JPWO2018097242A1 - ネットワーキングシステム - Google Patents

ネットワーキングシステム Download PDF

Info

Publication number
JPWO2018097242A1
JPWO2018097242A1 JP2018552972A JP2018552972A JPWO2018097242A1 JP WO2018097242 A1 JPWO2018097242 A1 JP WO2018097242A1 JP 2018552972 A JP2018552972 A JP 2018552972A JP 2018552972 A JP2018552972 A JP 2018552972A JP WO2018097242 A1 JPWO2018097242 A1 JP WO2018097242A1
Authority
JP
Japan
Prior art keywords
node
data
abnormality
networking system
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018552972A
Other languages
English (en)
Other versions
JP6989959B2 (ja
Inventor
博昭 西川
秀次 三宮
Original Assignee
国立大学法人 筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 筑波大学 filed Critical 国立大学法人 筑波大学
Publication of JPWO2018097242A1 publication Critical patent/JPWO2018097242A1/ja
Application granted granted Critical
Publication of JP6989959B2 publication Critical patent/JP6989959B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3024Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/82Architectures of general purpose stored program computers data or demand driven
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • H04L41/064Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis involving time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/069Management of faults, events, alarms or notifications using logs of notifications; Post-processing of notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • H04W12/121Wireless intrusion detection systems [WIDS]; Wireless intrusion prevention systems [WIPS]
    • H04W12/122Counter-measures against attacks; Protection against rogue devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Debugging And Monitoring (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

複数のノード(N1)が通信網で接続されたネットワーキングシステム(S)であって、各ノード(N1)は、他のノード(N1)から受信したデータを処理する際の消費電流(Iss)の累積が、前記他のノードでのイベントに基づいて予め見積もられた電流値の範囲(R1)から外れている場合に前記他のノード(N1)を異常と判別する異常判別部(103)と、を有することを特徴とするネットワーキングシステム(S)により、ネットワーク上のノードの異常を簡素な構成で検出可能にする。

