WO2012005350A1 - 青果物の非破壊測定装置 - Google Patents

青果物の非破壊測定装置 Download PDF

Info

Publication number
WO2012005350A1
WO2012005350A1 PCT/JP2011/065688 JP2011065688W WO2012005350A1 WO 2012005350 A1 WO2012005350 A1 WO 2012005350A1 JP 2011065688 W JP2011065688 W JP 2011065688W WO 2012005350 A1 WO2012005350 A1 WO 2012005350A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
fruits
vegetables
optical transmission
Prior art date
Application number
PCT/JP2011/065688
Other languages
English (en)
French (fr)
Inventor
成躬 平澤
進 河合
Original Assignee
千代田電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田電子工業株式会社 filed Critical 千代田電子工業株式会社
Priority to CN201180032592XA priority Critical patent/CN102959382A/zh
Priority to JP2012523931A priority patent/JPWO2012005350A1/ja
Publication of WO2012005350A1 publication Critical patent/WO2012005350A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4742Details of optical heads therefor, e.g. using optical fibres comprising optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4752Geometry
    • G01N2021/4759Annular illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held

Definitions

  • the present invention relates to an apparatus for measuring characteristics such as sugar content or ripeness without destroying fruits and vegetables.
  • the measuring apparatus As a device for measuring the characteristics of fruit and vegetables without destroying them, there is a light transmission type measuring device that receives light transmitted through the fruits and vegetables and measures the absorbance absorbed inside the fruits and vegetables (see Patent Documents 1 and 2). ).
  • the light transmission type measuring device since the light projecting unit and the light receiving unit are provided opposite to the opposite sides centering on the fruits and vegetables, the entire device has to be fixed and does not move easily. . Therefore, the measuring apparatus has been used exclusively for fruits and vegetables that are transported on a conveyor in the fruits and vegetables market.
  • the light projecting part and the light receiving part are arranged so as to be close to each other, and the light reflected from the surface of the fruit and vegetables is received or diffused inside the fruit and emitted.
  • a light diffusion type measuring device for receiving diffused light has been developed (see Patent Document 3 or 4). This type of measuring device uses an LED as a projection light source, irradiates near-infrared rays of a predetermined wavelength with this LED, and calculates characteristics (for example, sugar content and maturity) to be measured from the reflectance or transmittance of the wavelength. It was something to do.
  • the light source that irradiates the fruit and vegetable is set to a specific wavelength, so the wavelength of the light that is irradiated according to the characteristics of the fruit and vegetable to be measured is changed. It was identified. Therefore, when measuring the sugar content and the maturity at the same time, it is necessary to irradiate light of different wavelengths in several times and sequentially receive the light, which takes time. In particular, measuring a large number of reflected light or diffused light with different wavelengths significantly increases the number of light sources and the number of times of measurement, leading to an increase in the size of the apparatus and an increase in measurement time.
  • an error may occur due to external light entering the irradiated light and the received light. For this reason, it is considered to place the light receiving part at the center and seal between the surrounding light emitting part and the fruit and vegetable surface, but external light enters during transmission from the light receiving part to the optical sensor or at the transmission end. In some cases, an error would occur.
  • the present invention has been made in view of the above-mentioned points, and its purpose is to improve the accuracy of measured values of the characteristics of fruits and vegetables by suppressing the influence of external light on the received light, and a plurality of ranges. It is an object to provide a non-destructive measuring apparatus for fruits and vegetables capable of simultaneously measuring light of the wavelengths.
  • the present invention provides a light emitting unit that irradiates light to a measuring object fruit, a light receiving unit that receives diffused light emitted from the fruit, and a transmitted light amount by diffused light detected by the light receiving unit.
  • a non-destructive measuring apparatus for fruits and vegetables comprising processing means for calculating and calculating an evaluation amount of fruits and vegetables from a calibration curve, a plurality of light sensors disposed on a substrate and individually disposed in the vicinity of each light sensor
  • a plurality of optical filters, a filter holding unit that holds the optical filter while individually surrounding the optical sensor, and a plurality of optical fibers, and diffused light detected by the light receiving unit is supplied to each optical filter.
  • a plurality of optical transmission cables for transmission, and a cable support section that surrounds each end of the optical transmission cable and holds the end in the vicinity of each optical filter.
  • the diffused light incident from the light receiving unit is transmitted to the plurality of optical filters via the optical transmission cable, and only light having a predetermined range of wavelengths reaches the plurality of optical sensors via the optical filter. Therefore, many types of light can be detected at the same time. Therefore, it is possible to calculate the amount of transmitted light necessary for determining a desired characteristic for a specific fruit and vegetable depending on which optical filter measurement value is selected.
  • the diffused light means light emitted from the fruits and vegetables after the light irradiated to the fruits and vegetables is diffused inside the fruits and vegetables, and is a different kind of light from the light reflected from the surface of the fruits and vegetables (reflected light). It is.
  • the optical sensor can irradiate the optical sensor with light having a wavelength in a specific range of diffused light, and the diffused light can be classified at low cost.
  • the end of the optical transmission cable is surrounded by a cable support part, the periphery of the optical sensor is surrounded by a filter holding part, and the optical filter is held inside the filter holding part, so that the connection position of the light transmission path Therefore, the influence of external light on the transmitted diffused light can be suppressed.
  • multiple light sensors can be irradiated with light of different ranges of wavelengths simultaneously, various measurement values can be obtained simultaneously for the fruits and vegetables to be measured, based on the light of the wavelengths to be measured, Evaluation quantities of other types of characteristics can be calculated simultaneously.
  • the diffused light of the plurality of wavelengths is obtained by classifying one diffused light, it can be measured in a short time.
  • FIG. 1 is a diagram showing the internal structure of this embodiment. As shown in this figure, the outline of this embodiment will be described.
  • a light emitting unit 1 and a light receiving unit 2 are provided in the vicinity of an opening of a bottomed cylindrical measuring device A, and diffused light detected by the light receiving unit 2 is as follows.
  • the optical transmission cable group 3 and the individual optical transmission cables 31 branched from the optical transmission cable group 3 are transmitted to the cable support 4 provided near the bottom of the apparatus main body A. .
  • the cable support portion 4 supports the end of the branched optical transmission cable 31 and is continuous with the filter holding portion 5 that holds the optical filter.
