JPWO2017175481A1 - 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法 - Google Patents

三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法 Download PDF

Info

Publication number
JPWO2017175481A1
JPWO2017175481A1 JP2017528977A JP2017528977A JPWO2017175481A1 JP WO2017175481 A1 JPWO2017175481 A1 JP WO2017175481A1 JP 2017528977 A JP2017528977 A JP 2017528977A JP 2017528977 A JP2017528977 A JP 2017528977A JP WO2017175481 A1 JPWO2017175481 A1 JP WO2017175481A1
Authority
JP
Japan
Prior art keywords
adhesive layer
sheet
dimensional integrated
manufacturing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017528977A
Other languages
English (en)
Other versions
JP6174293B1 (ja
Inventor
裕介 根津
裕介 根津
貴志 杉野
貴志 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority claimed from PCT/JP2017/005142 external-priority patent/WO2017175481A1/ja
Application granted granted Critical
Publication of JP6174293B1 publication Critical patent/JP6174293B1/ja
Publication of JPWO2017175481A1 publication Critical patent/JPWO2017175481A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Dicing (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

貫通電極を有する複数の半導体チップの間に介在され、前記複数の半導体チップを相互に接着し、三次元集積積層回路とするために用いられる三次元集積積層回路製造用シート1であって、三次元集積積層回路製造用シート1は、少なくとも硬化性の接着剤層13を備え、接着剤層13は、熱伝導性フィラーを含み、接着剤層13の厚さ(T2)の標準偏差は、2.0μm以下である三次元集積積層回路製造用シート1。かかる三次元集積積層回路製造用シート1は、優れた放熱性を有する三次元集積積層回路を製造することができる。