Description

本発明は、複数のノードの間でデータの送受信が可能なネットワーキングシステムに関する。
複数のノードの間でデータの送受信が可能なネットワーキングシステムに関して、下記の特許文献1に記載の技術が従来公知である。
特許文献1(特開2010−20598号公報)には、データ駆動型プロセッサを有するノードが自律分散型通信網(アドホックネットワーク)で接続され、データの送受信が行われるネットワークシステムが記載されている。
特開2010−20598号公報
(従来技術の問題点)
特許文献1に記載の技術では、ネットワークに存在する複数のノードの中で、あるノードに異常、例えば、故障や外部からの攻撃(DoS:Denial of Service等)、コンピュータウィルスへの感染による通信不能や逆に大量のデータの送信が発生した場合に、異常が発生したノードを介して接続されている別のノードどうしで通信ができなくなる問題がある。
また、異常が発生したノードは、自身で異常が発生したことを外部に通知できないことが一般的である。すなわち、異常が発生したノードは、送信不能であったり、外部からの攻撃で異常が発生したことを通知できなかったりするためである。そして、特許文献1に記載されているような一般的なアドホックネットワークでは、相互にノードの異常を監視するような仕組みは備わっていない。
したがって、ネットワーク上のあるノードに異常が発生した場合に、ネットワークが維持できなくなる恐れがあった。
本発明は、ネットワーク上のノードの異常を簡素な構成で検出可能にすることを技術的課題とする。
前記技術的課題を解決するために、請求項1に記載の発明のネットワーキングシステムは、
複数のノードが通信網で接続されたネットワーキングシステムであって、
各ノードは、自己同期型パイプラインからなるデータ駆動型プロセッサと、前記データ駆動型プロセッサに電力を供給する電源回路と、前記データ駆動型プロセッサにおける消費電流を検出する消費電流検出部と、他のノードからのデータを受信する受信部と、他のノードから受信したデータを処理する際の消費電流の累積が、前記他のノードでのイベントに基づいて予め見積もられた電流値の範囲から外れている場合に、前記他のノードを異常と判別する異常判別部と、を有する
ことを特徴とする。
請求項2に記載の発明は、請求項1に記載のネットワーキングシステムにおいて、
前記異常判別部が異常と判別したノードからのデータを前記受信部が受信した場合に、受信したデータを破棄することで、異常と判別されたノードをネットワークから隔離するデータ破棄部、
を備えたことを特徴とする。
請求項3に記載の発明は、請求項1に記載のネットワーキングシステムにおいて、
各ノードの死活監視のための情報をネットワークを介して送受信して異常の判別を行う構成を有しない、
ことを特徴とする。
請求項4に記載の発明は、請求項1に記載のネットワーキングシステムにおいて、
前記イベントの総量に基づいて予め見積もられた電流値の範囲、
を備えたことを特徴とする。
請求項5に記載の発明は、請求項1に記載のネットワーキングシステムにおいて、
前記イベントの周期に基づいて予め見積もられた電流値の範囲、
を備えたことを特徴とする。
請求項1に記載の発明によれば、各ノードの異常判別部が、他のノードの異常を判別することで、各デバイスで異常が発生していないかを相互に監視することができ、ネットワーク上のノードの異常を簡素な構成で検出可能にすることができる。また、請求項1に記載の発明によれば、処理負荷と消費電流との相関が強いデータ駆動型プロセッサを使用することで、異常の判別を精度良く行うことができる。さらに、請求項1に記載の発明によれば、消費電流の累積が、前記他のノードでのイベントに基づいて予め見積もられた電流値の範囲から外れているかを判別することで、処理負荷が過剰または過少な場合に異常と判別できる。
請求項2に記載の発明によれば、異常が発生したノードからのデータを破棄することで、異常が発生したノードを実質的にネットワークから自動的に隔離することができる。
請求項3に記載の発明によれば、各ノードの死活監視のための構成を有しないので、死活監視専用の構成による処理負荷の発生が無く、消費電流を検出するだけで異常を精度良く判別することができる。
請求項4に記載の発明によれば、イベントの総量に応じて見積もられる消費電流の範囲から外れている場合に異常を判別することができる。
請求項5に記載の発明によれば、イベントの周期に応じて見積もられる消費電流の範囲から外れている場合に異常を判別することができる。
図1は本発明の実施例1のデータ駆動型処理装置を備えたネットワーキングシステムの全体説明図である。 図2は実施例1のデータ駆動型プロセッサの機能を機能ブロック図で示した図である。 図3は実施例1のデータ駆動型プロセッサが実装されたLSIにおけるブロック図であり、自己同期型エラスティックパイプラインの説明図である。 図4は実施例1の処理負荷と消費電流との関係の説明図である。 図5は実施例1のネットワーキングシステムの一例の説明図であり、図5Aは異常なノードが発生する前の状態の説明図、図5Bは異常なノードが発生した場合の説明図である。
次に図面を参照しながら、本発明の実施の形態の具体例である実施例を説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
図1は本発明の実施例1のデータ駆動型処理装置を備えたネットワーキングシステムの全体説明図である。
図1において、本発明の実施例1のネットワーキングシステムSは、データ駆動型処理装置の一例としてのセンサノード(ノード)N1を複数有する。また、実施例1のネットワーキングシステムSでは、センサノード(ノード)N1の一例として、機械警備装置や、水道管やガス管等の構造物の監視(モニタリング)装置、高架橋や土砂崩れしそうな場所の監視装置、大気汚染物質や放射線等の監視装置に適用可能である。さらに、実施例1のネットワーキングシステムSには、データ駆動型処理装置の一例としての警備会社や管理会社、監視機関のセンターに設置されたノード(センターノード)N2も設けられている。なお、実施例1では、各ノードN1,N2には、固有の識別情報(ノードID)が割り振られている。
