JPWO2017134940A1 - 水蒸気改質システム及び発電システム - Google Patents

水蒸気改質システム及び発電システム Download PDF

Info

Publication number
JPWO2017134940A1
JPWO2017134940A1 JP2017512412A JP2017512412A JPWO2017134940A1 JP WO2017134940 A1 JPWO2017134940 A1 JP WO2017134940A1 JP 2017512412 A JP2017512412 A JP 2017512412A JP 2017512412 A JP2017512412 A JP 2017512412A JP WO2017134940 A1 JPWO2017134940 A1 JP WO2017134940A1
Authority
JP
Japan
Prior art keywords
gas
reforming
hydrogen
steam
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017512412A
Other languages
English (en)
Other versions
JP6125140B1 (ja
Inventor
五三實 大岡
五三實 大岡
岡田 治
治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renaissance Energy Research Corp
Original Assignee
Renaissance Energy Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Research Corp filed Critical Renaissance Energy Research Corp
Priority claimed from PCT/JP2016/087371 external-priority patent/WO2017134940A1/ja
Application granted granted Critical
Publication of JP6125140B1 publication Critical patent/JP6125140B1/ja
Publication of JPWO2017134940A1 publication Critical patent/JPWO2017134940A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

熱損失を効果的に抑制でき、80%以上好ましくは90%以上の水素ガス化効率を達成し得る水蒸気改質システムを提供する。複数の改質管18を改質炉17内に並列に連結配置してなる改質器、改質反応用の水蒸気を発生する蒸気発生器15,16、CO変成器22、改質炉17内に熱供給を行う燃焼器19を備え、改質管18の夫々が、両端が閉じられた外管26と、外管26内に収容され一端が閉じ他端が開口した内管27を同軸状に備え、外管26の一端側に入口が設けられ、内管27の一端側に出口が設けられ、外管26と内管27の間に形成された外側流路30と内管27内に形成された内側流路31が外管26の他端側において連通し、少なくとも外側流路30に改質触媒が充填されて構成され、燃焼器19が改質炉17内の他端側に設けられている。

