JPWO2016166895A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JPWO2016166895A1
JPWO2016166895A1 JP2017512177A JP2017512177A JPWO2016166895A1 JP WO2016166895 A1 JPWO2016166895 A1 JP WO2016166895A1 JP 2017512177 A JP2017512177 A JP 2017512177A JP 2017512177 A JP2017512177 A JP 2017512177A JP WO2016166895 A1 JPWO2016166895 A1 JP WO2016166895A1
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
unit
heat exchanger
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017512177A
Other languages
English (en)
Other versions
JP6479165B2 (ja
Inventor
和明 光嶋
和明 光嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016166895A1 publication Critical patent/JPWO2016166895A1/ja
Application granted granted Critical
Publication of JP6479165B2 publication Critical patent/JP6479165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機1は、冷媒回路2と、送風機8と、温度検出部11と、制御部20と、を備え、第1の熱交換器5は、放熱フィン15と、放熱フィン15に挿入され、冷媒が内部に流通する主管13と、放熱フィン15から逸れた位置において主管13をバイパスするように設けられ、冷媒が内部に流通するバイパス管14と、主管13に流通する冷媒の一部をバイパス管14に流通させる流路切替部12と、を有し、制御部20は、温度検出部11で検出された温度に基づいて、送風機8の回転数を変更する変更手段21と、温度検出部11で検出された温度に基づいて、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12を調整する調整手段22と、を有する。

Description

本発明は、送風機の動作を制御する制御部を備える空気調和機に関する。
従来、ヒートポンプエアコンといった空気調和機は、サーバールーム等で使用される場合がある。このとき、サーバールームは常時冷却される必要があるため、室外空気の温度が低くても、サーバールーム内の熱を除去する冷房運転が実行されることが多々ある。室外空気の温度が例えば−10℃といった極低外気中に冷房運転が実行されると、圧縮機から吐出される高温冷媒の温度と室外空気の温度との差が極めて大きくなる。このため、室外熱交換器における冷媒を凝縮する性能が高くなり、室外熱交換器の中に液化した冷媒が滞留する。従って、室内機側に流通する冷媒の量が減り、冷房空調能力が低下してしまう。
この問題を解消することを目的とした技術として、特許文献1には、室外熱交換器で凝縮された冷媒の温度に基づいて、室外ファンの回転数を減少させる空気調和装置が開示されている。特許文献1は、室外ファンの回転数を減少させるだけではなく、更に、室外ファンの回転を停止させ、また、室外ファンを逆回転させる。このように、特許文献1は、室外熱交換器における冷媒と外気との熱交換を促す送風機の回転数を制御する。これによって、室外熱交換器の凝縮性能を低下させて、室外熱交換器に冷媒が滞留することを抑制しようとするものである。
特開平4−359740号公報
しかしながら、特許文献1に開示された空気調和装置は、室外空気の温度が−20℃といった環境下では、室外熱交換器の凝縮性能を低下させる上で不十分である。このため、特許文献1では、液化した冷媒が室外熱交換器に滞留し、室内機側に流通する冷媒の量が不足して、冷房空調能力が効率的でない。
本発明は、上記のような課題を背景としてなされたもので、室外空気の温度が極めて低くても、高効率の冷房空調能力を確保することができる空気調和機を提供するものである。
本発明に係る空気調和機は、圧縮機、第1の熱交換器、膨張部及び第2の熱交換器が配管により接続され、冷媒が流通する冷媒回路と、第1の熱交換器に空気を送風する送風機と、第1の熱交換器に流通する冷媒の温度を検出する温度検出部と、送風機の動作を制御する制御部と、を備え、第1の熱交換器は、放熱フィンと、放熱フィンに挿入され、冷媒が内部に流通する主管と、放熱フィンから逸れた位置において主管をバイパスするように設けられ、冷媒が内部に流通するバイパス管と、主管に流通する冷媒の一部をバイパス管に流通させる流路切替部と、を有し、制御部は、温度検出部で検出された温度に基づいて、送風機の回転数を変更する変更手段と、温度検出部で検出された温度に基づいて、主管に流通する冷媒の一部をバイパス管に流通させるように流路切替部を調整する調整手段と、を有する。
本発明によれば、制御部は、変更手段と調整手段とを有する。このため、変更手段及び調整手段のいずれか一方によって第1の熱交換器の凝縮性能が低下しても、第1の熱交換器の凝縮性能の低下が不足する場合、変更手段及び調整手段の他方によって、第1の熱交換器の凝縮性能を更に低下させることができる。従って、室外空気の温度が極めて低くても、第1の熱交換器の凝縮性能が過剰とならず、液化した冷媒が第1の熱交換器に滞留することが抑制される。このため、空気調和機は、室外空気の温度が極めて低くても、高効率の冷房空調能力を確保することができる。
本発明の実施の形態1に係る空気調和機1を示す回路図である。 本発明の実施の形態1における第1の熱交換器5を示す模式図である。 本発明の実施の形態1における制御部20を示す機能ブロック図である。 本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。 本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。 本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。 本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。