  • the filter holding unit 5 is provided in the vicinity of the substrate 6 having an optical sensor.
  • the light emitting unit 1 has a frame body 10 formed in a bottomed cylindrical shape with a wall surface portion and a bottom surface portion, and light emitters 11 and 12 are provided on the bottom portion.
  • the light emitters 11 and 12 are provided at the bottom of the frame body 10, and the frame body 10 reflects the light of the light emitters 11 and 12 to guide the light toward the opening of the frame body 10. Yes. That is, the side wall of the frame 10 is inclined so as to expand from the bottom surface side toward the opening side. Note that the bottom and side portions of the frame 10 are coated with a reflective agent so that light can be reflected.
  • an annular buffer member is provided in the opening of the apparatus main body A that supports the frame body 10 so that the fruits and vegetables F are not damaged when the light emitting unit 1 is brought into contact with the surface of the fruits and vegetables F. It is configured.
  • the above-described light emitters 11 and 12 use halogen lamps capable of simultaneously emitting near-infrared light from visible light, and a plurality (two in the figure) are arranged around the light receiving unit 2. Yes. Since the light receiving unit 2 is provided at the center of the light emitting unit 1, the light receiving unit 2 is arranged concentrically around the light receiving unit 2.
  • the light emitters 11 and 12 are not limited to halogen lamps, and can be used as the light emitters of the present embodiment as long as light having a wide range of wavelengths can be irradiated at the same time. Further, the number of the light emitters 11 and 12 is not limited to two, and three or more even if there is only one, as long as it can transmit fruits and vegetables and obtain diffused light. It may be.
  • the light receiving unit 2 is configured by a cylindrical body that penetrates the bottom surface of the frame 10 of the light emitting unit 1, and a bowl-shaped bracket is formed on the cylindrical body so that the bracket abuts on the bottom of the frame 10. Is provided.
  • the tip of the cylinder is open, and diffused light can enter from the tip. Accordingly, by irradiating light from the light emitting unit 1 with the fruit F to be measured being brought into contact with the light receiving unit 2, the light from the light emitting unit 1 is irradiated on the fruit F and transmitted through or diffusely diffused. Light can be incident from the light receiving unit 2.
  • a buffer member 21 having a shape of a circular ring (parabolic shape) gradually widened is mounted, so that the impact with the surface of the fruits and vegetables F can be reduced when contacting the fruits and vegetables F. Yes.
  • the buffer member 21 is in contact with the surface of the fruits and vegetables, and since an elastic material is used, the buffer member 21 can be in close contact with the surface of the fruits and vegetables. It is configured to suppress intrusion.
  • the optical transmission cable group 3 in which the optical transmission cables 31 are concentrated is inserted into the light receiving unit 2 having such a configuration, and the tip of the optical transmission cable group 3 is in the vicinity of the opening of the cylindrical body constituting the light receiving unit 2 Is located. Accordingly, the diffused light incident on the inside of the cylindrical body of the light receiving unit 2 is incident on the tip of the optical transmission cable group 3 at the same time.
  • the optical transmission cable group 3 is branched into individual optical transmission cables 31 in the middle from the light receiving unit 2 to the cable support unit 4.
  • Each optical transmission cable 31 is configured by a collection of extremely thin optical fibers. In the present embodiment, about 1000 optical fibers are used for one optical transmission cable 31, thereby improving randomness. That is, when the diffused light is transmitted by one or an extremely small number of optical fibers, the amount of light is determined by the light incident on the small number of optical fibers.
  • the optical transmission cable 31 is configured, the amount of light for each wavelength can be measured by the total amount of light incident on each optical fiber, thereby suppressing the occurrence of measurement errors for the amount of light of a specific wavelength to be measured. Can do.
  • the optical transmission cable group 3 or the optical transmission cable 31 has a single loop as a whole between the light receiving unit 2 and the cable support unit 4.
  • the position of this loop formation is such that the optical fiber constituting the optical transmission cable 31 forms a loop regardless of before and after branching.
  • the optical fiber forms a loop, the optical fiber is bent. Therefore, when a slight amount of external light is applied to the cladding, the optical fiber is prevented from reaching the core.
  • the diffused light detected by the light receiving unit 2 is transmitted to the cable support unit 4 while suppressing the influence of external light by the optical transmission cable group 3 and the individual optical transmission cables 31.
  • FIG. 2 is a diagram illustrating details of a range from the end of the optical transmission cable group 3 to the substrate 6.
  • the individual optical transmission cables 31, 32,... Branched from the optical transmission cable group 3 are covered with covering materials 31a, 32a,.
  • the entire vicinity of the end portion including the covering materials 31 a, 32 a,... Is supported inside the cable support portion 4.
  • the cable support portion 4 is made of a resin having a high light blocking rate, and the through holes 41, 42,... Through which the optical transmission cables 31, 32,. , 42,... Are provided with screw holes through which the fixing screws 43, 44,. .. Are inserted into the through holes 41, 42,... Together with the covering materials 31a, 32a,... And the fixing screws 43, 44,.
  • the ends of the optical transmission cables 31, 32,... Are supported in the through hole of the cable support unit 4 and are irradiated with diffused light transmitted in the through hole. Will be able to.
  • the ends of the optical transmission cables 31, 32,... are supported in the through holes of the cable support portion 4, the ends of the optical transmission cables 31, 32,. It is fixed at a position very close to the surface (opposing surface). The ends of the optical transmission cables 31, 32,... Do not have to coincide with the contact surfaces, but are supported close to each other so as not to differ greatly. This is to allow light to reach optical filters 51, 52,... And optical sensors 61, 62,. Further, the covering materials 31a, 32a,... Are provided in a range sufficiently longer than the range inserted into the through hole, and the tips of the fixing screws 43, 44,. , ... come into contact. In this way, the fixing screws 43, 44,... Always come into contact with the covering material, so that the fixing screws 43, 44,... Do not contact the optical transmission cables 31, 32,. Therefore, the optical transmission cables 31 and 32 can be protected.
  • the filter holding part 5 has a region where the tips of the optical transmission cables 31, 32,.
  • a protruding portion that protrudes toward is formed.
  • a recess is provided around the area.
  • the filter holding part 5 is continuously arranged on the cable support part 4 configured as described above.
  • the filter holding part 5 is made of a resin having a high light shielding rate, like the cable support part 4. As shown in the drawing, on the contact surface side between the cable support portion 4 and the filter holding portion 5, an uneven portion for integrally connecting the both is formed. Further, the filter holding part 5 is provided with a through hole of an appropriate size, and the optical filters 51, 52,... Can be arranged in the through hole.