Description

本発明は、三次元集積積層回路の製造に適したシート、および当該シートを使用した三次元集積積層回路の製造方法に関するものである。
近年の電子回路の大容量化、高機能化の観点から、複数の半導体チップを立体的に積層した三次元集積積層回路(以下「積層回路」という場合がある。)の開発が進んでいる。このような積層回路においては、小型化・高機能化のために、回路形成面からその反対面に貫通する貫通電極(TSV)を有する半導体チップが使用される。この場合、積層された半導体チップ同士は、それぞれに備わる貫通電極(または貫通電極の端部に設けられたバンプ)同士の接触によって電気的に接続される。
このような積層回路を製造する場合、上述した電気的接続と機械的強度とを確保するために、樹脂組成物を用いて、貫通電極同士を電気的に接続しつつ半導体チップ同士を接着することが行われる。例えば、特許文献1には、一般的にNCF(Non-Conductive Film)と呼ばれるフィルム状の接着剤を半導体チップ間に介在させて、半導体チップ同士を接着する方法が提案されている。
ところで、上述した積層回路では、半導体チップが複数積層されているため、電気回路に電流を流した際に非常に発熱しやすい。積層回路の発熱は、演算処理能力の低下や誤作動を招き、積層回路の性能低下の原因となる。また、積層回路が過度に発熱すると、積層回路が変形し、破損や故障が生じることもある。そのため、上述した積層回路には、信頼性の確保のために、高い放熱性を有することが求められる。
特開2010−010368号公報
しかし、従来の接着剤を使用して製造した積層回路では、良好な放熱性を必ずしも達成できないといった問題があった。
本発明は、このような実状に鑑みてなされたものであり、優れた放熱性を有する三次元集積積層回路を製造することができる三次元集積積層回路製造用シートを提供することを目的とする。また、本発明は、そのような三次元集積積層回路の製造方法を提供することを目的とする。
上記目的を達成するために、第一に本発明は、貫通電極を有する複数の半導体チップの間に介在され、前記複数の半導体チップを相互に接着し、三次元集積積層回路とするために用いられる三次元集積積層回路製造用シートであって、前記三次元集積積層回路製造用シートは、少なくとも硬化性の接着剤層を備え、前記接着剤層は、熱伝導性フィラーを含み、前記接着剤層の厚さ(T2)の標準偏差は、2.0μm以下であることを特徴とする三次元集積積層回路製造用シートを提供する(発明1)。
上記発明(発明1)に係る三次元集積積層回路製造用シートでは、接着剤層が高い熱伝導率を有する熱伝導性フィラーを含み、接着剤層の厚さ(T2)の標準偏差が上記範囲であることにより、当該シートを使用して製造される積層回路は放熱性に優れたものとなる。そのため、上記発明(発明1)に係る三次元集積積層回路製造用シートを使用することで、高い信頼性を有する積層回路を製造することができる。
上記発明(発明1)において、前記熱伝導性フィラーは、金属酸化物、炭化珪素、炭化物、窒化物および金属水酸化物から選択される材料からなることが好ましい(発明2)。
上記発明(発明1,2)において、前記接着剤層における前記熱伝導性フィラーの含有量は、35質量%以上、95質量%以下であることが好ましい(発明3)。
上記発明(発明1〜3)において、前記熱伝導性フィラーは、23における熱伝導率が10W/m・K以上であることが好ましい(発明4)。
上記発明(発明1〜4)において、前記熱伝導性フィラーの平均粒径は、0.01μm以上、20μm以下であることが好ましい(発明5)。
上記発明(発明1〜5)において、前記接着剤層の硬化後の熱伝導率は、0.5W/m・K以上、8.0W/m・K以下であることが好ましい(発明6)。
上記発明(発明1〜6)において、前記接着剤層を構成する材料は、熱硬化性成分、高分子量成分および硬化触媒を含有することが好ましい(発明7)。
上記発明(発明1〜7)において、前記高分子量成分のガラス転移温度は、50℃以上であることが好ましい(発明8)。
上記発明(発明1〜8)において、前記接着剤層を構成する材料は、フラックス成分を含有することが好ましい(発明9)。
上記発明(発明1〜9)において、前記接着剤層の厚さは、2μm以上、500μm以下であることが好ましい(発明10)。
上記発明(発明1〜10)において、前記三次元集積積層回路製造用シートは、前記接着剤層の片面側に積層された粘着剤層と、前記粘着剤層における前記接着剤層とは反対の面側に積層された基材とをさらに備えることが好ましい(発明11)。
上記発明(発明11)において、前記基材の厚さは、10μm以上、500μm以下であることがこのましい(発明12)。
上記発明(発明11または12)において、前記基材の厚さ(T1)に対する前記接着剤層の厚さ(T2)の比(T2/T1)は、0.01以上、5.0以下であることが好ましい(発明13)。
上記発明(発明11〜13)において、前記粘着剤層の23℃における貯蔵弾性率は、1×10Pa以上、1×10Pa以下であることが好ましい(発明14)。
上記発明(発明11〜14)において、前記基材の23℃における引張弾性率は、100MPa以上、5000MPa以下であることが好ましい(発明15)。
第2に本発明は、前記三次元集積積層回路製造用シート(発明1〜10)の前記接着剤層の片面または前記三次元集積積層回路製造用シート(発明11〜15)の前記接着剤層における前記粘着剤層とは反対の面と、貫通電極を備えた半導体ウエハの少なくとも一方の面とを貼合する工程、前記半導体ウエハを、前記三次元集積積層回路製造用シートの前記接着剤層とともにダイシングし、接着剤層付き半導体チップに個片化する工程、個片化された複数の前記接着剤層付き半導体チップを、前記貫通電極同士が電気的に接続され且つ前記接着剤層と前記半導体チップとが交互に配置されるように複数積層して、半導体チップ積層体を得る工程、および前記半導体チップ積層体における前記接着剤層を硬化して、前記半導体チップ積層体を構成する前記半導体チップ同士を接着する工程を含むことを特徴とする三次元集積積層回路の製造方法を提供する(発明16)。
本発明の三次元集積積層回路製造用シートによれば、優れた放熱性を有する三次元集積積層回路を製造することができる。また、本発明の製造方法によれば、そのような三次元集積積層回路を製造することができる。
本発明の第1の実施形態に係る三次元集積積層回路製造用シートの断面図である。 本発明の第2の実施形態に係る三次元集積積層回路製造用シートの断面図である。
以下、本発明の実施形態について説明する。
〔三次元集積積層回路製造用シート〕
図1には、第1の実施形態に係る三次元集積積層回路製造用シート1の断面図が示される。図1に示すように、本実施形態に係る三次元集積積層回路製造用シート1(以下「製造用シート1」という場合がある。)は、接着剤層13と、当該接着剤層13の少なくとも一方の面に積層された剥離シート14とを備える。なお、剥離シート14は省略されてもよい。
また、図2には、第2の実施形態に係る三次元集積積層回路製造用シート2の断面図が示される。図2に示すように、本実施形態に係る三次元集積積層回路製造用シート2(以下「製造用シート2」という場合がある。)は、基材11と、基材11の少なくとも一方の面側に積層された粘着剤層12と、粘着剤層12における基材11とは反対の面側に積層された接着剤層13とを備える。なお、接着剤層13における粘着剤層12とは反対の面には、剥離シート14が積層されてもよい。
本実施形態に係る三次元集積積層回路製造用シート1,2では、接着剤層13が高い熱伝導率を有する熱伝導性フィラーを含む。また、本実施形態に係る三次元集積積層回路製造用シート1,2では、接着剤層13の厚さ(T2)の標準偏差が2.0μm以下である。
一般的に、積層回路は、半導体チップが複数積層されたものであるため、熱源となる回路を多く含むとともに、放熱しにくい構造を有する。そのため、積層回路に電流を流した場合、積層回路は発熱し易いとともに、発生した熱は外部に逃げにくい。
しかしながら、本実施形態に係る三次元集積積層回路製造用シート1,2を用いて製造された積層回路においては、熱伝導性フィラーを含むことにより放熱性に優れた接着剤層13によって、半導体チップ同士が接着されているため、当該接着剤層13の端部から熱が放出され易い。また、接着剤層13の厚さ(T2)の標準偏差が上記範囲であることで、積層回路を構成する接着剤層13の厚さが均一になるとともに、積層回路自体の厚さも均一になる結果、積層回路内での熱伝導に優れたものとなる。以上により、積層回路全体として放熱性に優れ、電流を流した場合であっても過度に高温となることが抑制される。その結果、高い信頼性を有する積層回路を製造することができる。
一方、積層回路は半導体チップを複数積層して得られるものであるため、一般的に、積層回路を均一な厚さに製造することが難しい。これは、積層回路を構成する半導体チップや接着剤層の厚さにおける所望の厚さからのずれがわずかであっても、半導体チップおよび接着剤層を積層することで、そのずれが累積される結果、積層回路としては、所望の厚さから大きく異なるものとなることを要因の1つとする。また、半導体ウエハの貫通電極またはバンプを接着剤層に埋め込む際にボイドが発生することがあり、当該ボイドによって積層回路における接着剤層の厚さが部分的に変化することがある。特に、積層回路では、ボイドが発生し得る半導体ウエハと接着剤層との界面を複数有するため、ボイドが発生する確率が高く、積層回路の厚さを均一にすることがより困難となる。しかしながら、本実施形態に係る三次元集積積層回路製造用シート1,2では、接着剤層13の厚さ(T2)の標準偏差が上記範囲であることで、接着剤層13の厚さにおける所望の厚さからのずれが抑制され、これにより、積層回路を均一な厚さに製造することが可能となる。さらに、接着剤層13の厚さ(T2)の標準偏差が上記範囲であることで、半導体ウエハの貫通電極またはバンプを接着剤層13に埋め込むときのボイドの発生が抑制されて良好な埋め込みが可能となり、このことによっても、積層回路を均一な厚さに製造することが可能となる。
本実施形態に係る三次元集積積層回路製造用シート1,2は、貫通電極を有する複数の半導体チップの間に介在され、当該複数の半導体チップを相互に接着し、三次元集積積層回路とするために用いられるものである。貫通電極は、その一端または両端が、半導体チップの表面から突出していてもよい。また、半導体チップは、さらにバンプを備えていてもよく、この場合、当該バンプは、貫通電極の一端または両端に設けられていてもよい。
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13は、硬化性を有する。ここで、硬化性を有するとは、接着剤層13が加熱等によって硬化し得ることをいう。すなわち、接着剤層13は、製造用シート1,2を構成している状態では未硬化である。接着剤層13は、熱硬化性であってもよく、または、エネルギー線硬化性であってもよい。しかしながら、製造用シート1,2を積層回路の製造方法に用いる場合に硬化を良好に行うことができるという観点から、接着剤層13は、熱硬化性であることが好ましい。具体的には、製造用シート1,2を積層回路の製造方法に用いる際、後述するように、接着剤層13は、半導体ウエハに貼付された状態で個片化される。これにより、半導体チップと個片化された接着剤層13との積層体が得られる。当該積層体は、その接着剤層13側の面が半導体チップの積層体上に貼付され、その状態で、接着剤層13の硬化が行われる。一般的に、半導体チップはエネルギー線に対する透過性を有しないか、当該透過性が非常に低い場合が多く、そのような場合であっても、接着剤層13が熱硬化性を有するものであれば、接着剤層13を速やかに硬化させることが可能となる。
1.接着剤層
(1)材料
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13を構成する材料は、熱伝導性フィラーを含有する。また、当該材料は、さらに、熱硬化性成分、硬化剤、硬化触媒、高分子量成分、フラックス機能を有する成分等を含有することが好ましい。
(1−1)熱伝導性フィラー
接着剤層13を構成する材料は、熱伝導性フィラーを含有する。ここで、熱伝導性フィラーとは、高い熱伝導率を有するフィラーをいい、例えば、25℃における熱伝導率が10W/m・K以上のフィラーをいい、好ましくは20W/m・K以上のフィラーをいい、特に好ましくは30W/m・K以上のフィラーをいう。なお、熱伝導性フィラーの25℃における熱伝導率の上限値は限定されないものの、通常、300W/m・K以下である。
前述したとおり、接着剤層13が熱伝導性フィラーを含有することと、積層回路が均一な厚さを有することとの相互作用により、接着剤層13は、優れた放熱性を示す。また、接着剤層13が熱伝導性フィラーを含有することにより、得られる積層回路において、その剛性が高くなるとともに、環境変化に応じた寸法変化が生じにくくなる。
上記熱伝導性フィラーとしては、酸化亜鉛、酸化マグネシウム、アルミナ、酸化チタン、酸化鉄等の金属酸化物、炭化珪素、炭酸カルシウム等の炭化物、窒化ホウ素、窒化アルミニウム等の窒化物、水酸化マグネシウム等の金属水酸化物、およびタルクから選択される材料からなるフィラーを使用することが好ましい。これらの中でも、より優れた放熱性を達成できるという観点から、酸化亜鉛、酸化マグネシウム、アルミナ、酸化チタン、酸化鉄等の金属酸化物、炭化珪素、炭酸カルシウム等の炭化物、窒化ホウ素、窒化アルミニウム等の窒化物、および水酸化マグネシウム等の金属水酸化物から選択される材料からなるフィラーを使用することが好ましい。これらの材料は、その粉末をフィラーとして使用してもよく、球形化してビーズ状としたものをフィラーとして使用してもよく、またはその単結晶繊維をフィラーとして使用してもよい。上記材料から得られる熱伝導性フィラーは、1種を単独でまたは2種以上を組み合わせて用いることができる。また、熱伝導性フィラーは、導電性を有しないことが好ましい。
熱伝導性フィラーの形状は特に限定されず、例えば、粒状、針状、板状および不定型から選択される少なくとも1つの形状を有してもよい。これらの中でも、粒状の熱伝導性フィラーを使用することが好ましい。熱伝導性フィラーが粒状であることで、接着剤層13における熱伝導性フィラーの充填率が向上し、接着剤層13において効率的な熱伝導経路が形成され、結果として、接着剤層13がより良好な放熱性を有するものとなる。
熱伝導性フィラーが粒状である場合、その平均粒径は、下限値が0.01μm以上であることが好ましく、0.05μm以上であることがさらに好ましく、0.1μm以上であることが特に好ましい。また、上記熱伝導性フィラーの平均粒径は、上限値が20μm以下であることが好ましく、5μm以下であることがさらに好ましく、1μm以下であることが特に好ましい。熱伝導性フィラーの平均粒径が上記範囲であることで、接着剤層13の放熱性がより優れたものとなるとともに、接着剤層13の製膜性が良好なものとなり、さらに、接着剤層13における熱伝導性フィラーの充填率を高くすることができる。なお、本明細書における熱伝導性フィラーの平均粒径とは、電子顕微鏡で無作為に選んだ熱伝導性フィラー20個の長軸径を測定し、その算術平均値として算出される粒径をいう。
また、熱伝導性フィラーが粒状である場合、当該熱伝導性フィラーの最大粒子径は、50μm以下であることが好ましく、25μm以下であることがさらに好ましい。熱伝導性フィラーの最大粒子径が50μm以下であることで、接着剤層13中に熱伝導性フィラーを充填し易くなり、結果として、接着剤層13がより良好な放熱性を有するものとなる。また、無機フィラーの最大粒子径が50μm以下であることで、積層回路における貫通電極(または貫通電極の端部に設けられたバンプ)同士が電気的に接続し易くなり、高い信頼性を有する積層回路を効果的に製造することができる。
