JPWO2018047366A1 - 非破壊測定装置 - Google Patents

非破壊測定装置 Download PDF

Info

Publication number
JPWO2018047366A1
JPWO2018047366A1 JP2018538004A JP2018538004A JPWO2018047366A1 JP WO2018047366 A1 JPWO2018047366 A1 JP WO2018047366A1 JP 2018538004 A JP2018538004 A JP 2018538004A JP 2018538004 A JP2018538004 A JP 2018538004A JP WO2018047366 A1 JPWO2018047366 A1 JP WO2018047366A1
Authority
JP
Japan
Prior art keywords
light
guide member
measurement
vegetables
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018538004A
Other languages
English (en)
Inventor
秀行 雨宮
秀行 雨宮
政之介 田中
政之介 田中
朋宏 喜入
朋宏 喜入
純司 樋口
純司 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atago Co Ltd
Original Assignee
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atago Co Ltd filed Critical Atago Co Ltd
Publication of JPWO2018047366A1 publication Critical patent/JPWO2018047366A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4752Geometry
    • G01N2021/4759Annular illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

小型化が可能で、青果物などの測定対象の吸光度を非破壊で安定して測定できる非破壊測定装置を提供する。非破壊測定装置は、把持可能なグリップ部(K2)と、青果物(AS)などの測定対象に当接させる環状の当接部(7)を有する測定部(K1)と、を含む筐体(K)と、その内部に周方向に離隔配置された複数の光源(14d)からなる光源群(14dG)と、当接部(7)の内側部分に当接部(7)より小さい環状に配置され、光源群(14dG)からの光(LT)を筐体(K)外部に環状に出射するリングレンズ(8)と、リングレンズ(8)の内側に一端面(11a1)が露出し、他端面(11fb)が筐体(K)の内部に位置して一端面(11a1)から入射した光を前記他端面(11fb)から外部に出射する導光部材(11)と、筐体(K)内に配置され、導光部材(11)の他端面(11fb)から出射した光を受光するフォトセンサ(13c)と、フォトセンサ(13c)の受光強度に基づいて吸光度を求める光強度処理部(CT3)と、からなる。