  • a concave portion into which the protruding portion formed on the cable support portion 4 can be fitted is formed on the surface (opposing surface) of the filter holding portion 5 on the side facing the cable support portion 4, and the optical filter is held by this concave portion.
  • An area to be provided is provided. That is, the through hole is formed in the center of the recess, and the optical filters 51, 52,... Are held in the through hole.
  • the protrusion part is formed in the periphery of the filter holding
  • a concave portion formed deeper than the concave portion may be provided around the protruding portion. In this case, the concave portion may be brought into contact with the most protruding portion of the cable support portion 4. It becomes possible.
  • the end of the optical transmission cable 31, 32,... And the optical filter 51, 52 The diffused light is irradiated from the end portions of the optical transmission cables 31, 32,... Toward the optical filters 51, 52,.
  • grooved part is for hold
  • a light shielding resin material for example, maltoprene (registered trademark)
  • MP3 is provided around the contact surface between the cable support portion 4 and the filter holding portion 5. It is good also as a structure which sticks MP4. Furthermore, in addition to the structure having the concavo-convex part, the light shielding resin materials MP3 and MP4 may be attached.
  • the optical filters 51, 52,... Necessary numbers (for example, 14) are arranged, and each of them can transmit light having a different wavelength. Therefore, for example, if 14 optical filters are used, light of 14 types of wavelengths can be obtained. In the case where it is assumed that light having a wavelength of about 1000 nm is measured from light having a wavelength of about 700 nm, Fourteen types of light with desired wavelengths can be obtained. Thereby, it is possible to obtain the same effect as in the case of performing spectroscopy using a spectroscope.
  • the 14 types described above are examples, and this number can be increased or decreased.
  • the light that can be transmitted by the optical filters 51, 52,... May have a predetermined wavelength width from the center wavelength, but the light having the desired wavelength means the center wavelength.
  • the optical filter of this embodiment transmits light having a wavelength in the range of about 5 nm before and after the center wavelength, but the wavelength width before and after the center wavelength is not limited to this.
  • the filter holding unit 5 has a plurality of (for example, 14) through holes in order to hold a plurality (for example, 14) of optical filters 51, 52,.
  • a plurality for example, 14
  • optical filters 51, 52 are held in two through-holes, but a similar configuration is continued in, for example, seven rows in the direction perpendicular to the paper surface of FIG.
  • An optical filter can be arranged.
  • the optical transmission cables 31, 32,... Have the same number as the optical filters 51, 52,.
  • These ends are supported by the cable support 4 by the same number (for example, 14) of through holes 41, 42,.
  • the through hole provided in the filter holding part 5 is provided with an opening facing the optical sensors 61, 62,... In addition to the opening connected to the optical transmission cables 31, 32,.
  • This opening part arrange
  • the optical sensors 61, 62,... For example, a CMOS sensor manufactured on a semiconductor substrate can be used, or a plurality of photo-resistors or the like may be mounted on the substrate.
  • the optical sensors 61, 62,... Protrude from the surface of the substrate 6, the periphery of the optical sensors 61, 62,. By encircling, it is possible to prevent external light from entering from the surface of the substrate 6.
  • the substrate 6 can be colored black, for example, so that light transmitted through the substrate can be absorbed, and the light shielding rate can be further improved.
  • light shielding members 71, 72,... are interposed between the filter holding unit 5 and the optical sensors 61, 62,. This is because a small amount of external light entering from between the filter holding unit 5 and the optical sensors 61, 62,... Reaches the photosensitive surface of the optical sensors 61, 62,. It is restraining to do.
  • the light shielding members 71, 72,... are formed into a film shape with a material having a high light shielding rate, and the center of the light shielding members 71, 72,. The diffused light transmitted through the optical filters 51, 52,... Can be irradiated to the center of the photosensitive surface.
  • this embodiment Since this embodiment is configured as described above, light is transmitted to or diffusely reflected in the fruits and vegetables by irradiating the fruits and vegetables F with the light emitters 11 and 12, and then the light receiving unit 2 Diffused light is detected, and the diffused light detected by the light receiving unit 2 passes through the individual optical transmission cables 31, 32,... Branched from the optical transmission cable group 3, and the optical filters 51, 52,. Will be transmitted.
  • the light having a specific wavelength transmitted through the optical filters 51, 52, ... reaches the optical sensors 61, 62, ..., and the amount of light is measured by the optical sensors 61, 62, .... Therefore, the diffused light passing through the plurality of optical transmission cables 31, 32,... Can be classified for each wavelength, and light of different wavelengths can be measured simultaneously.
  • the light quantity values measured by the optical sensors 61, 62,... Are calculated by processing means (not shown), and the characteristics (evaluation amount) of the measurement target fruits and vegetables F are calculated. .
  • a calibration curve based on the correlation between the actual measurement value and the measurement value (absorbance measurement value) is used in advance, and the calibration curve data created in advance is stored in the memory of the processing means. ing. Since the calibration curve to be used varies depending on the type of fruits and vegetables to be measured, various calibration curves are classified and stored. A calibration curve to be applied is selected and used by specifying the type and harvest time of the fruits and vegetables to be measured at the time of measurement.
  • wavelength range select the type of light (wavelength range) to be calculated according to the characteristics to be measured (sugar content, ripeness, hardness, etc.) (specifically, multiply the light amount of each range of wavelengths by a coefficient) In other words, calculation processing is performed for a desired characteristic.
  • an annular buffer member is attached to the tip of the opening of the light emitting unit 1, and this buffer member is configured to appropriately shield light outside the device A.
  • the said buffer member can be provided with the material with light-shielding property, it is not limited to it.
  • the light amount is adjusted so that the total of the plurality of halogen lamps is about 20 W. Accordingly, for two halogen lamps, one having 10 W is used. When three halogen lamps are used, one having 6 to 7 W is used. Thus, when a 20 W halogen lamp is used, desired diffused light can be detected by irradiation for about 0.25 seconds, and the calculation result is output immediately after detection of this diffused light. The time required from the start to the result output can be set to an extremely short time of about 0.5 seconds.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 受光した光に対する外部光の影響を抑えることによって、青果物の特性の計測値の精度を向上させるとともに、複数範囲の波長の光を同時に測定し得る青果物の非破壊測定装置を提供する。 光を照射する発光部1と、拡散光を受光する受光部2と、受光部が検出した拡散光により透過光量を算出し検量線から青果物の評価量を演算する処理手段とを備えた青果物の非破壊測定装置Aにおいて、基板6の表面に配設された複数の光センサ61,62と、各光センサの近傍に個別に配置される複数の光学フィルタ51,52と、光センサの周囲を個別に包囲しつつ光学フィルタを保持するフィルタ保持部5と、受光部で検出した拡散光を各光学フィルタに伝送する光伝送ケーブル31,32と、光伝送ケーブルの各末端を包囲しつつフィルタ保持部に接続されて、光伝送ケーブルの各末端を保持するケーブル支持部4とを備える。