Description

本発明は、燃料電池や金属処理の用に供される水素を、炭化水素系ガスを改質することで製造する水蒸気改質システム、及び、当該水蒸気改質システムを備えて構成される発電システムに関する。
最近、わが国では燃料電池自動車(FCV)が出現し、それに対応するための高効率のサテライト水素供給設備が望まれている。しかし、斯かる高効率水素供給設備の当面の目標である水素ガス化効率80%には未だ到達していないのが現状である。
図10に、サテライト水素供給設備を構成する従来の水素製造システム100の一構成例を模式的に示す。図10では、水素製造システム100を構成する主要な機器と当該機器間の物質の流れを示している。
図10に示される従来の水素製造システム100は、原料圧縮機101、脱硫器102、給水予熱器103、廃熱回収ボイラ104、改質炉105、改質管106、原料予熱器107、過熱器108、バーナ109、空気予熱器110、CO変成器111、ガス冷却器112、PSA水素分離装置113等を備えて構成される。
図10に示される構成例では、メタンを主成分とする都市ガス(13Aガス)等の原料ガスは、原料圧縮機101で圧縮され、改質炉105内に設けられた原料予熱器107で予熱された後、該都市ガスに含まれる硫黄化合物が脱硫器102で除去され、改質管106に供給される。給水予熱器103で、CO変成器111で生成された高温の変性ガスと熱交換して予熱された水は、CO変成器111のCO変性反応で生じた熱との熱交換により蒸発し、改質炉105内の過熱器108で過熱され、脱硫処理された原料ガスと合流して、改質管106に供給される。原料ガスの一部は燃料ガスとしてバーナ109に供給され、燃焼用空気は、空気予熱器110で改質炉105から排出された燃焼排ガスの廃熱との熱交換により予熱され、バーナ109に供給される。改質管106に供給された原料ガスと水蒸気は、バーナ109による加熱により改質反応を起こし、水素と一酸化炭素を含む改質ガスが生成される。CO変成器111において、改質ガス中に含まれる一酸化炭素が二酸化炭素に転化され、CO濃度の低下した変性ガスが生成される。変性ガスは、給水予熱器103とガス冷却器112で降温された後、PSA水素分離装置113において、水素以外のガスを吸着除去され、含有水素濃度の上昇した製品水素が生成される。PSA水素分離装置113で回収された水素以外のガス(オフガス)は、燃焼ガスとしてバーナ109に供給される。
従来の水素製造のプロセス設計では、例えば、図10に示されるような物質の流れに従って、物質収支及び熱収支を計算し、その過程で発生する熱損失は、過去の経験を参考にして値を決定することが多かった。一例として、図10に示される物質の流れに対して、図11に示されるようなエネルギ収支図がよく用いられている。水素ガス化効率の向上は、熱損失の減少を意味することから、熱損失の本質の検討が重要であるが、図11に示される熱損失部分から、その状態を詳しく把握することは困難である。
一方、本出願人は、過去に、下記の特許文献1に示すように、水素製造システムを構成する改質器とバーナを上段に配し、CO変成器と脱硫器等を下段に配した上下構造とし、各部を同軸状に構成することで、各部間を連絡する配管を不要とした熱効率の高い水素製造装置を開発している。しかし、当該水素製造装置においても、水素ガス化効率は80%には至っていない。
特開2010−100494号公報
上述のように、従来の水素製造システムでは、80%以上の水素ガス化効率が達成されておらず、また、従来の水素製造のプロセス設計においても、熱損失の本質の検討が不十分であり、水素ガス化効率の向上のための熱損失の減少は十分に図られていなかった。
本発明は、上述の問題点に鑑みてなされたものであり、その目的は、熱損失を効果的に抑制でき、80%以上好ましくは90%以上の水素ガス化効率を達成し得る水蒸気改質システムを提供することにある。
図12は、水素製造に関するシステムバウンダリを設定し、物質の入出力の状況を示したものである。図12において、入力となる物質は、原料ガス、プロセス蒸気となるプロセス水、及び、燃料と燃焼用空気であり、出力となる物質は、製品水素、プロセス蒸気の内の反応しなかった未分解蒸気、及び、燃焼排ガスである。更に、水素製造システムは全体から見ると発熱系であって放散熱を伴っている。図12において、プロセス水の変化を見ると、大部分は製品水素ガスとなり、残りの水素ガスはPSA分離においてオフガスとなり燃焼されて排ガス中の水蒸気となる。エネルギ収支から見ると、未分解蒸気の内、熱回収されて凝縮水になった部分を除き、出力の水分の殆どは水蒸気となって排出され、その後、冷却・凝縮される。従って、この水蒸気が少ないほど熱損失は小さくなる。それ以外に、燃焼プロセスにおける余剰空気による損失もあるが、主たる熱損失の原因は未分解蒸気と放散熱となっている。
例えば、図11に示されるエネルギ収支図に対して、当該エネルギ収支図と同じデータから、例えば図13に例示するように、夫々の流体の温度・エンタルピ線図を、熱損失分析図として描き、熱損失の分布を定量的に把握し、流体間の温度差やピンチポイントを確認することで、運転確認やシステムの最適設計が可能となる。
図13に例示した熱損失分析図において、熱損失の大きい部分は、燃焼排ガス損失、燃焼ガス側の放熱損失、プロセス流体の排熱損失である。
燃焼排ガス損失は、プロセスの加熱以外に、全体の放熱を担うための燃焼量の増加や、燃料となるオフガス中の水素分が燃焼して水蒸気分が多く含むこと、オフガス中にCOが多く含まれること等が要因となっている。そのため、PSA分離における水素回収率が高くなると当該熱損失は少し減少するが、その割合は通常のボイラ等の排ガス損失に比べて大きい値になっている。
燃焼ガス側の放熱は、プロセス設計において、同じ加熱源から生じる改質ガス側の放熱と一緒に考慮されるのが普通である。図13に例示した熱損失分析図においては、プラントの全放熱量の燃焼する燃料の発熱量(HHV)に対する比率は26.1%となっている。この値はパッケージボイラや大型ボイラの2〜5%に比べ大きい値であるが、大型の水素製造プラントの場合でも15〜20%となる。その理由は高温の改質炉の炉体が大きく、高温部の機器・配管の構造に由来しているためであり、改善の余地が大きい。
プロセス流体の排熱損失の大部分は、未分解蒸気の潜熱によるものである。当該未分解蒸気の潜熱による損失は、原料ガス中の炭素とプロセス蒸気(水蒸気)のモル比S/C(水蒸気/炭素)と、水蒸気改質反応における圧力や温度に影響する。通常、プロセス流体中の未分解蒸気の一部の熱はボイラ給水の予熱により回収されるが、上記S/Cが大きい場合は、プロセス流体と給水側の温度差にピンチポイントが出現して熱回収量が制限され、未分解蒸気が多くなる。
以上より、水素ガス化効率の向上のための熱損失低減には、1)燃焼排ガス損失の低減、2)放熱損失の低減、3)未分解蒸気の低減、4)PSA分離における水素回収率の向上、等の対策が有効である。
上記1)〜4)の対策は、機器及びシステム設計の工夫による対策と、運転条件の見直しによる対策がある。尚、後述するように、運転条件の見直しに伴う副作用に対処するための機器側の対策が必要となる場合がある。
燃焼排ガス損失の低減には、上記4)のPSA分離における水素回収率の向上の他、燃焼空気比の低減、及び、排ガス温度の低下が、基本的な対策として考えられる。主として、前者は運転条件の見直しにより行い、後者は、廃熱回収の高効率化等の機器及びシステム設計の工夫により実施する。
放熱損失の低減は、熱交換機能の向上、高断熱化、廃熱回収の高効率化、等の機器及びシステム設計の工夫により実施する。
未分解蒸気の低減は、基本的に、改質温度を許容範囲内で高く設定し、原料ガスとプロセス蒸気の供給を低S/Cで行う等の運転条件の見直しにより行う。しかし、低S/C運転では、水蒸気改質反応における炭化水素の熱分解によるカーボン発生が顕著となり、更に、CO変成器から出力される変成ガス中のCO濃度の増加も問題となる。よって、未分解蒸気の低減には、低S/Cに起因する上記問題を、機器及びシステム側において別途対処する必要がある。
PSA分離における水素回収率の向上は、高性能吸着剤の使用、吸着槽の圧力制御の改良による高回収率化、等の機器及びシステム設計の工夫により実施する。例えば、高性能吸着剤として、COに対する吸着能力の高い化学吸着剤を使用することで、水素回収率の向上とともに、低S/Cに起因するCO濃度増加にも対処できる。
低S/Cに起因するカーボン発生の対策として、改質器の前段に脱硫器を設ける、原料ガス中に適量の水素を加える、炭化水素を低温で改質するプレリフォーマを設置する等が考えられる。但し、これらの機器及びシステム設計の工夫による対策を、上述の他の対策を阻害しないように、できれば上述の他の対策に資するように実施できることが望ましい。
本願発明者は、熱損失の内容を定量的に把握し、且つ、詳細に検討した結果、80%以上好ましくは90%以上の水素ガス化効率を達成し得る水蒸気改質システムを実現するために、機器及びシステム設計の工夫により、以下に示す本発明に至った。
本発明に係る水蒸気改質システムは、炭化水素を含む原料ガスを水蒸気と反応させて、水素と一酸化炭素を少なくとも含む改質ガスを生成する複数の改質管を、断熱構造体で囲まれた筒状の改質炉内に夫々の軸方向を互いに平行にして並列に連結配置してなる改質器と、前記改質器に供給する水蒸気を発生する蒸気発生器と、前記改質ガスに含まれる一酸化炭素の少なくとも一部を水蒸気と反応させて二酸化炭素に変成させ、前記改質ガスより含有一酸化炭素濃度の低下した変成ガスを生成する変成器と、燃料ガスを燃焼して前記改質炉内に熱供給を行う燃焼器とを、備えてなり、
前記改質管の夫々が、両端が閉じられた外管と、前記外管内に収容され一端が閉じ他端が開口した内管を同軸状に備え、且つ、前記外管の一端側に入口を備え、前記内管の一端側に出口を備え、且つ、前記外管と前記内管の間に形成された外側流路と前記内管内に形成された内側流路が、前記外管内の他端側において連通しており、且つ、少なくとも前記外側流路に改質触媒が充填されて構成され、
前記燃焼器が、前記改質炉内または前記改質炉の炉壁部の前記外管の他端側に設けられ、前記改質器と筒状の前記変成器が、互いに隣接して、前記複数の改質管と筒状の前記変成器の夫々の軸方向を互いに平行にして、筒状の1つの収容空間内に設置されていることを第1の特徴とする。
上記第1の特徴を有する水蒸気改質システムによれば、外側流路における吸熱反応である水蒸気改質反応に対して、外管の外側の燃料の燃焼熱と内管の内側を通過する高温の改質ガスから効率的に加熱されるため、改質温度を許容範囲内で容易に高くでき、更に、熱交換に供される管壁の面積を大きくできるため、熱交換効率を高くできる。これにより、放熱損失の低減、及び、未分解蒸気の低減が図れる。
更に、燃焼器が改質炉内または改質炉の炉壁部の外管の他端側に設けられているため、燃焼器が生成した高温の燃焼ガスは、外管の外壁面と改質炉の内壁面の間の燃焼ガス流路を、当該流路の外管の他端側から一方端側に向けて通流する。ここで、燃焼ガスの熱が外管の管壁に吸収され、燃焼ガス温度は、外管の他端側から一方端側に向けて低下する。例えば、一例として、燃焼ガス流路の他端側が約1000℃で、一方端側で約500℃まで低下する場合があり得る。改質炉内の伝熱は放射伝熱が主であり、当該放射伝熱は絶対温度の4乗の差で行われるというステファン・ボルツマンの法則に従うため、外管の他端側では温度が高く、単位伝熱面積当たりの伝熱量(熱流束)が多くなり、外管の一端側では温度が低く、単位伝熱面積当たりの伝熱量(熱流束)が少なくなる。従って、外側流路内の一端側(入口側)寄りの一部領域は、被処理ガスの温度上昇が緩やかなものになり、プレリフォーマとして機能し、低S/C運転に起因するカーボン析出を抑制できる。
また、内側流路を通流する改質ガス温度も、燃焼ガスと同様、改質ガスの熱が内管の管壁に吸収され、内管の他端側から一方端側に向けて低下する。例えば、一例として、燃焼ガス流路の他端側が約860℃で、一方端側で約450℃まで低下する場合があり得る。