Description

本発明は、青果物などの測定対象の吸光度を非破壊で測定する非破壊測定装置に関する。
青果物の吸光度を非破壊で測定する青果物の非破壊測定装置が知られている。
例として、青果物に照射入光させた近赤外光の透過光を利用して吸光度を測定し、測定した吸光度に基づいて青果物の糖度をBrix値として得る非破壊測定装置がある。
この非破壊測定装置は、特許文献1に、非破壊糖度測定装置として記載されている。
特開2002−014042号公報
特許文献1に記載された非破壊測定装置は、収穫後の青果物を対象に測定するものである。また、収穫した青果物をコンベア上に載置して吸光度を測定するため、装置は大型である。
青果物の生産者からは、収穫した青果物はもとより、収穫前の木などになっている(生育している)状態の青果物も対象とし、収穫時期の見極め等のために非破壊で吸光度を測定して糖度を把握できる装置が望まれている。
具体的には、生育中の青果物に対しても容易に使用できるように、片手で把持できる程度に小型化された非破壊測定装置が望まれている。
また、非破壊測定装置を片手で把持できる程度に小型化する場合、光源には、省スペース及び省消費電力の観点で、発光ダイオード(Light Emitting Diode:LED)の採用が検討される。
LEDを採用した場合、皮の厚い青果物でも光量不足とならず安定的に測定できる工夫も新たに必要になる。
従って、本発明の目的は、小型化が可能で、青果物などの測定対象の吸光度を非破壊で安定して測定できる非破壊測定装置を提供することである。
本発明の一側面によると、把持可能なグリップ部と、測定対象に当接させるための環状の当接部を有する測定部と、を含む筐体と、
前記筐体の内部において周方向に離隔配置された複数の光源からなる光源群と、
前記当接部に囲まれた内側部分に前記当接部よりも小さい環状に配置され、前記光源群から出た光を、前記筐体の外部に環状に出射するリングレンズと、
前記リングレンズの内側に一端面が露出し、他端面が前記筐体の内部に位置して前記一端面から入射した光を前記他端面から外部に出射する導光部材と、
前記筐体内に配置され、前記導光部材の前記他端面から出射した光を受光するフォトセンサと、
前記フォトセンサの受光強度に基づいて吸光度を求める光強度処理部と、
からなる非破壊測定装置が提供される。
好ましくは、前記非破壊測定装置は、前記光源群と前記リングレンズとの間において、前記光源群からの光を前記リングレンズに誘導する環状の中継レンズから更になる。
好ましくは、前記非破壊測定装置において、前記リングレンズから出射した環状の光の主光軸は、前記リングレンズから出射した後に縮径する方向に傾斜している。
好ましくは、前記非破壊測定装置において、前記フォトセンサは、少なくともm個(mは2以上の整数)のフォトセンサを含み、
前記非破壊測定装置は、前記m個のフォトセンサのそれぞれと前記導光部材の前記他端面との間において、異なるm種類の波長λ1〜λmのそれぞれを中心波長として有するバンドパスフィルタから更になる。
好ましくは、前記非破壊測定装置において、前記光強度処理部は、前記吸光度を、前記m個のフォトセンサによって得られた前記波長λ1〜λmのそれぞれに対応した受光強度に基づいて求めると共に、求めた前記吸光度からBrix値を算出する。
好ましくは、前記非破壊測定装置において、前記グリップ部は、長手を有して把持可能に形成され、
前記測定部は、前記グリップ部における前記長手の一方の端部に、前記当接部の延在方向を前記長手に沿う方向として形成されると共に、前記当接部の先端面が、前記グリップ部の表面よりも突出した位置にある。
好ましくは、前記非破壊測定装置は、前記測定対象を前記当接部に当接させた状態で、前記測定対象における前記当接部に囲まれた表面と前記導光部材の前記他端面との間において、通過する光を拡散させる拡散部から更になる。
本発明によれば、小型化が可能で、青果物などの測定対象の吸光度を非破壊で安定して測定できる非破壊測定装置を提供することができる。
図1は、本発明に係る非破壊測定装置の一実施形態であるハンディ非破壊糖度計51(糖度計51)の外観斜視図である。 図2は、図1の糖度計51の前面図である。 図3は、図2におけるS3−S3位置での断面図である。 図4は、図1の糖度計51の組立図である。 図5は、図1の糖度計51が備えるセンサ基板13の前面図である。 図6は、図1の糖度計51が備えるベース基板14の前面図である。 図7は、図1の糖度計51が備える中継レンズ18の取り付け状態を説明するための部分断面図である。 図8は、図1の糖度計51が備えるリングレンズ8の半断面図である。 図9は、図1の糖度計51が備えるフィルタユニットFを説明するための組立図である。 図10は、図9のフィルタユニットFの後面図である。 図11は、図1の糖度計51が備える導光部材11の斜視図である。 図12は、図11の導光部材11の二面図であり、(a)は半断面側面図、(b)は後面図である。 図13は、図3におけるSB部の拡大断面図である。 図14は、図1の糖度計51の制御系を説明するための図である。 図15は、図1の糖度計51の机上載置による測定態様を説明するための図である。 図16は、図1の糖度計51の把持による測定態様を説明するための図である。 図17は、図1の糖度計51における光路を説明するための部分断面図である。 図18は、図1の糖度計51のキャリブレーションに用いる標準蓋体52及びその使用状態を説明するための半断面図である。 図19は、図1の糖度計51の変形例1としての拡散板41及びその取付態様を説明するための部分断面図である。 図20は、図1の糖度計51の変形例2としての導光部材11Wを説明するための半断面図である。
本発明に係る非破壊測定装置を、その一実施形態であるハンディ非破壊糖度計51(以下、単に糖度計51とも称する)を例にとって説明する。また、以下では、青果物を測定対象とした非破壊測定装置の実施形態を説明するが、非破壊測定装置の測定対象は、必ずしも青果物には限られない。
まず、糖度計51の構成を、図1〜図4を参照して説明する。
図1は、糖度計51の外観斜視図である。図2は、糖度計51の前面図である。図3は、図2におけるS3−S3位置での断面図である。図4は、糖度計51の組立図である。
以下の説明では、上下左右前後の各方向を、図1に示した方向に規定する。
糖度計51は、片手で把持可能な、いわゆるハンディタイプである。従って、図1に示した上下左右前後の方向は、説明の便宜上規定するものであって、糖度計51の使用時の姿勢などを限定するものではない。
まず、糖度計51の外観構成について説明する。
糖度計51は、前方側が開放した略箱状の箱体1と、箱体1に対し、前方側を塞ぐように取りつけられる略蓋状の蓋体2と、を有する。
箱体1は、図3に示されるように、概ね平板状に形成された基部1kと、基部1kの周囲から前方に立ち上がる側壁部1hと、を有し、箱状とされている。
箱体1と蓋体2とは、図示しないタッピングねじにより、間にOリング81(図3参照)を介在させて一体化された筐体Kを構成する。
糖度計51は、筐体KにおけるOリング81の介在や他の図示しないシール構造などにより、IEC(International Electrotechnical Commission)規格における保護特性であるIP65以上の防水防塵機能を有する。
筐体Kは、上部に形成された、前後方向に延びる軸線CL1を中心とする略円筒状の測定部K1と、測定部K1の後部側から下方に延びる略扁平直方体状のグリップ部K2と、を有する。
蓋体2は、グリップ部K2において概ね平坦な前面2a1を有する前面部2aと、測定部K1において前面部2aの前後方向位置に対して前方に円筒状で突出したステージ部2bと、を有する。
蓋体2は、前面部2aの左縁部において前方に突出した土手部2cを有する。土手部2cは、後述する把持状態における指掛かりとなる部分である。
測定部K1の軸線CL1は、後述する受光軸線CLTと一致している。
受光軸線CLTは、後述するフォトセンサ13cで受光する光の光軸として仮想設定される。
グリップ部K2において、蓋体2の前面2a1には、表示素子14f(図3及び図6参照)により数字,文字,及び記号を視認可能に表示する表示部3と、指で押して動作モードの選択やゼロリセットをするための複数のスイッチ押圧部4aを含むスイッチ部4が設けられている。
表示部3は、制御部CT(図3及び図14参照)の制御の下、例えば、糖度計51の動作状態、電池残量、及び測定で得られた糖度(Brix値)を表示する。
箱体1の内部における左後部には、下面1cに出入口1b1を有して電池を収容する電池ボックス1b(図3参照)が形成されている。
出入口1b1には、電池蓋5が着脱自在に取りつけられている。
電池ボックス1bには、糖度計51の電源として、例えば単4形の乾電池が、使用者により出入口1b1から挿入及び抜去(以下挿抜)可能に収容される。
箱体1の上右部には、押し釦6が設けられている。使用者などによって押し釦6が押される毎に、内部に設けられたスイッチ13d(図4及び図5参照)が動作して測定の開始と停止の動作が交互に実行される。
グリップ部K2は、大人の片手で把持できるサイズに形成されている。
この糖度計51を使用するために、例えば右手でグリップ部K2を把持する際に、箱体1の後面1aに手のひらを当てると、人差し指から小指までの4本の指が自然と土手部2cに掛かり、使用者は、糖度計51を良好に把持できる。
この把持状態で、押し釦6は、親指で押し易い位置に設けられている。
また、箱体1の後面1aの右部には、手の母指球の部分が感触よく当たるように、母指球に合わせた凹曲面の当て部1a1(図1参照)が形成されている。
箱体1及び蓋体2は、樹脂で形成されている。樹脂は例えば、黒色のポリカーボネート樹脂の近赤外線吸収グレードである。
次に測定部K1の外観構成について詳述する。
蓋体2におけるステージ部2bの先端には、環状の外当接部7が取りつけられている。外当接部7は、少なくとも後方への圧縮に対し弾性を有する材料で形成されている。材料例は、スポンジである。
図2に示される前面視において、外当接部7に囲まれた内側部分には、外側から順に、レンズ部材であるリングレンズ8,内当接部9,及びステージベース10の前面10aの一部が、それぞれ環状に視認される。軸線CL1を含む中心部には、導光部材11の前端面11a1が視認される。
内当接部9は、環状に形成され前面10aに取りつけられている。
内当接部9は、少なくとも後方への圧縮に対し弾性を有する材料で形成されている。材料例は、スポンジである。
内当接部9は、内縁の一部において、径方向の外方に円弧状に抉られた切り込み部9aを有する。
ステージベース10には、温度センサ12の感温面12aが前面に露出するように取りつけられている。
温度センサ12は、前方から見たときに、感温面12aの一部が切り込み部9a内に進入して配置されている。
温度センサ12は、いわゆるサーモパイルであって、測定部K1に宛がわれた測定対象である青果物AS(図15及び図16参照)の表面の温度T2を非接触で測定すると共に、周囲の筐体Kに相当する温度T1も測定する。温度センサ12は、測定した温度T1及び温度T2を、温度情報JTとして制御部CTに向け出力する(図14参照)。温度T1と温度T2とは逆でもよい。すなわち、青果物ASの表面の温度を、温度T1としてもよい。
筐体Kにおいて、測定部K1は、外当接部7及び内当接部9の環状形状の延在面が、グリップ部K2の長手方向である上下方向に沿う面(例えば概ね平行)となる姿勢で、グリップ部K2の一端側(上方側)に一体形成されている。
測定部K1における各部位の前後方向の位置については、図3に示されるように、外当接部7の前端面7aに対し、内当接部9の前端面9bは後方側にある。
リングレンズ8は、内当接部9と概ね同じ前後位置に配置されている。