前記各ノードN1は、処理部の一例としてのデータ駆動型プロセッサ1を有する。データ駆動型プロセッサ1は、発火制御部(FC:Firing Control)や命令フェッチ部(IF:Instruction Fetch)、命令デコード部(ID:Instruction Decode)、データ処理部(演算部、EX:EXecution)、メモリアクセス部(MA:Memory Access/WB:Write Back)等を有し、自己同期型パイプライン構造を有する従来公知のプロセッサであり、自己同期型のパイプライン構造は、例えば、国際公開第2013/011653号公報等に記載されており、種々の構成を採用可能であるので、詳細な説明は省略する。
データ駆動型プロセッサ1には、通信部の一例としての無線通信モジュール2や、監視部の一例としてのセンサ3、表示部材の一例としてのディスプレイ4が電気的に接続されている。
無線通信モジュール2は、他のノードN1との間で、無線通信によりデータの送受信が可能に構成されている。なお、実施例1の無線通信の方式は、従来公知の任意の構成を採用可能であり、無線LANや携帯電話回線網、近距離無線通信(NFC)等を採用可能である。なお、実施例1では、自律分散型通信網の一例としてのセンサネットワーク方式、または、アドホック(Ad hoc)方式を採用することが可能である。すなわち、インフラストラクチャー方式のようにネットワークを統括するアクセスポイントと各ノードとの間で通信を行うのではなく、ノードどうしの間で直接通信を行う方式を採用している。なお、通信網は、実施例で例示した自律分散型通信網に限定されず、有線の通信網や、インフラストラクチャー方式のように通信の経路が統括(ルーティング)された通信網にも適用可能である。
また、実施例1のセンサ3は、例えば、加速度センサにより構成されており、ノードN1の振動をセンシング、モニタリングする。したがって、ノードN1が盗難等で設置場所から取外したり、持ち運ばれる場合の振動を検知することが可能である。なお、センサ3として加速度センサを例示したが、これに限定されない。例えば、赤外線や可視光等の電磁波で、監視対象の一例としての人や動物を検知する機械警備用のセンサに適用したり、監視対象の一例としての火災の煙や熱を感知する火災報知用のセンサ等の任意のセンサに適用可能である。また、防犯カメラのような画像信号といった信号が入力される任意の部材を使用可能である。他にも、可燃ガスのガス漏れや水漏れといった公共インフラや民間インフラの監視をするセンサ、家庭やオフィスでの消費電力を遠隔で検知するスマートメータ、独居の人を見守るための見守りセンサ、自動販売機における売り切れや故障の検知等のM2M(Machine-to-Machine)、通信機能をもつ物同士がインターネットを介して接続されて自動認識や自動制御、遠隔計測などを行うこと、いわゆる、IoT(Internet of Things)技術関連等を含むあらゆるセンサ(センシングネットワーク)にも適用可能である。
実施例1では、各ノードN1,N2間で送受信されるデータは、送信元のノードN1の識別情報(ノードID)と、データの識別情報(データID)と、センサ3の検知結果等のデータ本体と、が含まれる。
また、実施例1のデータ駆動型プロセッサ1は、複数のコア1a,1b,1c,…を有する構成、いわゆるマルチコアプロセッサにより構成されている。実施例1では、各コア1a,1b,1c,…ごとに、処理が割り振られている。例えば、第1のコア1aは、自ノードN1のセンサ3の検知結果の処理や、受信データの振り分け等を行うように設定されている。第2のコア1bは、隣接する第1のノードN1,N2からの受信データを処理し、第3のコア1c、第4のコア1d、…は、隣接する第2のノードN1,N2、第3のノードN1,N2、…からの受信データを処理するように設定されている。
図2は実施例1のデータ駆動型プロセッサの機能を機能ブロック図で示した図である。
図2において、実施例1のデータ駆動型プロセッサ1は、以下の機能部(機能モジュール)101〜109を有する。なお、実施例1では、各コアごとに各機能部101〜109を有する。
電源制御部101は、データ駆動型プロセッサ1への供給電圧を制御する。
図3は実施例1のデータ駆動型プロセッサが実装されたLSIにおけるブロック図であり、自己同期型エラスティックパイプラインの説明図である。
図3において、実施例1のデータ駆動型プロセッサ1のプロセッサコア21は、自己同期型エラスティックパイプラインによるパイプライン構造を有している。実施例1のプロセッサコア21は、機能ブロック上(アーキテクチャ上)のパイプラインステージに対応する複数のパイプラインステージ51を有する。
図3において、各パイプラインステージ51は、パケットの流れに沿って上流側のパイプラインステージ51から送信されたパケットに基づいて各パイプラインステージ51の処理を実行する論理回路(LC:Logic Circuit)52と、論理回路52に接続され且つ論理回路52で処理されたパケットを保持するデータラッチ(DL:Data Latch)53と、データラッチ53へ同期信号(クロック信号、トリガー信号)を供給する自己同期型転送制御機構(STCM:Self-timed Transfer Control Mechanism)54とを有する。
なお、実施例1の自己同期型転送制御機構54は、特開2010−20598号公報に記載された構成と同様に構成されており、各データラッチ53に対応して設けられたデータ転送制御回路の一例としてのC素子(Coincidence Element)54aと、各論理回路52におけるパケット処理時間を保証する遅延素子(Delay Element)54bとを有する。なお、実施例1の自己同期型転送制御機構54の動作、制御に関しては、特開2010−20598号公報に記載されているように公知であるため、詳細な説明は省略する。