Description

青果物の非破壊測定装置
 本発明は、青果物を破壊せず、その糖度または熟度等の特性を測定するための装置に関するものである。
 青果物を破壊せずその特性を測定する装置としては、青果物に透過させた光を受光し、青果物内部において吸収された吸光度を測定する光透過型の測定装置があった(特許文献1および2参照)。上記光透過型の測定装置は、投光部と受光部とが青果物を中心に相反する側に対向して設けられるため、装置全体を固定化しなければならず、容易に移動するものではなかった。そこで、上記測定装置は専ら青果市場などにおいてコンベア上を搬送する青果物について使用されていた。
 これに対し、青果物の測定装置を移動可能にするため、投光部と受光部が近接するように配置され、青果物表面で反射した反射光を受光する光反射型または青果物内部で拡散した後に放出される拡散光を受光する光拡散型の測定装置が開発されていた(特許文献3または4参照)。この種の測定装置は、投射光源にLEDを使用し、このLEDにより所定波長の近赤外線を照射し、当該波長の反射率または透過率等から測定すべき特性(例えば糖度や熟度)を演算するものであった。なお、青果物から放出される透過光の光量を測定し、当該青果物の特性を判断するための方法としては、測定対象となる青果物について、実測値と測定値(吸光度計測値)との相関関係に基づく検量線を予め用意し、反射光または拡散光の測定値を当該検量線と比較することにより、青果物の特性(評価量)を算出するようにしていた(特許文献5参照)。
特開平6-186159号公報 特開2002-122536号公報 特開平5-288674号公報 特開2000-88747号公報 特開2006-226775号公報
 ところが、上記に示した光反射型または光拡散型の青果物測定装置では、青果物に照射する光源を特定波長とするものであるため、測定すべき青果物の特性に応じて照射される光の波長を特定していた。従って、糖度と熟度を同時に測定する場合には、異なる波長の光を数回に分けて照射し、それを順次受光しなければならず、測定に時間がかかることとなっていた。特に、多数の異なる波長の反射光または拡散光を測定することは光源の数および測定の回数を著しく増加させることとなり、装置の大型化および測定時間の長期化を招来することとなっていた。
 そこで、照射光の波長を特定せず、反射光または拡散光を分光器によって分光し、特定波長の光について測定することが考えられるものの、分光器が高価であることから測定装置全体の価格が高騰することとなっていた。
 さらに、青果物の内部に透過される光の量によって当該青果物の特性を演算する場合、照射する光および受光した光に対し外部の光が侵入することにより誤差を生じることがあった。そのため、受光部を中心に配置し、その周辺の発光部と青果物表面との間を密閉させることが検討されるが、受光部から光センサまでの伝送途中または伝送末端において外部の光が侵入する場合には、やはり誤差を生じることとなっていた。
 そこで、本発明は、上記諸点にかんがみてなされたものであって、その目的は、受光した光に対する外部光の影響を抑えることによって、青果物の特性の計測値の精度を向上させるとともに、複数範囲の波長の光を同時に測定し得る青果物の非破壊測定装置を提供することである。
 上記目的を達成するために、本発明は、測定対象青果物に光を照射する発光部と、該青果物から放出される拡散光を受信する受光部と、受光部が検出した拡散光により透過光量を算出し検量線から青果物の評価量を演算する処理手段とを備えた青果物の非破壊測定装置において、基板上に配設された複数の光センサと、各光センサの近傍に個別に配置される複数の光学フィルタと、前記光センサの周囲を個別に包囲しつつ前記光学フィルタを保持するフィルタ保持部と、複数の光ファイバによって構成され、前記受光部で検出した拡散光を前記各光学フィルタに伝送する複数の光伝送ケーブルと、該光伝送ケーブルの各末端を包囲しつつ該末端を前記各光学フィルタの近傍に保持するケーブル支持部とを備えたことを特徴とする。
 上記構成によれば、受光部から入射した拡散光は光伝送ケーブルを経由して複数の光学フィルタに伝送され、この光学フィルタを介して所定範囲の波長の光のみが複数の光センサに到達することとなるから、同時に多数の種類の光を検知することができる。従って、いずれの光学フィルタを介した光の測定値を選択するかによって、特定の青果物について、所望する特性の判断に必要な透過光量を演算させることが可能となる。なお、拡散光とは、青果物に照射した光が当該青果物の内部で拡散した後、当該青果物から放出される光を意味し、青果物の表面で反射する光(反射光)とは異なる種類の光である。
 本発明によれば、光学フィルタにより拡散光の特定範囲の波長の光を光センサに照射することができ、安価に拡散光を分類することが可能となる。また、光伝送ケーブルの末端はケーブル支持部によって包囲され、光センサの周辺はフィルタ保持部によって包囲され、さらに光学フィルタがフィルタ保持部の内部に保持されることにより、光の伝送経路の接続位置において遮光されることとなるから、伝送された拡散光に対する外部の光の影響を抑制し得る。
 さらに、複数の光センサに対し、同時に異なる範囲の波長の光を照射させることができることから、測定対象の青果物について、同時に多種の測定値を得ることができ、測定すべき波長の光に基づき、他種類の特性の評価量を同時に算定することができる。しかも、これら複数の波長の拡散光は一つの拡散光を分類して行われることから、短時間に測定することが可能となる。
本発明の実施形態を示す説明図である。 II-II断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施形態の内部構造を示す図である。この図に示すように、本実施形態の概略を説明すると、有底筒状の測定装置Aの開口部付近に発光部1および受光部2が設けられ、受光部2で検知される拡散光は、光伝送ケーブル群3、およびこの光伝送ケーブル群3から分岐する個々の光伝送ケーブル31を経由して、装置本体Aの底部付近に設けられるケーブル支持部4に伝送される構成となっている。このケーブル支持部4は、分岐した光伝送ケーブル31の末端を支持するとともに、光学フィルタを保持するフィルタ保持部5に連続している。このフィルタ保持部5は、光センサを有する基板6に近接して設けられている。
 発光部1は、壁面部および底面部による有底筒状に形成された枠体10を有しており、底部には発光体11,12が設けられている。この発光体11,12は、枠体10の底部に設けられ、枠体10は、当該発光体11,12の光を反射して、当該枠体10の開口部に向かって光を誘導している。すなわち、枠体10の側壁は、底面側から開口部側に向かって拡張するように傾斜させているのである。なお、この枠体10の底面部および側面部は光を反射できるように、反射剤が塗布されているのである。また、枠体10を支持する装置本体Aの開口部には、円環状の緩衝部材が設けられており、発光部1を青果物Fの表面に当接した際に、当該青果物Fが損傷しないように構成されている。
 上記の発光体11,12は、本実施形態では可視光から近赤外線を同時に発光することができるハロゲンランプが使用されており、受光部2の周囲に複数個(図では2個)配置されている。発光部1の中央に受光部2が設けられることから、この受光部2を中心に同心円上に配置されるものである。
 なお、発光体11,12は、ハロゲンランプに限定されるものではなく、同時に幅広い範囲の波長の光を照射することができれば本実施形態の発光体として使用可能である。また、発光体11,12は、2個であることに限定されるものでなく、1個によって青果物を透過し、拡散光を得ることができるものであれば1個であっても3個以上であってもよい。