リングレンズ8における最も前側に位置する前端稜線部8rは、内当接部9の前端面9bと概ね同じ前後位置にある。
内当接部9の前端面9bに対し、ステージベース10の前面10aは後方側にある。
ステージベース10の前面10aに対し、導光部材11の前端面11a1は前後方向に同じ位置か、又はわずかに後方側に位置している。
次に、筐体Kの内部に配置された部品などについ図3〜図12を参照して説明する。
図3及び図4に示されるように、筐体Kの内部には、2枚の大きな基板が、前後方向に対向して並設収容されている。具体的には、箱体1の基部1k側からセンサ基板13及びベース基板14である。
図5は、センサ基板13を説明するための前面図である。
センサ基板13は、筐体K内に収納された状態での前側となる前面13aに、レセプタクル13bと複数のフォトセンサ13cとスイッチ13dとが実装されている。
レセプタクル13bは、センサ基板13の前方に配置されたベース基板14のプラグ14bに装着されて、センサ基板13とベース基板14とが電気的に接続される(図3参照)。
複数のフォトセンサ13cは、この例において7個である。7個の内の6個のフォトセンサ13cは、受光軸線CLTの周りに、角度ピッチθpが60°の等間隔で、かつ、各フォトセンサ13cの中心位置が径φaの線上となるように実装されている。
残りの1個は、径φaの中心位置に実装されている。
7個のフォトセンサ13cは、後の説明で区別が必要となる場合、図5に示されるように、フォトセンサ13c1〜13c7として区別する。
スイッチ13dは、組立てられた糖度計51において、既述のように押し釦6が押し込まれる毎にON動作、OFF動作を交互に繰り返す。
センサ基板13は、フォトセンサ13cよりも径方向の外側の位置に、約90°間隔で四つの貫通孔13eを有している。
図6は、ベース基板14を説明するための前面図である。
ベース基板14は、上部に受光軸線CLTを中心とする円形の孔14gと、孔14gの下縁において、下方に向け矩形に抉られた切り込み部14g1と、孔14gの外側における上下左右に対する斜め45°方向にそれぞれ孔14hを有する。
ベース基板14は、受光軸線CLTを中心とする円弧状の外形とされた円弧部14jを有する。
ベース基板14は、筐体K内に収納された状態での前側となる前面14aに、表示素子14f,スイッチ14s,光源となる発光素子としての複数(n個:nは2以上の整数)のLED14d,複数のFB(フィードバック)用フォトセンサ14e,及び糖度計51の動作を制御する制御部CTが実装されている。
一方、後面14cには、センサ基板13のレセプタクル13bと接続するプラグ14bが実装されている。
表示素子14fは、例えば液晶デバイス、有機EL(organic Electro−Luminescence)デバイスなどの表示デバイスである。
複数のLED14dは、この例において20個(n=20)である。20個のLED14dは、受光軸線CLTを中心とする孔14gの周囲の直径φbの線上に角度ピッチθpaを18°とする等間隔で、放射状となる姿勢で実装されている。
詳しくは、LED14dは、円弧部14jに近い位置において周方向に離隔配置されている。
複数のLED14dをまとめた光源群として、以下、LED群14dGとも称する。
LED14dは、例えば、次の波長をそれぞれ中心波長とする6種類を用い、周方向に順番に配置されている。
すなわち、その波長は、880nm,900nm,950nm,980nm,1020nm,及び1064nmである。
この場合、20個全体で、各波長を中心波長とするLED14dは少なくとも3個配置される。中でも、880nm及び900nmをそれぞれ中心波長とするLED14dは、それぞれ4個配置される。
6種類の波長に対するLED14dの選択は、これに限定されない。別の例として、6種類の波長の内、短い波長の3種と長い波長の3種とについて、3種の波長それぞれを中心波長とする3種のLEDを一つにパッケージした、いわゆる3波長複合型のLEDを用いてもよい。
例えば、880,900,950nmの3種の波長を中心波長とする3波長複合型LEDと、980,1020,1064nmの3種の波長を中心波長とする3波長複合型LEDと、を、用い、例えば、前者の8個及び後者の12個の合計20個を適宜配置してもよい。
孔14gの縁部とLED14dとの間には、上下左右方向それぞれにFB(フィードバック)用のフォトセンサ14e(以下、FB用フォトセンサ14eと称する)が実装されている。以下、この4個のFB用フォトセンサ14eをまとめFB用フォトセンサ群14eGとも称する。
図3及び図4に示されるように、センサ基板13に対し、7個のフォトセンサ13cを覆うように扁平円筒状のフィルタユニットFが配置されている。
フィルタユニットFの前側には、中実で概ね円錐台状に形成された導光部材11が配置されている。
フィルタユニットFと導光部材11とは、前方側からセンサ基板13に宛がわれて、後方側からタッピングねじNaで締結固定されるステージ基台16によって、ユニットホルダ15と共にセンサ基板13との間に挟持されている。導光部材11,ステージ基台16,及びフィルタユニットFの具体的構成は、後述する。
図3及び図4に示されるように、ユニットホルダ15は、後方側が開放し前方が底となる丸鍋状の基部15aと、基部15aから前方に突出する突出部15bと、を有する。
基部15aには、上下左右に対する斜め45°方向において、タッピングねじNaを挿通させるための前後方向に延びる貫通孔15a1(図4参照)が四ヶ所形成されている。
突出部15bは、導光部材11が内側にほぼ隙間なく嵌りこむ中空円錐状に形成されており、ベース基板14の孔14gを通して前方に突出している。
突出部15bの外周面は、後方側と先端側との2ヶ所に径が急激に変わる段部15b1と段部15b2が形成されている。
ベース基板14の孔14gの内径に対し、突出部15bの外径は小さく設定されており、孔14gと突出部15bとの間に、ステージ基台16の後端部16aが係合している。後端部16aは、突出部15bの段部15b1に当接して前後方向位置が決められている。
ステージ基台16は、後端部側がすぼまった略漏斗形状に形成されている。
後端部16aには、下方側へ突出する通路部16bが形成されている。
通路部16bの外形形状が、ベース基板14の孔14gにおける切り込み部14g1に係合するようになっている。すなわち、ベース基板14に対し、ステージ基台16の受光軸線CLTまわりに位置が決められている。
後端部16aの内周面は、通路部16bの部分を除き、ユニットホルダ15の突出部15bの外面と当接している。
すなわち、通路部16bと突出部15bとの間には、隙間Va(図3参照)が形成されている。
この隙間Vaは、後述する温度センサ基板17からのリード線を前後方向に通過させる通路となる。
後端部16aには、前面視における上下左右に対し斜め45°方向に、前後に延びる四つのボス16a1が形成されている。各ボス16a1には、前方が底となる有底孔が形成されている。
図3に示されるタッピングねじNaを、センサ基板13の貫通孔13e及びユニットホルダ15の貫通孔15a1に挿通してステージ基台16のボス16a1に形成された有底孔に螺着することで、センサ基板13に対し、ユニットホルダ15及びステージ基台16が固定される。
その際、ユニットホルダ15によって、フィルタユニットF及び導光部材11がセンサ基板13との間に挟まれ保持される。
ステージ基台16の前方には、ステージベース10が配置される。
ステージベース10は、円盤状のステージ底部10b(図3参照)と、ステージ底部10bの周縁から後方立ち上がる円環状の周壁部10cと、を有する。既述の前面10aは、ステージ底部10bの前面である。
図3に示されるように、ステージ底部10bの中心(受光軸線CLTの位置)には、貫通孔10b1が形成されている。また、貫通孔10b1に対する上方側に、貫通孔10b2が形成されている。
貫通孔10b1には、後方側から導光部材11の先端部分が進入し、導光部材11の前端面11a1が前方に露出している。
貫通孔10b2には、後方側から温度センサ12が進入し、温度センサ12の感温面12aが前方に露出している。
ステージベース10の周壁部10cに囲まれた内部には、温度センサ基板17が配置されている。
図4に示されるように、温度センサ基板17は、円盤状を呈し、中心孔17a及び一対の貫通孔17bを有して形成されている。
また、温度センサ基板17には、温度センサ12が実装されている。
温度センサ基板17は、貫通孔17bを挿通したタッピングねじ(不図示)によってステージ底部10bに対して取りつけられている。
温度センサ基板17からは、リード線(不図示)が後方に引き出され、隙間Vaを通りセンサ基板13へと引き回されている。
ステージ基台16,及びステージベース10は、樹脂で形成される。樹脂は、例えば、黒色のポリカーボネート樹脂の近赤外線吸収グレードである。
ユニットホルダ15は、アルミニウムで形成されており、表面に黒アルマイト処理が施されている。ユニットホルダ15を金属で形成することでシールド機能が発揮され、センサ基板13に対する外乱ノイズの影響を低減できる。
ステージベース10の周壁部10cには、中継レンズ18が取りつけられている。次に、中継レンズ18とその取りつけ構造について図7を主に参照して説明する。図7は、図3におけるSA部の拡大図である。
図7において、ステージベース10の周壁部10cの外周面10c1には、前方側が僅かに大径となる段差部10c2が、全周に亘り形成されている。
中継レンズ18は、段差部10c2に取りつけられている。
中継レンズ18は、内径Daなる環状の光学部材であり、延在方向に直交する断面形状が直径Dの円形を呈する。
環状部分の中心位置Pcの直径φb7は、ベース基板14に実装されたLED14dの中心位置の直径φb(図6参照)と等しく設定される。
中継レンズ18は、例えば、光透過性を有する透明のポリカーボネート樹脂で形成される。
ステージベース10における周壁部10cの外周面10c1は、段差部10c2よりも前方の外径が、中継レンズ18の内径Daよりも大きい直径Dbで形成されている。
そして、段差部10c2において、後方に向かうに従い、半径R(=D/2)の凹曲面10c3で徐々に縮径し、内径Daと同じ外径を有する縮径部10c4に接続している。
また、縮径部10c4には、周方向に所定間隔で離隔して、複数の微小突起10c5が形成されている。
中継レンズ18は、前方側に向け凹曲面10c3に密着するように取りつけられており、微小突起10c5は、中継レンズ18の後方側への移動を規制している。
中継レンズ18を段差部10c2に取りつける際には、中継レンズ18を、後方側から内径を広げる弾性変形をさせながら移動させ(矢印DRa参照)、微小突起10c5を乗り越えさせて、微小突起10c5と凹曲面10c3との間に収める。
図3に示されるように、中継レンズ18と、蓋体2におけるステージ部2bの内面2b1と、の間には、シールリング19が強嵌合で嵌め込まれている。
シールリング19は、例えば金属製のばね線で形成されている。
シールリング19は、中継レンズ18の位置がずれることなくより確実に維持されるように、強嵌合の弾性反発力により、中継レンズ18をステージベース10に押しつけている。
中継レンズ18の前方には、中継レンズ18に対し前後方向で対向する既述のリングレンズ8が取りつけられている。
リングレンズ8は、例えば、光透過性を有する透明のポリカーボネート樹脂で形成される。
図8は、リングレンズ8を説明するための半断面図(一部切断省略)である。
図8に示されるように、リングレンズ8は、孔8a1を有して環状に形成された環状基部8aと、環状基部8aから径方向外方かつ前方に傾斜して延出した偏向部8bと、偏向部8bから径方向外方に張り出したフランジ部8cと、を有する。