よって、内側流路を通流する改質ガス温度の変化も、燃焼ガス温度の変化と同様に、外側流路内の一端側(入口側)寄りの一部領域は、被処理ガスの温度上昇が緩やかなものになり、プレリフォーマとして機能し、低S/C運転に起因するカーボン析出の抑制に寄与する。また、改質管出口の改質ガス温度が下がるため、配管フランジの接続が容易になるという利点もある。
更に、改質器と変成器を、両者間を連絡する配管も含め、上記収容空間内に一体化して収容できるため、高温機器の外気放熱面積を小さくでき、放熱損失の低減が図れる。
本発明に係る水蒸気改質システムは、上記第1の特徴に加え、前記改質管の軸心に垂直な平面における前記外管及び前記外側流路の各断面積が、軸心方向の中央部分より前記外管及び前記内管の前記一端側の方が当該中央部分の前記他端側の方より大きいことを第2の特徴とする。
上記第2の特徴を有する水蒸気改質システムによれば、前記外側流路の入口側のプレリフォーマとして機能し得る領域の容積を大きくでき、被処理ガスの滞留時間を長くできるため、被処理ガスの急激な温度上昇が抑制され、プレリフォーマとしてより好適な構造となる。更に、外管の断面積(つまり、外側流路の断面積と内管の断面積の和)が、中央部分より一端側において大きくなると、外管の外壁面の表面積が増えるため、外管の中央部分より一端側の方が他端側より、燃焼ガスの伝熱面積が増加するので、外管の断面積が一定の場合(つまり、直管の場合)と比べて、燃焼ガス温度は、外管の他端側から一方端側に向けてより顕著に低下し、プレリフォーマとしてより好適な構造となる。
尚、外管の断面積が、中央部分より一端側において大きくなると、当該部分の改質炉の内壁と外管の外壁の間の断面積が小さくなり、燃焼ガス流路内の外管の他端側から一端側に向けて流れる燃焼ガスの流速は、外管の一端側の方が大きくなり、燃焼ガスの対流伝熱量が増加する。燃焼ガス流路内の外管の一端側では、上述したように、燃焼ガスの放射伝熱量が低下しているので、燃焼ガスの対流伝熱量の増加により、単位伝熱面積当たりの伝熱量(熱流束)が僅かに上昇する。しかし、対流伝熱による熱流束の増加は、外側流路の入口付近でのカーボン発生に大きな影響を与える程の大きさではない。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記改質器に供給される前記原料ガス中の炭素量に対する前記蒸気発生器から前記改質器に供給される水蒸気量のモル比が、1.7以上2.4以下となるように、前記改質器に供給される前記炭素量及び前記水蒸気量が調整されていることを第3の特徴とする。これにより、未分解蒸気の低減が図れる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、内槽部の外周を外槽部が取り囲む同心円筒容器を備え、前記原料ガス中に含まれる硫黄成分を除去する脱硫器と前記変成器とが、前記外槽部と前記内槽部の何れか一方と他方に形成され、互いに熱交換可能に構成され、前記改質器と前記同心円筒容器が、前記収容空間内に、互いに隣接して、前記複数の改質管と前記同心円筒容器の夫々の軸方向を互いに平行にして、設置されていることを第4の特徴とする。
上記第4の特徴を有する水蒸気改質システムによれば、先ず、脱硫器が設けられることで、低S/Cに起因するカーボンの発生が抑制される。更に、脱硫器と変成器が互いに熱交換可能に構成されているため、放熱損失の低減が図れるとともに、変成ガス温度の上昇を抑制でき、CO変成反応温度の安定化が図れる。更に、脱硫器と変成器が1つの同心円筒容器内に構成されているため、上記第1の特徴と同様に、改質器と変成器と脱硫器を、各部間を連絡する配管も含め、上記収容空間内に一体化して収容できるため、高温機器の外気放熱面積を小さくでき、放熱損失の低減が図れる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記変成器内に、前記蒸気発生器の少なくとも一部として、前記変成器の変成反応で発生した熱を利用して前記改質器に供給する水蒸気を発生する第1蒸気発生器を備えることを第5の特徴とする。
上記第5の特徴を有する水蒸気改質システムによれば、第1蒸気発生器と変成器が互いに熱交換可能に構成されているため、放熱損失の低減が図れるとともに、変成ガス温度の上昇を抑制でき、CO変成反応温度の安定化が図れる。更に、第1蒸気発生器の水蒸気発生量を調整することで、プロセス蒸気の発生量の適正化が図れ、低S/C化を実現できる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記改質炉内で発生した燃焼排ガスを前記改質炉外に排気する排気路の途中に、前記蒸気発生器の少なくとも一部として、前記燃焼排ガスの廃熱を利用して前記改質器に供給する水蒸気を発生する第2蒸気発生器を備え、前記第2蒸気発生器が、前記収容空間内に納まるように、前記改質炉の前記炉壁部の側面に沿って形成されていることを第6の特徴とする。
上記第6の特徴を有する水蒸気改質システムによれば、燃焼排ガス損失の低減が図れる。また、第2蒸気発生器を改質炉の炉壁部の側面に沿って形成することで、第2蒸気発生器を専用の熱交換器で構成する場合と比較して、熱交換表面積を低減でき、燃焼排ガス損失の低減が一層図れる。更に、第2蒸気発生器の水蒸気発生量を調整することで、プロセス蒸気の発生量の適正化が図れ、低S/C化を実現できる。更に、第1蒸気発生器と第2蒸気発生器の両方を備えた場合、第1及び第2蒸気発生器での蒸気発生量の配分を調整することで、CO変成反応の温度制御の適正化とプロセス蒸気の発生量の適正化がより容易に実現でき、低S/C化と安定した運転制御を実現できる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記改質炉の前記断熱構造体の外側面に接して鋼板製外板が設けられ、前記鋼板製外板に熱伝導可能に接して細管コイルが設けられ、前記鋼板製外板と前記細管コイルにより、前記第2蒸気発生器に供給する水を、前記改質炉の前記断熱構造体から前記鋼板製外板に伝達された熱を利用して予熱する給水予熱器が形成されていることを第7の特徴とする。
上記第7の特徴を有する水蒸気改質システムによれば、鋼板製外板により、改質炉内の燃焼ガスの循環滞留熱損失を抑制できるとともに、燃焼排ガスの廃熱を有効に回収できるため、燃焼排ガス損失の低減が図れる。また、鋼板製外板に接して給水予熱器を形成することで、鋼板製外板を被覆する保温材を厚くしなくても十分な保温性能が実現できる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記改質炉内で発生した燃焼排ガスを前記改質炉外に排気する排気路の途中に、前記燃焼排ガスの廃熱を利用して、前記燃焼器に供給する燃料ガス及び燃焼空気を予熱するガス予熱器と空気予熱器を備え、前記ガス予熱器と前記空気予熱器が、前記収容空間内に納まるように、前記改質炉の前記断熱構造体の側面に沿って形成されていることを第8の特徴とする。
上記第8の特徴を有する水蒸気改質システムによれば、燃焼排ガス損失の低減が図れる。また、ガス予熱器と空気予熱器を改質炉の断熱構造体の側面に沿って形成することで、ガス予熱器と空気予熱器を専用の熱交換器で構成する場合と比較して、熱交換表面積を低減でき、燃焼排ガス損失の低減が一層図れる。
本発明に係る水蒸気改質システムは、上記何れかの特徴に加え、前記変成ガス中に含まれる水素以外のガスを吸着除去し、前記変成ガスより含有水素濃度の上昇した製品水素を生成するPSA分離装置を、前記収容空間外に備えることを第9の特徴とする。
上記第9の特徴を有する水蒸気改質システムによれば、変成ガス中に含まれるCO、CO、CH等の水素以外のガスが除去された高純度の製品水素ガスが得られる。また、当該除去された水素以外のガス(オフガス)が回収され、燃料ガスとして再利用されることで、熱効率が向上する。
本発明に係る水蒸気改質システムは、上記第9の特徴に加え、前記PSA分離装置が備える複数の吸着槽の夫々が、前記変成ガス中に含まれる一酸化炭素を化学的に吸着する化学吸着剤を備えることを第10の特徴とする。
上記第10の特徴を有する水蒸気改質システムによれば、化学吸着剤が、物理的な吸着剤と比較してCOに対する吸着能力が高いため、吸着剤の占める容積を低減できるため、オフガス量が少なくなって水素回収率を向上できる。また、オフガス量が減少することで、オフガスに起因する熱損失が低減される。
本発明に係る水蒸気改質システムは、上記第9または第10の特徴に加え、前記PSA分離装置が、3槽の吸着槽と真空ポンプと補圧ポンプを備え、前記真空ポンプと前記補圧ポンプが、同じ真空ポンプを兼用して構成されるか、或いは、個別のポンプで夫々構成され、前記3槽の吸着槽の内の第1槽が吸着処理に供される1サイクルが4工程で構成され、
前記PSA分離装置が、前記1サイクルの間、
第1工程で、前記3槽の吸着槽の内の第2槽と第3槽の槽内圧を均等化するために、前記第2及び第3槽の槽内間を連通させ、前記第2槽を減圧し、前記第3槽を昇圧し、
第2工程で、前記第2及び第3槽の槽内間を、前記捕圧ポンプを介して連通させ、前記第2槽を更に減圧し、前記第3槽を更に昇圧し、
第3工程で、前記第3槽を、前記製品水素の一部の水素を用いて加圧し、前記第2槽内に吸着された前記水素以外のガスを、前記真空ポンプを作動させて真空脱着してオフガスとして排出し、
第4工程で、前記第3槽に対する加圧を停止し、前記第2槽に対して、前記製品水素の一部の水素を用いて、吸着剤の洗浄と残留ガスのパージ処理を行うように構成されていることを第11の特徴とする。
上記第11の特徴を有する水蒸気改質システムによれば、第2工程の補圧処理と第3工程の真空脱着処理を経てパージを行うことで、従来のPSA水素分離において脱着及びパージに使用されていた水素量を大幅に削減でき、水素回収率の向上が図れる。
更に、本発明に係る発電システムは、上記何れかの特徴を有する水蒸気改質システムを備える水素製造システムと、前記水素製造システムが生成する水素を消費して発電する発電装置を備え、前記水素製造システムの水素ガス化効率が90%以上であることを第1の特徴とする。
上記第1の特徴を有する発電システムによれば、発電装置として、近年発電効率が50%以上に向上した固体高分子形燃料電池(PEFC)等を採用することで、発電システム全体として、極めて高い発電効率が得られる。例えば、発電装置の発電効率が50%と仮定し、水素製造システムの水素ガス化効率が90%として直交変換効率や自家消費電力を考慮すると、その送電端効率(HHV)は44%程度になり、天然ガスのガスタービンコンバインドサイクル(GTCC)発電に匹敵する発電効率となる。
本発明に係る発電システムは、上記第1の特徴に加え、前記水素製造システムが、水素を燃料とする車両用の水素供給基地における水素供給設備を構成し、前記発電装置が、前記水素供給基地内に設けられた、電気自動車に電力を供給する電力供給設備を構成することを第2の特徴とする。
上記第2の特徴を有する発電システムによれば、例えば、燃料電池自動車(FCV)用のサテライト水素供給基地において、発電装置の発電電力を、電気自動車に向けに供給することで、高い稼働率が実現できる。また、当該発電電力は、水素の圧縮電力にも利用でき、外販も可能である。
本発明に係る水蒸気改質システムによれば、熱損失を効果的に抑制でき、カーボン発生の抑制された低S/C運転が可能となり、80%以上好ましくは90%以上の水素ガス化効率を達成し得る。
