JPWO2016016968A1 - 電子装置及び電子装置の製造方法 - Google Patents

電子装置及び電子装置の製造方法 Download PDF

Info

Publication number
JPWO2016016968A1
JPWO2016016968A1 JP2016537656A JP2016537656A JPWO2016016968A1 JP WO2016016968 A1 JPWO2016016968 A1 JP WO2016016968A1 JP 2016537656 A JP2016537656 A JP 2016537656A JP 2016537656 A JP2016537656 A JP 2016537656A JP WO2016016968 A1 JPWO2016016968 A1 JP WO2016016968A1
Authority
JP
Japan
Prior art keywords
conductor
waveguide
electronic device
pin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016537656A
Other languages
English (en)
Other versions
JP6330911B2 (ja
Inventor
大二郎 石橋
大二郎 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2016016968A1 publication Critical patent/JPWO2016016968A1/ja
Application granted granted Critical
Publication of JP6330911B2 publication Critical patent/JP6330911B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguides (AREA)
  • Waveguide Aerials (AREA)

Abstract

低損失で信号伝送が可能な導波管を備える小型の電子装置を提供する。電子装置(1)は、信号端子(22ab)を有する基板(20)と、基板(20)の上方に設けられた導波管(10)とを有する。導波管(10)は、基板(20)の信号端子(22ab)に対応する位置に開口部(11a)を有する下部導体(11)と、下部導体(11)の上方に配置された上部導体(12)とを含む。信号端子(22ab)の上方には、導波管(10)の下部導体(11)と非接触でその開口部(11a)を貫通する導体ピン(40)が設けられ、導体ピン(40)は、下部導体(11)の上方の上部導体(12)に接続される。

Description

本発明は、電子装置及び電子装置の製造方法に関する。
電子装置の信号伝送に、導波管を用いる技術が知られている。例えば、半導体チップの上方或いは下方に導波管を設け、半導体チップに電気的に接続された送信アンテナ及び受信アンテナを、その導波管内に、導波管とは非接触で設けた半導体装置等が提案されている。
特開2008−148041号公報
導波管は、平面伝送路よりも低損失な信号伝送を可能にする。しかし、これまでの導波管構造では、低損失で信号伝送が可能な導波管のサイズが大きくなって、導波管を備えた小型の電子装置を得ることが難しい場合がある。
本発明の一観点によれば、端子を有する基板と、前記基板の上方に設けられ、前記端子に対応する位置に開口部を有する下部導体と、前記下部導体の上方に配置された上部導体とを含む導波管と、前記端子の上方に設けられ、前記下部導体と非接触で前記開口部を貫通し、前記上部導体に接続される柱状導体とを含む電子装置が提供される。
本発明の一観点によれば、端子を有する基板を準備する工程と、前記基板の上方に、前記端子に対応する位置に開口部を有する下部導体と、前記下部導体の上方に配置された上部導体とを含む導波管を形成する工程とを含み、前記導波管を形成する工程は、前記端子の上方に、前記下部導体と非接触で前記開口部を貫通して前記上部導体に接続される柱状導体を形成する工程を含む電子装置の製造方法が提供される。
開示の技術によれば、低損失で信号伝送が可能な導波管を備える小型の電子装置を実現することが可能になる。
本発明の目的、特徴及び利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