熱伝導性フィラーが粒状である場合、熱伝導性フィラーの粒子径分布(CV値)は、15%以上であることが好ましく、特に30%以上であることが好ましい。また、当該粒子径分布(CV値)は、80%以下であることが好ましく、特に60%以下であることが好ましい。熱伝導性フィラーの粒子径分布を上記範囲とすることで、効率的で均一な放熱性を達成することができる。なお、CV値は粒子径のバラツキの指標であり、CV値が大きいほど、粒子径のバラツキが大きいことを意味する。そのため、特に、CV値が15%以上であることで、粒子径のバラツキが良好となり、粒子と粒子との間隙に、より小さなサイズを有する粒子が入り易くなる。これにより、熱伝導性フィラーを効果的に充填することが可能となり、高い放熱性を示す接着剤層13が得易くなる。また、CV値が80%以下であることで、熱伝導性フィラーの粒子径が、接着剤層13の厚さよりも大きくなることが抑制される。その結果、接着剤層13における接着剤層12とは反対側の面における凹凸の発生が抑制され、良好な接着性を得易くなる。さらに、CV値が80%以下であることで、均一な性能を有する接着剤層13を形成し易くなる。なお、熱伝導性フィラーの粒子径分布(CV値)は、熱伝導性フィラーの電子顕微鏡観察を行い、200個以上の粒子について長軸径を測定して、長軸径の標準偏差を求め、当該標準偏差を上述の平均粒子径で除した値として得ることができる。
熱伝導性フィラーの形状が針状である場合、当該熱伝導性フィラーにおける平均軸長(長軸方向の平均軸長)は、0.01μm以上であることが好ましく、特に0.05μm以上であることが好ましく、さらには0.1μm以上であることが好ましい。また、当該平均軸長は、10μm以下であることが好ましく、特に5μm以下であることが好ましく、さらには1μm以下であることが好ましい。
熱伝導性フィラーのアスペクト比は、1以上であることが好ましく、特に5以上であることが好ましい。また、当該アスペクト比は、20以下であることが好ましく、特に15以下であることが好ましい。熱伝導性フィラーのアスペクト比が上記範囲であることで、接着剤層13において効率的な熱伝導経路が形成され、接着剤層13がより良好な放熱性を有するものとなる。なお、アスペクト比は、熱伝導性フィラーの短軸数平均径を長軸数平均径で除した値として得ることができる。ここで短軸数平均径および長軸数平均径とは、透過電子顕微鏡写真で無作為に選んだ熱伝導性フィラー20個の短軸径および長軸径を測定し、それぞれの算術平均値として算出される個数平均粒子径である。
熱伝導性フィラーの比重は、1g/cm以上であることが好ましく、特に3g/cm以上であることが好ましい。また、当該比重は、10g/cm以下であることが好ましく、特に6g/cm以下であることが好ましい。当該比重が上記範囲であることで、接着剤層13の放熱性がより優れたものとなる。
また、接着剤層13における熱伝導性フィラーの含有量は、接着剤層13を構成する材料の合計量を基準として、下限値が35質量%以上であることが好ましく、40質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましい。また、上記熱伝導性フィラーの含有量は、上限値が95質量%以下であることが好ましく、90質量%以下であることがさらに好ましい。接着剤層13を構成する材料において、熱伝導性フィラーの含有量が35質量%以上であることで、接着剤層13がより良好な放熱性を有するものとなり、本実施形態に係る三次元集積積層回路製造用シート1,2を用いて、優れた放熱性を有する積層回路を効果的に製造することができる。また、当該含有量が95質量%以下であることで、接着剤層13を構成する材料中における、熱伝導性フィラー以外の成分の含有量が相対的に高くなり、接着剤層13がより良好な接着性を発揮することができる。
(1−2)熱硬化性成分
接着剤層13を構成する材料は、熱硬化性成分を含有することが好ましい。熱硬化性成分としては、半導体チップの接続用に通常用いられる接着剤成分であれば特に限定されない。具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂などが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、接着性等の観点から、エポキシ樹脂およびフェノール樹脂が好ましく、エポキシ樹脂が特に好ましい。
エポキシ樹脂は、加熱を受けると三次元網状化し、強固な硬化物を形成する性質を有する。このようなエポキシ樹脂としては、従来より公知の種々のエポキシ樹脂が用いられるが、具体的には、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラック等のフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエーテル;アニリンイソシアヌレート等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−ジシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサン等のように、分子内の炭素−炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、ジシクロヘキサジエン骨格、ナフタレン骨格等を有するエポキシ樹脂を用いることもできる。これらエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いることができる。
接着剤層13を構成する材料における上記熱硬化性成分の含有量は、接着剤層13を構成する材料の合計量を基準として、下限値が5質量%以上であることが好ましく、10質量%以上であることがさらに好ましい。また、上記熱硬化性成分の含有量は、上限値が75質量%以下であることが好ましく、55質量%以下であることがさらに好ましい。上記熱硬化性成分の含有量が、上記範囲であることで、前述した発熱開始温度および発熱ピーク温度を前述した範囲に調整し易くなる。
(1−3)硬化剤・硬化触媒
接着剤層13を構成する材料が前述した熱硬化性成分を含有する場合、当該材料はさらに硬化剤および硬化触媒を含有することが好ましい。
硬化剤としては、特に限定されないが、フェノール類、アミン類、チオール類等が挙げられ、前述した熱硬化成分の種類に応じて適宜選択することができる。例えば、硬化性成分としてエポキシ樹脂を使用する場合には、エポキシ樹脂との反応性等の観点から、フェノール類が好ましい。
フェノール類としては、例えば、ビスフェノールA、テトラメチルビスフェノールA、ジアリルビスフェノールA、ビフェノール、ビスフェノールF、ジアリルビスフェノールF、トリフェニルメタン型フェノール、テトラキスフェノール、ノボラック型フェノール、クレゾールノボラック樹脂等が挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
また、硬化触媒としては、特に限定されないが、イミダゾール系、リン系、アミン系等が挙げられ、前述した熱硬化成分等の種類に応じて適宜選択することができる。また、硬化触媒として、所定の条件下においては活性化せず、半田を溶融させる高温の圧着温度以上に加熱されたときに活性化する潜在性硬化触媒を使用することが好ましい。さらに、当該潜在性硬化触媒は、マイクロカプセル化した潜在性硬化触媒として使用することも好ましい。
例えば、硬化性成分としてエポキシ樹脂を使用する場合には、エポキシ樹脂との反応性、保存安定性、硬化物の物性、硬化速度等の観点から、硬化触媒として、イミダゾール系硬化触媒を使用することが好ましい。イミダゾール系硬化触媒としては、公知ものが使用できるが、優れた硬化性、保存安定性及び接続信頼性の観点から、トリアジン骨格を有するイミダゾール触媒が好ましい。これらは単独で用いてもよく、または2種以上を併用して用いてもよい。また、これらはマイクロカプセル化した潜在性硬化触媒として用いてもよい。イミダゾール系硬化触媒の融点は、優れた硬化性、保存安定性および接続信頼性の観点から、200℃以上であることが好ましく、特に250℃以上であることが好ましい。
本実施形態において、接着剤層13を構成する材料における硬化触媒の含有量は、接着剤層13を構成する材料の合計量を基準として、下限値が0.1質量%以上であることが好ましく、0.2質量%以上であることがさらに好ましく、0.4質量%以上であることが特に好ましい。また、上記硬化触媒の含有量は、上限値が10質量%以下であることが好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。接着剤層13を構成する材料において、硬化触媒の含有量が上記下限値以上であると、熱硬化性成分を十分に硬化させることができる。一方、硬化触媒の含有量が上記上限値以下であると、接着剤層13の保存安定性が良好となる。
(1−4)高分子量成分
上記接着剤層13を構成する材料は、前述した熱硬化性成分以外の高分子量成分を含有することが好ましい。当該高分子量成分を含有することで、当該材料の90℃溶融粘度と、平均線膨張係数とが、後述する数値範囲を満たしやすくなり、得られる積層回路の接続信頼性が高いものとなる。
高分子量成分としては、例えば、(メタ)アクリル系樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シロキサン変性ポリイミド樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、ポリアセタール樹脂、ポリビニルブチラール樹脂をはじめとするポリビニルアセタール樹脂、ブチルゴム、クロロプレンゴム、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−アクリル酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル、ナイロン等が挙げられ、1種を単独でまたは2種以上を組み合わせて用いることができる。
なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。「(メタ)アクリル系樹脂」等の他の類似用語についても同様である。
前述した高分子量成分の中でも、ポリビニルアセタール樹脂、およびポリエステル樹脂、フェノキシ樹脂からなる群より選択される1種以上を用いることが好ましい。上記製造用シートを構成する材料は、これらの高分子量成分を含有することで、90℃溶融粘度および平均線膨張係数が、ともに低い値となり、その結果これらの値を後述する数値範囲内とすることが容易になる。
ここで、ポリビニルアセタール樹脂は、ポリ酢酸ビニルを鹸化することにより得られるポリビニルアルコールを、アルデヒドによりアセタール化して得られるものである。アセタール化に用いられるアルデヒドとしては、n−ブチルアルデヒド、n−ヘキシルアルデヒド、n−バレルアルデヒド等が挙げられる。ポリビニルアセタール樹脂としては、n−ブチルアルデヒドを用いてアセタール化したポリビニルブチラール樹脂を用いることも好ましい。
ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンオキサレート樹脂等のジカルボン酸成分およびジオール成分を重縮合して得られるポリエステル樹脂;これらにポリイソシアネート化合物を反応させて得るウレタン変性ポリエステル樹脂等の変性ポリエステル樹脂;アクリル樹脂および/またはビニル樹脂をグラフト化したポリエステル樹脂などが挙げられ、1種を単独でまたは2種以上を組み合わせて用いることができる。
また、接着剤層13を構成する材料は、上記高分子量成分としてポリビニルアセタール樹脂、またはポリエステル樹脂を含有する場合、さらにフェノキシ樹脂を含有することが特に好ましい。フェノキシ樹脂をさらに含有する場合、接着剤層13を構成する材料は、90℃溶融粘度および平均線膨張係数が後述する数値範囲をさらに満たしやすくなる。
フェノキシ樹脂としては、特に限定されないが、例えば、ビスフェノールAタイプ、ビスフェノールFタイプ、ビスフェノールA/ビスフェノールF共重合タイプ、ビフェノールタイプ、ビフェニルタイプ等が例示される。
上記高分子量成分は、軟化点の下限値が50℃以上であることが好ましく、100℃以上であることがさらに好ましく、120℃以上であることが特に好ましい。また、上記高分子量成分は、軟化点の上限値が200℃以下であることが好ましく、180℃以下であることがさらに好ましく、150℃以下であることが特に好ましい。軟化点が上記下限値以上である高分子量成分を含有させることにより、接着剤層13を構成する材料の平均線膨張係数を低減させることができ、後述する数値範囲を満たしやすくなる。また、軟化点が上記上限値以下であると、接着剤層13の脆化を抑制することができる。なお、軟化点は、ASTM D1525に基づいて測定した値とする。
上記高分子量成分は、ガラス転移温度の下限値が50℃以上であることが好ましく、60℃以上であることがさらに好ましく、80℃以上であることが特に好ましい。また、上記高分子量成分は、ガラス転移温度の上限値が250℃以下であることが好ましく、200℃以下であることがさらに好ましく、180℃以下であることが特に好ましい。ガラス転移温度が上記下限値以上である高分子量成分を含有させることにより、接着剤層13を構成する材料の平均線膨張係数を低減させることができ、後述する数値範囲を満たしやすくなる。また、ガラス転移温度が上記上限値以下であると、他の材料との相溶性に優れたものとなる。なお、高分子量成分のガラス転移温度は、示差走査熱量分析計を用いて測定した値である。
上記高分子量成分は、重量平均分子量が1万以上であることが好ましく、3万以上であることがさらに好ましく、5万以上であることが特に好ましい。また、上限値が100万以下であることが好ましく、70万以下であることがさらに好ましく、50万以下であることが特に好ましい。重量平均分子量が上記下限値以上であると、フィルム形成性を維持しつつ、溶融粘度も低下させることが可能なため、好ましい。また、重量平均分子量が上記上限値以下であると、熱硬化性分等の低分子量成分との相溶性が向上するため、好ましい。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。
接着剤層13を構成する材料における上記高分子量成分の含有量は、接着剤層13を構成する材料の合計量を基準として、下限値が3質量%以上であることが好ましく、5質量%以上であることがさらに好ましく、7質量%以上であることが特に好ましい。また、上記高分子量成分の含有量は、上限値が95質量%以下であることが好ましく、90質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。上記高分子量成分の含有量が、上記下限値以上であると、接着剤層13を構成する材料の90℃溶融粘度をさらに低い値とすることができ、前述した数値範囲を満たしやすくなる。一方、上記高分子量成分の含有量が上記上限値以下であると、接着剤層13を構成する材料の平均線膨張係数をさらに低減することができ、後述する数値範囲を満たしやすくなる。
(1−5)フラックス機能を有する成分