以下、本発明に係る空気調和機1の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機1を示す回路図である。この図1に基づいて、空気調和機1について説明する。図1に示すように、空気調和機1は、冷媒回路2と、送風機8と、温度検出部11と、制御部20とを備えている。更に、空気調和機1は、空気温検出部10と、室内ファン9とを備えている。
冷媒回路2は、圧縮機3、第1の熱交換器5、膨張部6及び第2の熱交換器7が配管により接続され、冷媒が流通するものである。更に、冷媒回路2は、例えば四方切替弁4が配管により接続されている。なお、第1の熱交換器5は、流路切替部12を有している。
圧縮機3は、電動機によって駆動されており、冷媒を圧縮するものである。四方切替弁4は、冷媒回路2における冷媒の流通方向を切り替えるものであり、これにより、冷房運転及び暖房運転のいずれもが実施される。第1の熱交換器5は、例えば室外に設けられ、室外空気と冷媒とを熱交換するものである。
送風機8は、例えば室外に設けられ、第1の熱交換器5に室外空気を送風するものである。なお、送風機8は、モータ8aによって駆動されている。モータ8aは、インバータ等によって回転数が制御されている。膨張部6は、冷媒を膨張及び減圧するものである。第2の熱交換器7は、例えば室内に設けられ、室内空気と冷媒とを熱交換するものである。室内ファン9は、例えば室内に設けられ、第2の熱交換器7に室内空気を送風するものである。
温度検出部11は、第1の熱交換器5に流通する冷媒の温度を検出するものである。温度検出部11は、例えば空気調和機1が冷房運転を行っている場合、冷媒の凝縮温度を検出し、例えば空気調和機1が暖房運転を行っている場合、冷媒の蒸発温度を検出する。なお、温度検出部11は、第1の熱交換器5に流通する冷媒の温度を常時検出する。空気温検出部10は、送風機8によって送風される例えば室外空気の温度を検出するものである。流路切替部12は、第1の熱交換器5における冷媒の流路を切り替えるものである。
制御部20は、空気温検出部10、温度検出部11、モータ8a及び流路切替部12に接続されている。制御部20は、空気温検出部10及び温度検出部11から受信した信号に基づく信号を、モータ8a又は流路切替部12に送信する。
図2は、本発明の実施の形態1における第1の熱交換器5を示す模式図である。次に、第1の熱交換器5について詳細に説明する。図2に示すように、第1の熱交換器5は、放熱フィン15と、主管13と、バイパス管14と、上記の流路切替部12とを有している。
放熱フィン15は例えば複数設けられており、複数の放熱フィン15は、互いに間隔を空けて配置されている。複数の放熱フィン15同士の間には、室外空気が流れている。
主管13は、放熱フィン15に挿入され、冷媒が内部に流通するものである。ここで、主管13の内部に流通する冷媒と、複数の放熱フィン15同士の間に流れる室外空気とが熱交換される領域を、熱交換領域5aと呼称する。主管13は、複数の放熱フィン15を、8回往復しつつ貫いている。即ち、第1の熱交換器5における冷媒のパス数は、16パスである。
バイパス管14は、放熱フィン15から逸れた位置において主管13をバイパスするように設けられ、冷媒が内部に流通するものである。即ち、バイパス管14は、主管13に流通する冷媒の一部が流通し、第1の熱交換器5における冷媒のパス数を減らすために設けられたものである。バイパス管14は、例えば3本に分かれており、夫々、冷媒のパス数を4パス、冷媒のパス数を8パス、冷媒のパス数を12パスにするために設けられている。ここで、冷媒のパス数が16パスの場合を通常回路、冷媒のパス数が12パスの場合を回路A、冷媒のパス数が8パスの場合を回路B、冷媒のパス数が4パスの場合を回路Cと呼称する。
流路切替部12は、主管13に流通する冷媒の一部をバイパス管14に流通させるものである。流路切替部12は、第1の二方弁12aと、第2の二方弁12bと、第3の二方弁12cと、第4の二方弁12dと、第5の二方弁12eと、第6の二方弁12fとから構成されている。第1の二方弁12aは、バイパス管14において、冷媒のパス数が4パス目から5パス目に切り替わる部分に設けられている。第2の二方弁12bは、主管13において、冷媒のパス数が4パス目から5パス目に切り替わる部分に設けられている。
第3の二方弁12cは、バイパス管14において、冷媒のパス数が8パス目から9パス目に切り替わる部分に設けられている。第4の二方弁12dは、主管13において、冷媒のパス数が8パス目から9パス目に切り替わる部分に設けられている。第5の二方弁12eは、バイパス管14において、冷媒のパス数が12パス目から13パス目に切り替わる部分に設けられている。第6の二方弁12fは、主管13において、冷媒のパス数が12パス目から13パス目に切り替わる部分に設けられている。
なお、第1の二方弁12a及び第2の二方弁12bは、1個の三方弁で代用してもよい。また、第3二方弁及び第4の二方弁12dは、1個の三方弁で代用してもよい。更に、第5の二方弁12e及び第6の二方弁12fは、1個の三方弁で代用してもよい。
通常回路は、第1の二方弁12aが閉、第2の二方弁12bが開、第3の二方弁12cが閉、第4の二方弁12dが開、第5の二方弁12eが閉、第6の二方弁12fが開のときに冷媒が流通する回路である。回路Aは、第1の二方弁12aが閉、第2の二方弁12bが開、第3の二方弁12cが閉、第4の二方弁12dが開、第5の二方弁12eが開、第6の二方弁12fが閉のときに冷媒が流通する回路である。
ここで、冷媒のパス数が13パス目から16パス目において、主管13は、冷房時における冷媒の出口側に直結されている。第1の熱交換器5が凝縮器として作用する場合、第1の熱交換器5の下流側、即ち16パス目側の方の出口側は低圧となる。このため、出口側から第1の熱交換器5の内部に冷媒が逆流しない。従って、主管13において、冷媒の出口側には、二方弁等が設けられていない。
回路Bは、第1の二方弁12aが閉、第2の二方弁12bが開、第3の二方弁12cが開、第4の二方弁12dが閉、第5の二方弁12eが閉のときに冷媒が流通する回路である。ここで、第3の二方弁12cからバイパス回路に流入した冷媒が、再び主管13に戻ることを抑制するため、第5の二方弁12eは閉とする。なお、第1の熱交換器5が凝縮器として作用する場合、第1の熱交換器5の下流側、即ち16パス目側の方の出口側は低圧となる。このため、出口側から第1の熱交換器5の内部に冷媒が逆流しない。このため、第6の二方弁12fは開でも閉でもよい。