導波管の一形態の説明図である。 導波管の別形態の説明図である。 電子装置の一例を示す図である。 電子装置の伝送特性の解析例を示す図(その1)である。 電子装置の伝送特性の解析例を示す図(その2)である。 導波管変換部の伝送特性の解析例を示す図(その1)である。 導波管変換部の伝送特性の解析例を示す図(その2)である。 導体ピン設計方法の一例の説明図(その1)である。 導体ピン設計方法の一例の説明図(その2)である。 導体ピン設計方法の一例の説明図(その3)である。 導体ピン設計方法の一例の説明図(その4)である。 導体ピン設計方法の一例の説明図(その5)である。 導波管を備える電子装置の形成方法の一例を示す図(その1)である。 導波管を備える電子装置の形成方法の一例を示す図(その2)である。 導波管を備える電子装置の形成方法の一例を示す図(その3)である。 導波管を備える電子装置の形成方法の一例を示す図(その4)である。 導波管を備える電子装置の形成方法の一例を示す図(その5)である。 導波管を備える電子装置の形成方法の一例を示す図(その6)である。 導波管を備える電子装置の形成方法の一例を示す図(その7)である。 導波管を備える電子装置の形成方法の一例を示す図(その8)である。 電子装置の別例を示す図である。 導波管を備える電子装置の形成方法の別例を示す図(その1)である。 導波管を備える電子装置の形成方法の別例を示す図(その2)である。 半導体チップ上に設けられた導波管を備える電子装置の一例を示す図である。 回路基板上に設けられた導波管を備える電子装置の一例を示す図である。
まず、導波管の一形態について述べる。
図1は導波管の一形態の説明図である。図1(A)は導波管の一形態の要部斜視模式図、図1(B)は図1(A)の面Xの断面模式図である。
図1(A)及び図1(B)に示す導波管100は、下部導体110、上部導体120、及び側壁導体130を含む。下部導体110に対向するように上部導体120が設けられ、下部導体110と上部導体120は、側壁導体130で連結されている。導波管100の内部は、例えば中空とされる。
導波管100は、半導体チップや半導体チップを含む半導体装置等のデバイス(電子装置)上に搭載され、デバイス側から引き出される信号線、例えば図1(A)及び図1(B)に示すような同軸構造の信号線(同軸信号線)200と接続される。
同軸信号線200は、中心導体210、及び中心導体210の周囲に絶縁材料220を介して設けられた被覆導体230を含む。このような同軸信号線200が導波管100に接続されて、導波管100との間で信号の伝送(モードの変換)が行われる。同軸信号線200は、導波管100との間での伝送信号の変換のため、その中心導体210を、導波管100とは非接触で導波管100内に露出させ、導波管100と接続される。導波管100内に露出する中心導体210の長さIは、例えば、伝送信号の1/4波長程度とされる。
導波管100の幅aは、伝送信号の周波数に基づいて設定され、導波管100の厚みbは、規格として幅aの半分程度とされることが多い。
ミリ波を超える高周波信号の伝送には、中空の導波管100を用いることで、低損失の信号伝送が行える。
但し、上記の導波管100のように、同軸信号線200の中心導体210を伝送信号の1/4波長程度、導波管100内に露出させる形態では、導波管100のサイズ(厚み)が大きくなり、導波管100を含むモジュールが大型になる場合がある。
ここで、図2は導波管の別形態の説明図である。図2(A)は導波管の別形態の要部斜視模式図、図2(B)は図2(A)の面Yの断面模式図である。
図2(A)及び図2(B)には、上記図1(A)及び図1(B)に示した導波管100よりも厚みを薄くした導波管100aを例示している。この導波管100aは、上記導波管100よりも、下部導体110と上部導体120の間隔を狭め、且つ、同軸信号線200の、導波管100a内に露出する中心導体210の長さIを短くした構造を有している。
このような薄型の導波管100aを用いると、導波管100aを含むモジュールの大型化は抑えられ得る。しかし、薄型化の結果、同軸信号線200の、導波管100a内に露出する中心導体210の長さIが、伝送信号の1/4波長に満たなくなると、十分なインピーダンス整合が行われず、同軸信号線200と導波管100aの間で良好な信号伝送が行えなくなる場合がある。