本実施形態において、半導体チップの貫通電極またはバンプが半田で接合される場合、接着剤層13を構成する材料は、フラックス機能を有する成分(以下「フラックス成分」ということがある。)を含有することが好ましい。フラックス成分は、電極表面に形成された金属酸化膜を除去する作用を有するものであり、半田による電極間の電気的接続をより確実なものとし、半田接合部における接続信頼性を高めることができる。
フラックス成分としては、特に限定されないが、フェノール性水酸基および/またはカルボキシル基を有する成分であることが好ましく、カルボキシル基を有する成分であることが特に好ましい。カルボキシル基を有する成分は、フラックス機能を有するとともに、後述するエポキシ樹脂を熱硬化性成分として用いた場合に硬化剤としての作用をも有する。そのため、カルボキシル基を有する成分は、半田接合が完了した後は硬化剤として反応し消費されるため、過剰のフラックス成分に起因した不具合を抑制することができる。
具体的なフラックス成分としては、例えば、グルタル酸、2−メチルグルタル酸、オルトアニス酸、ジフェノール酸、アジピン酸、アセチルサリチル酸、安息香酸、ベンジル酸、アゼライン酸、ベンジル安息香酸、マロン酸、2,2−ビス(ヒドロキシメチル)プロピオン酸、サリチル酸、o−メトキシ安息香酸、m−ヒドロキシ安息香酸、コハク酸、2,6−ジメトキシメチルパラクレゾール、安息香酸ヒドラジド、カルボヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、サリチル酸ヒドラジド、イミノジ酢酸ジヒドラジド、イタコン酸ジヒドラジド、クエン酸トリヒドラジド、チオカルボヒドラジド、ベンゾフェノンヒドラゾン、4,4’−オキシビスベンゼンスルホニルヒドラジド、アジピン酸ジヒドラジド、ロジン誘導体などが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いることができる。
ロジン誘導体としてはガムロジン、トールロジン、ウッドロジン、重合ロジン、水素添加ロジン、ホルミル化ロジン、ロジンエステル、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ロジン変性アルキド樹脂、などが挙げられる。
これらの中でも、2−メチルグルタル酸、アジピン酸およびロジン誘導体から選択される少なくとも1つを使用することが特に好ましい。2−メチルグルタル酸およびアジピン酸は、接着剤層13を構成する材料において、分子量が比較的小さいながらも分子内にカルボキシル基を2つ有するため、少量の添加であってもフラックス機能に優れ、本実施形態では特に好適に用いることができる。ロジン誘導体は軟化点が高く、低線膨張係数化を維持しつつ、フラックス性を付与することが出来るため、本実施形態では特に好適に用いることができる。
フラックス成分の融点および軟化点の少なくとも一方は、80℃以上であることが好ましく、110℃以上であることがより好ましく、130℃以上がさらに好ましい。フラックス成分の融点および軟化点の少なくとも一方が上記範囲であると、より優れたフラックス機能を得ることができ、アウトガスなども低減できるため好ましい。なお、フラックス成分の融点および軟化点の上限値は特に限定されないものの、例えば半田の融点以下であればよい。
本実施形態において、接着剤層13を構成する材料におけるフラックス成分の含有量は、接着剤層13を構成する材料の合計量を基準として、下限値が0.1質量%以上であることが好ましく、0.2質量%以上であることがさらに好ましく、0.3質量%以上であることが特に好ましい。また、上記フラックス成分の含有量は、上限値が20質量%以下であることが好ましく、15質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましい。接着剤層13を構成する材料において、フラックス成分の含有量が上記下限値以上であると、半田による電極間の電気的接続をより確実なものとし、半田接合部における接続信頼性をさらに高めることができる。一方、フラックス成分の含有量が上記上限値以下であると、過剰のフラックス成分に起因するイオンマイグレーション等の不具合を防止することができる。
(1−6)その他の成分
接着剤層13は、当該接着剤層13を構成する材料として、さらに、可塑剤、安定剤、粘着付与材、着色剤、カップリング剤、帯電防止剤、酸化防止剤、導電性粒子、前述した熱伝導性フィラー以外の無機フィラー等を含有してもよい。
例えば、接着剤層13を構成する材料が導電性粒子等を含有することで、三次元集積積層回路製造用シート1,2に異方導電性が付与されると、半田接合を補完する態様にて、または半田接合とは異なる態様にて、半導体チップ同士を電気的に接合することができる。
(2)物性
(2−1)熱伝導率
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13の硬化後の熱伝導率は、0.5W/m・K以上であることが好ましく、特に0.7W/m・K以上であることが好ましく、さらには1.0W/m・K以上であることが好ましい。また、当該熱伝導率は、8.0W/m・K以下であることが好ましく、特に4.0W/m・K以下であることが好ましく、さらには3.0W/m・K以下であることが好ましい。当該熱伝導率が0.5W/m・K以上であることで、接着剤層13が良好な放熱性を示し易くなり、本実施形態に係る三次元集積積層回路製造用シート1,2を用いて、高い信頼性を有する積層回路を効果的に製造することができる。一方、当該熱伝導率が8.0W/m・K以下であることで、接着剤層13における熱伝導性フィラーの含有量が過度に多くならず、その結果、接着剤層13における良好な放熱性と、接着剤層13の接着性およびシート加工性とを両立し易くなる。なお、接着剤層13の熱伝導率の測定方法は、後述する試験例に示す通りである。
(2−2)溶融粘度
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13を構成する材料は、硬化前における90℃での溶融粘度(以下、「90℃溶融粘度」ということがある。)が、上限値として5.0×10Pa・s以下であることが好ましく、特に1.0×10Pa・s以下であることが好ましく、さらには5.0×10Pa・s以下であることが好ましい。90℃溶融粘度が上記上限値以下であると、接着剤層13を電極間に介在させたときに、半導体チップの表面における貫通電極またはバンプに起因する凹凸に良好に追従し、半導体チップと接着剤層13との界面にボイドが発生するのを防止することができる。また、90℃溶融粘度は、下限値として1.0×10Pa・s以上であることが好ましく、特に1.0×10Pa・s以上であることが好ましく、さらには1.0×10Pa・s以上であることが好ましい。90℃溶融粘度が上記下限値以上であると、接着剤層13を構成する材料がフローし過ぎることがなく、接着剤層13貼付時や半導体チップの積層時において装置の汚染を防止することができる。そのため、本実施形態に係る三次元集積積層回路製造用シート1,2は、構成する材料の90℃溶融粘度が上記範囲にあることで、高い信頼性を有するものとなる。
ここで、接着剤層13を構成する材料の90℃溶融粘度は、フローテスターを用いて測定することができる。具体的には、厚さ15mmの接着剤層13について、フローテスター(島津製作所社製,CFT−100D)を用い、荷重50kgf、温度範囲50〜120℃、昇温速度10℃/minの条件で溶融粘度を測定することができる。
(2−3)平均線膨張係数
本実施形態において、接着剤層13を構成する材料は、硬化物の0〜130℃における平均線膨張係数(以下、単に「平均線膨張係数」ということがある。)が、上限値として45ppm以下であることが好ましく、特に35ppm以下であることが好ましく、さらには25ppm以下であることが好ましい。平均線膨張係数が上記上限値以下であると、硬化物からなる接着剤層13と半導体チップとの線膨張係数の差が小さくなり、かかる差に基づき接着剤層13と半導体チップとの間で発生し得る応力を低減することができる。これにより、本実施形態に係る三次元集積積層回路製造用シート1,2は、半導体チップ同士の接続信頼性を高いものとすることができ、特に実施例で示す温度サイクル試験において高い接続信頼性を示すものとなる。
一方、平均線膨張係数の下限値は特に制限されないが、フィルム形成性の観点から、5ppm以上であることが好ましく、10ppm以上であることがより好ましい。
ここで、接着剤層13を構成する材料の平均線膨張係数は、熱機械分析装置を用いて測定することができる。具体的には、基材上に厚さ45μmの接着剤層13を形成した後、160℃で1時間処理することにより接着剤層13を硬化させることで得られる硬化物について、熱機械分析装置(ブルカー・エイエックス社製,TMA4030SA)を用い、荷重2g、温度範囲0〜300℃、昇温速度5℃/minの条件にて線膨張係数を測定する。当該測定結果から、0〜130℃での平均線膨張係数が算出することができる。
(2−4)ガラス転移温度
本実施形態において、接着剤層13を構成する材料は、硬化物のガラス転移温度(Tg)が、下限値として150℃以上であることが好ましく、200℃以上であることがさらに好ましく、240℃以上であることが特に好ましい。硬化物のガラス転移温度が上記下限値以上であると、温度サイクル試験時に硬化物が変形せず、応力が発生しづらくなるため、好ましい。一方、硬化物のガラス転移温度の上限値は特に制限されないが、硬化物の脆化を抑制する観点から、350℃以下であることが好ましく、300℃以下であることがより好ましい。
ここで、接着剤層13を構成する材料の硬化物のガラス転移温度は、動的粘弾性測定機器(ティー・エイ・インスツルメント社製,DMA Q800)を用い、周波数11Hz、振幅10μm、昇温速度3℃/分で、0℃から300℃まで昇温させて引張モードによる粘弾性を測定したときの、tanδ(損失弾性率/貯蔵弾性率)の最大点の温度である。
(2−5)5%質量減少温度
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13を構成する材料の硬化物は、熱重量測定による5%質量減少温度が、350℃以上であることが好ましく、特に360℃以上であることが好ましい。当該5%質量減少温度が350℃以上であることで、接着剤層13の硬化物が高温に対する耐性に優れたものとなる。そのため、積層回路の製造等において、当該硬化物が高温に曝された場合であっても、当該硬化物の含有成分の分解に伴う揮発成分の発生等が抑制され、積層回路の性能が良好に維持される。なお、当該5%質量減少温度の上限としては特に限定されないものの、当該5%質量減少温度は、通常500℃以下であることが好ましい。
ここで、5%質量減少温度は、示差熱・熱重量同時測定装置を用いて測定することができる。具体的には、基材上に厚さ45μmの接着剤層13を形成した後、160℃で1時間処理することにより接着剤層13を硬化させることで得られる硬化物について、JIS K7120:1987に準拠して、示差熱・熱重量同時測定装置(島津製作所社製,DTG−60)を用い、流入ガスを窒素として、ガス流入速度100ml/min、昇温速度20℃/minで、40℃から550℃まで昇温させて熱重量測定を行う。得られた熱重量曲線に基づいて、温度100℃での質量に対して質量が5%減少する温度(5%質量減少温度)が得られる。
(2−6)貯蔵弾性率
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13の硬化後の23℃における貯蔵弾性率は、1.0×10MPa以上であることが好ましく、特に1.0×10MPa以上であることが好ましい。また、当該貯蔵弾性率は、1.0×10MPa以下であることが好ましく、特に1.0×10MPa以下であることが好ましい。当該貯蔵弾性率が上記範囲であることで、積層回路を製造する場合に、半導体チップと個片化された接着剤層13とが交互に積層されてなる積層体が良好な強度を有するものとなる。その結果、さらに半導体チップを積層する場合や当該積層体を取り扱う際であっても、積層体した状態が良好に維持され、優れた品質を有する積層回路を製造することができる。
ここで、接着剤層13の硬化後の23℃における貯蔵弾性率は、動的粘弾性測定機器を用いて測定することができる。具体的には、基材上に厚さ45μmの接着剤層13を形成した後、160℃で1時間処理することにより接着剤層13を硬化させることで得られる硬化物について、動的粘弾性測定機器(ティー・エイ・インスツルメント社製,DMA Q800)を使用し、周波数11Hz、振幅10μm、昇温速度3℃/分で、0℃から300℃まで昇温させたときの引張モードによる粘弾性を測定する。その測定結果から、接着剤層の硬化後の23℃における貯蔵弾性率(MPa)を読み取とることができる。
(2−7)示差走査熱量分析法による発熱開始温度および発熱ピーク温度
本実施形態に係る三次元集積積層回路製造用シート1,2において、硬化前における接着剤層13は、示差走査熱量分析(DSC)法により昇温速度10℃/分で測定される発熱開始温度(TS)が、70℃〜150℃の範囲内であることが好ましく、特に100℃〜150℃の範囲内であることが好ましく、さらには120℃〜150℃の範囲内であることが好ましい。当該発熱開始温度(TS)が上記範囲であることで、例えば、ダイシングブレードにより半導体ウエハをダイシングする際に生じる熱を受けた場合のような、意図しない段階において接着剤層13が硬化することが抑制されるとともに、製造用シート1,2の保存安定性にも優れる。特に、積層回路を作製するため、半導体チップを複数積層した後に、半導体チップ間に存在する複数の接着剤層13を一括で硬化させる場合には、半導体チップの積層が完了する前といった意図しない段階において接着剤層13が硬化することを抑制することができる。
本実施形態に係る三次元集積積層回路製造用シート1,2において、硬化前における接着剤層13は、示差走査熱量分析(DSC)法により昇温速度10℃/分で測定される発熱ピーク温度(TP)が、発熱開始温度(TS)+5〜60℃であることが好ましく、特にTS+5〜50℃であることが好ましく、さらにはTS+10〜40℃であることが好ましい。当該発熱ピーク温度(TP)が上述の範囲であることで、接着剤層13を硬化させる際に、硬化の始まりから完了までの時間が比較的短いものとなる。一般的に、NCFといった接着剤を使用して積層回路を製造する場合、接着剤の硬化に時間を要する。そのため、積層回路の製造におけるタクトタイムは、接着剤の硬化の時間によって規定されることが多い。したがって、上記の通り接着剤層13が硬化するまでの時間が短いことで、タクトタイムを効果的に短縮することが可能となる。特に、積層回路を製造する際、プロセスの効率化のために、半導体チップを複数積層(仮置き)した後に、半導体チップ間に存在する複数の接着剤層13を最後に一括で硬化させる場合がある。そのような場合であっても、当該発熱ピーク温度(TP)が上述の範囲であることで、半導体チップの積層が完了する前といった意図しない段階において、工程の初期に積層した半導体チップ間に存在する接着剤層13が硬化することを抑制することができる。
ここで、上記発熱開始温度および上記発熱ピーク温度は、示差走査熱量計を用いて測定することができる。具体的には、厚さ15mmの接着剤層13を、示差走査熱量計(TAインスツルメント社製,Q2000)を用いて、昇温速度10℃/分で常温から300℃まで加熱し、これにより得られるDSC曲線から、発熱が開始する温度(発熱開始温度)(TS)、および発熱ピーク温度(TP)を求めることができる。