環状基部8a,偏向部8b,及びフランジ部8cは、前後に延びる軸線CL8を中心として環状に形成されている。
偏向部8bは、後方側の入光面8b1と、前方側の出光面8b2と、を有する。
入光面8b1は、直径Dcの仮想基準円P1を通り、軸線CL8から離れるほど前方に向かうよう傾斜角度θaで傾斜した円錐周面である。
出光面8b2は、軸線CL8を含む平面と仮想基準円P1との交点を点P1aとしたときに、図8に示される断面形状が、点P1aを中心とする半径Raをなす断面円弧状で周方向に延在する曲面として形成されている。
入光面8b1が形成される径方向の範囲は、内径側の縁部8b1aが、直径Dcよりも小さい直径Ddであり、外径側の縁部8b1bが、直径Dcよりも大きい直径Deである。
出光面8b2が形成される径方向の範囲は、少なくとも入光面8b1が形成される径方向の範囲を含んでいる。
具体的には、出光面8b2の内径側の縁部8b2aが、直径Ddよりも小さい直径Dd1であり、外径側の縁部8b2bが、直径Deよりも大きい直径De1である。
フランジ部8cは、前部において、出光面8b2の外径側の縁部8b2bに接続し、軸線CL8に直交する環状の平面部8c1と、平面部8c1の径方向外側において、平面部8c1に対し階段状に形成されて後方側に位置する環状の棚部8c2と、を有する。
図3に示されるように、リングレンズ8は、ステージベース10の前面10aの周縁部と、蓋体2のステージ部2bの内面2b1との間を塞ぐように取りつけられる。
詳しくは、環状基部8aの孔8a1が、ステージベース10の前面10aの周縁に形成された段部に係合し、Oリング(不図示)を介在させて封止すると共に接着剤によって固定されている。
フランジ部8cの平面部8c1は、ステージ部2bの先端において内向きに突出形成された内フランジ2b2の後面に当接し、その後面と棚部8c2との間には、Oリング82が介在している。
次に、フィルタユニットFについて図9及び図10を参照して説明する。
フィルタユニットFは、円盤状のフィルタホルダ20と、フィルタホルダ20に対しフィルタホルダ20の軸線CLf方向に係合する円盤状のホルダカバー21と、フィルタホルダ20とホルダカバー21との間に挟持される複数(この例において7枚)の光学バンドパスフィルタであるバンドパスフィルタ31〜37と、を有して構成されている。7枚のバンドパスフィルタ31〜37は、それぞれ中心波長が異なるバンドパス特性を有する外形形状が矩形のものが採用されている。
フィルタホルダ20及びホルダカバー21は、樹脂で形成される。樹脂は、例えば黒色のポリカーボネート樹脂の近赤外線吸収グレードである。
吸光度を測定する波長は、糖の吸収波長に基づき、m(mは2以上の整数)種の波長を選択する。
この例では、m=7とした7種の波長λ1〜λ7を選択している。また、フォトセンサ13cとして、m個のフォトセンサ13c1〜13c7を備える。
すなわち、バンドパスフィルタ31〜37それぞれの中心波長を、従来知られている糖の吸収波長に基づいて選択設定した波長λ1〜λ7とする。
また、LED14dは、中心波長λ1〜λ7それぞれに対応した発光中心波長を有するものを選択している。
詳しくは、LED14dは、中心波長λ1〜λ7それぞれに等しい又は近い発光中心波長を有するものを選択する。
この例において選択設定した中心波長λ1〜λ7は次の通りである。また、括弧内の波長は、バンドパスフィルタ31〜37それぞれに対応して選択使用したLED14dの発光中心波長である。
バンドパスフィルタ31・・・λ1:875nm(880nm)
バンドパスフィルタ32・・・λ2:900nm(900nm)
バンドパスフィルタ33・・・λ3:950nm(950nm)
バンドパスフィルタ34・・・λ4:980nm(980nm)
バンドパスフィルタ35・・・λ5:1020nm(1020nm)
バンドパスフィルタ36・・・λ6:1050nm(1064nm)
バンドパスフィルタ37・・・λ7:1064nm(1064nm)
上記例において、バンドパスフィルタ31,36以外のバンドパスフィルタ32〜35,37の中心波長は、それぞれに対応して用いたLED14dの発光中心波長と一致している。また、バンドパスフィルタ31,36の中心波長と、対応するLED14dの発光中心波長との差は、それぞれ5nm,14nmである。
この程度(例えば20nm以下)の波長差であれば、一般的なLEDの発光スペクトルにおいて、バンドパスフィルタの各中心波長の光強度に考慮すべき差は生じない。
一般的なLEDは、発光スペクトルがナローなため、バンドパスフィルタの中心波長に対応した発光中心波長を有するLEDを選択することが好ましい。
一方、LED14dとして、低消費電力で高輝度の発光スペクトルがブロードなLEDを選択する場合は、バンドパスフィルタの中心波長に近い発光中心波長のものを選択しなくてもよい。
図9は、フィルタユニットFの模式的な組立図である。
フィルタホルダ20は、軸線CLfを中心とする円盤状に形成されており、前面20aには、軸線CLfまわりの角度ピッチ60°で、かつ軸線CLfを中心とする直径φcの円を中心位置として形成された6個の凹部20b1〜20b6と、中央に形成された凹部20b7と、が形成されている。凹部20b1〜20b7は、バンドパスフィルタ22の外形形状に対応した矩形の凹みとされている。
ホルダカバー21は、円盤状に形成された基部21aと、基部21aの周縁部から後方に延出し、フィルタホルダ20に対し係合する4本の爪部21cを有する。爪部21cは、周方向に角度ピッチ90°で離隔配置されている。
基部21aには、軸線CLfを中心とする角度ピッチ60°かつ直径φdの円を径方向中心とする位置に、矩形の貫通孔21b1〜21b7が形成されている。
また、中心位置には、丸形の貫通孔21b7が形成されている。
直径φdは、直径φcと等しく設定されている。
ホルダカバー21は、フィルタホルダ20に対し、前方側から接近させ(矢印DRb参照)、爪部21cをフィルタホルダ20に設けられた被係合部20dに係合させることで、フィルタホルダ20と一体化することができる。
すなわち、フィルタホルダ20の凹部20b1〜20b7に、それぞれバンドパスフィルタ31〜37を収め、ホルダカバー21を前方側からフィルタホルダ20に係合させることで、バンドパスフィルタ31〜37を保持したフィルタユニットFが形成される。
図10は、フィルタユニットFの後面図である。
フィルタホルダ20の後面20fには、前面20aに形成された凹部20b1〜20b7に対応した位置に、前方に向け抉られた矩形開口のポケット部20e1〜20e7が形成されている。
凹部20b1〜20b7とポケット部20e1〜20e7とは、それぞれ矩形の貫通孔20c1〜20c7で前後方向に連結されている。貫通孔20c1〜20c6の径方向の中心位置は、直径φcの円形上にある。
次に、導光部材11について図11及び図12を参照して説明する。
図11は、導光部材11を斜め前方から見た斜視図である。
図12は、導光部材11の半断面図(a)及び後面図(b)である。図12(a)は、後面図(b)におけるS12−S12位置での半断面である。
導光部材11は、光透過性を有する透明部材として形成されている。材質は、例えば、光透過性を有する透明のポリカーボネート樹脂である。
導光部材11は、前後に長く形成されている。導光部材11は、長手の一端面として前端面11a1を有し、前後に延びる軸線CL11を中心とする直径Dfの円筒状の前突出部11aと、直径Dfよりも大きい直径Dgの円筒状の中間筒部11bと、中間筒部11bの後方側に接続し後方に向かうにしたがって徐々に拡径する円錐台部11cと、を備える。
さらに、導光部材11は、円錐台部11cの後方端部において、軸線CL11に対し直交方向に拡径する段部11dを経て直径Dhの円筒状となる後方筒部11eと、後方筒部11eの後面11e1から、後方に向け独立して突出形成された7個の導光突起部11f1〜11f7を有する脚部11fと、を備える。
6個の導光突起部11f1〜11f6は、軸線CL11を中心とする等角度間隔(角度ピッチ60°)、かつ直径φeの円上に、形成されている。
残りの1個である導光突起部11f7は、中心位置において円柱状に形成されている。
また、導光突起部11f1〜11f6は、後方先端部位において、段付き部11f1b〜11f6bで縮形してさらに後方に突出する係合部11f1a〜11f6aを有する。
また、導光突起部11f7は、後方先端部位において、段付き部11f7bで縮径してさらに後方に突出する係合部11f7aを有する。
係合部11f1a〜11f7aの段付き部11f1b〜11f7bの位置及び先端面の前後方向位置は、それぞれ互いに同じ位置とされている。
係合部11f1a〜11f7aは、段付き部位がホルダカバー21の基部21aの前面に当接し、それぞれ、フィルタユニットFにおけるホルダカバー21の貫通孔21b1〜21b7に対し前方側から進入するようになっている。
センサ基板13に対するフィルタユニットFと導光部材11との組み付け状態について、図13を参照して説明する。この組み付けは、既述のように、ステージ基台16をタッピングねじNaで固定することで、ステージ基台16とセンサ基板13との間に、フィルタユニットF及び導光部材11が前後方向に挟まれてなされる。
図13は、図3におけるSB部の模式的断面図である。すなわち、センサ基板13のフォトセンサ13c7と、フィルタユニットFと、導光部材11における導光突起部11f7との組み付け状態が示される。他のフォトセンサ13c1〜13c6についても同様であり、代表として説明する。
図13に示されるように、センサ基板13の前面13aには、フィルタホルダ20の後面20fが当接している。
前面13aに実装されたフォトセンサ13c7は、フィルタユニットFのフィルタホルダ20に形成されたポケット部20e7に進入している。
フィルタホルダ20の凹部20b7には、バンドパスフィルタ37が挿着されている。バンドパスフィルタ37の前方への移動は、バンドパスフィルタ37の外形より小さく形成されたホルダカバー21の貫通孔21b7によって押さえられ規制されている。
バンドパスフィルタ37は、フォトセンサ13c7の前方の対向位置にある。
ホルダカバー21の貫通孔21b7には、前方側から導光部材11の導光突起部11f7の係合部11f7aが進入係合している。導光突起部11f7の段付き部11f7bは、ホルダカバー21の基部21aの前面21a1に当接している。
以上構成を説明した糖度計51の動作は、制御部CTによって制御される。
図14は、糖度計51における制御系の構成を説明するための図である。
制御部CTは、中央処理装置(CPU)CT1,補正部CT2,光強度処理部CT3,表示制御部CT4,光量制御部CT5,及び記憶部CT6を有する。
糖度計51の外形寸法である長さL及び幅W(図2参照)と、厚さH(図3参照)と、は、例えば、概ね以下の通りに設定される。
L=113mm,W=63mm,H=43mm
また、測定部K1の外径φf(図3参照)は、例えば48mmに設定される。
次に、上述の構成を有する糖度計51の動作について説明する。
まず、作業者は、糖度計51の測定部K1と測定対象である青果物ASとを接触させる。
具体的には、例えば収穫後の青果物ASを測定する場合は、図15に示されるように、作業者は、糖度計51を、測定部K1の外当接部7及び内当接部9が上端となる向きに机91などの台上に載せ、青果物ASを、測定部K1に載せて測定することができる。この測定態様で凹みのある青果物ASを測定する場合は、凹がない部分或いは凹みが少ない部分を測定部K1に載せるとよい。
収穫前の成育中の青果物ASや、重たい、若しくは大きい青果物ASを測定する場合は、図16に示されるように、作業者は、グリップ部K2を把持し、測定部K1を青果物ASの表面に接触させて測定する。