本発明に係る水蒸気改質システムの一実施形態における概略構成を模式的に示す構成図 図1に示す水蒸気改質システムのCO変成器までの前段部の組立構造を模式的に示す筒状の収容空間の軸心に垂直な断面と該軸心を通過する断面における断面図 図2に示す水蒸気改質システムの改質管の組立構造を模式的に示す改質管の軸心を通過する断面における断面図 図2に示す水蒸気改質システムの改質炉に設けた廃熱回収機器の概略構成を模式的に示す展開図 図1に示す水蒸気改質システムのPSA水素分離装置の概略構成及び1サイクル中の弁の開閉状態を模式的に示す構成図 図5に示すPSA水素分離装置の1サイクル中の各槽の圧力変化を模式的に示す図 本発明に係る水蒸気改質システムの予想運転成績を比較した一覧表 水蒸気改質システムの条件別の予想運転成績を比較した一覧表 図8に示す条件別の予想運転成績における各種損失と水素ガス化効率の構成比率を示す棒グラフ 従来の水素製造システムの概略構成を模式的に示す構成図 図10に示す従来の水素製造システムの熱収支例を示すエネルギ収支図 水素製造における物質の移動を簡略的に示す図 図10に示す従来の水素製造システムにおける流体の温度と燃焼ガスのエンタルピの関係により熱損失の分布の一例を示す熱損失分析図
本発明に係る水蒸気改質システムの実施形態(以下、適宜、「本実施形態」と称す。)につき、図面に基づいて説明する。
本実施形態に係る水蒸気改質システム1は、図1に模式的に示すように、原料圧縮機11、脱硫器12、第1給水予熱器13、第2給水予熱器14、第1水蒸気発生器15、第2水蒸気発生器16、改質炉17、改質管18、バーナ19(燃焼器に相当)、ガス予熱器20、空気予熱器21、CO変成器22、ガス冷却器23、ドレイン分離器24、PSA水素分離装置25等を備えて構成される。図1では、水蒸気改質システム1を構成する機器と当該機器間の物質(原料ガス、燃料ガス、純水、水蒸気、燃焼空気、燃焼排ガス、改質ガス、変成ガス、製品水素ガス、オフガス、脱硫用水素)の流れを示している。
次に、図2及び図3を参照して、改質器を構成する改質炉17と改質管18の詳細な構造について説明する。図2は、2点鎖線で示される円筒状の収容空間10内に、脱硫器12、第1給水予熱器13、第2給水予熱器14、第1水蒸気発生器15、第2水蒸気発生器16、改質炉17、改質管18、バーナ19、ガス予熱器20、空気予熱器21、及び、CO変成器22の高温設備機器と、当該機器間を連絡する配管を一体化して組み立てる組立構造を示している。図2(A)は、円筒状の収容空間10の軸心に垂直な断面における当該組立構造を示し、図2(B)は、同軸心を通過するA−A’断面における当該組立構造を示している。図3は、改質管18を外管26と内管27の同軸2重管で構成した組立構造を模式的に示す図で、改質管18の軸心を通過する断面における模式的な断面図である。尚、本実施形態では、図2(B)及び図3における上側が、改質炉17、改質管18(外管26と内管27)、及び、円筒状の収容空間10の「一端側」に相当し、下側が、改質炉17、改質管18(外管26と内管27)、及び、円筒状の収容空間10の「他端側」に相当する。
図2(A)に示すように、改質炉17は、収容空間10の軸心に垂直な平面内において、収容空間10内の略扇型の余剰スペースを除く部分に形成されている。当該余剰スペースは、収容空間10の外周の約4分の1の円弧部分を含む収容空間10内の一部分である。尚、当該余剰スペースには、後述するように、脱硫器12、第1給水予熱器13、第1水蒸気発生器15、及び、CO変成器22が設置される。改質炉17は、耐火煉瓦等の断熱材からなる断熱構造体(炉壁部、炉頂部、炉底部)で側面、上面及び下面を囲まれた改質炉内に、5本の改質管18が収容されている。5本の改質管18は全く同じ構造、形状及び寸法で構成されている。図2(A)では、5本の改質管18が異なる管径で簡略表示されている箇所は、管径の異なる断面を図示している。5本の改質管18は、改質炉17の断熱構造体の上面に設けられた5つの開口部から、改質炉内に挿入されている。各改質管18の入口は入口配管により、出口は出口配管により、夫々、炉頂部の上側で、相互に接続され連通している。改質炉内の空間の上面視形状は、略“C”形(ドーナツの4分の1ほどを切り欠いた形状)をしており、この“C”の形状の円弧状の中心線に沿って、5本の改質管18が配置されている。
バーナ19は、改質炉17の炉壁部の下端部を貫通して設けられており、バーナ19による燃料ガスの燃焼によって生成された燃焼ガスが、5本の改質管18の各外管26の外壁面と改質炉17の炉壁部の内壁面との間に形成される燃焼ガス流路を、下側から上側に向けて通流するように構成されている。尚、バーナ19は、炉壁部の下端部ではなく、改質炉17内の炉底部に設置しても良い。
図2(B)及び図3に示すように、各改質管18の底部は、外管26の下端を球面状の蓋部材28で遮閉して形成されており、改質炉17の炉底部に形成された球面状の凹部に蓋部材28の下面が接して支持されている。また、外管26の上端の外側面とフランジ部下面が当該開口部の内側面と外周上面と気密に接し、外管26の上側の開口は、一部球面状の蓋部材29で遮閉され、当該上側の蓋部材29には、外管26と内管27の間の外側流路30に原料ガスと水蒸気の混合ガスを供給する入口を形成する入口管32が設けられている。各改質管18の入口管32は、夫々、共通の入口配管36に接続している。
内管27の内側には、内側流路31が形成されている。図2(B)及び図3に示すように、内管27の下端は開口し、当該開口と外管26内の外側流路30と蓋部材28の間の下部空間34を介して、外側流路30と内側流路31が連通している。内管27の上側の開口は、平板状の蓋部材35で遮閉され、当該上側の蓋部材35には、上記混合ガスが外側流路30を通過中に改質され生成された改質ガスを、内側流路31を通して外部に送出する出口管33が設けられている。出口管33は、内側流路31から蓋部材35と蓋部材29を貫通して外部に突出している。各改質管18の出口管33は、夫々、共通の出口配管37に接続している。
本実施形態では、各改質管18の上側(一端側)に入口管32と出口管33が設けられており、入口管32から外側流路30に送入された被処理ガス(混合ガス)は、外側流路30内を下向きに通過し、外側流路30及び下部空間34内で改質され、改質後の改質ガスが、下部空間34内で流れの向きを反転して、内側流路31内を上向きに通過して、出口管33から出口配管37へと送出される。ここで、上述のように、燃焼ガスが、各外管26の外壁と改質炉17の内壁面の間の燃焼ガス流路を、下側から上側に向けて通流するため、燃焼ガスの熱が外管26の管壁に吸収され、燃焼ガス温度は、下側から上側に向けて低下する。同様に、内側流路31内を上向きに通過する改質ガスも、改質ガスの熱が内管27の管壁に吸収され、改質ガス温度は、下側から上側に向けて低下する。この結果、外管26と内管27の管壁を通過して、外側流路30内に伝導する単位伝熱面積当たりの伝熱量(熱流束)は、上側ほど少なくなり、外側流路30の上端部分では、被処理ガスの温度上昇が緩やかなものになり、プレリフォーマとして機能し、低S/C運転に起因するカーボン析出を抑制できる。
外管26と内管27の外径は、軸心方向の略中央部分で、上側に向かって拡径しており、当該拡径部分の上側の方が、当該拡径部分の下側より大きくなっている。一例として、標準の水素製造量として300mN/hを想定した場合に使用される改質管18では、上側部分の外管26と内管27の外径は、夫々、約318mmと約216mmで、管壁の厚さは、夫々、約10mmと約2.8mmである。下側部分の外管26と内管27の外径は、夫々、約216mmと約140mmで、管壁の厚さは、夫々、約8mmと約2.8mmである。従って、外管26と内管27は、夫々、ビール瓶を逆さにしたような形状となっている。以下、本実施形態における改質管18の構造を、便宜的に「逆ボトル型2重管構造」と呼ぶ。尚、図3では、図2(B)と異なり、同軸2重管構造を簡易に説明するために、縦方向の縮尺を、横方向に比べて大幅に圧縮して表示しており、実際の寸法比とは大きく異なる。また、上述の水素製造量を想定した場合、例えば、円筒状の収容空間10の直径は2m、高さは3.15mとなる。
本実施形態では、当該逆ボトル型2重管構造を採用することで、外側流路30の入口側のプレリフォーマとして機能する領域の容積を大きくでき、被処理ガスの滞留時間を長くできるため、被処理ガスの急激な温度上昇が抑制され、プレリフォーマとしてより好適な構造となる。
ところで、当該逆ボトル型2重管構造により、各外管26の外壁と改質炉17の内壁面の間の燃焼ガス流路は、上記拡径部分より上側で狭くなっているため、上側に向かって流れる燃焼ガスの流速は、当該狭窄箇所で大きくなり、燃焼ガスの対流伝熱量が増加する。しかし、改質炉17内の伝熱は放射伝熱が主であるため、対流伝熱量の増加によって、カーボン析出の抑制効果が損なわれる程度ではない。
本実施形態では、外側流路30と下部空間34内に改質触媒が充填されており、内側流路31内には、アルミナ等のイナートの粒体が充填されている。尚、下部空間34内に改質触媒が充填されていなくても良く、また、内側流路31の下端部の一部に、少量の改質触媒が充填されていても構わない。改質触媒としては、Ru系触媒、Ni系触媒等の使用が想定されるが、これらに限定されるものではない。
次に、図2を参照して、脱硫器12、CO変成器22、第1給水予熱器13、及び、第1水蒸気発生器15の概略構造について説明する。上述したように、脱硫器12、CO変成器22、第1給水予熱器13、及び、第1水蒸気発生器15は、収容空間10の軸心に垂直な平面内において、収容空間10内の改質炉17が形成された領域を除く余剰スペース内に設置されている。本実施形態では、脱硫器12とCO変成器22と第1水蒸気発生器15は、余剰スペース内にコンパクトに収まるように一体化されている。
図2に示すように、脱硫器12とCO変成器22は、内槽部の外周を外槽部が取り囲む同心円筒容器を備えて構成され、外槽部に脱硫触媒(例えば、超高次脱硫触媒)を充填して脱硫器12を形成し、内槽部にCO変成触媒(例えば、銅亜鉛系触媒)を充填してCO変成器22を形成している。更に、内槽部のCO変成触媒内に除熱兼蒸気発生用のコイル配管を装填し、第1水蒸気発生器15を内槽部内に形成している。第1給水予熱器13は、給水源から供給される純水を、CO変成器22で生成された高温の変成ガスと熱交換により予熱するプレート式の熱交換器である。尚、第1給水予熱器13は、余剰スペース内の外槽部と改質炉17の間隙に設置されている。
外槽部の一端側に設けられた脱硫器12の入口が、配管を介して原料圧縮機11の出口と接続され、外槽部の他端側に設けられた脱硫器12の出口が、入口配管36を介して各改質管18の入口管32と接続される。内槽部の一端側に設けられたCO変成器22の入口が、出口配管37を介して各改質管18の出口管33と接続され、内槽部の他端側に設けられたCO変成器22の出口が、配管を介して第1給水予熱器13のガス入口と接続される。
第1水蒸気発生器15のコイル配管の入口側の一端は、配管を介して第1給水予熱器13の給水出口と接続される。第1水蒸気発生器15のコイル配管の出口側の他端は、分岐配管を介して入口配管36に接続され、第1水蒸気発生器15で生成された水蒸気と、脱硫器12で脱硫処理された原料ガスとが混合される。第1給水予熱器13の給水入口には、給水源から純水が供給される。第1給水予熱器13のガス出口は、配管を介して、収容空間10外に設けられたガス冷却器23のガス入口と接続される。
次に、図4を参照して、改質炉17の断熱構造と、第2給水予熱器14、第2水蒸気発生器16、ガス予熱器20、及び、空気予熱器21の詳細な構造について説明する。図4は、改質炉17の炉壁部、炉頂部、及び、炉底部に設けられた廃熱回収機器(第2給水予熱器14、第2水蒸気発生器16、ガス予熱器20、空気予熱器21)を模式的に示す展開図である。
改質炉17の断熱構造は、改質炉内の燃焼ガスの循環滞留熱損失を防止するために、断熱構造体の外側を鋼板製外板で被覆するとともに、更に、当該鋼板製外板の外側を、断熱性能の高いフレックス材料で被覆して、断熱保温性能を高める構造となっている。そして、炉壁部、炉頂部、炉底部の各外側面に設けられた鋼板製外板には、図4において破線で示されるように、細管コイルの給水ジャケット管が溶着され、第2給水予熱器14が形成されている。当該構造により、改質炉内の温度が600℃〜1000℃であるのに対し、鋼板製外板の温度は約200℃となり、燃焼ガスの熱を有効に回収できる。また、鋼板製外板に給水ジャケット管を溶着して、第2給水予熱器14を形成したことで、フレックス材料による外部保温を厚くすることなく、十分な保温性能を確保できる。