(2−8)接着剤層の厚さ等
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13の厚さ(T2)は、2μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、当該厚さ(T2)は、500μm以下であることが好ましく、特に300μm以下であることが好ましく、さらには100μm以下であることが好ましい。接着剤層13の厚さ(T2)が2μm以上であることで、半導体チップに存在する貫通電極またはバンプを、接着剤層13に良好に埋め込むことが可能となる。また、接着剤層13の厚さ(T2)が500μm以下であることで、貫通電極を有する半導体チップを、接着剤層13を介して接着する際に、接着剤層13が側面に染み出しすぎることがなく、信頼性の高い半導体装置を製造することができる。なお、接着剤層13の厚さ(T2)は、製造用シート1において、50mm間隔で合計100点を測定した際の平均値とする。
本実施形態に係る三次元集積積層回路製造用シート1,2において、接着剤層13の厚さ(T2)の標準偏差は、2.0μm以下であり、1.8μm以下であることが好ましく、特に1.6μm以下であることが好ましい。当該標準偏差が2.0μmを超えると、製造用シート1,2を使用して、半導体ウエハの貫通電極またはバンプを接着剤層13に埋め込むときにボイドが発生し易くなるとともに、積層回路を構成する接着剤層13の厚さおよび積層回路自体の厚さを均一にすることが困難となる結果、積層回路の放熱性が不十分となる。特に、積層回路は半導体チップと接着剤層13とを複数積層して得られるものであるため、接着剤層13の厚さ(T2)の標準偏差が2.0μmを超えると、得られる積層回路の厚さに関する均一性が損なわれ、当該積層回路における良好な放熱性を達成できない。なお、接着剤層13の厚さ(T2)の標準偏差の測定方法は、後述する試験例に示す通りである。
基材11を備える第2の実施形態に係る三次元集積積層回路製造用シート2において、基材11の厚さ(T1)に対する接着剤層13の厚さ(T2)の比(T2/T1)は、0.01以上であることが好ましく、特に0.1以上であることが好ましく、さらには0.4以上であることが好ましい。また、当該比(T2/T1)は、1.5以下であることが好ましく、特に1.0以下であることが好ましく、さらには0.9以下であることが好ましい。当該比(T2/T1)が上記範囲であることで、基材11と接着剤層13との厚さのバランスが良好なものとなり、半導体ウエハに製造用シート2を貼付する際のハンドリング性が優れるとともに、当該貼付の際の貼付適性を調整することが容易となる。その結果、当該貼付を良好に行うことができ、優れた品質を有する積層回路を製造することが可能となる。特に、当該比(T2/T1)が0.01以上であることで、製造用シート1における基材11の相対的な厚みが比較的小さいものとなり、製造用シート1の相対的な剛性が比較的低く抑えられる。その結果、製造用シート1を半導体ウエハに貼付する時に、半導体ウエハに存在する貫通電極またはバンプを、接着剤層13に良好に埋め込み易くなる。一方、当該比(T2/T1)が1.5以下であることで、製造用シート1における基材11の相対的な厚みが比較的大きいものとなり、製造用シート1の相対的な剛性が比較的高く維持される。その結果、製造用シート1のハンドリング性が優れたものとなり、半導体ウエハに製造用シート1を貼付し易くなる。なお、基材11の厚さ(T1)は、製造用シート1において、50mm間隔で合計100点を測定した際の平均値とする。
2.粘着剤層
(1)材料
粘着剤層12を備える第2の実施形態に係る三次元集積積層回路製造用シート2において、粘着剤層12は、非硬化性粘着剤から構成されてもよく、または硬化性粘着剤から構成されてもよい。後述する通り、本実施形態に係る三次元集積積層回路製造用シート2を積層回路の製造方法に使用する場合、接着剤層13が、基材11と粘着剤層12との積層体から剥離される。そのため、当該剥離を容易に行う観点から、粘着剤層12は、硬化性粘着剤から構成され、硬化により粘着力が低下するものであることが好ましい。
粘着剤層12が硬化性粘着剤から構成される場合、当該粘着剤は、エネルギー線硬化性粘着剤であってもよく、または熱硬化性粘着剤であってもよい。ここで、粘着剤層12と接着剤層13とは異なる段階で硬化させるものであるため、接着剤層13が熱硬化性を有する場合には、粘着剤層12はエネルギー線硬化性粘着剤から構成されることが好ましく、接着剤層13がエネルギー線硬化性を有する場合には、粘着剤層12は熱硬化性粘着剤から構成されることが好ましい。しかしながら、接着剤層13は前述した理由から熱硬化性を有することが好ましいため、粘着剤層12は、エネルギー線硬化性粘着剤から構成されることが好ましい。
上記非硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、ダイシング工程といった意図しない段階における、粘着剤層12と接着剤層13との界面での剥離を効果的に抑制する観点から、アクリル系粘着剤が好ましい。
上記エネルギー線硬化性粘着剤としては、エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし、非エネルギー線硬化性ポリマー(エネルギー線硬化性を有しないポリマー)と少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とするものであってもよい。また、エネルギー線硬化性を有するポリマーと非エネルギー線硬化性ポリマーとの混合物であってもよいし、エネルギー線硬化性を有するポリマーと少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物であってもよいし、それら3種の混合物であってもよい。
上記エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体であることが好ましい。この重合体は、官能基含有モノマー単位を有するアクリル系共重合体と、その官能基に結合する官能基を有する不飽和基含有化合物とを反応させて得られるものであることが好ましい。
上記少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとしては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。
非エネルギー線硬化性ポリマー成分としては、例えば、前述した官能基含有モノマー単位を有するアクリル系共重合体を使用できる。
(2)物性等
本実施形態に係る三次元集積積層回路製造用シート2において、粘着剤層12の23℃における貯蔵弾性率は、1×10Pa以上であることが好ましく、特に1×10Pa以上であることが好ましい。また、当該貯蔵弾性率は、1×10Pa以下であることが好ましく、特に1×10Pa以下であることが好ましい。なお、当該貯蔵弾性率は、粘着剤層12が硬化性粘着剤から構成される場合には硬化前の貯蔵弾性率をいうものとする。粘着剤層12の23℃における貯蔵弾性率が上記範囲であることで、半導体ウエハに製造用シート2を貼付する際に、半導体ウエハに存在する貫通電極またはバンプを、接着剤層13に良好に埋め込むことが可能となる。また、製造用シート1,2を使用して、半導体ウエハのバンプが形成されていない面をバックグラインドする場合には、半導体ウエハの反りやディンプルの発生を抑制することができる。なお、粘着剤層12の23℃における貯蔵弾性率は、例えば、動的粘弾性測定装置(ティー・エイ・インスツルメント社製,ARES)により、周波数1Hz、測定温度範囲−50〜150℃、昇温速度3℃/minの条件で測定することができる。
粘着剤層12の厚さは、特に限定されないものの、例えば、1μm以上であることが好ましく、特に10μm以上であることが好ましい。また、当該厚さは、例えば、100μm以下であることが好ましく、特に50μm以下であることが好ましい。粘着剤層12の厚さが1μm以上であることで、粘着剤層12が良好な粘着力を発揮することができる。また、当該厚さが100μm以下であることで、粘着剤層12が不要な厚さとなることが抑制され、コストを低減することが可能となる。
3.基材
(1)材料
基材11を備える第2の実施形態に係る三次元集積積層回路製造用シート2において、基材11を構成する材料としては、特に限定されない。しかしながら、製造用シート2を、ダイシングシート一体型接着シート(ダイシング・ダイボンディングシート)とする場合、基材11を構成する材料は、ダイシングシートを構成する基材に一般的に使用される材料であることが好ましい。例えば、このような基材11の材料としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ポリ塩化ビニル、塩化ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタン、エチレン酢酸ビニル共重合体、アイオノマー、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エステル共重合体、ポリスチレン、ビニルポリイソプレン、ポリカーボネート、ポリオレフィン等が挙げられ、これらのうちの1種または2種以上の混合物を用いることができる。
また、製造用シート2を、バックグラインドシート一体型接着シートとする場合、基材11を構成する材料は、バックグラインドシートを構成する基材に一般的に使用される材料であることが好ましい。例えば、このような基材11の材料としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体等の樹脂からなるものが挙げられ、これらのうちの1種または2種以上の混合物を用いることができる。
基材11の粘着剤層12側の面は、粘着剤層12との密着性を高めるために、プライマー処理、コロナ処理、プラズマ処理等の表面処理が施されてもよい。
(2)物性等
本実施形態に係る三次元集積積層回路製造用シート2において、基材11の23℃における引張弾性率は、100MPa以上であることが好ましく、特に200MPa以上であることが好ましく、さらには300MPa以上であることが好ましい。また、当該引張弾性率は、5000MPa以下であることが好ましく、特に1000MPa以下であることが好ましく、さらには400MPa以下であることが好ましい。基材11の23℃における引張弾性率が上記範囲内であることで、半導体ウエハに製造用シート2を貼付する際に、半導体ウエハに存在する貫通電極またはバンプを、接着剤層13に良好に埋め込むことが可能となる。また、製造用シート2を、ダイシングシート一体型接着シートとする場合、基材11の23℃における引張弾性率が上記範囲内であることで、製造用シート2をエキスパンドして半導体チップ同士の間隔を拡げる際に、基材11が破断しにくくなるため好ましい。なお、基材11の23℃における引張弾性率は、JIS K7127:1999に準拠して、引張試験機を使用して測定することができる。
基材11の厚さ(T1)は、特に限定されないものの、例えば、10μm以上であることが好ましく、特に15μm以上であることが好ましい。また、当該厚さ(T1)は、例えば、500μm以下であることが好ましく、特に100μm以下であることが好ましい。基材11の厚さ(T1)が上記範囲であることで、前述した、基材11の厚さ(T1)に対する接着剤層12の厚さ(T2)の比(T2/T1)の値を、前述の範囲に設定し易くなり、半導体ウエハに製造用シート1,2を貼付する際のハンドリング性が優れたものとなる。その結果、品質に優れた積層回路を効果的に製造することが可能となる。
4.剥離シート
剥離シート14の構成は任意であり、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレン、ポリエチレン等のポリオレフィンフィルムなどのプラスチックフィルムが挙げられる。これらの剥離面(接着剤層13と接する面)には、剥離処理が施されていることが好ましい。剥離処理に使用される剥離剤としては、例えば、シリコーン系、フッ素系、長鎖アルキル系等の剥離剤が挙げられる。
剥離シートの厚さについては特に制限はないが、通常20μm以上、250μm以下である。
5.三次元集積積層回路製造用シートの製造方法
第1の実施形態に係る三次元集積積層回路製造用シート1は、従来の三次元集積積層回路製造用シートと同様に製造することができる。例えば、剥離シート14を備える三次元集積積層回路製造用シート1を製造する場合、前述した熱伝導性フィラー、その他の接着剤層13を構成する材料、および所望によりさらに溶媒または分散媒を含有する塗工液を調製し、剥離シート14の剥離面上に、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、ナイフコーター等によりその塗工液を塗布して塗膜を形成し、当該塗膜を乾燥させることにより製造用シート2を製造することができる。塗工液は、塗布を行うことが可能であればその性状は特に限定されず、接着剤層13を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。剥離シート14は工程材料として剥離してもよいし、半導体ウエハに貼付するまでの間、接着剤層13を保護していてもよい。
また、三次元集積積層回路製造用シート1の両面に2層の剥離シート14がそれぞれ積層された積層体の製造方法としては、前述の剥離シート14の剥離面上に塗工液を塗布して塗膜を形成し、これを乾燥させて接着剤層13と剥離シート14とからなる積層体を形成し、この積層体の接着剤層13における剥離シート14とは反対の面を他の剥離シート14の剥離面に貼付して、剥離シート14/接着剤層13/剥離シート14からなる積層体を得ることができる。この積層体における剥離シート14は工程材料として剥離してもよいし、半導体ウエハに貼付するまでの間、接着剤層13を保護していてもよい。
第2の実施形態に係る三次元集積積層回路製造用シート2は、従来の三次元集積積層回路製造用シート2と同様に製造することができる。例えば、接着剤層13と剥離シート14との積層体、および粘着剤層12と基材11との積層体をそれぞれ作製し、接着剤層13と粘着剤層12とが接するようにこれらの積層体を貼合することで、製造用シート2を得ることができる。
接着剤層13と剥離シート14との積層体は、接着剤層13を形成するための前述した塗工液を調製し、剥離シート14の剥離面上に、前述した塗布方法により塗布して塗膜を形成し、当該塗膜を乾燥させることで得ることができる。
上記溶媒としては、トルエン、酢酸エチル、メチルエチルケトンの有機溶媒等が挙げられる。これらの有機溶媒を配合して、適度な固形分濃度の溶液とすることで、接着剤層13の厚さ(T2)のばらつきをより抑制し、厚さ(T2)について前述の標準偏差を有する接着剤層13を効果的に形成することが可能となる。特に、塗工液の固形分濃度は、塗工液を均一に塗工する観点から、5質量%以上であることが好ましく、特に10質量%以上であることが好ましい。また、同様の観点から、当該固形分濃度は、55質量%以下であることが好ましく、50質量%以下であることが好ましい。当該固形分濃度が5質量%以上であることで、塗膜を形成する際にハジキ等の発生が抑制されるとともに、溶媒を十分乾燥させ易くなり、接着剤層13の厚さや物性のばらつきをより抑制し易くなる。その結果、接着剤層13の厚さ(T2)の標準偏差を前述の範囲に調整し易くなる。また、当該固形分濃度が55質量%以下であることで、塗工液中のフィラーの凝集が抑制され、塗工液を送液し易くなり、塗布方向に垂直な方向に連続して発生する塗布ムラ(横段ムラ)の発生が抑制され、接着剤層13の厚さのばらつきの発生をより抑制することができる。上記塗工液のB型粘度計により測定される25℃における粘度は、20mPa・s以上であることが好ましく、特に25mPa・s以上であることが好ましい。また、当該粘度は、500mPa・s以下であることが好ましく、特に100mPa・s以下であることが好ましい。