以上のような点に鑑み、以下では、低損失の信号伝送が可能で、モジュールの大型化が抑制可能な導波管、及びそのような導波管を備える電子装置について説明する。
以下、本発明の一実施形態に係る導波管、及び導波管を備えた電子装置について、詳細に説明する。
図3は電子装置の一例を示す図である。図3(A)は電子装置の一例の要部平面模式図、図3(B)は電子装置の一例の要部断面模式図である。ここで、図3(A)は図3(B)のP2−P2線に沿った位置の平面模式図、図3(B)は図3(A)のP1−P1線に沿った位置の断面模式図である。
図3(A)及び図3(B)に示す電子装置1は、基板20及び導波管10を有している。
導波管10は、下部導体11、上部導体12、及び側壁導体13を含む。下部導体11に対向するように上部導体12が設けられ、下部導体11と上部導体12は、側壁導体13で連結されている。導波管10の内部は、中空になっている。導波管10の外側には、絶縁層30が設けられている。
導波管10は、基板20上方に設けられている。ここでは基板20の一例として、擬似SoC(System on Chip)基板を図示している。基板20は、ダイシングによる個片化前のものでも、個片化後のものでもよい。基板20は、樹脂層21、及び樹脂層21に埋設された半導体チップ22を含む。半導体チップ22は、複数の端子22aを有している。ここでは端子22aとして、グランド(GND)端子22aa及び信号端子22abを例示している。半導体チップ22は、GND端子22aa及び信号端子22ab(端子22a)が樹脂層21の表面21a側に露出するように、樹脂層21に埋設されている。
尚、基板20の樹脂層21には、半導体チップ22のほか、別の半導体チップや、チップコンデンサ等のチップ部品が更に埋設されてもよい。
また、導波管10を設ける基板は、この基板20のような樹脂層21と半導体チップ22を含む擬似SoC基板に限定されるものではなく、半導体チップ、インターポーザ、回路基板等でもよい。ここでは説明の便宜上、図3(B)に示すような擬似SoC基板を基板20の例とする。
導波管10の下部導体11は、基板20上方に絶縁層30を介して設けられ、基板20の半導体チップ22のGND端子22aaに電気的に接続されている。この下部導体11には、半導体チップ22の信号端子22abに対応する位置に開口部11aが設けられている。開口部11aに対応する信号端子22ab上には、導体ピン(柱状導体)40が設けられている。導体ピン40は、信号端子22ab側から、下部導体11の開口部11aを貫通し、更に上部導体12側へと延び、上端が上部導体12に達するように、設けられている。
導体ピン40は、信号端子22ab上に設けられた下層のピン41と、このピン41上に設けられた中層のピン42と、更にこのピン42上に設けられて上部導体12に接続(短絡)された上層のピン43とを含む。ここでは、信号端子22abから下部導体11(その開口部11a)の上面までの高さでピン41を設け、下部導体11の上面から上部導体12の下面までを2分割した高さでピン42とピン43を設けた場合を例示している。導体ピン40のピン41、ピン42及びピン43の径(平面方向の断面の幅)は、それぞれ所望の値に設定することができる。ここではピン41よりもピン42が大径で、ピン42よりもピン43が小径である場合を例示している。
尚、導体ピン40のピン41、ピン42及びピン43の平面方向の断面形状は、円形状のほか、略円形状、楕円形状、略楕円形状、矩形状、略矩形状等、様々な形状とすることが可能である。
また、半導体チップ22の信号端子22abと導波管10の上部導体12の間を繋ぐ導体ピン40のピンの層数は、上記のピン41、ピン42及びピン43のような3層に限定されるものではなく、1層又は2層以上の層数に設定することができる。ここでは説明の便宜上、導体ピン40のピンの層数を3層とする場合を例にする。
電子装置1では、上記のような導波管10と基板20(半導体チップ22の信号端子22ab)の間で、信号の伝送(モード変換)が行われる。導波管10の下部導体11から上部導体12までの距離、即ち導波管10の厚み(高さ)は、例えば、半導体チップ22と導波管10の間を伝送される信号の1/4波長以下とすることができる。半導体チップ22側のインピーダンスと、導波管10側のインピーダンスは、導体ピン40のピン41、ピン42及びピン43の径で調整する(整合させる)ことができる。
図4及び図5は電子装置の伝送特性の解析例を示す図である。