本実施形態では、第1給水予熱器13で予熱された給水が、炉底部に形成された底部給水ジャケット管の入口に供給される。底部給水ジャケット管の出口は、炉壁部の左右に並列に形成された壁部給水ジャケット管の各入口と接続し、壁部給水ジャケット管の各出口は合流して、炉頂部に形成された頂部給水ジャケット管の入口と接続する。頂部給水ジャケット管の出口を出た予熱された給水は、配管を介して、第2水蒸気発生器16の入口に供給される。
第2水蒸気発生器16は、炉壁部の上部に横長の開口を設け、当該開口内にコイル配管を設けて形成される廃熱回収ボイラである。上述の給水ジャケット管を通過して予熱された給水が当該コイル配管を通過する際に、高温の燃焼排ガスとの熱交換により加熱され、水蒸気が生成される。第2水蒸気発生器16のコイル配管の出口は、分岐配管を介して入口配管36に接続され、第2水蒸気発生器16で生成された水蒸気と、第1水蒸気発生器15で生成された水蒸気と、脱硫器12で脱硫処理された原料ガスとが合流して混合される。
水蒸気改質システム1の運転制御において重要なポイントの1つは、CO変成器22内の温度を常に安定して維持することであるが、このためには、第1水蒸気発生器15での蒸気発生量を制御することになり、第1水蒸気発生器15での蒸気発生量が、CO変成器22内の温度に依存して変化することになる。つまり、第1水蒸気発生器15だけで、改質管18に供給する水蒸気を賄う場合は、CO変成器22内の温度と改質管18に供給する水蒸気量を同時に最適化するのが困難となる。本実施形態では、これに対処するために、第1給水予熱器13で予熱された給水を2方向に分岐して、一方を、CO変成器22内に形成された第1水蒸気発生器15に供給し、他方を、燃焼排ガスの廃熱回収用の第2水蒸気発生器16に供給する構成を採用している。これにより、第1水蒸気発生器15の蒸気発生量を制御して、CO変成器22での発熱を吸収してCO変成反応の温度制御を行い、第2水蒸気発生器16の蒸気発生量を制御して、改質管18に供給するプロセス蒸気の発生量の制御を行い、最終的には、バーナ19の燃焼制御によって安定した運転状態を維持することができる。
炉壁部の鋼板製外板に溶着された左右一対の壁部給水ジャケット管の間の空間に、第2水蒸気発生器16を通過した燃焼排ガスの排ガス流路が形成され、当該排ガス流路内に、複数の細管が2組設置され、ガス予熱器20と空気予熱器21が形成されている。原料ガスと同じ組成の燃料ガスがガス予熱器20に供給され、燃焼用空気が、炉壁部の設けられた燃焼用空気ヘッダ38から取り込まれ、空気予熱器21に供給される。当該2組の細管を通過する燃料ガスと燃焼用空気は、燃焼排ガスとの熱交換により各別に予熱され、改質炉17の炉壁部の下端に設けられたバーナ19に供給される。ガス予熱器20と空気予熱器21で熱交換した後の燃焼排ガスは、炉壁部の外側に設けられた煙突39を介して外部に排出される。
以上詳細に説明した改質炉17の断熱構造と、第2給水予熱器14、第2水蒸気発生器16、ガス予熱器20、及び、空気予熱器21の構造により、燃焼ガス及び燃焼排ガスの熱を有効に回収でき、熱損失の低減が効果的に図られる。更に、改質炉17と一体化して構成されたこれらの廃熱回収機器、改質器(改質炉17、改質管18)、脱硫器12、CO変成器22、第1給水予熱器13、及び、第1水蒸気発生器15等の高温機器を、収容空間10内において、改質炉17内、または、その周囲に近接して纏めて配置形成したことで、当該高温機器の外気放熱面積を小さくでき、放熱損失の大幅な低減が図れる。
尚、本実施形態では、円筒状の収容空間10の外面は、例えば、屋内設置の場合は、耐火クロスで覆われ、屋外設置の場合は、アルミニウム板製または鋼板製の外皮で覆われるが、必ずしも気密性は要しない。
次に、図5及び図6を参照して、PSA水素分離装置25の構造及び運転制御方法について説明する。
本実施形態では、PSA水素分離装置25は、図5に示すように、3槽の吸着槽40と真空ポンプ41と補圧ポンプ42を備える。各吸着槽40の入口は、夫々、3つの開閉弁を介して、原ガス配管43、真空ポンプ41と補圧ポンプ42の各入口、及び、真空ポンプ41と補圧ポンプ42の各出口と、各別に接続している。また、3槽の吸着槽40の3つの入口は、3組の2つの入口間が相互に開閉弁(均圧弁)を介して接続されている。また、真空ポンプ41と補圧ポンプ42の各出口は、開閉弁を介してオフガス配管42と接続している。各吸着槽40の出口は、夫々、2つの開閉弁を介して、製品水素ガス配管45、及び、加圧水素ガス配管46と、各別に接続している。また、3槽の吸着槽40の3つの出口は、3組の2つの出口間が相互に開閉弁(均圧弁)を介して接続されている。原ガス配管43は、ガス冷却器23のガス出口と、ドレイン分離器24を介して接続しており、CO変成器22で生成され、第1給水予熱器13及びガス冷却器23で除熱され、ドレイン分離器24で水分が除去された変成ガスが、原ガス配管43に供給される。本実施形態では、補圧ポンプ42は、真空ポンプを転用しているが、別のガス圧縮機を用いても良い。
各吸着槽40の中には、原ガス配管43に供給される変成ガス中に含まれる、CO、CO、CH等の水素以外のガスを吸着する吸着剤が充填されている。本実施形態では、当該吸着剤として、CO、CH等を物理的に吸着するゼオライト等の物理吸着剤に加えて、COを化学的に吸着する化学吸着剤を使用している。当該化学吸着剤としては、例えば、神戸製鋼所等が開発した、多孔質アルミナ担体に酸化銅を担持した化学吸着剤がある。化学吸着剤が、物理吸着剤と比較してCOに対する吸着能力が高いため、吸着剤の占める容積を低減できるため、オフガス量が少なくなって水素回収率を向上できる。また、オフガス量が減少することで、オフガスに起因する熱損失が低減される。
次に、図5及び図6を参照して、3槽の吸着槽40の内の1槽が吸着処理に供される1サイクル中の運転制御について説明する。1サイクルは、第1〜第4工程の4工程で構成される。図5では、第1〜第4工程における開閉弁の開閉状態が模式的に示されている。図5中、白抜き表示は開状態で、黒塗り表示は閉状態を表している。また、上半分が白抜き、下半分が黒塗り表示は、第3工程で開状態、第4工程で閉状態であることを示し、上半分が黒塗り、下半分が白抜き表示は、第3工程で閉状態、第4工程で開状態であることを示している。
以下では、3槽の吸着槽40の内の1槽目が吸着処理に供され、2層目が前サイクルで吸着処理に供され、3層目は次サイクルで吸着処理に供される場合の現サイクルでの制御について説明する。
先ず、図5に示すように、第1〜第4工程を通して、1層目の吸着槽40の入口と原ガス配管43の間の開閉弁と、1層目の吸着槽40の出口と製品水素ガス配管45の間の開閉弁が開状態となり、1層目の吸着槽40が高圧状態に維持されて吸着処理に供され、1層目の吸着槽40で水素以外のガスが吸着除去され生成された製品水素ガスが、製品水素ガス配管45に送出される。
第1工程で、図5に示すように、2層目と3層目の吸着槽40の槽内圧を均等化するために、当該2つの吸着槽40の入口間の開閉弁と出口間の開閉弁を夫々開いて、2層目と3層目の吸着槽40間を連通させ、3槽目の吸着槽40内を昇圧し、2槽目の吸着槽40内を減圧する(均圧処理)。
第2工程で、図5に示すように、2層目と3層目の吸着槽40の入口間の開閉弁と出口間の開閉弁を閉じ、2層目の吸着槽40の入口と捕圧ポンプ40の入口の間の開閉弁と、3層目の吸着槽40の入口と捕圧ポンプ40の出口の間の開閉弁を夫々開いて、2層目と3層目の吸着槽40間を、捕圧ポンプ40を介して連通させ、2槽目の吸着槽40内の残留ガスを捕圧ポンプ40で圧縮して3槽目の吸着槽40内に送出し、3槽目の吸着槽40内を更に昇圧し、2槽目の吸着槽40内を更に減圧する(補圧処理)。
第3工程で、3層目の吸着槽40の入口と捕圧ポンプ40の出口の間の開閉弁を閉じて、3層目の吸着槽40の出口と加圧水素ガス配管46の間の開閉弁と、2層目の吸着槽40の入口と真空ポンプ41の入口の間の開閉弁と、真空ポンプ41の出口とオフガス配管44の間の開閉弁を夫々開いて、製品水素ガスの一部を加圧した加圧水素を加圧水素ガス配管46から3層目の吸着槽40内に送入して加圧し、次サイクルの吸着処理に備え、2層目の吸着槽40から真空ポンプ41により真空脱着したオフガス(水素以外のガス)を、オフガス配管44に送出して、燃料ガス貯槽に回収する。
第4工程で、3層目の吸着槽40の出口と加圧水素ガス配管46の間の開閉弁を閉じて、3層目の吸着槽40に対する水素加圧を停止し、第3工程に引き続き、2層目の吸着槽40の入口と真空ポンプ41の入口の間の開閉弁と、真空ポンプ41の出口とオフガス配管44の間の開閉弁を夫々開いた状態とし、2層目の吸着槽40の出口と加圧水素ガス配管46の間の開閉弁を開き、2層目の吸着槽40に対して、製品水素ガスの一部を用いて、吸着剤の洗浄と残留ガスのパージ処理を行う。
以上の第1〜第4工程の1サイクル中の各制御を、吸着処理に供される1層の吸着槽40を循環的に変更しながら全サイクルが完了する。本実施形態では、第2工程の補圧処理と第3工程の真空脱着処理を経てパージを行うことで、従来のPSA水素分離において脱着及びパージに使用されていた水素量を大幅に削減でき、水素回収率の向上が図れる。
尚、第1工程の均圧処理用に、各吸着槽40の入口側と出口側の両方に均圧弁(開閉弁)を設けている。これは、均圧時間を短縮するとともに、急激なガス流に対し、吸着槽40内の状態の変化を防止するためであるが、均圧弁を各吸着槽40の入口側と出口側の一方側にのみ設けても、均圧処理は実施可能である。
次に、図1を参照して、水蒸気改質システム1を用いた製品水素が製造されるまでのプロセスを説明する。ここで、原料ガスとして、メタンを主成分とする都市ガス(13Aガス)の使用を想定する。
原料ガスは、製品水素ガスから分流された脱硫用水素ガスが混入され、原料圧縮機11で、約0.9MPaに圧縮された後、CO変成器22の外周にある脱硫器12に入る。ここで、CO変成器22からの熱伝導により加熱された超高次脱硫触媒により吸着脱硫される。脱硫された原料ガスは、CO変成器22内の第1水蒸気発生器15で発生した水蒸気と、第2水蒸気発生器16で発生した水蒸気と混合され、改質炉17内の改質管18に入り水蒸気改質される。改質管18内の外側流路30の入口付近の原料ガス温度は、約200〜250℃で、外側流路30を通過して水蒸気改質された改質ガスの改質管18の下端部での温度は、約820〜870℃で、内側流路31を除熱されながら通過した後の改質管18の出口での改質ガス温度は、約400〜450℃となってCO変成器22に入る。CO変成器22に入った改質ガスは、発熱反応のCO変成反応が行われるが、変成触媒中に形成された第1水蒸気発生器15のコイル配管との間の熱交換によって冷却され、最終温度が約200℃となって、十分に変成された変成ガスになる。
また、CO変成反応中の被処理ガスはCO変成器22の外壁を通じて外槽部の脱硫触媒を加熱しながら除熱される。CO変成器22を出た変成ガスは第1給水予熱器13に入り高度に熱回収される。熱回収された変成ガスはガス冷却器23に入り、後段のドレイン分離器24で、ドレインが分離除去された後、PSA水素分離装置25に入り、製品水素ガスとオフガスに分離される。このオフガスは、原料ガスと同じ13A都市ガスの燃料ガスと混合されてバーナ19の燃料となり、燃焼用空気によって燃焼され、改質炉17内において改質管18を加熱する。燃焼排ガスは、その廃熱により第2水蒸気発生器16で水蒸気を発生させ、更に、燃焼用空気と燃料ガスと夫々熱交換し、約100℃となって煙突から排出される。
次に、図7を参照して、本実施形態に係る水蒸気改質システム1の運転成績をシミュレーションにて予想した結果を説明する。