粘着剤層12と基材11との積層体は、粘着剤層12を構成する材料、および所望によりさらに溶媒または分散媒を含有する塗工液を調製し、前述した塗布方法によって、基材11の片面に塗布して塗膜を形成し、当該塗膜を乾燥させることで得ることができる。また、粘着剤層12と基材11との積層体の別の作製方法として、工程用剥離シートの剥離面上に粘着剤層12を形成し、その後、当該粘着剤層12を基材11の片面に転写し、工程用剥離シートを粘着剤層12から剥離することで、粘着剤層12と基材11との積層体を得てもよい。
〔三次元集積積層回路の製造方法〕
本実施形態に係る三次元集積積層回路製造用シート1,2を使用して、三次元集積積層回路を製造することができる。以下に、その製造方法の例を説明する。
最初に、貫通電極を有する半導体ウエハの片面に、本実施形態に係る三次元集積積層回路製造用シート1,2を貼付する。具体的には、三次元集積積層回路製造用シート1,2の接着剤層13側の面を、半導体ウエハの片面に貼付する。
なお、貫通電極を有する半導体ウエハは、強度が弱い場合がある。そのため、仮固定材を介してサポートガラス等の支持体に固定することで、半導体ウエハを補強してもよい。この場合は、当該積層体の半導体ウエハ側の面と三次元集積積層回路製造用シート1,2とを貼り合わせた後に、仮固定材とともに支持体を剥離する。
第1の実施形態に係る三次元集積積層回路製造用シート1を使用する場合、さらにダイシングシートを積層する。この場合、半導体ウエハに対してダイシングシートを先に貼付し、製造用シート1を、当該半導体ウエハにおけるダイシングシートとは反対側の面に貼付してもよい。また、半導体ウエハに対して製造用シート1を先に貼付し、ダイシングシートを、当該半導体ウエハにおける製造用シート1とは反対側の面に貼付してもよい。あるいは、半導体ウエハに対して製造用シート1を貼付して得た積層体の製造用シート1側の面に、ダイシングシートを貼付してもよい。一方、第2の実施形態に係る三次元集積積層回路製造用シート2を使用する場合、ダイシングシートをさらに積層する必要はなく、当該製造用シート2上において以下のダイシング工程を行うことができる。
次に、半導体ウエハを個別のチップに切断する(ダイシング工程)。このとき、半導体ウエハとともに、接着剤層13も切断する。ウエハの切断方法は特に限定されず、従来公知の種々のダイシング方法により行われる。例えば、ダイシングブレードを用いて半導体ウエハを切断する方法が挙げられる。また、レーザーダイシング等の他のダイシング方法を採用してもよい。
ダイシング工程の後、半導体チップをピックアップする。このとき、当該半導体チップは、個片化された接着剤層13が貼付した状態でピックアップされる。すなわち、接着剤層13が貼付した半導体チップが、ダイシングシートの粘着剤層または三次元集積積層回路製造用シート2の粘着剤層12から剥離されることになる。なお、粘着剤層12がエネルギー線硬化性粘着剤から構成される場合には、ピックアップの前に、粘着剤層12に対してエネルギー線を照射することが好ましい。これにより当該粘着剤の粘着力が低下するため、半導体チップのピックアップが容易となる。また、必要に応じて、ピックアップの前に、ダイシングシートまたは三次元集積積層回路製造用シート2をエキスパンドすることにより、半導体チップ同士の間隔を拡げてもよい。
続いて、接着剤層付き半導体チップを、回路基板上に載置する。接着剤層付き半導体チップは、半導体チップ側の電極と回路基板上の電極とが対向するように位置合わせされ、回路基板上に載置される。
さらに、接着剤層付き半導体チップと回路基板とを加熱・加圧した後、冷却する。これにより、半導体チップと回路基板とが、接着剤層13を介して接着され、半導体チップの電極と回路基板におけるチップ搭載部の電極とが、半導体チップに形成された半田バンプを介し、電気的に接合される。半田接合の条件は、使用する金属組成物にもよるが、例えばSn−Agの場合、200〜300℃で1〜30秒間加熱することが好ましい。
半田接合が行われたら、半導体チップと回路基板との間に介在する接着剤層13を硬化させる。硬化は、例えば、100〜200℃で1〜120分間加熱することにより行うことができる。また、かかる硬化工程は、加圧条件下で行ってもよい。また、かかる硬化工程は、上述の半田接合の工程で接着剤層13の硬化が終了する場合には省略してもよい。
続いて、上記のように回路基板上に接着された半導体チップ上に、新たな接着剤層付き半導体チップを積層する。このとき、新たな接着剤層付き半導体チップにおける接着剤層13側の面と、回路基板上に積層された半導体チップにおける回路基板とは反対側の面とが接触し、且つ2つの半導体チップの貫通電極同士が電気的に接続されるように積層する。その後、新たに積層された半導体チップの貫通電極と、回路基板上に積層された半導体チップの貫通電極との間で半田接合を行い、さらに、これらの半導体チップ間に介在する接着剤層13を硬化させる。このときの半田接合および接着剤層13の硬化は、上述した方法および条件によって行うことができる。これにより、回路基板上に2つの半導体チップが積層されてなる積層体が得られる。
以上のような、回路基板上に積層された半導体チップ上に接着剤層付き半導体チップを積層し、半田接合および接着剤層13の硬化を行う手順を繰り返して、複数の半導体チップが接着剤層13の硬化物で接着された積層回路を得ることができる。かかる積層回路においては、接着剤層13が熱伝導性フィラーを含有するとともに、接着剤層13の厚さ(T2)の標準偏差が前述した範囲であることにより、積層回路は放熱性に優れたものとなる。したがって、本実施形態に係る三次元集積積層回路製造用シート1,2を用いることで、高い信頼性を有する積層回路を製造することができる。
なお、以上説明した積層回路の製造方法では、半導体チップを1つ積層するごとに、半田接合および接着剤層13の硬化を行っているが、プロセスの効率化のために、半導体チップを複数積層した後に、これらの半導体チップ間における半田接合およびこれらの半導体チップ間に介在する接着剤層13の硬化を最後に一括で行ってもよい。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
以下、実施例および試験例等を示すことにより本発明をさらに詳細に説明するが、本発明は下記の試験例等に何ら限定されるものではない。
〔実施例1〜7,比較例1〕
表1に示す構成成分を含有する組成物を、メチルエチルケトンにて固形分濃度が40質量%となるように希釈し、塗工液を得た。当該塗工液の25℃における粘度を、B型粘度計を用いて測定したところ、50mPa・sであった。当該塗工液を、シリコーン処理された剥離フィルム(リンテック社製,SP−PET381031)上に塗布し、得られた塗膜をオーブンにて100℃で1分間乾燥することで、厚さ45μmの接着剤層と剥離フィルムとからなる第1の積層体を得た。
2−エチルヘキシルアクリレート80質量部、メチルアクリレート10質量部および2−ヒドロキシエチルアクリレート10質量部を共重合してなるアクリル共重合体(重量平均分子量:70万)100質量部(固形分換算値;以下同じ)と、イソシアネート系架橋剤(ポリウレタン工業社製,コロネートL)10質量部とを混合し、粘着剤組成物を調製した。
上記のように得られた粘着剤組成物を、基材としてのエチレン−メタクリル酸共重合体(EMAA)フィルム(厚さ:100μm,引張弾性率:230MPa)の片面に塗布し、塗膜を形成した。これにより、厚さ10μmの粘着剤層と基材とからなる第2の積層体を得た。当該粘着剤層の23℃における貯蔵弾性率を後述する方法で測定したところ、4.6×10Paであった。
続いて、第1の積層体における接着剤層側の面と、第2の積層体における粘着剤層側の面とを貼り合わせることで、三次元集積積層回路製造用シートを得た。
〔比較例2〕
表1に示す構成成分を含有する組成物を、メチルエチルケトンにて固形分濃度が55質量%となるように希釈し、塗工液を得た。当該塗工液の25℃における粘度を、B型粘度計を用いて測定したところ、150mPa・sであった。当該塗工液を使用して接着剤層を形成した以外は、実施例1と同様にして三次元集積積層回路製造用シートを得た。
ここで、表1に示す構成成分の詳細は以下の通りである。
高分子量成分
・ビスフェノールA(BPA)/ビスフェノールF(BPF)共重合型フェノキシ樹脂:東都化成社製,製品名「ZX−1356−2」,ガラス転移温度71℃,重量平均分子量6万
熱硬化性成分
・エポキシ樹脂1:トリス(ヒドロキシフェニル)メタン型固形エポキシ樹脂,ジャパンエポキシレジン社製,製品名「E1032H60」,5%重量減少温度350℃,固形,融点60℃
・エポキシ樹脂2:Bis−F型液状エポキシ樹脂,ジャパンエポキシレジン社製,製品名「YL−983U」,エポキシ当量184
・エポキシ樹脂3:長鎖Bis−F変性型エポキシ樹脂,ジャパンエポキシレジン社製,製品名「YL−7175」
硬化触媒
・2MZA−PW:2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン,四国化成工業社製,製品名「2MZA−PW」,融点250℃
フラックス成分
・ロジン誘導体:荒川化学工業製,軟化点124〜134℃
フィラー
・熱伝導性フィラー(球状アルミナ):球状アルミナ,電気化学工業社製,製品名「DAM−0」,平均粒径3μm,熱伝導率40W/m・K
・熱伝導性フィラー(球状酸化亜鉛):球状酸化亜鉛,堺化学工業社製,平均粒径0.6μm,熱伝導率54W/m・K
・熱伝導性フィラー(窒化ホウ素):窒化ホウ素,昭和電工社製,製品名「UHP−2」,形状:板状,平均粒径11.8μm,アスペクト比11.2,長軸方向の熱伝導率200W/m・K
・溶融シリカフィラー:平均粒径3μm,熱伝導率2W/m・K
また、前述した粘着剤層の23℃における貯蔵弾性率は、粘着剤層を複数積層することにより厚さ800μmの粘着剤層の積層体を作製し、この粘着剤層の積層体を直径10mmの円形に打ち抜いて得られる測定用試料について、動的粘弾性測定装置(ティー・エイ・インスツルメント社製,ARES)を用いて、周波数1Hz、測定温度範囲−50〜150℃、昇温速度3℃/minの条件で貯蔵弾性率(Pa)を測定したものである。
〔試験例1〕熱伝導率の測定
実施例および比較例のそれぞれについて、表1に示す構成成分を含有する組成物を、メチルエチルケトンにて固形分濃度が40質量%となるように希釈し、シリコーン処理された剥離フィルム(リンテック社製,SP−PET381031)上に塗布し、得られた塗膜をオーブンにて100℃で1分間乾燥することで、厚さ40μmの接着剤層を形成した。この手順により得られる接着剤層を、厚さ2mmとなるように複数層積層した。この厚さ2mmの積層体から直径5cmの円盤状の接着剤層を打ち抜いて、測定のための試料とした。
当該試料を、130℃で2時間加熱して硬化させた後、熱伝導率測定装置(EKO社製,HC−110)を用いて、熱伝導率(W/m・K)を測定した。結果を表2に示す。
〔試験例2〕接着剤層の厚さおよび当該厚さの標準偏差の測定
実施例および比較例で作製した第1の積層体について、接着剤層の厚さ(T2)を、50mm間隔で合計100点測定した。この測定結果に基づいて、厚さ(T2)の平均値(μm)および厚さ(T2)の標準偏差(μm)を算出した。結果を表2に示す。
〔試験例3〕温度サイクル試験による放熱性の評価
一方の面にバンプが形成され、他方の面にパッドが形成されている評価用ウエハを用意し、フルオートマルチウエハマウンタ(リンテック社製,RAD−2700F/12)を用いて、当該評価用ウエハのバンプが形成されている側の面に、実施例および比較例で製造した三次元集積積層回路製造用シートを貼付し、さらにリングフレームに固定した。
続いて、フルオートダイシングソー(ディスコ社製,DFD651)を用いて、接着剤層とともに評価用ウエハをダイシングし、平面視で7.3mm×7.3mmのサイズを有するチップに個片化した。
次いで、フリップチップボンダー(東レエンジニアリング社製,FC3000W)を用いて、個片化された接着剤層とともにチップをピックアップした後、基板にフリップチップボンディングした。その後、基板上に仮置きした第1段目のチップ上に、第2段目の接着剤層付きチップをフリップチップボンディングした。この手順を繰り返し、基板上に合計5段のチップが積層されてなる半導体装置を作製した。
得られた半導体装置を、−55℃,10分および125℃,10分を1サイクルとする環境下に1000サイクル付す温度サイクル試験を行った。当該試験前後の半導体装置について、半導体チップ間の接続抵抗値をデジタルマルチメーターで測定し、試験前の半導体装置における接続抵抗値に対する、試験後の半導体装置における接続抵抗値の変化率を測定した。そして、以下の評価基準に従って放熱性を評価した。結果を表2に示す。
○:接続抵抗値の変化率が20%以下である。
×:接続抵抗値の変化率が20%超である。
〔試験例4〕埋込性の評価
試験例3に記載される方法により半導体装置を複数製造した。これらの半導体装置から無作為に選択した5個の半導体装置の4側面をデジタル顕微鏡で観察し、バンプにおけるクラックの発生の有無、および接着剤層へのバンプの埋め込みの状態を確認するとともに、それぞれの面における積層方向の厚さを測定した。これらの結果に基づいて、以下の評価基準に従って、実施例および比較例で得た三次元集積積層回路製造用シートにおけるバンプの埋込性を評価した。結果を表2に示す。
○:5個の半導体装置全てにおいて、バンプにクラックが発生しておらず、バンプが接着剤層に良好に埋め込まれており、積層方向の厚さが4側面間で同一である。
×:5個の半導体装置のうち、バンプにクラックが発生しているか、接着剤層へのバンプの埋め込みが不十分であるか、または積層方向の厚さが4側面間で同一でないものがある。
Figure 2017175481
Figure 2017175481
表2から分かるように、実施例に係る三次元集積積層回路製造用シートにおける接着剤層は、0.5W/m・K以上という優れた熱伝導率を有するとともに、接着剤層の厚さ(T2)の標準偏差は、2.0μm以下であった。そして、実施例で得られた三次元集積積層回路製造用シートを用いて製造された積層回路は、放熱性に優れていることが確認され、温度サイクル試験の結果が良好であり、また、バンプの埋込性にも優れていた。
その一方、比較例に係る三次元集積積層回路製造用シートにおける接着剤層は、熱伝導率が0.3W/m・Kといった不十分な値であり、当該製造用シートを用いて製造された積層回路の放熱性も不十分であった。さらに、比較例2に係る三次元集積積層回路製造用シートについては、接着剤層の厚さ(T2)の標準偏差が2.5μmであり、積層回路の放熱性が不十分であるとともに、バンプの埋め込み性に劣っていた。
本発明に係る三次元集積積層回路製造用シートは、放熱性に優れ、高い信頼性を有する積層回路を製造するのに好適に利用することができる。
1,2…三次元集積積層回路製造用シート
11…基材
12…粘着剤層
13…接着剤層
14…剥離シート