ここで、図4には、半導体チップ22の信号端子22ab上に設けた導体ピン40aと導波管10の上部導体12を接続(短絡)させない形態の電子装置1a(上記図1の導波管100を設けた電子装置に相当)の解析例を示している。このような電子装置1aの要部断面を、図4(A)に模式的に図示している。図4(A)に示す電子装置1aにおいて、導波管10の厚み(下部導体11と上部導体12の間の距離)は、432μmとしている。図4(B)は、このような電子装置1aの電磁界解析結果の一例である。図4(B)には、図4(C)に示すような、導波管10の2ポート(Port 1, 2)に設けた導体ピン40a間の距離を3mmに設定した場合の電磁界解析で得られた周波数(Frequency [GHz])とSパラメータ(S parameter [dB])の関係の一例を示している。S11を反射特性の評価に用い、S21を通過特性の評価に用いる。
また、図5には、半導体チップ22の信号端子22ab上に設けた導体ピン40と導波管10の上部導体12を接続(短絡)させた上記図3の電子装置1の解析例を示している。電子装置1の要部断面を、図5(A)に模式的に図示している。図5(A)に示す電子装置1において、導波管10の厚み(下部導体11と上部導体12の間の距離)は、40μmとしている。図5(B)は、このような電子装置1の電磁界解析結果の一例である。図5(B)には、図5(C)に示すような、導波管10の2ポート(Port 1, 2)に設けた導体ピン40間の距離を3mmに設定した場合の電磁界解析で得られた周波数(Frequency [GHz])とSパラメータ(S parameter [dB])の関係の一例を示している。S11を伝送信号の反射特性の評価に用い、S21を伝送信号の通過特性の評価に用いる。
尚、図4(B)及び図5(B)に示すSパラメータ(S11,S21)は、絶対値|S|の対数をとった値(dB)である。以下で述べる図7(A)、図7(B)及び図12についても同じである。
上記のように、信号端子22ab上の導体ピン40を導波管10に短絡させた電子装置1(図5(A))では、導体ピン40aを導波管10に短絡させない電子装置1a(図4(A))に比べて、導波管10の厚みを1/10程度としている。図4(B)及び図5(B)より、導体ピン40を導波管10に短絡させた電子装置1(図5(A))の伝送損失は、短絡させない電子装置1a(図4(A))の伝送損失と同等と言える。電子装置1では、電子装置1aと同等の伝送損失で、導波管10の厚みを1/10程度に縮小することができる。
図6及び図7は導波管変換部の伝送特性の解析例を示す図である。
ここで、図6には、導体ピン形状の異なる導波管10の変換部のモデルを例示している。図6(A)には、上記図1の導波管100に相当するモデル、即ち導体ピン40aを導波管10に短絡させないモデルA(Model A)を示している。一方、図6(B)及び図6(C)は、導体ピン40を導波管10に短絡させたモデルである。図6(B)には、一定の径の導体ピン40を導波管10に短絡させたモデルB(Model B)を示し、図6(C)には、異なる径の部位を設けた導体ピン40を導波管10に短絡させたモデルC(Model C)を示している。
図7には、図6(A)〜図6(C)の各モデルA〜Cにおける変換部の入出力ポート(Port 1, 2)について電磁界解析で得られた周波数とSパラメータの関係の一例を示している。図7(A)には、周波数(Frequency [GHz])とS11(S11 [dB])の関係の一例を示し、図7(B)には、周波数(Frequency [GHz])とS21(S21 [dB])の関係の一例を示している。S11を伝送信号の反射特性の評価に用い、S21を伝送信号の通過特性の評価に用いる。
図7(A)及び図7(B)より、導体ピン40を導波管10に短絡させたモデルB,Cでは、導体ピン40aを導波管10に短絡させないモデルAに比べて、伝送信号の反射特性の指標となるS11の値が低く、通過特性の指標となるS21の値が高くなる。モデルB,Cでは、モデルAに比べて、導波管10の変換部における伝送損失を小さく抑えることができる。
上記のモデルB,Cについて図7(A)及び図7(B)に示したように、導波管10と短絡させる導体ピン40の形状は、伝送信号の反射特性及び通過特性に影響を及ぼす。導体ピン40の形状を調整することで、導波管10の変換部における反射特性及び通過特性を調整することができる。そして、このような調整を行うことで、導波管10と信号線(上記半導体チップ22の信号端子22ab、導体ピン40)のインピーダンス整合を行うことも可能になる。