 受光部2は、発光部1の枠体10の底面を貫通する筒体で構成され、この筒体には、鍔状のブラケットが形成され、当該ブラケットが前記枠体10の底部に当接するように設けられている。筒体の先端は開口しており、当該先端から拡散光が入射可能になっている。従って、測定対象の青果物Fを受光部2に当接して発光部1から光を照射することにより、発光部1の光が青果物Fに照射され、その内部を透過し、または乱反射した後の拡散光を受光部2から入射させることができるものである。筒体の先端には、円環状を徐々に拡幅した形状(パラボラ形)の緩衝部材21が装着されており、青果物Fとの当接時に当該青果物Fの表面との衝撃を緩和させるようにしている。この緩衝部材21は、円環部分が青果物表面に当接し、かつ、弾性力ある素材が使用されていることから、青果物の表面に密着することができ、少なくとも発光部1から照射される光の侵入を抑制するように構成されている。
 このような構成の受光部2には、光伝送ケーブル31を集中させた光伝送ケーブル群3が挿入され、当該光伝送ケーブル群3の先端は、受光部2を構成する筒体の開口部近傍に位置している。従って、受光部2の筒体内部に入射した拡散光は、これと同時に光伝送ケーブル群3の先端に入射することとなるのである。
 この光伝送ケーブル群3は、受光部2からケーブル支持部4までの中間において、個々の光伝送ケーブル31に分岐している。そして、個々の光伝送ケーブル31は、極めて細い光ファイバが集合して構成されている。本実施形態では、1本の光伝送ケーブル31に対して、約1000本の光ファイバが使用されており、これにより、ランダム性を向上させているものである。すなわち、1本または極めて少ない本数の光ファイバによって拡散光を伝送する場合には、その少ない光ファイバに入射した光によって光量が決定することとなるが、本実施形態のように多数の光ファイバによって光伝送ケーブル31が構成される場合には、各光ファイバに入射する光の全体によって波長ごとの光量を測定することができることから、測定される特定波長の光量について測定誤差の発生を抑制することができる。
 また、光伝送ケーブル群3または光伝送ケーブル31は、受光部2からケーブル支持部4の中間において全体として1個のループが形成されている。このループ形成の位置は、光伝送ケーブル31が分岐の前後に関係なく、これらを構成する光ファイバがループを形成するようにしているのである。光ファイバがループを形成することにより、当該光ファイバが湾曲することとなるから、外部の僅かな光がクラッドに照射された場合、コアに到達しないようにしているのである。これにより、受光部2で検出された拡散光は、光伝送ケーブル群3および個々の光伝送ケーブル31により、外部の光の影響を抑えながらケーブル支持部4まで伝送することとなるのである。
 次に、光伝送ケーブル群3の末端および基板6の周辺構造について説明する。図2は、光伝送ケーブル群3の末端から基板6までの範囲の詳細を示す図である。この図に示すように、光伝送ケーブル群3から分岐した個々の光伝送ケーブル31,32,・・・は、その端部付近が被覆材31a,32a,・・・によって被覆されており、当該被覆材31a,32a,・・・を含む端部付近全体がケーブル支持部4の内部で支持されている。
 ケーブル支持部4は、遮光率の高い樹脂によって構成されており、上記光伝送ケーブル31,32,・・・の先端付近が挿通可能な貫通孔41,42,・・・と、当該貫通孔41,42,・・・に対して固定ネジ43,44,・・・を挿通するネジ孔とが設けられている。従って、個々の光伝送ケーブル31,32,・・・の端部付近を被覆材31a,32a,・・・とともに貫通孔41,42,・・・に挿入し、固定ネジ43,44,・・・で固定することによって、当該光伝送ケーブル31,32,・・・の端部は、ケーブル支持部4の貫通孔内で支持されることとなり、当該貫通孔内において伝送された拡散光を照射することができることとなる。
 光伝送ケーブル31,32,・・・を上記ケーブル支持部4の貫通孔内に支持する場合は、当該光伝送ケーブル31,32,・・・の先端が、フィルタ保持部5に対向する側の表面(対向面)に極めて近い位置で固定するのである。光伝送ケーブル31,32,・・・の先端がちょうど当接面に一致させる必要はないが、大きく異ならない程度に接近させて支持するものである。これは、後述の光学フィルタ51,52,・・・や光センサ61,62,・・・に光を到達させるためである。また、被覆材31a,32a,・・・は、上記貫通孔内に挿入される範囲よりも十分に長い範囲に設けられ、固定ネジ43,44,・・・の先端が必ず被覆材31a,32a,・・・に当接するようになっている。このように、固定ネジ43,44,・・・が必ず被覆材に当接することによって、光伝送ケーブル31,32,・・・そのものに固定ネジ43,44,・・・が接触することがなく、当該光伝送ケーブル31,32を保護することができるのである。
 また、ケーブル支持部4のフィルタ保持部5に対向する側の表面(対向面)のうち、上記光伝送ケーブル31,32,・・・の先端が保持される領域には、フィルタ保持部5に向かって突出する突出部分が形成されている。この突出部分を形成するために、上記領域の周辺には凹部が設けられている。さらに、凹部の周辺に、上記突出部分よりもさらに突出する部分を形成してもよい。このように、当接面に凹凸を設けることにより、ケーブル支持部4とフィルタ保持部5とを接続する際に、両者間に僅かな間隙が生じる場合があるとしても、上記凹凸によって外部の光の侵入を抑えることができる。さらに、この凹凸が存在することにより、後述のように、フィルタ保持部5の表面に嵌合させることができるようになっている。
 なお、固定ネジ43,44,・・・の締め付けにより、光伝送ケーブル31,32,・・・の被覆材31a,32a,・・・の表面が僅かながら変形することが予想されることから、その変形により生ずる間隙から外部光が侵入することを防止すべく、貫通孔41,42,・・・の開口部近傍において、被覆材31a,32a,・・・との間に遮光用樹脂材(例えば、モルトプレン(登録商標)など)MP1,MP2,・・・を貼着している。
 上記のような構成のケーブル支持部4には、フィルタ保持部5が連続して配置されている。このフィルタ保持部5は、ケーブル支持部4と同様に遮光率の高い樹脂によって構成されている。図示のように、ケーブル支持部4とフィルタ保持部5との当接面側には、両者を一体的に連結させるための凹凸部が相互に形成されている。また、フィルタ保持部5には、適宜な大きさの貫通孔が穿設されており、この貫通孔内に光学フィルタ51,52,・・・が配置できるようになっている。
 また、フィルタ保持部5のケーブル支持部4に対向する側の表面(対向面)には、上記ケーブル支持部4に形成される突出部分を嵌入できる凹部が形成され、この凹部によって光学フィルタを保持する領域が設けられている。すなわち、この凹部の中央に上記貫通孔が穿設され、その貫通孔に光学フィルタ51,52,・・・が保持されるものである。なお、このような凹部を形成するためには、フィルタ保持領域の周辺に突出部分が形成されており、この突出部分は、上記ケーブル支持部4の凹部に嵌入するように構成されている。さらに、上記突出部分の周辺は、前記凹部よりも深く形成された凹状部分を設けてもよく、この場合には、当該凹状部分を上記ケーブル支持部4の最も突出する部分に当接させることも可能となる。