前記論理回路52およびデータラッチ53には、駆動用の駆動電圧を供給する電源供給線56が接続されている。前記電源供給線56は、論理回路52で処理を実行する際に必要な駆動電圧(正電圧、ドレイン電圧、駆動電力)Vddを供給する駆動電圧線56aと、論理回路52で処理を実行せず且つデータラッチ53でパケットデータを保持するのに十分で駆動電圧Vddよりも低い電圧である最低電圧(最低電力、データ保持用電力)Vminを供給する最低電圧線56bと、負電圧(ソース電圧、基準電圧、例えば接地:アース)Vssを供給する負電圧線56cとを有し、各電圧線56a〜56cには、各パイプラインステージ51毎に、電圧供給の接続、切り離しを切り替える切り替え素子の一例としてのパワースイッチ(PS)56dが設けられている。すなわち、前記パワースイッチ56dを制御することで、各論理回路52およびデータラッチ53に駆動電圧Vddや最低電圧Vminを供給したり、電圧供給をオフにすることができる。
前記電源供給線56には、電源回路57が接続されており、前記各電圧Vdd,Vmin,Vssを供給する。なお、前記電源回路57には、前記電源制御部101が接続されており、駆動電圧Vddは、電源制御部101により可変の電圧値に制御される。
なお、実施例1では、データ駆動型プロセッサ1には、ノードN1に設置された電池から、電力が供給されるように構成されているが、電源は電池に限定されず、住宅やオフィス等のコンセントや充電可能なバッテリー等の任意の電源を採用可能である。
電源供給線56には、検流計58が接続されており、図示しないADC(アナログデジタルコンバータ)を介して、電源供給線56における消費電流値Issが消費電流検出部102により検出される。なお、電源制御部101は、データ駆動型プロセッサ1の処理負荷により増減する消費電流値Issに応じて、駆動電圧Vddの値を増減する。
なお、実施例1では、データ駆動型プロセッサ1(各制御部101,102)と、電源回路57、検流計58等は、ワンチップで構成されているが、これに限定されず、データ駆動型プロセッサ1と電源回路57等は、2つ以上の別チップの構成とすることも可能である。
図4は実施例1の処理負荷と消費電流との関係の説明図である。
異常判別部103は、消費電流検出部102が検出した消費電流値Issが、予め見積もられた電流値の範囲から外れている場合に、異常と判別する。
なお、実施例1の異常判別部103は、センシング対象のイベントの周期性から計測に必要な十分な時間(センシング結果のゆらぎなどに影響を受けない程度に十分な時間)に基づいて予め設定された期間の消費電流値Issの累積値に基づき、消費電流値Issの累積値が、予め見積もられた電流値の範囲から外れているか否かを判別する。
なお、イベントとしては、各センサノードN1がセンシングする対象により異なるが、例えば、センサノードN1が人感センサのように動く物体を検知する場合には、物体の検知がイベントとなり、音を検知するセンサの場合は音の検知がイベントとなる。また、例えば、振動を検知するセンサの場合には振動の検知がイベントとなり、温度を検知するセンサの場合には温度の検知がイベントとなる。そして、これらのイベントが発生すると、処理に伴って電力が消費され、検知結果が送信されることとなる。したがって、イベントの発生頻度(イベントの周期性)や回数(イベントの総量)が多くなると、消費電流が多くなり、発生頻度等が少なくなると消費電流が少なくなる。
そして、管理者やユーザの経験や、一定期間設置して計測することで、各ノードN1においてイベントが発生する頻度や回数は見積もることが可能であり、消費電流の範囲も見積もることが可能である。したがって、センサが故障したりセンシング対象に異常が発生等すると、全くイベントが発生しなくなったり、逆に、異常に多い回数イベントが発生することとなり、見積もられた電流値の範囲から外れることとなる。
ここで、見積もられる電流値の範囲は、例えば、通信の頻度(決まった時間内に送受信されるパケット量)に応じて予め見積もることが可能である。他にも、センサノードN1のセンシングの感度(感度が敏感な場合はイベント検知の頻度が高くなる)に応じて、ノードN1,N2ごとに見積もられる。また、電車のように定刻に通過する物体を検知(定期的、周期的に検知)する位置にセンサノードN1が配置されていたり、電車等の振動を定期的、周期的に検知するセンサノードN1であったり、時計の鐘の音のような定期的に発生する音を検知するセンサノードN1であったり、日中や夜間で変動する温度変化を検知するセンサノードN1である等、イベントの周期性、総量に応じて、ノードN1,N2ごとに見積もられる。
さらに、消費電流値Issの累積値を計測する期間は、センシング対象やネットワークシステムの仕様や設計等に応じて、任意に変更可能であるが、一瞬とすることも可能であるし、一定期間とすることも可能である。また、累積値の経時変化(プロファイル)を計測して、プロファイルの曲線の傾きや、極大値と極小値のピーク間の幅等が、予め見積もられた範囲に収まっているか否かで判別する構成とすることも可能である。
図4において、実施例1の電流値の範囲R1は、データ駆動型プロセッサ1の処理負荷に応じた消費電流値61にマージン62を考慮した範囲R1が、予め見積もられている。よって、例えば、ノードN1の機材が落下したり、地震が発生する等して、センシング対象である振動(イベント)が大きくなる、あるいはイベント数が増えると、消費電流値Issは電流値の範囲R1を超えた値となる。
また、センサ3が故障して、信号が入力されなくなると、消費電流値Issは、電流値の範囲R1よりも小さい値となる。さらに、センサ3が故障した場合に、ノイズのような信号が常時入力され続けると、消費電流値Issは、電流値の範囲R1を超えた値となる。
また、データ駆動型プロセッサ1自体が故障すると、前述のようにイベントが全く発生しなくなって電流が消費されなくなったり、暴走して同じ処理を繰り返して消費電流値Issが電流値の範囲R1に収まらなくなることもある。
よって、実施例1の異常判別部103では、消費電流値Issの異常から、センシング対象の異常やセンサ3の異常、データ駆動型プロセッサ1自体の異常を検知することができる。なお、消費電流値Issは、入力パケット量に基づく場合に比べて、データ駆動型プロセッサ1の処理負荷と相関性が高く、精度が良い。よって、センサ3等の異常の検知の精度も向上しやすい。