Claims (16)

  1. 貫通電極を有する複数の半導体チップの間に介在され、前記複数の半導体チップを相互に接着し、三次元集積積層回路とするために用いられる三次元集積積層回路製造用シートであって、
    前記三次元集積積層回路製造用シートは、少なくとも硬化性の接着剤層を備え、
    前記接着剤層は、熱伝導性フィラーを含み、
    前記接着剤層の厚さ(T2)の標準偏差は、2.0μm以下である
    ことを特徴とする三次元集積積層回路製造用シート。
  2. 前記熱伝導性フィラーは、金属酸化物、炭化珪素、炭化物、窒化物および金属水酸化物から選択される材料からなることを特徴とする請求項1に記載の三次元集積積層回路製造用シート。
  3. 前記接着剤層における前記熱伝導性フィラーの含有量は、35質量%以上、95質量%以下であることを特徴とする請求項1または2に記載の三次元集積積層回路製造用シート。
  4. 前記熱伝導性フィラーは、23における熱伝導率が10W/m・K以上であることを特徴とする請求項1〜3のいずれか一項に記載の三次元集積積層回路製造用シート。
  5. 前記熱伝導性フィラーの平均粒径は、0.01μm以上、20μm以下であることを特徴とする請求項1〜4のいずれか一項に記載の三次元集積積層回路製造用シート。
  6. 前記接着剤層の硬化後の熱伝導率は、0.5W/m・K以上、8.0W/m・K以下であることを特徴とする請求項1〜5のいずれか一項に記載の三次元集積積層回路製造用シート。
  7. 前記接着剤層を構成する材料は、熱硬化性成分、高分子量成分および硬化触媒を含有することを特徴とする請求項1〜6のいずれか一項に記載の三次元集積積層回路製造用シート。
  8. 前記高分子量成分のガラス転移温度は、50℃以上であることを特徴とする請求項1〜7のいずれか一項に記載の三次元集積積層回路製造用シート。
  9. 前記接着剤層を構成する材料は、フラックス成分を含有することを特徴とする請求項1〜8のいずれか一項に記載の三次元集積積層回路製造用シート。
  10. 前記接着剤層の厚さは、2μm以上、500μm以下であることを特徴とする請求項1〜9のいずれか一項に記載の三次元集積積層回路製造用シート。
  11. 前記三次元集積積層回路製造用シートは、前記接着剤層の片面側に積層された粘着剤層と、前記粘着剤層における前記接着剤層とは反対の面側に積層された基材とをさらに備えることを特徴とする請求項1〜10のいずれか一項に記載の三次元集積積層回路製造用シート。
  12. 前記基材の厚さは、10μm以上、500μm以下であることを特徴とする請求項11に記載の三次元集積積層回路製造用シート。
  13. 前記基材の厚さ(T1)に対する前記接着剤層の厚さ(T2)の比(T2/T1)は、0.01以上、5.0以下であることを特徴とする請求項11または12に記載の三次元集積積層回路製造用シート。
  14. 前記粘着剤層の23℃における貯蔵弾性率は、1×10Pa以上、1×10Pa以下であることを特徴とする請求項11〜13のいずれか一項に記載の三次元集積積層回路製造用シート。
  15. 前記基材の23℃における引張弾性率は、100MPa以上、5000MPa以下であることを特徴とする請求項11〜14のいずれか一項に記載の三次元集積積層回路製造用シート。
  16. 請求項1〜10のいずれか一項に記載の三次元集積積層回路製造用シートの前記接着剤層の片面または請求項11〜15のいずれか一項に記載の三次元集積積層回路製造用シートの前記接着剤層における前記粘着剤層とは反対の面と、貫通電極を備えた半導体ウエハの少なくとも一方の面とを貼合する工程、
    前記半導体ウエハを、前記三次元集積積層回路製造用シートの前記接着剤層とともにダイシングし、接着剤層付き半導体チップに個片化する工程、
    個片化された複数の前記接着剤層付き半導体チップを、前記貫通電極同士が電気的に接続され且つ前記接着剤層と前記半導体チップとが交互に配置されるように複数積層して、半導体チップ積層体を得る工程、および
    前記半導体チップ積層体における前記接着剤層を硬化して、前記半導体チップ積層体を構成する前記半導体チップ同士を接着する工程
    を含むことを特徴とする三次元集積積層回路の製造方法。
JP2017528977A 2016-04-05 2017-02-13 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法 Active JP6174293B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016076188 2016-04-05
JP2016076188 2016-04-05
PCT/JP2017/005142 WO2017175481A1 (ja) 2016-04-05 2017-02-13 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法