回路Cは、第1の二方弁12aが開、第2の二方弁12bが閉、第3の二方弁12cが閉、第5の二方弁12eが閉のときに冷媒が流通する回路である。ここで、第1の二方弁12aからバイパス回路に流入した冷媒が、再び主管13に戻ることを抑制するため、第3の二方弁12c及び第5の二方弁12eは閉とする。なお、第1の熱交換器5が凝縮器として作用する場合、第1の熱交換器5の下流側、即ち16パス目側の方の出口側は低圧となる。このため、出口側から第1の熱交換器5の内部に冷媒が逆流しない。このため、第4の二方弁12d及び第6の二方弁12fは開でも閉でもよい。
ここで、温度検出部11は、例えば、主管13のうち、冷媒が流通する経路の中央部に設けられている。また、温度検出部11は、第1の温度検出部11aと第2の温度検出部11bとを有している。更に、温度検出部11は、例えば第3の温度検出部11cと第4の温度検出部11dとを有している。第1の温度検出部11aは、主管13のうち、冷媒が流通する経路の中央部に設けられており、冷媒のパス数が7パス目から8パス目に切り替わる部分に設けられている。即ち、第1の温度検出部11aは、通常回路において、主管13のうち冷媒が流通する経路の中央部に設けられている。
第2の温度検出部11bは、冷媒の一部がバイパス管14に流通する場合において、主管13のうち、冷媒が流通する経路の中央部に設けられており、冷媒のパス数が6パス目から7パス目に切り替わる部分に設けられている。即ち、第2の温度検出部11bは、回路Aにおいて、主管13のうち冷媒が流通する経路の中央部に設けられている。
第3の温度検出部11cは、冷媒の一部がバイパス管14に流通する場合において、主管13のうち、冷媒が流通する経路の中央部に設けられており、冷媒のパス数が3パス目から4パス目に切り替わる部分に設けられている。即ち、第3の温度検出部11cは、回路Bにおいて、主管13のうち冷媒が流通する経路の中央部に設けられている。第4の温度検出部11dは、冷媒の一部がバイパス管14に流通する場合において、主管13のうち、冷媒が流通する経路の中央部に設けられており、冷媒のパス数が3パス目から4パス目に切り替わる部分に設けられている。即ち、第4の温度検出部11dは、回路Cにおいて、主管13のうち冷媒が流通する経路の中央部に設けられている。
図3は、本発明の実施の形態1における制御部20を示す機能ブロック図である。次に、制御部20について説明する。図3に示すように、制御部20は、変更手段21と調整手段22とを有している。更に、制御部20は、例えば切替手段23を有している。
変更手段21は、温度検出部11で検出された温度に基づいて、送風機8の回転数を変更するものである。具体的には、変更手段21は、温度検出部11で検出された温度が目標温度未満の場合、送風機8の回転数を低下させるものである。
ここで、例えば空気調和機1が冷房運転を行っている場合における冷媒の凝縮温度の目標温度について説明する。目標温度は、冷媒回路2に流通する冷媒の単位時間当たりの循環量に基づく温度値である。冷媒の単位時間当たりの循環量は、例えば圧縮機3の回転数に基づいて算出されるものである。凝縮温度の目標温度は、概して、冷媒の単位時間当たりの循環量が多いほど高い。更に、目標温度は、空気温検出部10で検出された温度に基づく温度値であってもよい。この場合、凝縮温度の目標温度は、概して、室外空気の温度が高いほど高い。即ち、凝縮温度の目標温度を縦軸、室外空気の温度を横軸とすると、右上がりのグラフで示される。
調整手段22は、温度検出部11で検出された温度に基づいて、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12を調整するものである。具体的には、調整手段22は、温度検出部11で検出された温度が目標温度未満の場合、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12を調整するものである。
また、調整手段22は、変更手段21で送風機8の回転数が変更された後、温度検出部11で検出された温度に基づいて、流路切替部12を調整するものである。なお、調整手段22は、変更手段21で送風機8の回転数が変更される前に、温度検出部11で検出された温度に基づいて、流路切替部12を調整してもよい。
更に、調整手段22は、変更手段21で送風機8の回転数が下限値に達した後、温度検出部11で検出された温度に基づいて、流路切替部12を調整するものである。なお、送風機8の回転数の下限値は、適宜変更可能であり、送風機8の制御が可能な限界の回転数としてもよいし、零、即ち回転停止としてもよい。
ここで、変更手段21は、調整手段22で流路切替部12が調整された後、送風機8の回転数を初期値に戻すものである。なお、回転数の初期値は、適宜変更可能である。
切替手段23は、流路切替部12が調整された後、変更手段21又は調整手段22で用いられる温度を検出する温度検出部11を、第1の温度検出部11aから第2の温度検出部11bに切り替えるものである。具体的には、切替手段23は、通常回路において第1の温度検出部11aに切り替え、回路Aにおいて第2の温度検出部11bに切り替え、回路Bにおいて第3の温度検出部11cに切り替え、回路Cにおいて第4の温度検出部11dに切り替える。なお、切替手段23は、制御部20と第1の温度検出部11a、第2の温度検出部11b、第3の温度検出部11c及び第4の温度検出部11dとを接続するポート(図示せず)を切り替えるものである。
そして、変更手段21は、調整手段22で流路切替部12が調整された後、切替手段23で切り替えられた第2の温度検出部11bで検出された温度に基づいて、送風機8の回転数を変更する。また、調整手段22は、調整手段22で流路切替部12が調整された後、切替手段23で切り替えられた第2の温度検出部11bで検出された温度に基づいて、流路切替部12を調整する。
次に、空気調和機1の運転状態について説明する。先ず、冷房運転について説明する。冷房運転のとき、四方切替弁4は、冷媒の経路を図1の実線の経路に切り替える。圧縮機3は、冷媒を吸入し、この冷媒を圧縮して高温高圧のガスの状態で吐出する。この吐出された冷媒は、四方切替弁4を通過して、第1の熱交換器5に流入し、第1の熱交換器5は、室外空気との熱交換により、冷媒を凝縮する。凝縮された冷媒は、膨張部6に流入し、膨張部6は、凝縮された冷媒を膨張及び減圧する。そして、減圧された冷媒は、第2の熱交換器7に流入し、第2の熱交換器7は、室内空気との熱交換により、冷媒を蒸発する。このとき、室内空気が冷却されて、室内が冷房される。そして、蒸発されて高温低圧のガスの状態となった冷媒は、四方切替弁4を通過して、圧縮機3に吸入される。