 従って、ケーブル支持部4とフィルタ保持部5に設けられる凹凸部を嵌合することにより、光伝送ケーブル31,32,・・・の末端と光学フィルタ51,52,・・・が連接することとなり、当該光伝送ケーブル31,32,・・・の端部から、光学フィルタ51,52,・・・に向かって拡散光が照射されることとなるのである。また、上記凹凸部は、光伝送ケーブル31,32,・・・の末端を挿入するための貫通孔41,42,・・・、および、光学フィルタ51,52,・・・を保持するための貫通孔から適度な距離を有しつつ、当該貫通孔を包囲するように設けられている。これにより、ケーブル支持部4とフィルタ保持部5との当接面の間隙から侵入する光は、上記凹凸部によって遮られることとなり、当該光が前記貫通孔に到達しないようにしているのである。なお、上記凹凸部により外部光を遮断する構成に代えて、ケーブル支持部4とフィルタ保持部5との当接面の周囲に、遮光用樹脂材(例えば、モルトプレン(登録商標)など)MP3,MP4を貼着する構成としてもよい。さらに、凹凸部を有する構成に加えて、遮光用樹脂材MP3,MP4を貼着する構成としてもよい。
 ここで、光学フィルタ51,52,・・・は、必要な個数(例えば14個)が配置され、それぞれが異なる波長の光を透過できるものが使用される。従って、例えば14個の光学フィルタを使用すれば、14種類の波長の光を得ることができ、波長700nm付近の光から波長1000nm付近の光を計測することを想定した場合において、その範囲内において所望波長の14種類の光を得ることができる。これにより、分光器を用いて分光する場合と同様の効果を得ることができるのである。なお、上述した14種類は一例であり、この数は増減することができる。また、14種類の異なる波長の光を検知する場合であっても、青果物の特性を演算する際には、必要とすべき数種類の光の測定値のみを選択して使用することができる。さらに、光学フィルタ51,52,・・・により透過できる光は、中心波長から所定の波長幅を有することがあるが、上記の所望波長の光とは、中心波長を意味するものである。そして、本実施形態の光学フィルタは、中心波長の前後約5nmの範囲の波長の光を透過するものが使用されているが、この中心波長前後の波長幅はこれに限定されるものではない。
 フィルタ保持部5は、上記のように、複数(例えば14個)の光学フィルタ51,52,・・・を保持するために、複数(例えば14個)の貫通孔が穿設されている。図2では、2個の貫通孔に2個の光学フィルタ51,52が保持されているが、これと同様の構成が同図の紙面垂直方向に例えば7列連続させることにより、合計14個の光学フィルタを配置することができることとなる。そして、個々の光学フィルタ51,52,・・・に同時に拡散光を照射するために、光伝送ケーブル31,32,・・・は光学フィルタ51,52,・・・と同数(例えば14本)に分岐され、これらの末端は、ケーブル支持部4に同数(例えば14個)の貫通孔41,42,・・・によって支持されるのである。
 フィルタ保持部5に設けられる貫通孔は、光伝送ケーブル31,32,・・・に連接する開口部のほかに、光センサ61,62,・・・に対向する開口部が設けられている。この開口部は、基板6から突出する光センサ61,62,・・・を貫通孔内に配置するものであり、所定の大きさで開口させることにより、当該開口部の周辺が光センサ61,62,・・・を包囲できるようになっている。個々の貫通孔に対して、1個の光センサ61,62,・・・が配置されることにより、当該光センサ61,62,・・・が光学フィルタ51,52,・・・に対向するように配置されるのである。
 ここで、光センサ61,62,・・・は、例えば、半導体基板上に作製されるCMOSセンサを使用することができ、または、基板上に複数のフォトレジスタ等を実装する構成としてもよい。いずれの場合においても、基板6の表面から光センサ61,62,・・・が突出することとなるため、当該光センサ61,62,・・・の周辺をフィルタ保持部5の開口部周辺によって包囲することにより、基板6の表面から外部の光が侵入することを抑えている。また、基板6は、例えば黒色に着色することにより、基板を透過する光を吸収させることも可能となり、遮光率を一層向上させることができる。
 さらに、本実施形態では、フィルタ保持部5と光センサ61,62,・・・と間に遮光部材71,72,・・・を介在させている。これは、フィルタ保持部5と光センサ61,62,・・・と間から侵入した僅かな外部光が、両者の間隙を反射しつつ、光センサ61,62,・・・の感光面に到達することを抑制しているのである。遮光部材71,72,・・・は、遮光率の高い材質によりフィルム状に構成され、その中央付近を開口させて(円形孔を穿設して)、光センサ61,62,・・・の感光面中央に対して、光学フィルタ51,52,・・・を透過した拡散光を照射できるようにしている。
 本実施形態は、上記のような構成であるから、発光体11,12によって青果物Fに対して光を照射することにより、青果物の内部に光が透過し、または乱反射した後、受光部2が拡散光を検出し、この受光部2で検出した拡散光は、光伝送ケーブル群3から分岐する個々の光伝送ケーブル31,32,・・・を経由して光学フィルタ51,52,・・・に伝送されることとなる。当該光学フィルタ51,52,・・・において透過した特定波長の光が光センサ61,62,・・・に到達し、当該光センサ61,62,・・・によって光量が測定されるのである。従って、複数の光伝送ケーブル31,32,・・・を経由した拡散光を波長ごとに分類し、異なる波長の光を同時に測定することができるのである。この光センサ61,62,・・・で測定された光量の値は、図示せぬ処理手段により演算処理され、測定対象の青果物Fの特性(評価量)が算出されることとなるものである。
 評価量の算出には、予め実測値と測定値(吸光度計測値)との相関関係に基づく検量線が使用されるものであり、予め作成した検量線のデータが処理手段のメモリ内に記憶されている。使用すべき検量線は、測定される青果物の種類等によって異なることから、多種の検量線が分類されて記憶されている。そして、測定時に測定対象の青果物の種類・収穫時期などを特定することにより、適用されるべき検量線が選択され使用に供される。また、測定すべき特性(糖度、熟度または硬度など)に応じて、演算すべき光の種類(波長の範囲)を取捨選択し(具体的には、各範囲の波長の光量に係数を乗算し)、所望の特性について演算処理されるのである。
 本実施形態は以上のとおりであるが、本発明は上記実施形態に限定されることはなく、種々の態様をとることができる。例えば、上述したように、発光部1の開口部先端には、円環状の緩衝部材が装着されており、この緩衝部材は、装置Aの外部の光を適度に遮光するように構成しているのであるが、発光体11,12の光量が大きければ、十分な遮光がされない場合でも適度な精度で拡散光を測定することができる。従って、当該緩衝部材は遮光性のある材質で設けることができるが、それに限定されるものではない。
 また、光源として複数のハロゲンランプを使用した旨を説明したが、本実施形態では、当該複数のハロゲンランプの合計が20W前後となるように光量が調整されている。従って、2個のハロゲンランプでは、1個あたり10Wのものを使用し、3個のハロゲンランプを使用する場合には、1個あたり6~7Wのものを使用することとなる。このように、20Wのハロゲンランプを使用する場合、約0.25秒の照射により所望の拡散光を検出することができ、この拡散光の検出後瞬時に演算結果が出力されることから、計測開始から結果出力までの所要時間が約0.5秒という極めて短時間とすることが可能となる。
 1 発光部
 2 受光部
 3 光伝送ケーブル群
 4 ケーブル支持部
 5 フィルタ保持部
 6 基板
 11,12 発光体(ハロゲンランプ)
 21 緩衝部材
 31,32 光伝送ケーブル
 31a,32a 被覆材
 51,52 光学フィルタ
 61,62 光センサ
 71,72 遮光部材