測定部K1は、グリップ部K2に対し突出して形成されている。
これにより、糖度計51を台上に置き青果物ASを測定部K1に載せたときに、青果物ASの凸凹した表面の凸部がグリップ部K2に当たって、青果物ASが不安定に載置されることはない。
また、糖度計51を把持し測定部K1を青果物ASに当てて測定する場合に、把持した指に青果物ASが当たりにくくなる。そのため、外当接部7及び内当接部9と青果物ASとの間に隙間が生じて外光が進入し測定精度が低下する可能性は小さい。
次に、糖度計51の具体的な測定動作について、図14及び図17を主に参照して説明する。図17は、糖度計51で糖度測定をする際の光路を説明するための模式図であり、図3の測定部K1の部分を利用している。また、図17では、描画が煩雑にならないように、断面で示されている導光部材11にハッチングを付していない。
まず、LED14dが周方向に離隔配置されている直径φb(図6も参照)と、中継レンズ18の中心の直径φb7(図7参照)及びリングレンズ8の仮想基準円P1の直径Dc(図8参照)と、が等しく設定されている。直径φb(=φb7=Dc)は、例えば直径38mmとされる。
(1)使用者は、糖度計51の電源を入れた状態で、測定する青果物ASを糖度計51の測定部K1の外当接部7及び内当接部9に載置する、又は、測定する青果物ASに、糖度計51の測定部K1を密着するように押しつける。
青果物ASは、例えば、果物及び野菜であって、トマト、リンゴ、スイカなどが該当する。
青果物ASの自重、又は使用者の押しつけ力によって、外当接部7及び内当接部9は、青果物ASの表面に圧縮されつつ概ね密着する。
(2)使用者は、押し釦6を押し、スイッチ13dを入状態とする。スイッチ13dからは入状態になった旨の信号が制御部CTの中央処理装置CT1に送出される。
(3)中央処理装置CT1は、スイッチ13dが入状態になったことを把握したら、光量制御部CT5に指示してLED群14dGを発光させる。LED群14dGの各LED14dから上方に出た光LTは、中継レンズ18を通過し、リングレンズ8に達する。
LED14dからリングレンズ8迄の間の、光LTの経路となる空間Vbは、径方向外側は蓋体2のステージ部2bの内面2b1で塞がれ、径方向内側はステージ基台16とステージベース10の外周面10c1で塞がれている。
すなわち、空間Vbは、径方向側が塞がれ、軸方向側のみ開放された空間となっている。軸方向側の先端部分は、リングレンズ8によって塞がれている。
これにより、LED群14dGからの出光が、リングレンズ8を通過せずに青果物ASに達することはない。
図17において、LED14dから出た光LTの主光軸LTaを実線で示す。
主光軸LTaは、中継レンズ18の中心を通りリングレンズ8の入光面8b1に達すると、入光面8b1が、図8に示されるように径方向外側ほど前方に傾斜していることから、その傾斜角度θaとリングレンズ8の材料の屈折率に応じた出光の角度θbで、出光面8b2から前方に出射する。
出光の角度θbは、0<θb<45°で設定するのが好ましい。また、角度θbは、リングレンズ8の仮想基準円P1の直径Dcが大きいほど大きく設定することが好ましい。
これにより、青果物AS内に進入した光LTR(後述)は、青果物ASの内部で中心に集光し易くなる。
糖度計51のように直径Dcが約40mmの場合、角度θbは20°前後が好適である。
この出光面8b2から前方に出射した光は、主光軸LTaを含み径の内外方向に幅を有する環状の光LTRとなる。
すなわち、図17において、出光面8b2から出射した環状の光の内、リングレンズ8から最も内径側に偏向出射した光のLED14dからの光路LTbが、破線で示されている。また、最も外径側に偏向出射した光のLED14dからの光路LTcが、一点鎖線で示されている。
さらに、図17には、出射後の前後方向位置P2における環状の光LTRの強度特性Qを示している。
これらから、リングレンズ8から出射した環状の光LTRの径方向の強度特性Qは、主光軸LTaにおいて急峻に立ち上がるピークQpを有し、内径側及び外径側に向かうに従って急速に強度低下する特性となっている。
一方、環状の光LTRの周方向の強度特性は、ほぼ一定となっている。
すなわち、環状の光LTRの周方向の強度分布は、複数のLED14dが周方向に離隔して配置されているものの、各LED14dの周方向へも広がっている発光特性と、中継レンズ18及びリングレンズ8で生じるわずかな内部拡散と、から、複数のLED14dを同時点灯した場合にほぼ同程度となるように平均化されている。
リングレンズ8から出射した環状の光LTRは、主光軸LTaが上述のように、受光軸線CLTに接近する方向に角度θbで偏向している(受光軸線CLTは、導光部材11の軸線と一致している)。
換言するならば、リングレンズ8から出射した環状の光LTRは、リングレンズ8から出射した後、縮径するように進行する。
内当接部9の内側の中心部位には、導光部材11の前端面11a1が露出している。
(4)リングレンズ8から出射した光LTRは、青果物ASの表面に対し環状に照射され、青果物ASの内部に進入する。
(5)青果物ASの内部に進入した光LTRは、内部で乱反射すると共に、青果物ASの状態に対応した特性で吸収されて一部が外部に出光する。(6)外部に出た光の一部は、外部に露出している導光部材11の前端面11a1から導光部材11の内部に進入する。
導光部材11の内部に進入した光は、LED群14dGから出光し、青果物ASの内部を通過して戻ってきた光であることから、以下、戻り光LTdと称する。
戻り光LTdは、導光部材11の内部を進行し脚部11fの導光突起部11f1〜11f7に誘導される。
このように、戻り光LTdは、青果物ASの内部に環状に進入して内部で反射し、進入した環状の進入部位に対する中央部位から外部に出射した光である。そのため、青果物ASの内部組織に部分毎に吸光度の偏りがあったとしても、それが平均化された光となる。
また、青果物ASへ入射した光LTRは、環状であって、受光軸線CLTに接近する方向に偏向している。
そのため、青果物ASの内部で乱反射した光の内、中央下部の前端面11a1へ入射する光の割合が、偏向していない場合(角度θb=0)と比べて高くなっている。
これにより、糖度計51では、戻り光LTdが、LED14dの出光に対し高効率で得られ、青果物ASの内部組織の吸光度の偏りがあっても、その偏りの影響を受けにくく青果物ASの吸光度をより高精度に反映した光として得られる。
(7)脚部11fの導光突起部11f1〜11f7に誘導された戻り光LTdは、互いに特性に偏りがない均質の光となっており、それぞれ係合部11f1a〜11f7aそれぞれの後端面11fbからバンドパスフィルタ31〜37に向け、突起部出射光LTe(LTe1〜LTe7)として出光する。
後端面11fbは、導光部材11において、長手の一端面である前端面11a1に対する他端面となる。
(8)係合部11f1a〜11f7aから出射した突起部出射光LTeは、バンドパスフィルタ31〜37によりそれぞれの分光特性に応じて分光されてフォトセンサ13c1〜13c7に入光する。(9)フォトセンサ13c1〜13c7は、それぞれ受光強度である強度Q1〜Q7を検出し、光強度処理部CT3に送出する(図14参照)。
すなわち、フォトセンサ13c1〜13c7から得られた強度Q1〜Q7は、バンドパスフィルタ31〜37それぞれの中心波長λ1〜λ7の分光強度である。
(10)光強度処理部CT3は、強度Q1〜Q7から、既知の演算方法で波長λ1〜λ7それぞれの吸光度を求め、各吸光度からBrix値Yを算出する。
具体的算出方法例は次の通りである。
一般に、波長λの吸光度Aは、式(1)で示される。
I0(λ)は、リファレンスとなる測定対象に入る波長λの光の強度、IS(λ)は、測定対象から出た波長λの光の強度である。
A=log〔I0(λ)/IS(λ)〕
=logI0(λ)−logIS(λ) ・・・・・・・・・(1)
7種類の波長λ1〜λ7の内、基準となる波長を波長λ6として、他の6種類の波長λ1〜λ5,λ7それぞれについて、吸光度差A1〜A5,A7を次の式(2−1)〜(2−6)によって求める。
Figure 2018047366
これらの式に基づき、Brix値Yは、次の式(3)で算出する。
Figure 2018047366
・・・(3)
ここで、PL0〜PL8は、予め複数の測定対象(青果物AS)の吸光度データを用いて、重回帰分析で求めた係数である。また、温度T1は、温度センサ12で測定した測定対象(青果物AS)の表面温度であり、温度T2は、温度センサ12で測定した筐体Kに相当する温度である。
図3に示されるように、制御部CTは、補正部CT2を有する。
補正部CT2は、FB用フォトセンサ群14eGからの光量情報JL及び温度センサ12からの温度情報JTに基づいて、LED群14dGの光量を閉制御する。
LEDの一般的特性として、温度上昇に伴って発光光量が変化する。LED14dも同様である。
糖度計51は、FB用フォトセンサ群14eG,温度センサ12,及び補正部CT2を有して、複数のLED14dの発光光量を一定にすると共に時間変動を抑制し安定化できる。これにより、糖度計51の測定精度はより向上する。
制御部CTは、LED群14dGのLED14dすべてを同時発光させるように制御するものに限らない。
制御部CTは、設定した6種類の波長毎に、或いは周方向の配置順に、対応するLED14dを時系列的に順次発光させ、その都度フォトセンサ13c1〜13c7で受光強度を測定してもよい。
LED群14dGを同時発光させると、短時間でも消費電力が大きくなるため、電源の負荷低減が必要な場合は、後者の、複数のLED14dを時系列的に順次点灯させて測定する方法が好ましい。
上述した、青果物の非破壊測定装置である糖度計51は、青果物ASに照射する光の光源として、複数のLED14dを用いている。
これにより、糖度計51は、光源の消費電力及び設置スペースが少なく、筐体Kを片手で把持できる小型化が可能である。
従って、収穫前の生育中の青果物の測定も容易に行える。
糖度計51は、複数のLED14dを、周方向に並べて配置すると共に、各LED14dからの出光を環状のリングレンズ8を通して青果物ASに向け照射するようにした。そのため、青果物ASに対し光が環状の光束として照射入光するようになっている。
これにより、青果物ASの内部の組織の吸光に偏りがあっても、その偏りの影響を受けにくく、平均化された出光が得られ、青果物ASの状態を良好に反映した測定結果が得られる。
リングレンズ8は、LED14dからの入光を、リングレンズ8の中心に向け偏向させて出光する光学特性を付与している。
そのため、青果物ASの内部で反射し、リングレンズ8の中央部分に向け出光する戻り光の強度が高く得られ、LED14dの発光の利用効率が高い。
これにより、糖度計51は、光透過率の高い青果物では発光強度を抑制するなどにより、低消費電力化可能で、バッテリで駆動するハンディタイプに好適である。また、皮が厚いなどによって光透過率の低い青果物に対しても測定に十分な戻り光を得易く、糖度計51は、測定可能な青果物の種類が多く、汎用性に優れる。
糖度計51は、LED14dからリングレンズ8に至る出光経路の途中に、LED14dからの光をリングレンズ8に集光させる環状の中継レンズ18を有する。
中継レンズ18を配置したことで、LED14dの出光を、より高い効率でリングレンズ8に導入して青果物ASに照射することができる。
これによっても、糖度計51は低消費電力化可能となり、ハンディタイプに好適である。また、皮が厚いなどによって光透過率の低い青果物に対しても測定に十分な戻り光をより得易く、糖度計51は、測定可能な青果物の種類が多く、汎用性に優れる。