さらに、実施例1の異常判別部103は、当該プロセッサコアが、他のノードN1,N2からのデータを処理する場合、他のノードN1,N2のデータ駆動型プロセッサ1や無線通信モジュール2、センサ3のいずれかまたは全てが故障して、長期間データが受信されない場合(他のノードN1,N2が、いわゆる「沈黙」した場合)、そのコアの消費電流値Issが範囲R1よりも少なくなる。逆に、他のノードN1,N2の故障や外部からの攻撃等で、予め見積もられた頻度よりも高頻度にデータを受信した場合(他のノードN1,N2が、いわゆる「暴走」した場合)、そのコアの消費電流値Issが範囲R1を超える。よって、そのコアが処理を担当していているノードN1,N2の異常(故障や外部からの攻撃等)を判別することも可能である。
図2において、受信部104は、他のノードN1,N2から送信(放送)されたデータを受信する。
受信履歴記憶部105は、受信部104で受信したデータに含まれるノードIDとデータIDを記憶する。
異常ノード記憶部106は、異常判別部103で異常と判別されたノードN1,N2を記憶する。実施例1の異常ノード記憶部106は、異常と判別されたノードN1のノードIDを記憶する。
既受信判別部107は、受信部104が受信したデータが、既に別のノードN1から放送されて受信済みのデータと同一か否かを判別する。実施例1の既受信判別部107は、受信したデータに含まれるノードIDとデータIDから、既に受信したデータと同一の送信元(中継ノードではなく発信元のノード)からのデータであるか否かを判別する。
データ破棄部108は、異常と判別されたノードN1からのデータを受信した場合に、受信データを破棄する。また、実施例1のデータ破棄部108は、既受信データを受信した場合にも、受信データを破棄する。
送信部の一例としての放送部109は、センサ3での検知結果(監視結果)を周辺のノードN1,N2に対して放送(送信)する。すなわち、自ノードN1から電波の届く範囲に存在するノードN1,N2に向けて、データを送信、すなわち、放送する。また、放送部109は、異常が発生していない他ノードN1,N2からのデータを、周辺のノードN1,N2に向けて送信(いわば、転送あるいは再放送)する。
図5は実施例1のネットワーキングシステムの一例の説明図であり、図5Aは異常なノードが発生する前の状態の説明図、図5Bは異常なノードが発生した場合の説明図である。
前記構成を備えた実施例1のネットワーキングシステムSでは、自ノードN1,N2がデータを受信した場合、放送部109が周辺の他ノードN1,N2に向けて送信(放送)する。図5において、一例として、ノードN1a〜N1g,N2を有するネットワークを考える。図5Aにおいて、センターノードN2からデータが発信される場合、ノードN1aは、センターノードN2から放送されたデータを直接受信する場合と、ノードN1bが受信、再放送した(ノードN1bを中継した)データを受信する場合がある。実施例1では、ノードN1aがセンターノードN2から先にデータを受信し、ノードN1bを中継したデータを後から受信すると、既受信判別部107で判別されて、データ破棄部108で破棄される。したがって、ノードN1aにおいて、同一のデータを重複して処理することが低減される。よって、各ノードN1,N2に於ける処理負荷が低減される。また、同一のデータを受信した場合に破棄されるので、ノードN1aから再送信されない。したがって、ネットワークの混雑も低減される。
したがって、図5Aの実線に示すように、各ノードN1a〜N1gには、ノードN2からのデータが、各ノードN1a〜N1gで受信、再放送(転送)されることで、全てのノードN1a〜N1gにデータが到達する。なお、図5において、一例として、実線で示した経路でデータが先に到達し、破線で示した経路ではデータが後に到達して破棄されたものを示す。
また、実施例1のネットワーキングシステムSでは、各ノードN1,N2が、周辺のノードN1,N2が異常であるか否かを判別する。すなわち、ネットワークを構成するノードN1,N2が相互に異常を監視し合う構成となっている。従来、ノードN1,N2の異常を相互に監視する構成はなかった。仮に、各ノードに異常を検知するためのセンサを配置した構成において、通信モジュールやプロセッサに異常が発生した場合、異常の検知結果を送信しようとしても、データの送信自体ができない。よって、異常検知用のセンサを設けたり、異常検知結果の通信用のネットワークを別個に構築すれば、コスト高になる問題があった。これに対して、実施例1のネットワーキングシステムSでは、他ノードN1,N2との通信データの処理状況に基づいて、他ノードN1,N2の異常を検知することができる。よって、他ノードN1,N2自体に異常検知用のセンサを設けたり、別個のネットワークを構築する場合に比べて、簡素な構成とすることができ、コストを低減できる。
特に、実施例1のネットワーキングシステムSでは、データ駆動型プロセッサ1が使用されている。前述のように、データ駆動型プロセッサ1の処理負荷と消費電流との相関性が高く、精度が良い。従来の一般的なノイマン型のプロセッサでは、プログラム(ソフトウェア)により負荷を計測することとなる。従来のノイマン型のプロセッサでは、処理負荷を観測する行為、すなわち、負荷計測用プログラムは、受信データ等を処理しているプロセッサコアの上で動作させる必要がある。言い換えれば、プロセッサの処理負荷のみを外部から観測することができない。よって、負荷計測用プログラムの実行自体が予測できない負荷となり、実行時の負荷が予め正確に把握できない。よって、処理負荷と消費電流とが必ずしも連動しない(相関性が低い)。また、負荷計測用プログラムの実行による負荷が必ず生じるため、負荷がゼロ(あるいは、ほぼゼロ)であることが計測できない。よって、他のノードが故障等により停止したこと(死活監視)を正確に検出できず、死活監視の構成が別途必要になる問題がある。
例えば、死活監視(例えば、PING監視)は、死活監視用の情報(PING)を定期的に送受信して、送受信された情報を各ノードでソフトウェアで処理(PINGの応答処理や死活判別処理)することで異常を検出している。したがって、正常時でも死活監視用の情報の送受信が発生し、ネットワークにおいて本来の通信(死活監視以外のデータの送受信)に対してオーバヘッドが発生する。