次に、暖房運転について説明する。暖房運転のとき、四方切替弁4は、冷媒の経路を図1の破線の経路に切り替える。圧縮機3は、冷媒を吸入し、この冷媒を圧縮して高温高圧のガスの状態で吐出する。この吐出された冷媒は、四方切替弁4を通過して、第2の熱交換器7に流入し、第2の熱交換器7は、室内空気との熱交換により、冷媒を凝縮する。このとき、室内空気が加熱されて、室内が暖房される。凝縮された冷媒は、膨張部6に流入し、膨張部6は、凝縮された冷媒を膨張及び減圧する。そして、減圧された冷媒は、第1の熱交換器5に流入し、第1の熱交換器5は、室外空気との熱交換により、冷媒を蒸発する。そして、蒸発されて高温低圧のガスの状態となった冷媒は、四方切替弁4を通過して、圧縮機3に吸入される。
図4,図5,図6,図7は、本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。次に、本実施の形態1に係る空気調和機1の動作について説明する。図4〜図7では、冷房運転における制御について示す。制御開始時点では、第1の熱交換器5の冷媒の経路は、通常回路である。即ち、第1の二方弁12aが閉、第2の二方弁12bが開、第3の二方弁12cが閉、第4の二方弁12dが開、第5の二方弁12eが閉、第6の二方弁12fが開である。そして、変更手段21又は調整手段22で用いられる温度検出部11は、通常回路において、主管13のうち冷媒が流通する経路の中央部に設けられた第1の温度検出部11aである。
図4に示すように、先ず、空気温検出部10によって送風機8において送風される室外空気の温度が検出される。また、圧縮機3の回転数に基づいて冷媒の循環量が算出される(ステップST1)。そして、室外空気の温度及び冷媒の循環量によって、凝縮温度の目標温度Aが決定される(ステップST2)。次に、第1の温度検出部11aによって第1の熱交換器5に流通する冷媒の温度Bが検出される(ステップST3)。そして、冷媒の温度Bが目標温度A未満であるか否かが判定される(ステップST4)。冷媒の温度Bが目標温度A以上の場合(ステップST4のNo)、第1の熱交換器5の冷媒の経路は、通常回路のままであり(ステップST8)、第1の温度検出部11aによる冷媒の温度Bの検出が継続される(ステップST3)。
一方、冷媒の温度Bが目標温度A未満の場合(ステップST4のYes)、変更手段21によって送風機8の回転数が低下される(ステップST5)。送風機8の回転数が低下することによって、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Bが上昇する。ここで再び、冷媒の温度Bが目標温度A未満であるか否かが判定される(ステップST6)。冷媒の温度Bが目標温度A以上の場合(ステップST6のNo)、そのときの送風機8の回転数が維持されて、ステップST8に進む。これにより、室外空気の温度が低くても、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Bが目標温度A未満の場合(ステップST6のYes)、送風機8の回転数が下限値であるか否かが判定される(ステップST7)。送風機8の回転数が下限値でない場合(ステップST7のNo)、ステップST8に進む。これに対し、送風機8の回転数が下限値の場合(ステップST7のYes)、調整手段22によって、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整される。具体的には、調整手段22によって第5の二方弁12eが開、第6の二方弁12fが閉に制御される(ステップST9)。そのほかの第1の二方弁12a、第2の二方弁12b、第3の二方弁12c及び第4の二方弁12dは、そのままである。
これにより、第1の熱交換器5において、冷媒のパス数が制限され、冷媒が流通する経路が回路Aになる(ステップST10)。このように、送風機8の回転数が下限値に達しても、なお冷媒の温度Bが目標温度A未満である場合、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整される。これにより、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Bが上昇する。そして、変更手段21によって送風機8の回転数が初期値に戻される(ステップST11)。これにより、冷媒の流量が調整されることによる第1の熱交換器5の凝縮能力の低下が過剰となることが抑制される。
図5に示すように、その後、切替手段23によって、変更手段21又は調整手段22で用いられる温度を検出する温度検出部11が、第1の温度検出部11aから第2の温度検出部11bに切り替えられる(ステップST12)。このように、変更手段21又は調整手段22で用いられる温度検出部11は、回路Aにおいて、主管13のうち冷媒が流通する経路の中央部に設けられた第2の温度検出部11bである。次に、第2の温度検出部11bによって第1の熱交換器5に流通する冷媒の温度Cが検出される(ステップST13)。そして、冷媒の温度Cが目標温度A未満であるか否かが判定される(ステップST14)。冷媒の温度Cが目標温度A以上の場合(ステップST14のNo)、第1の熱交換器5の冷媒の経路は、回路Aのままであり(ステップST18)、第2の温度検出部11bによる冷媒の温度Cの検出が継続される(ステップST13)。