また、中継レンズ18を配置したことで、LED14dとリングレンズ8との間の光の経路距離を長くすることができる。
そのため、リングレンズ8を青果物ASに対しより近い位置に配置できる。
これにより、リングレンズ8からの出光光束は十分狭い環状で青果物ASに照射入光し、単位面積あたりの入光強度をより高くできる。従って、LED14dの出光の利用効率がさらに向上する。
また、外部からの入光による影響を実質的に無視できる程度に抑制できる。
これにより、糖度計51は、高精度の測定が行える。
また、中継レンズ18を配置してLED14dとリングレンズ8との間の光の経路距離を長くできることから、青果物ASを載置するステージ部を、手で把持するグリップ部に対し、十分に突出させることが可能となる。
これにより、図16に示されるような、グリップ部K2を把持して青果物ASを測定した場合も、青果物ASとグリップ部K2を把持した指とが当たることがなく、作業が好感触で、容易に、高効率で行える。
また、製造上のばらつきにより、ベース基板14上のLED14dの実装位置にわずかなずれが生じると、各LED14dの出光角度にもわずかな違いが生じる。また、既述の3波長複合型LEDのような、パッケージ化された複合型LEDを用いた場合は、発光中心波長毎に出光位置が径方向でわずかに異なる。
これに対し、糖度計51では、中継レンズ18を、LED14dとリングレンズ8との間に縮小光学系レンズとして配置している。
すなわち、中継レンズ18は、環状の光源(環状に配置された複数のLED14d)より出射した光から光源の縮小系を作成してリングレンズ8に投入する。そして、リングレンズ8は、投入された光源の縮小系を環状のビームとして青果物に照射するようになっている。
そのため、LED14dの実装位置のわずかなずれ、或いは、LED14dが複合化LEDの場合の出光位置の径方向のわずかなずれ、に伴い出光角度のずれが生じても、そのずれが測定に及ぼす影響は小さい。
これにより、糖度計51は、高精度の測定が行える。
糖度計51は、リングレンズ8に対する径方向の内外位置に、それぞれ内当接部9と外当接部7とを有している。
これにより、図17に示されるように、青果物ASが測定部K1に宛がわれた状態で、リングレンズ8と、青果物ASと、内当接部9と、外当接部7と、によって閉じた空間Vcが形成される。
すなわち、リングレンズ8に対する外径側は、外当接部7によってステージ部2bと青果物ASとの間が塞がれている。また、内径側は、内当接部9によってステージ部2bと青果物ASとの間が塞がれている。
これにより、リングレンズ8から出射した環状の光LTRは、導光部材11の前端面11a1に達することはなく、また、径外方の外部にも漏出しない。
従って、糖度計51において測定に供される戻り光LTdは、必ず青果物ASから入来した光となって測定精度が向上する。
また、光LTRが外部に漏出しないので、LED14dの発光の利用効率が向上する。
糖度計51は、受光軸線CLT方向を長手とする導光部材11を備えており、導光部材11の長手の一端側を戻り光LTdの入光面の前端面11a1とし、他端側を、フォトセンサ13cに向けた戻り光LTdの出光面としている。
これにより、入光面から入った戻り光LTdは、比較的長い距離を導光部材11の内面反射を伴いつつ出光面に誘導されるので、出光面に達した光は、出光面の達した場所によらず、均質の光となっている。
従って、糖度計51は、フォトセンサ13c1〜13c7それぞれに入光する光の特性に偏りはなく、測定を高精度で行うことができる。
この構成により、筐体K内の、前後方向の位置関係において、光源となるLED群14dGよりも、フォトセンサ13c1〜13c7の方が、後方側、すなわち、外当接部7及び内当接部9から遠い位置に配置される。
従って、フォトセンサ13c1〜13c7を搭載したセンサ基板13は、箱体1の後面1a近傍に配置されると共に、導光部材11は、ベース基板14の孔14gを貫いて配置されている。
次に、糖度計51のキャリブレーションについて説明する。
糖度計51の測定精度の維持、並びに、他機及び過去の測定結果との整合性をより確実に得るために、糖度計51はキャリブレーションを定期的に行うことが望まれる。
糖度計51には、そのキャリブレーションのために、標準蓋体52が用意されている。
図18は、標準蓋体52の使用状態を説明するための半断面図であって、標準蓋体52と、筐体Kにおける測定部K1の一部と、が示されている。
標準蓋体52は、測定部K1の先端開口を覆う円柱状を呈し、蓋体2のステージ部2bに被せて使用する。
標準蓋体52は、丸鍋状のベース体52aと、ベース体の内部に取りつけられた反射体52bと、を有する。
図18に示される使用状態において、反射体52bは、中央部分に前方に向け円形に窪んだ凹部52b1と、径方向外側ほど前方に向かうよう傾斜し、かつ後方側が凸となる環状の曲面を有する曲面部52b2と、を備える。
凹部52b1は、導光部材11の前端面11a1に対し前後方向で対向し、曲面部52b2は、リングレンズ8に対し少なくとも出光方向(図17に示される主光軸LTa方向で対向している。
反射体52bは、白色部材により中実に形成されている。白色部材は、例えばフッ素樹脂である。
反射体52bは、測定する青果物の標準代替え品として機能する。
すなわち、リングレンズ8から出た環状の光LTR(図17参照)は、反射体52bの曲面部52b2に照射され一部が内部に進入する。
反射体52bの内部に進入した光は、内部で拡散しながら一部が凹部52b1から外部に出光し、戻り光LTdとして導光部材11に進入する。
この戻り光LTdに基づく測定結果が、予め設定され記憶部CT6に記憶された基、標準蓋体52を用いた準測定値となるように、光強度処理部CT3及び中央処理装置CT1はキャリブレーションを行う。
標準蓋体52での測定は、標準蓋体52が小さく持ち運び容易であり、単にステージ部2bに被せるだけで行える。そのため、キャリブレーション作業が容易であり、糖度計51のある個体と他の個体との相関も容易に確保できる。
本発明の実施例は、上述した構成及び手順に限定されるものではなく、本発明の要旨を逸脱しない範囲において変形してよい。
実施例の糖度計51は、青果物ASを通過して出射した戻り光が、導光部材11を通りその後端面11fbから出射するまでの戻り光の経路上に、通過する光を拡散させる拡散部WBを設けて戻り光を積極的に拡散させる構造に変形してよい。
すなわち、内当接部9に当接させた青果物ASの表面の、環状の内当接部9に囲まれた部分と、導光部材11の後端面11fbとの間に、拡散部WBを設けてもよい。これについて、変形例1〜3として次に説明する。
(変形例1)
図19は、変形例1を説明するための部分断面図であり、図17における導光部材11及びその近傍に対応する図である。
変形例1は、実施例の糖度計51において、導光部材11の前端面11a1に対する前方に、拡散板41を配置したものである。
具体的には、拡散板41は、前方視で前端面11a1の全面を覆うように、例えばステージベース10に接着剤或いは両面テープなどにより取り付けられている。
拡散板41は、前面41aに入射した光を拡散して後面41bから出射する。
拡散板41の種類は限定されない。例えば、透明樹脂に拡散剤を分散配合させて板状に形成した拡散板、或いは、透明樹脂板の少なくとも一方の表面に微小レンズが形成された拡散板、など周知の拡散板を適用できる。
変形例1では、図19に示されるように、戻り光LTdは、導光部材11の前端面11a1の前方に配置された拡散板41により、前端面11a1から導光部材11内に拡散入射する。
これにより、青果物ASを通過して導光部材11に入射する戻り光LTdは、拡散板41によって積極的に拡散され、より高度に均質化されて導光部材11に入射する。その後、均質化された戻り光LTdは、導光部材11を通過しバンドパスフィルタ31〜37を通りフォトセンサ13c1〜13c7に入光する。
そのため、吸光度とBrix値Yとの相関係数が高まり、例えば、同一の青果物ASを繰り返し測定したときの吸光度及びBrix値Yのばらつきが低減するなど、測定精度が向上する。
(変形例2)
変形例2は、実施例の糖度計51に用いる導光部材11の替わりに、導光部材11Wを適用したものである。図20は、導光部材11Wの半断面図である。
詳しくは、導光部材11Wは、導光部材11における軸線CL11方向の一部を、拡散部材42にしたものである。
ここでは、導光部材11Wが、前端面11a1から後方筒部11eの後面11e1(図12参照)との間に拡散部WBを有する例を説明する。
詳しくは、導光部材11Wは、拡散部WBとして、前端面11a1から後方側に距離La隔てた位置を後方端として、厚さLbの拡散部材42を有している。
拡散部材42は、例えば、透明樹脂に拡散剤を分散配合させて形成する。
変形例2において、導光部材11Wに対して前端面11a1から入射した戻り光LTd(図20では不図示)は、拡散部材42の前方端から入光して後方側に拡散出光する。
距離Laの最大値は、前端面11a1から、後方筒部11eの後面11e1までの距離Lcをとり得る。すなわち、距離Laは、厚さLbから距離Lcまでの範囲で設定され得る。また、拡散部材42の厚さは、最大で距離Laまで設定され得る。
これにより、青果物ASを通過して導光部材11Wに入射した戻り光LTdは、導光部材11W内に設けられた拡散部材42を通過する際に積極的に拡散されてより高度に均質化される。その後、均質化された戻り光LTdは、導光部材11Wから出てバンドパスフィルタ31〜37を通りフォトセンサ13c1〜13c7に入光する。
そのため、吸光度とBrix値Yとの相関係数が高まり、例えば、同一の青果物ASを繰り返し測定したときの吸光度及びBrix値Yのばらつきが低減するなど、測定精度が向上する。
さらに、変形例3として、実施例の糖度計51に用いる導光部材11の替わりに、同じ形状で拡散剤を分散させた樹脂で形成した導光部材11WAを適用してもよい(符号は図12参照)。
この場合、導光部材11WAに入射した戻り光LTdは、導光部材11内を進行するに伴い積極的に拡散されてより高度に均質化される。その後、均質化された戻り光LTdは、導光部材11WAから出てバンドパスフィルタ31〜37を通りフォトセンサ13c1〜13c7に入光する。そのため、吸光度とBrix値Yとの相関係数が高まり、例えば、同一の青果物ASを繰り返し測定したときの吸光度及びBrix値Yのばらつきが低減するなど、測定精度が向上する。
変形例1〜3は、組み合わせ可能な範囲で自由に組み合わせることができる。
実施例及び変形例1〜3において、中継レンズ18及びリングレンズ8は、一体の一つの光学部材にしてもよい。
中継レンズ18又はリングレンズ8は、複数の光学部材としてもよい。
すなわち、LED14dからの光を、測定部K1の先端から環状に出射させると共に、出射方向を、角度θbをもって受光軸線CLTに近づく方向に偏向する一つ光学部材、又は複数の光学部材で構成された光学系としてもよい。
実施例では、光源群14dGとして、7種の中心波長λ1〜λ7の内の6種を発光中心波長とする6種のLED14dを用いたものを説明した。
もちろん、これに限らず、一つの発光中心波長を有する或いはブロードな発光スペクトルを有するLED14dの、その発光スペクトルに基づき、バンドパスフィルタとして選択設定した複数の中心波長の光が測定に必要な光強度で得られると判断された場合には、複数の中心波長に対しそのLED14dを共用してもよい。
すなわち、バンドパスフィルタの中心波長として選択設定したm(2以上の整数)種の波長(λ1〜λm)に対し、q(1≦q≦m)種の発光中心波長それぞれを有するq種のLEDを用いてよい。
この場合、フォトセンサ13cは、少なくともm個備えられている。
光源はLEDに限定されるものではなく、他の発光素子であってもよい。