導体ピン40の形状を含め、導体ピン40及び導波管10の設計方法について、次の図8〜図12を参照して説明する。
図8〜図12は導体ピン設計方法の一例の説明図である。
図8は設計初期の導体ピンと導波管を含む電子装置を模式的に示す図である。ここで、図8(A)は電子装置の要部平面模式図、図8(B)は電子装置の要部断面模式図である。
まず、半導体チップ22の信号端子22ab上に設けるピン41の径Dpを任意の一定値に設定する。ピン41の径Dpは、例えば、信号端子22abの平面サイズを基に設定することができる。設計初期では、このピン41上に設けるピン42及びピン43も、径Dpに設定する。
導波管10の下部導体11に設ける開口部11aの開口サイズ(径)Dhは、ピン41、絶縁層30及び下部導体11を、ピン41を中心導体とする同軸線と見做した時の特性インピーダンスが例えば50Ωといった所定値になる径Dhに設定することができる。
導波管10の厚みb及び幅aは、それぞれ任意の一定値に設定することができる。但し、伝送する信号の周波数を基に設定されることが望ましい。また、側壁導体13から導体ピン40までの距離(バックスタブ長Lb)は、例えば、導波管10内を伝送される信号の1/4波長程度に設定することができる。
一例として、周波数300GHzの信号を伝送させる導波管10とそれに接続する導体ピン40について、導体ピン40(ピン41)の径Dpを100μm、下部導体11の開口径Dhを230μmとする。また、導波管10の幅aを864μm、厚みbを40μm、バックスタブ長Lbを300μmとする。
設計初期の導体ピン40でインピーダンス整合が取れない場合、ピン41上のピン42及びピン43の径を調整する。尚、この調整時には、ピン41、ピン42及びピン43の各々の長さは変化させない。
図9は導体ピンの第1調整の説明図である。ここで、図9(A)は第1調整段階の電子装置の一例を示す要部断面模式図、図9(B)は第1調整段階のスミスチャートの一例を示す図である。尚、図9(B)には、半導体チップ22側から見た入力インピーダンス(正規化)のスミスチャートを示している。
例えば、図9(A)に示すように、ピン42及び43の径Dbを、信号端子22ab上のピン41の径Dpよりも大きくすると、導波管10の下部導体11とそれに近い導体ピン40のピン42との距離が縮まり、下部導体11と導体ピン40の間の容量が大きくなる。そのため、図9(B)に示すように、半導体チップ22側から見た入力インピーダンスは、虚部がマイナス方向にシフトする傾向を示す。ピン42及びピン43の径Dbを大きくすると、導体ピン40の抵抗値が小さくなるため、入力インピーダンスの実部も多少小さくなる。
尚、ピン42及びピン43の径Dbを、ピン41の径Dpよりも小さくした場合には、大きくした場合と逆方向にシフトする傾向を示す。
このようなピン42及びピン43の径Dbの調整によってインピーダンス整合が取れない場合には、ピン42及びピン43のうち、上側のピン43の径を更に調整する。尚、この調整時には、ピン41、ピン42及びピン43の各々の長さは変化させない。
図10は導体ピンの第2調整の説明図である。ここで、図10(A)は第2調整段階の電子装置の一例を示す要部断面模式図、図10(B)は第2調整段階のスミスチャートの一例を示す図である。尚、図10(B)には、半導体チップ22側から見た入力インピーダンス(正規化)のスミスチャートを示している。
例えば、図10(A)に示すように、ピン43の径Dtを、直下のピン42の径Dbよりも小さくすると、導波管10の下部導体11とそれに近い導体ピン40のピン42との距離は変化しない。そのため、下部導体11と導体ピン40の間の容量は変化しないか或いは大きく変化しない。ピン43の径Dtを、直下のピン42の径Dbよりも小さくすると、導体ピン40の抵抗値が大きくなるため、半導体チップ22側から見た入力インピーダンスの実部が大きくなる方向にシフトする傾向を示す。
尚、ピン43の径Dtを、直下のピン42の径Dbよりも大きくした場合には、導体ピン40の抵抗値が小さくなり、入力インピーダンスの実部が小さくなる。更に、ピン43と下部導体11の間の容量が増加し、入力インピーダンスの虚部も、ある程度変化するようになる。