また、従来の死活監視では、異常の判別のためにCPU(ハードウェア)や、ソフトウェアが動作している必要があり(リソースが必要であり)、負荷が発生することとなる。よって、消費電流と処理の負荷との相関性が低くなる。したがって、従来の構成では、消費電流を観測するだけでは、処理の負荷を判別することは困難である。また、前述のように、CPU、ソフトウェアが動作していないと異常の判別ができないため、CPUやメモリ等が故障したり、ソフトウェアが暴走すると異常の判別ができない問題もある。
これらに対して、実施例1のネットワーキングシステムSでは、データ駆動型プロセッサ1を使用しており、処理負荷と相関性が高い消費電流を観測するだけで、死活監視のための専用の構成(ソフトウェア)を必要とせずに、異常の判別をすることが可能である。
また、異常判別部103や消費電流検出部102は、受信データ等を処理しているプロセッサコアの外に設けることが可能である。なお、異常判別部103等は、ハードウェアで実装することも可能であるが、マルチプロセッサコア構成において異常判別専用のプロセッサコアを設けて、異常判別専用のプロセッサコアにおいてソフトウェア的に実現することも可能である。前述のように、従来のノイマン型プロセッサでは、負荷計測用(死活監視用)のプログラムを、受信データ等を処理しているプロセッサコアの上で動作させる必要がある。よって、従来のノイマン型プロセッサではできなかった外部からの負荷の観測が、実施例1のネットワーキングシステムSでは可能になる。
また、前述のように、従来の死活監視は、問い合わせ(PING)とその応答データをネットワーク上でやりとりする構成であり、本来の通信に対してオーバヘッドが発生する問題もある。しかし、実施例1のネットワーキングシステムSでは、各ノードN1,N2において、データ駆動型プロセッサ1の処理負荷を、データ駆動型プロセッサ1の外部から観測することができ、オーバヘッドの問題も発生しない。よって、死活監視のための情報をネットワークを介して送受信して異常の判別を行う死活監視専用のソフトウェアも必要なくなる。
また、実施例1のネットワーキングシステムSでは、異常と判別されたノードN1,N2から送信されたデータは破棄(無視)する。したがって、異常と判別されたノードN1,N2は、実質的には、ネットワークから、いわば隔離されたような状態となる。よって、実施例1のネットワーキングシステムSでは、各ノードN1,N2が、異常がないか相互に監視しあって、異常が発生したノードN1,N2をネットワークから自動的に隔離することができる。
図5において、ノードN1dに異常が発生した場合を考える。ノードN1dに異常が発生すると、ノードN1dから無線の電波が届く範囲にあるノードN1b,N1c,N1e,N1gが異常を検出する。したがって、ノードN1dからの受信データが破棄される。よって、異常が発生したノードN1dからの悪影響が局所化される(悪影響がネットワークに波及することが抑制される)。よって、異常が発生したノードN1dが、ネットワークから、いわば隔離されたような状態となる。
また、図5Aにおいて、ノードN1gには、異常が発生したノードN1dが放送したデータを受信していたが、ノードN1dに異常が発生した場合には、図5Bに示すようにノードN1e,N1fを経由したデータが到達する。したがって、異常が発生したノードN1dが隔離されても、ノードN1gにはデータが到達することとなり、異常が発生したノードN1dが隔離された状態でもネットワークが維持できる。よって、実施例1のネットワーキングシステムSでは、データの送信経路上のノードに異常が発生しても自動的に迂回した経路でデータが送信され、到達することとなり、良い意味での冗長性を有する。
なお、実施例1において、ノードN1の異常を検知した場合に、センターノードN2に向けて異常が発生したノードを通報するためのデータを送信する様に構成することも可能である。
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。
例えば、実施例では、各プロセッサコア1a,1b,1c,…に、消費電流検出部102や異常判別部103を設ける構成を例示したが、これに限定されない。例えば、データ駆動型プロセッサ1の全体の消費電流に基づいて異常を検知し、異常を検出した後に、パケットの処理が過剰または過少なコアから、異常の箇所(自ノードや他ノード)を特定するように構成することも可能である。
前記実施例において、ディスプレイ4を有する構成を例示したが、これに限定されず、ディスプレイを有しない構成とすることも可能である。また、ノードN1の構成として、ディスプレイ4や無線通信モジュール2以外にも、アクチュエータや、ランプやブザー等、任意の部材を有する構成とすることも可能である。
前記実施例において、各センサノードN1は、監視部の一例としてのセンサ3を有する構成を例示したが、これに限定されない。例えば、センサ3を有さず、ネットワークにおいて、他のノードからのデータを受信して、更に別のノードにデータを送信(転送、再放送)するノード、いわゆる中継ノードにも、本発明の異常判別(相互異常監視)やデータの破棄(ノードの隔離)の構成を適用することも可能である。また、実施例では、受信部と送信部の両方を有する構成を例示したが、これに限定されない。例えば、監視センター等のノードを、放送部(送信部)を有さず、他のセンサノードN1から送信されたデータを受信するだけのノードで構成し、このノードに、本発明の異常判別やデータの破棄の構成を適用することも可能である。
前記実施例において、異常判別は、消費電流の累積値(経時的、プロファイル的な数値)に基づいて判別を行う構成を例示したが、これに限定されない。例えば、観測された消費電流値の値(いわば、瞬間的な値)が過大または過少の場合に、異常と判別する構成とすることも可能である。すなわち、各ノードN1において、センサ3が観測をし、そのデータを受信した場合の処理負荷に応じた消費電流値が、異常がなければ、ある程度の範囲に収まることが実験等で既知の場合には、その範囲を超えた場合に異常が発生したと判別することも可能である。
1…データ駆動型プロセッサ、
3…監視部、
57…電源回路、
102…消費電流検出部、
103…異常判別部、
104…受信部、
108…データ破棄部、
109…放送部、
Iss…消費電流、
N1,N2…ノード、
R1…予め見積もられた電流値の範囲、
S…ネットワーキングシステム。