Claims (7)

  1. 把持可能なグリップ部と、測定対象に当接させるための環状の当接部を有する測定部と、を含む筐体と、
    前記筐体の内部において周方向に離隔配置された複数の光源からなる光源群と、
    前記当接部に囲まれた内側部分に前記当接部よりも小さい環状に配置され、前記光源群から出た光を、前記筐体の外部に環状に出射するリングレンズと、
    前記リングレンズの内側に一端面が露出し、他端面が前記筐体の内部に位置して前記一端面から入射した光を前記他端面から外部に出射する導光部材と、
    前記筐体内に配置され、前記導光部材の前記他端面から出射した光を受光するフォトセンサと、
    前記フォトセンサの受光強度に基づいて吸光度を求める光強度処理部と、
    からなる非破壊測定装置。
  2. 前記光源群と前記リングレンズとの間において、前記光源群からの光を前記リングレンズに誘導する環状の中継レンズから更になる、請求項1記載の非破壊測定装置。
  3. 前記リングレンズから出射した環状の光の主光軸は、前記リングレンズから出射した後に縮径する方向に傾斜している、請求項1又は請求項2記載の非破壊測定装置。
  4. 前記フォトセンサは、少なくともm個(mは2以上の整数)のフォトセンサを含み、
    前記m個のフォトセンサのそれぞれと前記導光部材の前記他端面との間において、異なるm種類の波長λ1〜λmのそれぞれを中心波長として有するバンドパスフィルタから更になる、請求項1〜3のいずれか1項に記載の非破壊測定装置。
  5. 前記光強度処理部は、前記吸光度を、前記m個のフォトセンサによって得られた前記波長λ1〜λmのそれぞれに対応した受光強度に基づいて求めると共に、求めた前記吸光度からBrix値を算出する、請求項4に記載の非破壊測定装置。
  6. 前記グリップ部は、長手を有して把持可能に形成され、
    前記測定部は、前記グリップ部における前記長手の一方の端部に、前記当接部の延在方向を前記長手に沿う方向として形成されると共に、前記当接部の先端面が、前記グリップ部の表面よりも突出した位置にある、請求項1〜5のいずれか1項に記載の非破壊測定装置。
  7. 前記測定対象を前記当接部に当接させた状態で、前記測定対象における前記当接部に囲まれた表面と前記導光部材の前記他端面との間において、通過する光を拡散させる拡散部から更になる、請求項1〜6のいずれか1項に記載の非破壊測定装置。
JP2018538004A 2016-09-06 2017-01-20 非破壊測定装置 Pending JPWO2018047366A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016173529 2016-09-06
JP2016173529 2016-09-06
PCT/JP2017/001848 WO2018047366A1 (ja) 2016-09-06 2017-01-20 非破壊測定装置