図11及び図12はインピーダンス整合の一例の説明図である。ここで、図11には、上記図9で述べたような第1調整、及び上記図10で述べたような第2調整を行って、インピーダンス整合を取る場合の一例のスミスチャートを示している。図12には、未調整段階並びに第1調整後及び第2調整後の電磁界解析により得られた周波数(Frequency [GHz])とSパラメータ(S parameter [dB])の関係の一例を示している。S11を伝送信号の反射特性の評価に用い、S21を伝送信号の通過特性の評価に用いる。
例えば、図8の設計初期の未調整段階で、導体ピン40のピン42及びピン43の径(Db,Dt)が、信号端子22ab上のピン41の径Dpと同じで、いずれも100μmに設定されているものとする(Dt=Db=100μm(Dp))。
このような導体ピン40について、図9で述べた第1調整の例に従い、まずピン41上のピン42及びピン43の径Dbを、伝送信号の周波数付近で入力インピーダンスの虚部が0になるか又はほぼ0になるように、調整する。この例では、径Dpが100μmであるピン41上のピン42及びピン43の径Dbを、いずれも180μmにする(Dt=Db=180μm)。このようにすると、導波管10の下部導体11と導体ピン40の間の容量が増加し、主に入力インピーダンスの虚部がマイナス方向にシフトし、虚部が0になるか又は0に近づくようになる。
続いて、このような導体ピン40について、図10で述べた第2調整の例に従い、上側のピン43の径Dtを、入力インピーダンスの実部を1にするか又は1に近付けるように、調整する。この例では、上側のピン43の径Dtを、その下側の径Dbが180μmのピン42よりも小さい、85μmにする(Dt=85μm,Db=180μm)。このようにすると、導体ピン40の抵抗値が大きくなり、主に入力インピーダンスの実部が増加する方向にシフトし、実部が1になるか又は1に近付く、即ちインピーダンス整合が取れるようになる。
尚、このような第1調整と第2調整を行った後に、より良好なインピーダンス整合が取れるように、導体ピン40のピン41、ピン42及びピン43のうちの1つ又は2つ以上について、径の微調整を行ってもよい。
上記のように、未調整の段階から、まず第1調整を行い、続いて第2調整を行うことで、図12に示すように、伝送信号の反射特性の指標となるS11の値を低くし、通過特性の指標となるS21の値を高くすることができる。このように導体ピン40として設けるピン41、ピン42及びピン43の径を調整することで、インピーダンス整合を取り、導波管10の変換部における伝送損失を小さく抑えることが可能になる。
続いて、上記のような導波管10を備える電子装置の形成方法の一例について、図13〜図20を参照して詳細に説明する。図13〜図20には、電子装置の各形成工程の要部断面を模式的に図示している。
ここでは、基板20として擬似SoC基板を用い、擬似SoC基板上に配線(再配線)を形成する所謂再配線技術を用いて、導波管10を形成する場合を例にして説明する。
まず、図13(A)に示すような、樹脂層21、及び樹脂層21に埋設された半導体チップ22を含む基板20(擬似SoC基板)を準備する。基板20の樹脂層21には、例えば、エポキシ系の樹脂にシリカ等のフィラー(充填剤)を混合したものを用いる。基板20は、半導体チップ22の周囲をその端子22a(22aa,22ab)の配設面側が露出するように樹脂層21で被覆し、これを加熱成形することによって、形成する。尚、基板20の樹脂層21には、半導体チップ22のほか、別の半導体チップや、チップコンデンサ等のチップ部品が更に埋設されてもよい。
基板20には、例えば、ダイシングによる個片化前のウェハ状のもの(擬似ウェハ)を用いる。尚、基板20には、擬似ウェハをダイシングにより個片化したものを用いることもできる。
次いで、図13(B)に示すように、基板20内の半導体チップ22の端子22aに通じる開口部31aを有する絶縁層31(上記絶縁層30の一部)を形成する。その際は、例えば、まず基板20上に、厚さ10μmで感光性フェノール系樹脂を塗布し、これを露光した後、水酸化テトラメチルアンモニウム(TMAH)等を用いて現像する。そして、200℃〜250℃の温度、例えば200℃でキュア(硬化)を行い、図13(B)に示すような、開口部31aを有する絶縁層31を形成する。
次いで、図13(C)に示すように、開口部31a内を含む絶縁層31上に、シード層51を形成する。その際は、例えば、絶縁層31上に、スパッタリングによってチタン(Ti)層を厚さ20nmで形成し、更にそのTi層上に、スパッタリングによって銅(Cu)層を厚さ100nmで形成して、シード層51を形成する。