Claims (6)

  1. 測定対象青果物に光を照射する発光部と、該発光部から照射された光が該青果物の内部で拡散した後に該青果物の外部に放出される拡散光を受信する受光部と、受光部が検出した拡散光により透過光量を算出し検量線から青果物の評価量を演算する処理手段とを備えた青果物の非破壊測定装置において、
    基板上に配設された複数の光センサと、
    各光センサの近傍に個別に配置され、透過波長の異なる複数の光学フィルタと、
    前記光センサの周囲を個別に包囲しつつ前記光学フィルタを保持するフィルタ保持部と、
    複数の光ファイバによって構成され、前記受光部で検出した拡散光を前記各光学フィルタに伝送する複数の光伝送ケーブルと、
    該光伝送ケーブルの各末端を包囲しつつ前記フィルタ保持部に接続され、該光伝送ケーブルの各末端を前記各光学フィルタの近傍に保持するケーブル支持部と
    を備えたことを特徴とする青果物の非破壊測定装置。
  2. さらに、前記フィルタ保持部と前記光センサとの間に介在され、該光センサの感光面中央付近を開口する遮光部材を備えたことを特徴とする請求項1に記載の青果物の非破壊測定装置。
  3. 前記フィルタ保持部は、前記ケーブル支持部に対向する表面のうち、前記光学フィルタが保持される領域に凹部を形成してなるフィルタ保持部であり、前記ケーブル支持部は、前記フィルタ保持部に対向する表面のうち、前記伝送ケーブルの各末端が保持される領域に突出部分を形成してなるケーブル支持部であり、前記フィルタ保持部の凹部に前記ケーブル支持部の突出部分を嵌合することにより、該ケーブル支持部をフィルタ保持部に接続させてなることを特徴とする請求項1または2に記載の青果物の非破壊測定装置。
  4. 前記複数の光学フィルタは、相互に異なる範囲の波長を通過させる複数の光学フィルタであることを特徴とする請求項1ないし3のいずれかに記載の青果物の非破壊測定装置。
  5. 前記複数の光伝送ケーブルは、前記受光部近傍で集合された光伝送ケーブル群を形成し、該光伝送ケーブル群の先端が受光部内に配置されることを特徴とする請求項1ないし4のいずれかに記載の青果物の非破壊測定装置。
  6. 前記光伝送ケーブルは、受光部から伝送支持部の中間において少なくとも1個のループを形成してなることを特徴とする請求項1ないし5のいずれかに記載の青果物の非破壊測定装置。
PCT/JP2011/065688 2010-07-09 2011-07-08 青果物の非破壊測定装置 WO2012005350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180032592XA CN102959382A (zh) 2010-07-09 2011-07-08 果蔬的非破坏测定装置
JP2012523931A JPWO2012005350A1 (ja) 2010-07-09 2011-07-08 青果物の非破壊測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010157073 2010-07-09
JP2010-157073 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005350A1 true WO2012005350A1 (ja) 2012-01-12

Family

ID=45441326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065688 WO2012005350A1 (ja) 2010-07-09 2011-07-08 青果物の非破壊測定装置

Country Status (3)