ここで、送風機8の回転数は初期値に戻されている。従って、送風機8の回転数が初期値のままであっても、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整されることによって、室外空気の温度が低い場合に、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Cが目標温度A未満の場合(ステップST14のYes)、変更手段21によって送風機8の回転数が低下される(ステップST15)。送風機8の回転数が低下することによって、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Cが上昇する。ここで再び、冷媒の温度Cが目標温度A未満であるか否かが判定される(ステップST16)。冷媒の温度Cが目標温度A以上の場合(ステップST16のNo)、そのときの送風機8の回転数が維持されて、ステップST18に進む。これにより、室外空気の温度が低くても、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Cが目標温度A未満の場合(ステップST16のYes)、送風機8の回転数が下限値であるか否かが判定される(ステップST17)。送風機8の回転数が下限値でない場合(ステップST17のNo)、ステップST18に進む。これに対し、送風機8の回転数が下限値の場合(ステップST17のYes)、調整手段22によって主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整される。具体的には、調整手段22によって第3の二方弁12cが開、第4の二方弁12dが閉、第5の二方弁12eが閉に制御される(ステップST19)。そのほかの第1の二方弁12a、第2の二方弁12b及び第6の二方弁12fは、そのままである。
これにより、第1の熱交換器5において、冷媒のパス数が制限され、冷媒が流通する経路が回路Bになる(ステップST20)。このように、送風機8の回転数が下限値に達しても、なお冷媒の温度Cが目標温度A未満である場合、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が更に調整される。これにより、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Cが上昇する。そして、変更手段21によって送風機8の回転数が初期値に戻される(ステップST21)。これにより、冷媒の流量が調整されることによる第1の熱交換器5の凝縮能力の低下が過剰となることが抑制される。
図6に示すように、その後、切替手段23によって、変更手段21又は調整手段22で用いられる温度を検出する温度検出部11が、第2の温度検出部11bから第3の温度検出部11cに切り替えられる(ステップST22)。このように、変更手段21又は調整手段22で用いられる温度検出部11は、回路Bにおいて、主管13のうち冷媒が流通する経路の中央部に設けられた第3の温度検出部11cである。次に、第3の温度検出部11cによって第1の熱交換器5に流通する冷媒の温度Dが検出される(ステップST23)。そして、冷媒の温度Dが目標温度A未満であるか否かが判定される(ステップST24)。冷媒の温度Dが目標温度A以上の場合(ステップST24のNo)、第1の熱交換器5の冷媒の経路は、回路Bのままであり(ステップST28)、第3の温度検出部11cによる冷媒の温度Dの検出が継続される(ステップST23)。
ここで、送風機8の回転数は初期値に戻されている。従って、送風機8の回転数が初期値のままであっても、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整されることによって、室外空気の温度が低い場合に、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Dが目標温度A未満の場合(ステップST24のYes)、変更手段21によって送風機8の回転数が低下される(ステップST25)。送風機8の回転数が低下することによって、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Dが上昇する。ここで再び、冷媒の温度Dが目標温度A未満であるか否かが判定される(ステップST26)。冷媒の温度Dが目標温度A以上の場合(ステップST26のNo)、そのときの送風機8の回転数が維持されて、ステップST28に進む。これにより、室外空気の温度が低くても、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Dが目標温度A未満の場合(ステップST26のYes)、送風機8の回転数が下限値であるか否かが判定される(ステップST27)。送風機8の回転数が下限値でない場合(ステップST27のNo)、ステップST28に進む。これに対し、送風機8の回転数が下限値の場合(ステップST27のYes)、調整手段22によって主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整される。具体的には、調整手段22によって第1の二方弁12aが開、第2の二方弁12bが閉、第3の二方弁12cが閉に制御される(ステップST29)。そのほかの第4の二方弁12d、第5の二方弁12e及び第6の二方弁12fは、そのままである。
これにより、第1の熱交換器5において、冷媒のパス数が制限され、冷媒が流通する経路が回路Cになる(ステップST30)。このように、送風機8の回転数が下限値に達しても、なお冷媒の温度Dが目標温度A未満である場合、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が更に調整される。これにより、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Dが上昇する。そして、変更手段21によって送風機8の回転数が初期値に戻される(ステップST31)。これにより、冷媒の流量が調整されることによる第1の熱交換器5の凝縮能力の低下が過剰となることが抑制される。
図7に示すように、その後、切替手段23によって、変更手段21又は調整手段22で用いられる温度を検出する温度検出部11が、第3の温度検出部11cから第4の温度検出部11dに切り替えられる(ステップST32)。このように、変更手段21又は調整手段22で用いられる温度検出部11は、回路Cにおいて、主管13のうち冷媒が流通する経路の中央部に設けられた第4の温度検出部11dである。次に、第4の温度検出部11dによって第1の熱交換器5に流通する冷媒の温度Eが検出される(ステップST33)。そして、冷媒の温度Eが目標温度A未満であるか否かが判定される(ステップST34)。冷媒の温度Eが目標温度A以上の場合(ステップST34のNo)、第1の熱交換器5の冷媒の経路は、回路Cのままであり(ステップST38)、第4の温度検出部11dによる冷媒の温度Eの検出が継続される(ステップST33)。