各ケース#1〜#8とも、改質炉の負荷がほぼ同じとなる条件で、原料消費量とS/Cを変更し、熱発生に対する全放熱損失の割合を6%(装置外表面積当たり、約500W/m)、燃焼空気比を1.05として、シミュレーションによって運転成績を求めた。尚、図7中の改質ガス組成比は、ドライ表示である。また、エネルギ効率の計算では、図8に示すシミュレーションも含め、電力の原単位を9MJ/kWh(発電効率40%HHV)とした。
その結果、全てのケースにおいて目標である水素ガス化効率90%を達成している。図7において、原料ガスが13A都市ガスのケース#1〜#3の比較では、S/Cに対する原料消費量と燃料消費量の合計当たりの水素ガス製造量、水素ガス化効率、エネルギ効率の全てにおいて、S/Cが小さいほど優れた値を示しているが、S/Cが1.8以下では殆ど差がなく、1.7以下になると、オフガス発生量が過剰になって、全ての成績が低下することになる。また、S/Cが小さくなると、改質ガス中のCO濃度が上昇する傾向が見られる。
ケース#5は、他のケース及び上記実施形態とは異なり、CO吸着剤に化学吸着剤ではなく、従来のゼオライトを用いた。ケース#5の水素回収率は、82.97%と低いが、水素ガス化効率は90.69%と90%以上を達成している。しかし,水素ガス製造量はケース#4と比較して約91%に低下している。
原料ガスがブタンのケース#6〜#8でも、水素ガス化効率及び水素製造量に対するS/Cの影響は、ケース#1〜#4と同様の傾向を示しているが、S/Cの最適値は、原料ガスが13A都市ガスの場合よりも若干高くなる。
尚、図7において、原料ガスが13A都市ガスの場合、水素ガス化効率に対するエネルギ効率の差は大きいが、改質に必要な圧力まで原料圧縮機で圧縮する動力に対し、原料ガスがブタンの場合は、ポンプで昇圧するため動力が小さく、この部分を除外すれば、水素ガス化効率とエネルギ効率の差は殆ど無いと言える。
次に、図8及び図9を参照して、本実施形態に係る水蒸気改質システム1、及び、既存の製品化されている水蒸気改質システムの運転成績をシミュレーションにて予想し対比した結果を説明する。図8は、本発明に係る水蒸気改質システムの条件別の予想運転成績と既存の製品化されている水蒸気改質システムの予想運転成績を比較した一覧表であり、図9は、図8に示す条件別の予想運転成績における放熱損失、P流体冷却損失、燃焼排ガス損失、及び、水素ガス化効率の構成比率を示す棒グラフである。
各ケース#11〜#19とも、改質炉の負荷がほぼ同じとなる条件で、原料消費量とS/Cを変更し、熱発生に対する全放熱損失の割合を6%(ケース#11〜#13)、20%(ケース#14〜#18)、22.45%(ケース#19)とし、燃焼空気比を1.05(ケース#11〜#15)、1.20(ケース#16〜#19)として、シミュレーションによって運転成績を求めた。尚、図8中の変成ガス組成比は、ウェット表示である。
ケース#14〜#18では、高温機器を、上記実施形態で示したように円筒状の収容空間内にコンパクトに収容せず、図10に例示したように、個々に箱型の筐体内に設置された場合を想定し、熱発生に対する全放熱損失の割合を20%に増加している。ケース#19は、既存の水素製造能力100mN/hの水素製造装置の仕様を参考にしたものである。
ケース#11〜#13は、図7に示すケース#1〜#4と同様に、水素ガス化効率90%を概ね達成している。ケース#13では、S/Cが2.4と、ケース#1〜#4のS/Cの0.7〜2.2より大きいため、水素ガス化効率は89.53%と僅かに90%を下回っているが、小数点以下を四捨五入すると90%となる。従って、S/Cを1.7以上2.4以下、好ましくは、1.8以上2.3以下に設定できるのは好ましい。S/Cを調整する際には、原料ガス及び水蒸気の供給量を同時に制御する、或いは、原料ガスの供給量を固定し水蒸気の供給量を制御する、或いは、水蒸気量供給量を固定し、原料ガスの供給量を制御することに行う。
ケース#13と#14を対比すると、熱発生に対する全放熱損失の割合を6%から20%に悪化させると、水素ガス化効率89.53%から84.68%へと、約5%低下する。しかし、ケース#19の既存の水蒸気改質システムの水素ガス化効率68.25%と比べると、約16%高い。また、ケース#14〜#18を比較すると、熱発生に対する全放熱損失の割合が20%では、燃焼条件等を色々変化させても、水素ガス化効率が85%以上にならないことが分かる、しかし、S/Cを2.4に設定できれば、85%以上ではないが、80%を超える水素ガス化効率は実現できることが分かる。以上より、熱発生に対する全放熱損失の割合を6%となるように、熱損失を低減し、S/Cを1.7以上2.4以下、好ましくは、1.8以上2.3以下に設定することで、水素ガス化効率90%を達成できることが分かる。
以下に、本実施形態に係る水蒸気改質システム1の他の実施態様につき説明する。
〈1〉上記実施形態では、CO変成器22で生成された変成ガスに対して、水素以外のガスを除去して、水素を分離するために、PSA水素分離装置25を使用したが、PSA水素分離装置25に代えて、例えば、COを選択酸化除去するCO選択酸化除去器を備え、COを膜分離法等で分離除去するようにしても良い。また、PSA水素分離装置25の前段に、CO選択酸化除去器やCO膜分離装置等を設けることで、PSA水素分離装置25の規模を縮小することができる。
〈2〉上記実施形態では、PSA水素分離装置25として、3槽式のPSA水素分離装置を用いて、補圧処理を行う場合を想定したが、当該補圧処理に代えて、例えば、4層式のPSA水素分離装置を用いて、均圧処理を2回行うようにしても良い。また、PSA水素分離装置25は、3槽式または4槽式に限定されるものではなく、また、運転制御の方式も、上記実施形態の制御方法に限定されるものではない。
〈3〉上記実施形態では、第1水蒸気発生器15と第2水蒸気発生器16を並列的に設けたが、例えば、CO変成器22と脱硫器12の間の熱交換量を調整すること、或いは、第2給水予熱器14を通過した給水を第1水蒸気発生器15に供給すること等で、第1水蒸気発生器15の水蒸気発生量を、CO変成反応の温度制御とともに適正化できる場合では、必ずしも第2水蒸気発生器16を設けなくても良い。
〈4〉上記実施形態では、改質炉17から排出される燃焼排ガスの廃熱を回収するために、第2給水予熱器14、第1水蒸気発生器15、ガス予熱器20、空気予熱器21を、改質炉17の断熱構造体に近接して形成したが、当該廃熱回収機器の具体的な構成例は、図4に例示した構成に限定されるものではない。また、上記実施形態では、第1給水予熱器13を通過した給水を第2給水予熱器14に供給する構成としたが、第1給水予熱器13を通過した給水を第1水蒸気発生器15にのみ供給し、第2給水予熱器14には、第1給水予熱器13に供給するのと同じ温度の給水を供給する構成としても良い。
〈5〉上記実施形態では、改質炉17の上面視形状(外形)を、図2(A)に示すような円形の外周部の一部を切り欠いた形状とし、改質炉17の内部空間の上面視形状が、略“C”形としたが、改質炉17の外形及び内部空間の上面視形状は、図2に例示したものに限定されるものではない。例えば、改質炉17の上面視形状(外形)を、完全なドーナツ形状として、改質炉17の内部空間を環状に形成しても良い、この場合、脱硫器12、CO変成器22、及び、第1水蒸気発生器15等を収容する余剰スペースを、収容空間10の中心に設け、その全周を、改質炉17が囲む構成としても良い。また、改質管18の本数も、図1に例示した5本に限定されるものではなく、改質炉17の内部空間の形状及び大きさに応じて適宜変更可能である。また、収容空間10の上面視形状も円形に限定されるものではなく、例えば、楕円形、角が丸くなった矩形等でも良い。また、改質炉17の上面視の外形も、収容空間10の上面視形状に合わせて変形させても良い。
また、改質管17の形状及び寸法も、2重管構造である限りにおいて、上記実施形態で説明した内容に限定されるものではない。例えば、逆ボトル型ではなく、外管26と内管27の何れも、または、何れか一方が、中央部分で拡径しない直管であっても良い、例えば、外管26と内管27がともに直管であっても、外側流路30内に伝導する単位伝熱面積当たりの伝熱量(熱流束)は、上側ほど少なくなり、外側流路30の上端部分では、被処理ガスの温度上昇が緩やかなものになるという効果は奏し得る。更に、改質管17の外管26と内管27の端部の遮閉構造及び形状も、上記実施形態で説明した内容に限定されるものではない。
また、上記実施形態では、改質管18の上側に入口管32と出口管33を設けた構成としたが、改質管18の上下を反転して、入口管32と出口管33を改質管18の下側に配して、改質管18から入った原料ガスと水蒸気の混合ガスが、外部流路30を上向きに通過するようにしても良い。但し、この場合、バーナ19は、炉壁の下端部や改質炉17内の炉底部ではなく、炉壁の上端部や改質炉17内の炉頂部に設置する。
〈6〉上記実施形態では、脱硫器12とCO変成器22は、同心円筒容器の外槽部に脱硫器12を形成し、内槽部にCO変成器22を形成したが、内外を反転させて、内槽部に脱硫器12を形成し、外槽部にCO変成器22を形成しても良い。更に、原料ガス中に硫黄化合物が含まれない場合は、必ずしも脱硫器12を設けなくても良い、しかし、脱硫器12の有無に拘わらず、原料ガス中に少量の水素を添加して、カーボン発生を抑制するのが好ましい。
〈7〉次に、本実施形態に係る水蒸気改質システム1を備えた発電システムについて簡単に説明する。本発電システムは、本実施形態に係る水蒸気改質システム1と、水素製造システム1が生成する水素を消費して発電する発電装置を備えて構成され、水蒸気改質システム1の水素ガス化効率が90%以上の場合を想定する。
例えば、発電装置として、近年発電効率が50%以上に向上した固体高分子形燃料電池(PEFC)等を採用することで、発電システム全体として、極めて高い発電効率が得られる。例えば、発電装置の発電効率が50%と仮定し、水素製造システムの水素ガス化効率が90%として直交変換効率や自家消費電力を考慮すると、その送電端効率(HHV)は44%程度になり、天然ガスのガスタービンコンバインドサイクル(GTCC)発電に匹敵する発電効率となる。
更に、本発電システムは、燃料電池自動車(FCV)等の水素を燃料とする車両用の水素供給基地(サテライト水素供給基地)にも、好適に採用し得る。例えば、発電装置が、上記水素供給基地内に設けられた、電気自動車に電力を供給する電力供給設備を構成すると、発電装置の発電電力を、電気自動車に向けに供給することで、高い稼働率が実現できる。また、当該発電電力は、水素の圧縮電力にも利用でき、外販も可能である。
本発明は、燃料電池や金属処理の用に供される水素を、炭化水素系ガスを改質することで製造する水蒸気改質システム、及び、当該水蒸気改質システムを備えて構成される発電システムに利用可能であり、特に、燃料電池自動車(FCV)用のサテライト水素供給基地に有用である。
1: 水蒸気改質システム
10: 収容空間
11: 原料圧縮機
12: 脱硫器
13: 第1給水予熱器
14: 第2給水予熱器
15: 第1水蒸気発生器
16: 第2水蒸気発生器
17: 改質炉
18: 改質管
19: バーナ
20: ガス予熱器
21: 空気予熱器
22: CO変成器
23: ガス冷却器
24: ドレイン分離器
25: PSA水素分離装置
26: 外管
27: 内管
28: 蓋部材
29: 蓋部材
30: 外側流路
31: 内側流路
32: 入口管
33: 出口管
34: 下部空間
35: 蓋部材
36: 入口配管
37: 出口配管
38: 燃焼用空気ヘッダ
39: 煙突
40: 吸着槽
41: 真空ポンプ
42: 補圧ポンプ
43: 原ガス配管
44: オフガス配管
45: 製品水素ガス配管
46: 加圧水素ガス配管
100: 従来の水素製造システム
101: 原料圧縮機
102: 脱硫器
103: 給水予熱器
104: 廃熱回収ボイラ
105: 改質炉
106: 改質管
107: 原料予熱器
108: 過熱器
109: バーナ
110: 空気予熱器
111: CO変成器
112: ガス冷却器
113: PSA水素分離装置