Country Link
JP (1) JPWO2012005350A1 (ja)
CN (1) CN102959382A (ja)
WO (1) WO2012005350A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045509A1 (ja) * 2012-09-21 2014-03-27 パナソニック 株式会社 分析装置
CN104568768A (zh) * 2014-12-02 2015-04-29 爱彼思(苏州)自动化科技有限公司 一种颜色检测装置的量测头部
EP3511698A4 (en) * 2016-09-06 2020-04-01 Atago Co., Ltd. NON-DESTRUCTIVE MEASURING DEVICE
EP3763821A1 (en) * 2019-07-09 2021-01-13 Botanicky ustav Akademie ved CR, v.v.i. Mobile device for non-destructive fluorescence resolution, display and quantification of microorganisms on the surface of materials
CN116735543A (zh) * 2023-06-21 2023-09-12 千代田电子(嘉兴)有限公司 果蔬的非破坏测定装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833636B (zh) * 2015-04-15 2017-05-31 浙江大学 一种便携式大型厚皮类水果内部品质光学检测装置
CN117007516B (zh) * 2023-06-21 2024-04-09 千代田电子(嘉兴)有限公司 果蔬测定装置的外罩以及外罩装配装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288674A (ja) * 1992-04-09 1993-11-02 Toshihiko Yoshikawa 糖度計
JPH112599A (ja) * 1997-06-11 1999-01-06 Shiyokuniku Seisan Gijutsu Kenkyu Kumiai 品質評価方法及び同装置
WO2002088681A1 (fr) * 2001-04-25 2002-11-07 Hiromu Maeda Instrument portable pour le controle qualite interne
JP2006226775A (ja) * 2005-02-16 2006-08-31 Toyohashi Univ Of Technology 果実の食味成分評価方法及び評価装置
JP3162945U (ja) * 2010-07-09 2010-09-24 千代田電子工業株式会社 青果物の非破壊測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163377A (en) * 1999-07-23 2000-12-19 Cv Us, Inc. Colorimeter
JP2003527594A (ja) * 2000-03-13 2003-09-16 オートライン インコーポレイテッド 可視光線スペクトル/近赤外線スペクトルにより果物の特性を測定し、相互に関連付けるための装置および方法
JP4201683B2 (ja) * 2003-10-23 2008-12-24 静岡シブヤ精機株式会社 ハンディタイプの内部品質検査装置
CN2779390Y (zh) * 2004-09-08 2006-05-10 江苏大学 近红外水果糖酸度分析用漫反射检测装置
JP2010060524A (ja) * 2008-09-05 2010-03-18 Toshiba Corp 蛍光・燐光検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288674A (ja) * 1992-04-09 1993-11-02 Toshihiko Yoshikawa 糖度計
JPH112599A (ja) * 1997-06-11 1999-01-06 Shiyokuniku Seisan Gijutsu Kenkyu Kumiai 品質評価方法及び同装置
WO2002088681A1 (fr) * 2001-04-25 2002-11-07 Hiromu Maeda Instrument portable pour le controle qualite interne
JP2006226775A (ja) * 2005-02-16 2006-08-31 Toyohashi Univ Of Technology 果実の食味成分評価方法及び評価装置
JP3162945U (ja) * 2010-07-09 2010-09-24 千代田電子工業株式会社 青果物の非破壊測定装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045509A1 (ja) * 2012-09-21 2014-03-27 パナソニック 株式会社 分析装置
JP2014062807A (ja) * 2012-09-21 2014-04-10 Panasonic Corp 分析装置
US9726614B2 (en) 2012-09-21 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Analysis apparatus
CN104568768A (zh) * 2014-12-02 2015-04-29 爱彼思(苏州)自动化科技有限公司 一种颜色检测装置的量测头部
EP3511698A4 (en) * 2016-09-06 2020-04-01 Atago Co., Ltd. NON-DESTRUCTIVE MEASURING DEVICE
US11099127B2 (en) 2016-09-06 2021-08-24 Atago Co., Ltd. Nondestructive measurement apparatus
EP3763821A1 (en) * 2019-07-09 2021-01-13 Botanicky ustav Akademie ved CR, v.v.i. Mobile device for non-destructive fluorescence resolution, display and quantification of microorganisms on the surface of materials
CN116735543A (zh) * 2023-06-21 2023-09-12 千代田电子(嘉兴)有限公司 果蔬的非破坏测定装置
CN116735543B (zh) * 2023-06-21 2024-03-22 千代田电子(嘉兴)有限公司 果蔬的非破坏测定装置

Also Published As

Publication number Publication date
JPWO2012005350A1 (ja) 2013-09-05
CN102959382A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2012005350A1 (ja) 青果物の非破壊測定装置
US8497991B2 (en) Thin-film inspection apparatus and inspection method
US8259294B2 (en) Method and device for measuring optical characteristic variables of transparent, scattering measurement objects
KR102172136B1 (ko) 내부 전반사를 이용한 doe 결함 모니터링
US8969808B2 (en) Non-dispersive infrared sensor with a reflective diffuser
KR20020033177A (ko) 양측방 다등형 온라인 내부품질 검사장치
JPWO2013147038A1 (ja) 物質特性測定装置
US5708271A (en) Non-destructive sugar content measuring apparatus
CN102066909B (zh) 光学测量构件以及用于执行反射测量的方法
US20220307975A1 (en) Gas sensor
JP4714822B2 (ja) 光散乱体の非破壊測定装置
JP3162945U (ja) 青果物の非破壊測定装置
JP4466562B2 (ja) 光式脂肪測定装置
US20100253942A1 (en) Method and device for characterizing silicon layer on translucent substrate
CN107991286A (zh) 基于反射光功率的拉曼光谱检测设备及方法
CN109716105B (zh) 衰减全反射光谱仪
JP4630945B1 (ja) 欠陥検査装置
JP5665324B2 (ja) 全光量測定システム、全光量測定装置、および、全光量測定方法
JP2012512408A (ja) 放射源監視機能付き吸収型光プローブ
JP7375277B2 (ja) 青果物の内部品質検査装置
JP7241021B2 (ja) Atr分光計及びサンプルの化学組成を分析する方法
KR100966637B1 (ko) 비파괴 농산물 내부품질 측정장치
CN207779902U (zh) 基于反射光功率的拉曼光谱检测设备
EP3980759A1 (en) Apparatus and method for determining a property of products
JP7270582B2 (ja) 分光測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032592.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803684

Country of ref document: EP

Kind code of ref document: A1