ここで、送風機8の回転数は初期値に戻されている。従って、送風機8の回転数が初期値のままであっても、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12が調整されることによって、室外空気の温度が低い場合に、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Eが目標温度A未満の場合(ステップST34のYes)、変更手段21によって送風機8の回転数が低下される(ステップST35)。送風機8の回転数が低下することによって、第1の熱交換器5における冷媒と室外空気との熱交換が抑制され、第1の熱交換器5における凝縮性能が低下する。従って、冷媒の温度(凝縮温度)Eが上昇する。ここで再び、冷媒の温度Eが目標温度A未満であるか否かが判定される(ステップST36)。冷媒の温度Eが目標温度A以上の場合(ステップST36のNo)、そのときの送風機8の回転数が維持されて、ステップST38に進む。これにより、室外空気の温度が低くても、液化した冷媒が第1の熱交換器5の内部に滞留せずに、第2の熱交換器7側に十分な量の冷媒を流通させることができる。
一方、冷媒の温度Eが目標温度A未満の場合(ステップST36のYes)、送風機8の回転数が下限値であるか否かが判定される(ステップST37)。送風機8の回転数が下限値でない場合(ステップST37のNo)、ステップST38に進む。これに対し、送風機8の回転数が下限値の場合(ステップST37のYes)、制御が終了する。制御終了後は、能力不足運転となるため、能力の低下度合いによっては、運転を停止する。このように、調整手段22による流路切替部12の調整は、段階的に行われる。これにより、第1の熱交換器5における凝縮性能の低下具合を微調整することができる。
次に、本実施の形態1に係る空気調和機1の作用について説明する。制御部20は、変更手段21と調整手段22とを有する。このため、変更手段21及び調整手段22のいずれか一方によって第1の熱交換器5の凝縮性能が低下しても、第1の熱交換器5の凝縮性能の低下が不足する場合、変更手段21及び調整手段22の他方によって、第1の熱交換器5の凝縮性能を更に低下させることができる。従って、室外空気の温度が極めて低くても、第1の熱交換器5の凝縮性能が過剰とならず、液化した冷媒が第1の熱交換器5に滞留することが抑制される。このため、空気調和機1は、室外空気の温度が極めて低くても、高効率の冷房空調能力を確保することができる。
また、調整手段22は、変更手段21で送風機8の回転数が変更された後、温度検出部11で検出された温度に基づいて、流路切替部12を調整するものである。このため、送風機8の回転数が変更されて、第1の熱交換器5における凝縮性能が変更された後に、更に、第1の熱交換器5における冷媒と空気との熱交換量が変更され、第1の熱交換器5における凝縮性能を変更することができる。
更に、調整手段22は、変更手段21で送風機8の回転数が下限値に達した後、温度検出部11で検出された温度に基づいて、流路切替部12を調整するものである。このため、送風機8の回転数が限界まで低下されて、第1の熱交換器5における凝縮性能が変更された後に、更に、第1の熱交換器5における冷媒と空気との熱交換量が変更され、第1の熱交換器5における凝縮性能を変更することができる。
更にまた、変更手段21は、調整手段22で流路切替部12が調整された後、送風機8の回転数を初期値に戻すものである。これにより、冷媒の流量が調整されることによる第1の熱交換器5の凝縮能力の低下が過剰となることが抑制される。
そして、温度検出部11は、主管13のうち、冷媒が流通する経路の中央部に設けられている。このため、温度検出部11は、第1の熱交換器5において凝縮温度又は蒸発温度を検出する上で、最適な凝縮温度又は蒸発温度を検出することができる。
また、温度検出部11は、主管13のうち、冷媒が流通する経路の中央部に設けられている第1の温度検出部11aと、冷媒の一部がバイパス管14に流通する場合において、主管13のうち、冷媒が流通する経路の中央部に設けられている第2の温度検出部11bと、を有する。このため、冷媒が流通する経路が変更されても、温度検出部11は、常に冷媒が流通する経路の中央部に位置している。従って、温度検出部11は、冷媒が流通する経路が変更されても、第1の熱交換器5において凝縮温度又は蒸発温度を検出する上で、常に最適な凝縮温度又は蒸発温度を検出することができる。
更に、制御部20は、調整手段22で流路切替部12が調整された後、変更手段21又は調整手段22で用いられる温度を検出する温度検出部11を、第1の温度検出部11aから第2の温度検出部11bに切り替える切替手段23を有する。このため、冷媒が流通する経路が変更されても、温度検出部11は、常に冷媒が流通する経路の中央部に位置している。従って、温度検出部11は、冷媒が流通する経路が変更されても、第1の熱交換器5において凝縮温度又は蒸発温度を検出する上で、常に最適な凝縮温度又は蒸発温度を検出することができる。
更にまた、変更手段21は、調整手段22で流路切替部12が調整された後、切替手段23で切り替えられた第2の温度検出部11bで検出された温度に基づいて、送風機8の回転数を変更するものである。このため、変更手段21は、冷媒が流通する経路が変更されても、常に適切な温度に基づいて送風機8の回転数を変更することができる。
そして、調整手段22は、調整手段22で流路切替部12が調整された後、切替手段23で切り替えられた第2の温度検出部11bで検出された温度に基づいて、流路切替部12を調整するものである。このため、調整手段22は、冷媒が流通する経路が変更されても、常に適切な温度に基づいて流路切替部12を調整することができる。
また、変更手段21は、温度検出部11で検出された温度が目標温度未満の場合、送風機8の回転数を低下させるものである。これにより、第1の熱交換器5における冷媒と空気との熱交換が抑制され、第1の熱交換器5における凝縮性能を低下させることができる。
更に、調整手段22は、温度検出部11で検出された温度が目標温度未満の場合、主管13に流通する冷媒の一部をバイパス管14に流通させるように流路切替部12を調整するものである。これにより、第1の熱交換器5における冷媒と空気との熱交換が抑制され、第1の熱交換器5における凝縮性能を低下させることができる。
更にまた、目標温度として、冷媒回路2に流通する冷媒の単位時間当たりの循環量に基づく温度値が用いられる。従って、適切な目標温度を設定することができる。
そして、空気調和機1は、送風機8によって送風される空気の温度を検出する空気温検出部10を備え、目標温度として、空気温検出部10で検出された温度に基づく温度値が用いられる。従って、適切な目標温度を設定することができる。