Claims (5)

  1. 複数のノードが通信網で接続されたネットワーキングシステムであって、
    各ノードは、自己同期型パイプラインからなるデータ駆動型プロセッサと、前記データ駆動型プロセッサに電力を供給する電源回路と、前記データ駆動型プロセッサにおける消費電流を検出する消費電流検出部と、他のノードからのデータを受信する受信部と、他のノードから受信したデータを処理する際の消費電流の累積が、前記他のノードでのイベントに基づいて予め見積もられた電流値の範囲から外れている場合に、前記他のノードを異常と判別する異常判別部と、を有する
    ことを特徴とするネットワーキングシステム。
  2. 前記異常判別部が異常と判別したノードからのデータを前記受信部が受信した場合に、受信したデータを破棄することで、異常と判別されたノードをネットワークから隔離するデータ破棄部、
    を備えたことを特徴とする請求項1に記載のネットワーキングシステム。
  3. 各ノードの死活監視のための情報をネットワークを介して送受信して異常の判別を行う構成を有しない、
    ことを特徴とする請求項1に記載のネットワーキングシステム。
  4. 前記イベントの総量に基づいて予め見積もられた電流値の範囲、
    を備えたことを特徴とする請求項1に記載のネットワーキングシステム。
  5. 前記イベントの周期に基づいて予め見積もられた電流値の範囲、
    を備えたことを特徴とする請求項1に記載のネットワーキングシステム。
JP2018552972A 2016-11-25 2017-11-24 ネットワーキングシステム Active JP6989959B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016228825 2016-11-25
JP2016228825 2016-11-25
PCT/JP2017/042198 WO2018097242A1 (ja) 2016-11-25 2017-11-24 ネットワーキングシステム