Claims (13)

  1. 炭化水素を含む原料ガスを水蒸気と反応させて、水素と一酸化炭素を少なくとも含む改質ガスを生成する複数の改質管を、断熱構造体で囲まれた筒状の改質炉内に夫々の軸方向を互いに平行にして並列に連結配置してなる改質器と、
    前記改質器に供給する水蒸気を発生する蒸気発生器と、
    前記改質ガスに含まれる一酸化炭素の少なくとも一部を水蒸気と反応させて二酸化炭素に変成させ、前記改質ガスより含有一酸化炭素濃度の低下した変成ガスを生成する変成器と、
    燃料ガスを燃焼して前記改質炉内に熱供給を行う燃焼器と、を備えてなり、
    前記改質管の夫々が、
    両端が閉じられた外管と、前記外管内に収容され一端が閉じ他端が開口した内管を同軸状に備え、且つ、
    前記外管の一端側に入口を備え、前記内管の一端側に出口を備え、且つ、
    前記外管と前記内管の間に形成された外側流路と前記内管内に形成された内側流路が、前記外管内の他端側において連通しており、且つ、
    少なくとも前記外側流路に改質触媒が充填されて構成され、
    前記燃焼器が、前記改質炉内または前記改質炉の炉壁部の前記外管の他端側に設けられ、
    前記改質器と筒状の前記変成器が、互いに隣接して、前記複数の改質管と筒状の前記変成器の夫々の軸方向を互いに平行にして、筒状の1つの収容空間内に設置されていることを特徴とする水蒸気改質システム。
  2. 前記改質管の軸心に垂直な平面における前記外管及び前記外側流路の各断面積が、軸心方向の中央部分より前記外管及び前記内管の前記一端側の方が当該中央部分の前記他端側の方より大きいことを特徴とする請求項1に記載の水蒸気改質システム。
  3. 前記改質器に供給される前記原料ガス中の炭素量に対する前記蒸気発生器から前記改質器に供給される水蒸気量のモル比が、1.7以上2.4以下となるように、前記改質器に供給される前記炭素量及び前記水蒸気量が調整されていることを特徴とする請求項1または2に記載の水蒸気改質システム。
  4. 内槽部の外周を外槽部が取り囲む同心円筒容器を備え、
    前記原料ガス中に含まれる硫黄成分を除去する脱硫器と前記変成器とが、前記外槽部と前記内槽部の何れか一方と他方に形成され、互いに熱交換可能に構成され、
    前記改質器と前記同心円筒容器が、前記収容空間内に、互いに隣接して、前記複数の改質管と前記同心円筒容器の夫々の軸方向を互いに平行にして、設置されていることを特徴とする請求項1〜3の何れか1項に記載の水蒸気改質システム。
  5. 前記変成器内に、前記蒸気発生器の少なくとも一部として、前記変成器の変成反応で発生した熱を利用して前記改質器に供給する水蒸気を発生する第1蒸気発生器を備えることを特徴とする請求項1〜4の何れか1項に記載の水蒸気改質システム。
  6. 前記改質炉内で発生した燃焼排ガスを前記改質炉外に排気する排気路の途中に、前記蒸気発生器の少なくとも一部として、前記燃焼排ガスの廃熱を利用して前記改質器に供給する水蒸気を発生する第2蒸気発生器を備え、
    前記第2蒸気発生器が、前記収容空間内に納まるように、前記改質炉の前記炉壁部の側面に沿って形成されていることを特徴とする請求項1〜5の何れか1項に記載の水蒸気改質システム。
  7. 前記改質炉の前記断熱構造体の外側面に接して鋼板製外板が設けられ、
    前記鋼板製外板に熱伝導可能に接して細管コイルが設けられ、
    前記鋼板製外板と前記細管コイルにより、前記第2蒸気発生器に供給する水を、前記改質炉の前記断熱構造体から前記鋼板製外板に伝達された熱を利用して予熱する給水予熱器が形成されていることを特徴とする請求項1〜6の何れか1項に記載の水蒸気改質システム。
  8. 前記改質炉内で発生した燃焼排ガスを前記改質炉外に排気する排気路の途中に、前記燃焼排ガスの廃熱を利用して、前記燃焼器に供給する燃料ガス及び燃焼空気を予熱するガス予熱器と空気予熱器を備え、
    前記ガス予熱器と前記空気予熱器が、前記収容空間内に納まるように、前記改質炉の前記炉壁部の側面に沿って形成されていることを特徴とする請求項1〜7の何れか1項に記載の水蒸気改質システム。
  9. 前記変成ガス中に含まれる水素以外のガスを吸着除去し、前記変成ガスより含有水素濃度の上昇した製品水素を生成するPSA分離装置を、前記収容空間外に備えることを特徴とする請求項1〜8の何れか1項に記載の水蒸気改質システム。
  10. 前記PSA分離装置が備える複数の吸着槽の夫々が、前記変成ガス中に含まれる一酸化炭素を化学的に吸着する化学吸着剤を備えることを特徴とする請求項9に記載の水蒸気改質システム。
  11. 前記PSA分離装置が、3槽の吸着槽と真空ポンプと補圧ポンプを備え、
    前記真空ポンプと前記補圧ポンプが、同じ真空ポンプを兼用して構成されるか、或いは、個別のポンプで夫々構成され、
    前記3槽の吸着槽の内の第1槽が吸着処理に供される1サイクルが4工程で構成され、
    前記PSA分離装置が、前記1サイクルの間、
    第1工程で、前記3槽の吸着槽の内の第2槽と第3槽の槽内圧を均等化するために、前記第2及び第3槽の槽内間を連通させ、前記第2槽を減圧し、前記第3槽を昇圧し、
    第2工程で、前記第2及び第3槽の槽内間を、前記捕圧ポンプを介して連通させ、前記第2槽を更に減圧し、前記第3槽を更に昇圧し、
    第3工程で、前記第3槽を、前記製品水素の一部の水素を用いて加圧し、前記第2槽内に吸着された前記水素以外のガスを、前記真空ポンプを作動させて真空脱着してオフガスとして排出し、
    第4工程で、前記第3槽に対する加圧を停止し、前記第2槽に対して、前記製品水素の一部の水素を用いて、吸着剤の洗浄と残留ガスのパージ処理を行うように構成されていることを特徴とする請求項9または10に記載の水蒸気改質システム。
  12. 請求項1〜11の何れか1項に記載の水蒸気改質システムを備える水素製造システムと、前記水素製造システムが生成する水素を消費して発電する発電装置を備え、
    前記水素製造システムの水素ガス化効率が90%以上であることを特徴とする発電システム。
  13. 前記水素製造システムが、水素を燃料とする車両用の水素供給基地における水素供給設備を構成し、
    前記発電装置が、前記水素供給基地内に設けられた、電気自動車に電力を供給する電力供給設備を構成することを特徴とする請求項12に記載の発電システム。
JP2017512412A 2016-02-01 2016-12-15 水蒸気改質システム及び発電システム Active JP6125140B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016017175 2016-02-01
JP2016017175 2016-02-01
PCT/JP2016/087371 WO2017134940A1 (ja) 2016-02-01 2016-12-15 水蒸気改質システム及び発電システム