Publications (2)

Publication Number Publication Date
JP6174293B1 JP6174293B1 (ja) 2017-08-02
JPWO2017175481A1 true JPWO2017175481A1 (ja) 2018-04-12

Family

ID=59505162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017528977A Active JP6174293B1 (ja) 2016-04-05 2017-02-13 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法

Country Status (1)

Country Link
JP (1) JP6174293B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930888B2 (ja) * 2017-10-02 2021-09-01 リンテック株式会社 フィルム状焼成材料、及び支持シート付フィルム状焼成材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010368A (ja) * 2008-06-26 2010-01-14 Sumitomo Bakelite Co Ltd 半導体装置および半導体装置の製造方法
JP5444986B2 (ja) * 2009-09-16 2014-03-19 東レ株式会社 半導体用接着組成物、それを用いた半導体装置
JP2011187571A (ja) * 2010-03-05 2011-09-22 Nitto Denko Corp ダイシング・ダイボンドフィルム
JP2012216837A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 三次元集積回路積層体
KR102132592B1 (ko) * 2012-11-05 2020-07-10 린텍 가부시키가이샤 점착 시트

Also Published As

Publication number Publication date
JP6174293B1 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6670156B2 (ja) 回路部材接続用シートおよび半導体装置の製造方法
JP6133542B2 (ja) フィルム状接着剤、接着シート及び半導体装置
TWI759375B (zh) 半導體加工用帶
KR101176957B1 (ko) 반도체 패키지 제작용 접착제 조성물 및 접착시트
JP2005303275A (ja) ダイシングダイボンドシート
JP2012089630A (ja) 半導体用フィルムおよび半導体装置
JPWO2020013250A1 (ja) 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2014162974A1 (ja) アンダーフィル用接着フィルム、裏面研削用テープ一体型アンダーフィル用接着フィルム、ダイシングテープ一体型アンダーフィル用接着フィルム及び半導体装置
JP6094031B2 (ja) 接着剤組成物、接着シート及び半導体装置
WO2017175481A1 (ja) 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法
JP2012153851A (ja) 半導体装置及びフィルム状接着剤
TWI701800B (zh) 三次元積體積層電路製造用板片以及三次元積體積層電路之製造方法
JP6174293B1 (ja) 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法
JP6174292B1 (ja) 三次元集積積層回路製造用シートおよび三次元集積積層回路の製造方法
JP2012216651A (ja) 半導体装置
JPWO2017090439A1 (ja) 回路部材接続用樹脂シート
JP2012094586A (ja) 半導体装置の製造方法
JP4872956B2 (ja) 半導体装置の製造方法
JPWO2017090440A1 (ja) 回路部材接続用樹脂シート
JP2015065321A (ja) 半導体装置の製造方法
TWI735803B (zh) 半導體加工用膠帶
JP6213618B2 (ja) フィルム状接着剤、接着シート及び半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170530

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170530

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6174293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250