次いで、図14(A)に示すように、シード層51上に、導体ピン40のピン41及び導波管10の下部導体11を形成する領域に対応した開口部61aを有するレジストパターン61を形成する。その際は、例えば、シード層51上にレジスト材料を厚さ8μmで塗布し、露光後、TMAH等を用いて現像することで、レジストパターン61を形成する。レジストパターン61は、半導体チップ22の信号端子22ab上に形成するピン41と下部導体11を分離する領域に形成される。
次いで、図14(B)に示すように、レジストパターン61の開口部61a内に、導体ピン40の最下層のピン41と、導波管10の下部導体11を形成する。その際は、例えば、シード層51を給電層に用いた電解めっきにより、導体材料としてCuを堆積することによって、ピン41及び下部導体11を形成する。下部導体11の高さは、例えば、5μmとする。下部導体11は、半導体チップ22のGND端子22aaと接続される。ピン41は、半導体チップ22の信号端子22abと接続される。
次いで、図14(C)に示すように、レジストパターン61、及びシード層51の一部を除去する。その際は、例えば、まずアセトン等を用いてレジストパターン61を除去し、その後、レジストパターン61の除去によって露出したシード層51の部分を除去する。シード層51を、上記のようなTi層上にCu層を設けた積層構造とした場合には、まずCu層を選択的に除去し、次いでTi層を選択的に除去する。Cu層は、例えば、硫酸カリウム(K2SO4)をエッチング液に用いたウェットエッチングによって、選択的に除去する。Ti層は、例えば、四フッ化炭素(CF4)と酸素(O2)の混合ガスを用いたドライエッチングによって、選択的に除去する。
次いで、レジストパターン61、及びシード層51の一部を除去した領域に、図15(A)に示すように、絶縁層32(上記絶縁層30の一部)を形成する。その際は、例えば、まず厚さ5μmで感光性フェノール系樹脂を塗布し、これを露光した後、TMAH等を用いて現像し、200℃といった温度でキュアを行うことで、図15(A)に示すような絶縁層32を形成する。
次いで、図15(B)に示すように、形成する導波管10の外側になる領域に、絶縁層33(上記絶縁層30の一部)を形成する。その際は、例えば、まず厚さ10μmで感光性フェノール系樹脂を塗布し、これを露光した後、TMAH等を用いて現像し、200℃といった温度でキュアを行うことで、図15(B)に示すような絶縁層33を形成する。
次いで、図15(C)に示すように、導体ピン40のピン42及び導波管10の側壁導体13を形成する領域に対応した開口部62aを有する犠牲層62を形成する。その際は、例えば、レジスト材料を厚さ10μmで塗布し、露光後、TMAH等を用いて現像することで、犠牲層62を形成する。犠牲層62の開口部62aのうち、ピン42を形成する領域に対応する開口部62aは、形成するピン42の径に基づいた径で、形成される。図15(C)には、信号端子22ab上のピン41よりも大径の開口部62aを形成する場合を例示している。
次いで、図16(A)に示すように、開口部62a内を含む犠牲層62上に、シード層52を形成する。シード層52は、例えば、スパッタリングによってTi層及びCu層をそれぞれ所定の厚さで形成することで、形成される。
次いで、図16(B)に示すように、シード層52上に、導体ピン40のピン42及び導波管10の側壁導体13を形成する領域に対応した開口部63aを有するレジストパターン63を形成する。レジストパターン63は、例えば、シード層52上にレジスト材料を厚さ8μmで塗布し、露光後、TMAH等を用いて現像することで、形成される。
次いで、図16(C)に示すように、レジストパターン63の開口部63aに位置する犠牲層62の開口部62a内に、導体ピン40のピン42(中層)と、導波管10の側壁導体13(下層)を形成する。ピン42及び側壁導体13は、例えば、シード層52を給電層に用いた電解めっきによってCuを堆積することで、形成される。ここで形成するピン42及び側壁導体13の高さは、例えば、10μmとする。
次いで、図17(A)に示すように、レジストパターン63、及びシード層52の一部を除去する。例えば、まずアセトン等を用いてレジストパターン63を除去し、その除去後に露出するシード層52の部分を、エッチングにより選択的に除去する。シード層52を除去することで、ピン42と側壁導体13を電気的に分離する。