Publications (2)

Publication Number Publication Date
JP6125140B1 JP6125140B1 (ja) 2017-05-10
JPWO2017134940A1 true JPWO2017134940A1 (ja) 2018-02-08

Family

ID=58704711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017512412A Active JP6125140B1 (ja) 2016-02-01 2016-12-15 水蒸気改質システム及び発電システム

Country Status (1)

Country Link
JP (1) JP6125140B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195942B2 (ja) * 2019-01-15 2022-12-26 東京瓦斯株式会社 水素製造システム、水素製造装置制御プログラム、及び、水素製造装置の洗浄方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10196651B3 (de) * 2000-09-20 2015-04-02 Kabushiki Kaisha Toshiba Brennstoff-Reformierungsanlage für eine Polymerelektrolytmembran-Brennstoffzelle
JP2004075435A (ja) * 2002-08-13 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 燃料改質装置
JP3706611B2 (ja) * 2002-11-21 2005-10-12 三洋電機株式会社 燃料電池用水素発生装置
JP3861077B2 (ja) * 2003-06-27 2006-12-20 三菱重工業株式会社 燃料改質装置
JP4754242B2 (ja) * 2005-03-11 2011-08-24 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システム

Also Published As

Publication number Publication date
JP6125140B1 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5693854B2 (ja) 固体高分子型燃料電池の燃料改質装置
JP5507119B2 (ja) 燃料電池システム
US20020085970A1 (en) Shell and tube reactor
JP4504016B2 (ja) 低パワーレンジにおいてガス状炭化水素から水素を生成するための高効率かつコンパクトなリフォーマ・ユニット
CN111344249B (zh) 氢产生装置
JP2009078954A (ja) 改質装置
WO2012164816A1 (ja) 水素生成装置及び燃料電池システム
JP5165832B2 (ja) 水素発生装置および方法
JP2008535766A (ja) 熱交換器用の一体型かつ円筒状の水蒸気改質装置
US20120231359A1 (en) Fuel cell system
JP5468713B1 (ja) 水素生成装置および燃料電池システム
WO2017134940A1 (ja) 水蒸気改質システム及び発電システム
JP2006206383A (ja) 炭化水素系ガスの改質器
JP6125140B1 (ja) 水蒸気改質システム及び発電システム
JP5272183B2 (ja) 燃料電池用改質装置
US20050188616A1 (en) Fuel processing treatment system and fuel processing systems containing the same
JP5618451B2 (ja) 燃料電池発電システムの液体燃料処理装置
JP5534899B2 (ja) 水素製造装置及び燃料電池システム
KR101335504B1 (ko) 단일 물 배출 포트가 구비되는 연료전지 장치
JP5948605B2 (ja) 水素生成装置
JP5938580B2 (ja) 水素生成装置
JP2006096623A (ja) 加熱脱硫器一体型一次改質器
JP2004075440A (ja) 水素製造装置
JP2004277186A (ja) 水素製造装置における熱回収システム
WO2011081092A1 (ja) 改質装置、改質ユニットおよび燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170307

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6125140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250