なお、空気温検出部10は、送風機8によって送風される空気の温度を常時検出するようにしてもよい。これにより、空気温検出部10が例えば室外空気の温度を検出する場合、空気調和機1は、常時変化する室外空気の温度に対応することができる。そして、空気温検出部10で検出された温度が、適宜設定された初期温度から5℃程度変化した場合、圧縮機3及び送風機8を停止し、通常回路、即ち、第1の二方弁12aを閉、第2の二方弁12bを開、第3の二方弁12cを閉、第4の二方弁12dを開、第5の二方弁12eを閉、第6の二方弁12fを開として、空気調和機1を初期化してもよい。そして、空気調和機1を再運転してもよい。これにより、空気調和機1を、室外空気の温度の変化に対応させることができる。
1 空気調和機、2 冷媒回路、3 圧縮機、4 四方切替弁、5 第1の熱交換器、5a 熱交換領域、6 膨張部、7 第2の熱交換器、8 送風機、8a モータ、9 室内ファン、10 空気温検出部、11 温度検出部、11a 第1の温度検出部、11b 第2の温度検出部、11c 第3の温度検出部、11d 第4の温度検出部、12 流路切替部、12a 第1の二方弁、12b 第2の二方弁、12c 第3の二方弁、12d 第4の二方弁、12e 第5の二方弁、12f 第6の二方弁、13 主管、14 バイパス管、15 放熱フィン、20 制御部、21 変更手段、22 調整手段、23 切替手段。
本発明に係る空気調和機は、圧縮機、第1の熱交換器、膨張部及び第2の熱交換器が配管により接続され、冷媒が流通する冷媒回路と、第1の熱交換器に空気を送風する送風機と、第1の熱交換器に流通する冷媒の温度を検出する温度検出部と、送風機の動作を制御する制御部と、を備え、第1の熱交換器は、放熱フィンと、放熱フィンに挿入され、冷媒が内部に流通する主管と、一方が主管の複数の異なる位置に分岐して接続され、他方が主管の出口側に接続され、冷媒が内部に流通するバイパス管と、バイパス管の一方と主管の複数の異なる位置との接続位置にそれぞれ設けられ、主管に流通する冷媒の一部をバイパス管に流通させる流路切替部と、を有し、制御部は、温度検出部で検出された温度に基づいて、送風機の回転数を変更する変更手段と、温度検出部で検出された温度に基づいて、主管に流通する冷媒の一部をバイパス管に流通させるように流路切替部を調整する調整手段と、を有する。

Claims (13)

  1. 圧縮機、第1の熱交換器、膨張部及び第2の熱交換器が配管により接続され、冷媒が流通する冷媒回路と、
    前記第1の熱交換器に空気を送風する送風機と、
    前記第1の熱交換器に流通する前記冷媒の温度を検出する温度検出部と、
    前記送風機の動作を制御する制御部と、を備え、
    前記第1の熱交換器は、
    放熱フィンと、
    前記放熱フィンに挿入され、前記冷媒が内部に流通する主管と、
    前記放熱フィンから逸れた位置において前記主管をバイパスするように設けられ、前記冷媒が内部に流通するバイパス管と、
    前記主管に流通する前記冷媒の一部を前記バイパス管に流通させる流路切替部と、を有し、
    前記制御部は、
    前記温度検出部で検出された温度に基づいて、前記送風機の回転数を変更する変更手段と、
    前記温度検出部で検出された温度に基づいて、前記主管に流通する前記冷媒の一部を前記バイパス管に流通させるように前記流路切替部を調整する調整手段と、
    を有する空気調和機。
  2. 前記調整手段は、
    前記変更手段で前記送風機の回転数が変更された後、前記温度検出部で検出された温度に基づいて、前記流路切替部を調整するものである
    請求項1記載の空気調和機。
  3. 前記調整手段は、
    前記変更手段で前記送風機の回転数が下限値に達した後、前記温度検出部で検出された温度に基づいて、前記流路切替部を調整するものである
    請求項2記載の空気調和機。
  4. 前記変更手段は、
    前記調整手段で前記流路切替部が調整された後、前記送風機の回転数を初期値に戻すものである
    請求項2又は3記載の空気調和機。
  5. 前記温度検出部は、
    前記主管のうち、前記冷媒が流通する経路の中央部に設けられている
    請求項1〜4のいずれか1項に記載の空気調和機。
  6. 前記温度検出部は、
    前記主管のうち、前記冷媒が流通する経路の中央部に設けられている第1の温度検出部と、
    前記冷媒の一部が前記バイパス管に流通する場合において、前記主管のうち、前記冷媒が流通する経路の中央部に設けられている第2の温度検出部と、を有する
    請求項5記載の空気調和機。
  7. 前記制御部は、
    前記調整手段で前記流路切替部が調整された後、前記変更手段又は前記調整手段で用いられる温度を検出する前記温度検出部を、前記第1の温度検出部から前記第2の温度検出部に切り替える切替手段を有する
    請求項6記載の空気調和機。
  8. 前記変更手段は、
    前記調整手段で前記流路切替部が調整された後、前記切替手段で切り替えられた前記第2の温度検出部で検出された温度に基づいて、前記送風機の回転数を変更するものである
    請求項7記載の空気調和機。
  9. 前記調整手段は、
    前記調整手段で前記流路切替部が調整された後、前記切替手段で切り替えられた前記第2の温度検出部で検出された温度に基づいて、前記流路切替部を調整するものである
    請求項7又は8記載の空気調和機。
  10. 前記変更手段は、
    前記温度検出部で検出された温度が目標温度未満の場合、前記送風機の回転数を低下させるものである
    請求項1〜9のいずれか1項に記載の空気調和機。
  11. 前記調整手段は、
    前記温度検出部で検出された温度が目標温度未満の場合、前記主管に流通する前記冷媒の一部を前記バイパス管に流通させるように前記流路切替部を調整するものである
    請求項1〜10のいずれか1項に記載の空気調和機。
  12. 前記目標温度として、前記冷媒回路に流通する前記冷媒の単位時間当たりの循環量に基づく温度値が用いられる
    請求項10又は11記載の空気調和機。
  13. 前記送風機によって送風される空気の温度を検出する空気温検出部を備え、
    前記目標温度として、前記空気温検出部で検出された温度に基づく温度値が用いられる
    請求項12記載の空気調和機。
JP2017512177A 2015-04-17 2015-04-17 空気調和機 Active JP6479165B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061883 WO2016166895A1 (ja) 2015-04-17 2015-04-17 空気調和機

