会社 伝送路の遅延補正方式
JPH0832606A (ja) 1994-07-12 1996-02-02 Matsushita Electric Ind Co Ltd リングネットワークシステム
US6760337B1 (en) * 1999-08-17 2004-07-06 Conexant Systems, Inc. Integrated circuit that processes communication packets with scheduler circuitry having multiple priority levels
JP5549505B2 (ja) * 2010-09-28 2014-07-16 日産自動車株式会社 温度保護装置、モータ制御装置及び温度保護方法
WO2014033155A1 (en) * 2012-08-28 2014-03-06 Abb Technology Ag Controlling a modular converter in two stages
US9564827B2 (en) * 2013-04-02 2017-02-07 Mitsubishi Electric Corporation Power conversion device
JP6088332B2 (ja) * 2013-04-10 2017-03-01 株式会社日立製作所 電力変換装置、直流送電システム、および、電力変換装置の制御方法
US9274998B2 (en) * 2013-07-30 2016-03-01 Infineon Technologies Ag Drive train control
JP6147363B2 (ja) * 2014-01-06 2017-06-14 三菱電機株式会社 電力変換装置
JP6158099B2 (ja) * 2014-01-07 2017-07-05 株式会社日立製作所 電力変換装置およびその制御方法
EP3093975B1 (en) * 2014-01-09 2022-09-28 Mitsubishi Electric Corporation Power conversion system
US9755542B2 (en) * 2014-05-21 2017-09-05 Mitsubishi Electric Corporation Direct-current power transmission power conversion device and direct-current power transmission power conversion method
US9806630B2 (en) * 2014-08-01 2017-10-31 Mitsubishi Electric Corporation Power conversion device
KR101806595B1 (ko) * 2014-10-30 2018-01-10 엘에스산전 주식회사 인버터 제어장치
JP6274447B2 (ja) * 2015-03-05 2018-02-07 三菱電機株式会社 電力変換装置
JP6227192B2 (ja) * 2015-03-17 2017-11-08 三菱電機株式会社 電力変換装置
US20180366943A1 (en) * 2015-07-03 2018-12-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Control device of power converter
JP6305653B2 (ja) * 2015-07-14 2018-04-04 三菱電機株式会社 電力変換装置
US10205402B2 (en) * 2015-09-17 2019-02-12 Mitsubishi Electric Corporation Power conversion device for converting power between a DC circuit and an AC circuit by performing a non-linear operation
EP3151413B1 (de) * 2015-10-02 2018-04-18 GE Energy Power Conversion Technology Ltd Steuervorrichtung und steuerverfahren für grosse stromrichter
GB2547936A (en) * 2016-03-03 2017-09-06 General Electric Technology Gmbh Fault protection for voltage source converters
JP6253858B1 (ja) * 2016-03-15 2017-12-27 三菱電機株式会社 電力変換装置および電力システム
EP3544171B1 (en) * 2016-11-21 2023-07-19 Mitsubishi Electric Corporation Power conversion device
WO2018154783A1 (ja) * 2017-02-27 2018-08-30 三菱電機株式会社 電力変換装置および直流送電システム
JP6261842B1 (ja) * 2017-05-18 2018-01-17 三菱電機株式会社 無効電力補償装置およびその制御方法
US11201461B2 (en) * 2017-06-08 2021-12-14 Mitsubishi Electric Corporation Power control system and control device for restoring AC system from power failure
JP6926707B2 (ja) * 2017-06-14 2021-08-25 住友電気工業株式会社 スイッチ装置、通信制御方法および通信制御プログラム
TWI656756B (zh) * 2018-01-29 2019-04-11 瑞昱半導體股份有限公司 無線通訊裝置及其操作方法
KR102588522B1 (ko) * 2018-10-26 2023-10-13 삼성전자주식회사 배터리의 충전을 제어하기 위한 전자 장치 및 방법

Also Published As

Publication number Publication date
EP3591830A4 (en) 2020-03-04
US20200259411A1 (en) 2020-08-13
WO2018158935A1 (ja) 2018-09-07
US10819217B2 (en) 2020-10-27
EP3591830A1 (en) 2020-01-08
JP6437164B1 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6437164B1 (ja) 電力変換装置、および通信方法
JP6336236B1 (ja) 電力変換装置
US11070124B2 (en) Power conversion device
EP2786479B1 (en) Power converter
US9847737B2 (en) Modular multilevel converter leg with flat-top PWM modulation, converter and hybrid converter topologies
JP6599071B1 (ja) 電力変換装置
EP3032677A1 (en) DC electrical network
JP6755436B1 (ja) 電力変換システム
JP6425855B1 (ja) 電力変換装置
US20180166877A1 (en) Voltage source converter
CN113508506B (zh) 一种光伏发电系统、光伏逆变器及直流汇流箱
US11909201B2 (en) Multi-terminal DC power transmission system, common control device thereof, and fault recovery method for multi-terminal DC power transmission system
JPWO2020110203A1 (ja) 電力変換装置
JP7134306B2 (ja) 電力変換システムおよびその制御装置
JP6765588B1 (ja) 電力変換システム
JP2002095164A (ja) 瞬停対策連係装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180425

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181113

R150 Certificate of patent or registration of utility model

Ref document number: 6437164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250