Publications (2)

Publication Number Publication Date
JPWO2018097242A1 true JPWO2018097242A1 (ja) 2019-11-21
JP6989959B2 JP6989959B2 (ja) 2022-01-12

Family

ID=62195130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552972A Active JP6989959B2 (ja) 2016-11-25 2017-11-24 ネットワーキングシステム

Country Status (4)

Country Link
US (1) US11233808B2 (ja)
EP (1) EP3547140A4 (ja)
JP (1) JP6989959B2 (ja)
WO (1) WO2018097242A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4236388A3 (en) * 2018-01-30 2023-11-15 Panasonic Intellectual Property Corporation of America Communication device and control method of communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295243A (ja) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp データ処理装置
JP2005310100A (ja) * 2004-03-22 2005-11-04 Sharp Corp データ処理装置
JP2010020598A (ja) * 2008-07-11 2010-01-28 Univ Of Tsukuba ネットワークシステムおよびネットワークシステムにおける電源制御方法
WO2013011653A1 (ja) * 2011-07-15 2013-01-24 国立大学法人 筑波大学 過負荷を回避する超低消費電力化データ駆動ネットワーキング処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877596B2 (en) * 2006-05-19 2011-01-25 Honeywell International Inc. Method and computer product to increase accuracy of time-based software verification for sensor networks
US20120180126A1 (en) 2010-07-13 2012-07-12 Lei Liu Probable Computing Attack Detector
US9843488B2 (en) * 2011-11-07 2017-12-12 Netflow Logic Corporation Method and system for confident anomaly detection in computer network traffic
US10735216B2 (en) * 2012-09-21 2020-08-04 Google Llc Handling security services visitor at a smart-home
US10574550B2 (en) * 2013-03-15 2020-02-25 Time Warner Cable Enterprises Llc Methods and apparatus for scoring the condition of nodes in a communication network and taking action based on node health scores
US9477541B2 (en) * 2014-02-20 2016-10-25 City University Of Hong Kong Determining faulty nodes via label propagation within a wireless sensor network
US10168691B2 (en) * 2014-10-06 2019-01-01 Fisher-Rosemount Systems, Inc. Data pipeline for process control system analytics
US9712549B2 (en) * 2015-01-08 2017-07-18 Imam Abdulrahman Bin Faisal University System, apparatus, and method for detecting home anomalies
WO2016115280A1 (en) * 2015-01-14 2016-07-21 Virta Laboratories, Inc. Anomaly and malware detection using side channel analysis
US9979606B2 (en) * 2015-03-04 2018-05-22 Qualcomm Incorporated Behavioral analysis to automate direct and indirect local monitoring of internet of things device health
US10270668B1 (en) * 2015-03-23 2019-04-23 Amazon Technologies, Inc. Identifying correlated events in a distributed system according to operational metrics
JP6593745B2 (ja) 2015-05-26 2019-10-23 国立大学法人 筑波大学 データ駆動型処理装置
US10142353B2 (en) * 2015-06-05 2018-11-27 Cisco Technology, Inc. System for monitoring and managing datacenters
US20160378628A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Hardware processors and methods to perform self-monitoring diagnostics to predict and detect failure
US10313212B2 (en) * 2015-09-22 2019-06-04 Veniam, Inc. Systems and methods for detecting and classifying anomalies in a network of moving things
US10248910B2 (en) * 2015-10-28 2019-04-02 Fractal Industries, Inc. Detection mitigation and remediation of cyberattacks employing an advanced cyber-decision platform
US10476906B1 (en) * 2016-03-25 2019-11-12 Fireeye, Inc. System and method for managing formation and modification of a cluster within a malware detection system
US10469309B1 (en) * 2016-04-28 2019-11-05 Servicenow, Inc. Management of computing system alerts
US10097572B1 (en) * 2016-06-07 2018-10-09 EMC IP Holding Company LLC Security for network computing environment based on power consumption of network devices
US10333958B2 (en) * 2016-07-19 2019-06-25 Cisco Technology, Inc. Multi-dimensional system anomaly detection
US10193913B2 (en) * 2016-08-04 2019-01-29 Cisco Technology, Inc. Joint anomaly detection across IOT devices
US10419931B1 (en) * 2016-08-25 2019-09-17 EMC IP Holding Company LLC Security for network computing environment using centralized security system
US10191794B2 (en) * 2016-09-28 2019-01-29 Mcafee, Llc Monitoring and analyzing watchdog messages in an internet of things network environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295243A (ja) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp データ処理装置
JP2005310100A (ja) * 2004-03-22 2005-11-04 Sharp Corp データ処理装置
JP2010020598A (ja) * 2008-07-11 2010-01-28 Univ Of Tsukuba ネットワークシステムおよびネットワークシステムにおける電源制御方法
WO2013011653A1 (ja) * 2011-07-15 2013-01-24 国立大学法人 筑波大学 過負荷を回避する超低消費電力化データ駆動ネットワーキング処理装置

Also Published As

Publication number Publication date
WO2018097242A1 (ja) 2018-05-31
US11233808B2 (en) 2022-01-25
EP3547140A1 (en) 2019-10-02
US20190342317A1 (en) 2019-11-07
EP3547140A4 (en) 2020-07-22
JP6989959B2 (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
KR100973545B1 (ko) 지하전력구 케이블 접속함 표면온도의 무선센서를 이용한감시시스템
JP2009253359A (ja) センサネットワークシステム及び通信経路決定方法
JP2013239827A (ja) 通信障害支援システム
JP2015186010A (ja) 無線ネットワークシステム、無線ネットワークシステムの通信制御方法、制御装置、ネットワークエレメント、及び、通信制御プログラム
JP2016044547A (ja) 自動開閉扉の監視装置
JP2007108884A (ja) ワイヤレスセンサ及びこれを用いたワイヤレス監視システム
WO2018097242A1 (ja) ネットワーキングシステム
JP4575736B2 (ja) 崩落検知装置および方法
JP2019128755A (ja) 情報処理装置、状態監視システムおよびプログラム
JP6593745B2 (ja) データ駆動型処理装置
JP6184267B2 (ja) 無線通信システム及び無線コントローラ
JP6641176B2 (ja) 警備業務支援システムおよび警備装置
KR101643171B1 (ko) 비콘을 이용한 시설물 관리 시스템 및 방법
JP2018124637A (ja) 送信システム
US20160254979A1 (en) Communication system, common service control apparatus, data transmission method, and non-transitory computer readable medium
KR100935497B1 (ko) Usn 기반 센서태그를 이용한 전력선 감시 시스템 및 그방법
JP2015211317A (ja) 無線センサネットワーク障害の原因特定方法、原因特定装置及び原因特定プログラム
JP2016059231A (ja) 検出情報送信装置、無停電電源システム、検出情報送信方法及びコンピュータプログラム
JP6381059B1 (ja) 警備装置、警備システム、通報送信方法及びプログラム
JP2017069814A (ja) 遠隔監視システム、中継ノード装置及び遠隔監視方法
JP7154569B2 (ja) 通信装置
JP6227291B2 (ja) 無線防災システム
JP5825816B2 (ja) 火災報知設備
JP2005309488A (ja) セキュリティ装置及びプログラム
JP2019091970A (ja) 監視システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6989959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150