Publications (2)

Publication Number Publication Date
JPWO2016166895A1 true JPWO2016166895A1 (ja) 2017-12-07
JP6479165B2 JP6479165B2 (ja) 2019-03-06

Family

ID=57125780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017512177A Active JP6479165B2 (ja) 2015-04-17 2015-04-17 空気調和機

Country Status (3)

Country Link
JP (1) JP6479165B2 (ja)
CN (1) CN205980183U (ja)
WO (1) WO2016166895A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300266B (zh) * 2017-06-12 2019-10-15 广东美的制冷设备有限公司 空调系统、空调系统的控制方法
JP6966927B2 (ja) * 2017-11-01 2021-11-17 ホシザキ株式会社 温湿度調節庫
KR101996060B1 (ko) * 2017-11-03 2019-07-03 엘지전자 주식회사 공기조화기
CN113108426A (zh) * 2021-04-07 2021-07-13 广东美的暖通设备有限公司 一种空调的室外机控制方法及装置、空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166472U (ja) * 1980-05-14 1981-12-09
JPS61197432U (ja) * 1985-05-29 1986-12-09
JPH04212617A (ja) * 1990-01-30 1992-08-04 Nippondenso Co Ltd 車両用冷房装置
JPH04359740A (ja) * 1991-06-06 1992-12-14 Toshiba Corp 空気調和装置
JPH07127948A (ja) * 1992-11-02 1995-05-19 Nippondenso Co Ltd 冷媒凝縮器
JP2003035459A (ja) * 2001-07-19 2003-02-07 Shin Meiwa Ind Co Ltd 冷凍装置及び冷凍方法
JP2003232554A (ja) * 2002-02-07 2003-08-22 Daikin Ind Ltd 空気調和機
JP2005225329A (ja) * 2004-02-12 2005-08-25 Calsonic Kansei Corp 空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166472U (ja) * 1980-05-14 1981-12-09
JPS61197432U (ja) * 1985-05-29 1986-12-09
JPH04212617A (ja) * 1990-01-30 1992-08-04 Nippondenso Co Ltd 車両用冷房装置
JPH04359740A (ja) * 1991-06-06 1992-12-14 Toshiba Corp 空気調和装置
JPH07127948A (ja) * 1992-11-02 1995-05-19 Nippondenso Co Ltd 冷媒凝縮器
JP2003035459A (ja) * 2001-07-19 2003-02-07 Shin Meiwa Ind Co Ltd 冷凍装置及び冷凍方法
JP2003232554A (ja) * 2002-02-07 2003-08-22 Daikin Ind Ltd 空気調和機
JP2005225329A (ja) * 2004-02-12 2005-08-25 Calsonic Kansei Corp 空気調和装置

Also Published As

Publication number Publication date
JP6479165B2 (ja) 2019-03-06
CN205980183U (zh) 2017-02-22
WO2016166895A1 (ja) 2016-10-20

Similar Documents

Publication Publication Date Title
EP2960597B1 (en) Air conditioning device
US9322562B2 (en) Air-conditioning apparatus
JP5855312B2 (ja) 空気調和装置
JP6895901B2 (ja) 空気調和装置
AU2014219806B2 (en) Air-conditioning apparatus
JP5968519B2 (ja) 空気調和装置
JP2008232508A (ja) 給湯器
JPWO2011125111A1 (ja) 空調給湯複合システム
JP6479165B2 (ja) 空気調和機
JPWO2016194098A1 (ja) 空気調和装置及び運転制御装置
US10480837B2 (en) Refrigeration apparatus
WO2016098645A1 (ja) 空気調和装置
JP6698951B1 (ja) 空気調和装置
JP5868552B1 (ja) 外調機
WO2019167250A1 (ja) 空気調和機
WO2015182484A1 (ja) 冷凍装置
KR200412598Y1 (ko) 고온수 공급이 가능한 히트펌프 시스템
WO2015132951A1 (ja) 冷凍装置
JP2020051730A (ja) 空調システム
JP7258212B2 (ja) 空気調和装置
JP7505615B1 (ja) 冷凍サイクル装置
JP2024036963A (ja) 冷凍サイクル装置
JP2024088157A (ja) ヒートポンプサイクル装置
JP2023136032A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6479165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250