Publications (1)

Publication Number Publication Date
JPWO2018047366A1 true JPWO2018047366A1 (ja) 2019-06-24

Family

ID=61561543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538004A Pending JPWO2018047366A1 (ja) 2016-09-06 2017-01-20 非破壊測定装置

Country Status (8)

Country Link
US (1) US11099127B2 (ja)
EP (1) EP3511698A4 (ja)
JP (1) JPWO2018047366A1 (ja)
KR (1) KR102608701B1 (ja)
CN (1) CN108291869B (ja)
IL (1) IL259443B (ja)
TW (1) TWI747871B (ja)
WO (1) WO2018047366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099227A (ja) * 2019-12-20 2021-07-01 マイクロコントロールシステムズ株式会社 コリメート光による分析を行う分析装置及び分析方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027840B2 (ja) * 2017-11-29 2022-03-02 セイコーエプソン株式会社 分光反射測定器
CN109520970B (zh) * 2018-11-07 2021-01-19 华南理工大学 一种基于光谱的水果品质检测装置及方法
JP2021124417A (ja) * 2020-02-06 2021-08-30 株式会社青野工業 濃度兼放射線量測定器
CN112525073B (zh) * 2020-11-19 2022-06-03 哈尔滨工业大学 一种基于布里渊增益谱特征参数的结构裂缝识别方法
JP7449015B1 (ja) 2023-07-24 2024-03-13 株式会社アタゴ 青果物の非破壊測定装置及び非破壊測定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088681A1 (fr) * 2001-04-25 2002-11-07 Hiromu Maeda Instrument portable pour le controle qualite interne
US20030169421A1 (en) * 2001-11-26 2003-09-11 Peter Ehbets Spectrophotometer and its use
US20040149916A1 (en) * 2001-04-27 2004-08-05 Angelo Benedetti Portable apparatus for the non-destructive measurement to the internal quality of vegetable products
JP2007057296A (ja) * 2005-08-23 2007-03-08 Denso Wave Inc 光学読取装置
JP2011080959A (ja) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries 屋外用農作物内部品質測定装置
US20120229809A1 (en) * 2009-09-07 2012-09-13 Pellenc Societe Anonyme Self-contained and portable optical spectrometer
US20150021478A1 (en) * 2013-07-22 2015-01-22 Daesung Tech Co., Ltd. Non-destructive sugar content measuring apparatus
JP2015108508A (ja) * 2012-03-14 2015-06-11 千代田電子工業株式会社 非破壊測定装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1942840U (de) * 1966-04-27 1966-07-21 Precitronic Lichtsignal-rundum-empfaenger.
JP2882824B2 (ja) * 1989-11-17 1999-04-12 三菱重工業株式会社 青果物の成分測定装置
IE20000608A1 (en) * 1999-07-28 2001-07-11 William Kelly Improvements in and relating to ring lighting
AU2123901A (en) 2000-04-24 2001-10-25 Sumitomo Metal Mining Company Limited Non-destructive sugar content measuring apparatus
JP2002014042A (ja) * 2000-04-24 2002-01-18 Sumitomo Metal Mining Co Ltd 非破壊糖度測定装置
JP4333050B2 (ja) * 2001-04-17 2009-09-16 コニカミノルタセンシング株式会社 測定用光学系及びこの光学系を備えた三刺激値型光電色彩計
DE10256365A1 (de) * 2001-12-04 2003-07-17 Ccs Inc Lichtabstrahlungsvorrichtung, Lichtquellenvorrichtung, Beleuchtungseinheit und Lichtverbindungsmechanismus
JP2004363085A (ja) 2003-05-09 2004-12-24 Ebara Corp 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
JP2006226775A (ja) * 2005-02-16 2006-08-31 Toyohashi Univ Of Technology 果実の食味成分評価方法及び評価装置
US9344612B2 (en) * 2006-02-15 2016-05-17 Kenneth Ira Ritchey Non-interference field-of-view support apparatus for a panoramic facial sensor
FR2922304B1 (fr) 2007-10-12 2009-11-20 Sp3H Dispositif de spectrometrie pour l'analyse d'un fluide
WO2010124347A1 (en) 2009-05-01 2010-11-04 Xtralis Technologies Ltd Improvements to particle detectors
WO2010129775A1 (en) * 2009-05-06 2010-11-11 University Of Virginia Patent Foundation Self-illuminated handheld lens for retinal examination and photography and related method thereof
WO2012005350A1 (ja) * 2010-07-09 2012-01-12 千代田電子工業株式会社 青果物の非破壊測定装置
CA2814213C (en) * 2010-10-13 2014-08-19 Ocular Prognostics, LLC Handheld reflectometer for measuring macular pigment
KR101134770B1 (ko) 2011-07-22 2012-04-13 양완석 휴대용 인체외시경 영상장치
WO2015093470A1 (ja) 2013-12-16 2015-06-25 日本電信電話株式会社 端面観察装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088681A1 (fr) * 2001-04-25 2002-11-07 Hiromu Maeda Instrument portable pour le controle qualite interne
US20040149916A1 (en) * 2001-04-27 2004-08-05 Angelo Benedetti Portable apparatus for the non-destructive measurement to the internal quality of vegetable products
US20030169421A1 (en) * 2001-11-26 2003-09-11 Peter Ehbets Spectrophotometer and its use
JP2007057296A (ja) * 2005-08-23 2007-03-08 Denso Wave Inc 光学読取装置
US20120229809A1 (en) * 2009-09-07 2012-09-13 Pellenc Societe Anonyme Self-contained and portable optical spectrometer
JP2011080959A (ja) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries 屋外用農作物内部品質測定装置
JP2015108508A (ja) * 2012-03-14 2015-06-11 千代田電子工業株式会社 非破壊測定装置
US20150021478A1 (en) * 2013-07-22 2015-01-22 Daesung Tech Co., Ltd. Non-destructive sugar content measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099227A (ja) * 2019-12-20 2021-07-01 マイクロコントロールシステムズ株式会社 コリメート光による分析を行う分析装置及び分析方法

Also Published As

Publication number Publication date
US11099127B2 (en) 2021-08-24
KR102608701B1 (ko) 2023-11-30
IL259443A (en) 2018-07-31
WO2018047366A1 (ja) 2018-03-15
CN108291869A (zh) 2018-07-17
IL259443B (en) 2022-02-01
US20190003963A1 (en) 2019-01-03
TWI747871B (zh) 2021-12-01
KR20190047654A (ko) 2019-05-08
CN108291869B (zh) 2022-09-20
EP3511698A1 (en) 2019-07-17
EP3511698A4 (en) 2020-04-01
TW201812276A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
JPWO2018047366A1 (ja) 非破壊測定装置
JP6395981B1 (ja) 光源一体型レンズアセンブリ及びこれを含む分光分析装置
US5377000A (en) Portable appearance measuring apparatus
WO2002088681A1 (fr) Instrument portable pour le controle qualite interne
US9631976B2 (en) Miniature spectrometer and apparatus employing same
JP2013181912A (ja) 成分分析装置
US8964180B2 (en) Self-contained and portable optical spectrometer
US11287317B2 (en) Optical measurement device including internal spectral reference
WO2011122484A1 (ja) 血液採取装置
WO2007055876A3 (en) Multi-mode sampling probes
JP7449015B1 (ja) 青果物の非破壊測定装置及び非破壊測定方法
JP3620798B2 (ja) 非破壊分光測定器
CN105806823A (zh) 整合式拉曼光谱量测系统与模块化激光模块
JP4201683B2 (ja) ハンディタイプの内部品質検査装置
JP3162945U (ja) 青果物の非破壊測定装置
JP2019013410A (ja) 検出装置および生体情報測定装置
US10969569B2 (en) Light source-integrated lens assembly and optical apparatus including the same
JP5576084B2 (ja) 屋外用農作物内部品質測定装置
JP2005122437A (ja) 炎感知器
CN111751301A (zh) 穿透式取样模块以及光谱仪
WO2021053895A1 (ja) 水分検知装置
JP6913905B2 (ja) 膜厚管理装置
JP2018004359A (ja) 光学測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200923