次いで、図17(B)に示すように、形成する導波管10の外側になる領域に、絶縁層34(上記絶縁層30の一部)を形成する。絶縁層34は、例えば、まず厚さ10μmで感光性フェノール系樹脂を塗布し、露光後、TMAH等を用いて現像し、200℃といった温度でキュアを行うことで、形成される。
次いで、図17(C)に示すように、導体ピン40のピン43及び導波管10の側壁導体13を形成する領域に対応した開口部64aを有する犠牲層64を形成する。犠牲層64は、例えば、レジスト材料を厚さ10μmで塗布し、露光後、TMAH等を用いて現像することで、形成される。犠牲層64の開口部64aのうち、ピン43を形成する領域に対応する開口部64aは、形成するピン43の径に基づいた径で、形成される。図17(C)には、先に形成したピン42よりも小径の開口部64aを形成する場合を例示している。
次いで、図18(A)に示すように、開口部64a内を含む犠牲層64上に、シード層53を形成する。シード層53は、例えば、スパッタリングによってTi層及びCu層をそれぞれ所定の厚さで形成することで、形成される。
次いで、図18(B)に示すように、シード層53上に、導体ピン40のピン43及び導波管10の側壁導体13を形成する領域に対応した開口部65aを有するレジストパターン65を形成する。レジストパターン65は、例えば、シード層53上にレジスト材料を厚さ8μmで塗布し、露光後、TMAH等を用いて現像することで、形成される。
次いで、図18(C)に示すように、レジストパターン65の開口部65aに位置する犠牲層64の開口部64a内に、導体ピン40のピン43(上層)と、導波管10の側壁導体13(上層)を形成する。ピン43及び側壁導体13は、例えば、シード層53を給電層に用いた電解めっきによってCuを堆積することで、形成される。ここで形成するピン43及び側壁導体13の高さは、例えば、10μmとする。このようにしてピン43を形成することで、信号端子22ab上に、3層のピン41、ピン42及びピン43を有する導体ピン40が形成される。
次いで、図19(A)に示すように、レジストパターン65を除去し、その除去後に露出するシード層53を除去する。例えば、レジストパターン65はアセトン等を用いて除去し、シード層53はエッチングにより選択的に除去する。シード層53を除去することで、ピン43と側壁導体13を電気的に分離する。
次いで、図19(B)に示すように、犠牲層62及び犠牲層64を除去する。その際は、例えば、アセトン等を用いて、犠牲層62及び犠牲層64を除去する。犠牲層62及び犠牲層64を除去することで、導波管10の中空部が形成される。
次いで、図19(C)に示すように、導波管10の上部導体12を形成する。その際は、例えば、Cu等の金属箔を、ラミネートにより絶縁層34、側壁導体13及び導体ピン40の上に接着する。金属箔の厚さは、例えば、20μmとする。このようにして上部導体12を形成することで、図20に示すような中空の導波管10が形成される。
個片化前の疑似ウェハを基板20に用いた場合には、以上のように導波管10の形成まで行うことで、半導体チップ22が埋設された樹脂層21と導波管10が一体となった疑似ウェハが得られる。この後、ダイヤモンドブレード等を用いたダイシングによる個片化を行うことで、導波管10を備えた個々の電子装置1が得られる。
また、予め疑似ウェハを個片化したものを基板20に用いた場合には、以上のように導波管10の形成まで行うことで、導波管10を備えた電子装置1が得られる。
尚、ここでは、3層のピン41、ピン42及びピン43を有する導体ピン40を形成する場合を例示した。4層以上のピンを形成する場合には、図19(A)の工程後、図19(B)の工程前に、ピンの層数に応じた回数だけ図17(B)〜図19(A)の工程を繰り返し、その後、図19(B)以降の工程を行うようにすればよい。
また、ピンを2層とする場合には、図17(A)の工程後、図17(B)〜図19(A)の工程を省略し、図19(B)の例に従って犠牲層62を除去し、図19(C)の例に従って上部導体12を形成するようにすればよい。
以上、一実施形態に係る導波管10及び電子装置1について説明した。
以上説明した導波管10には、アンテナ機能を設けることもできる。
図21は電子装置の別例を示す図である。図21には、電子装置の別例の要部断面を模式的に図示している。
図21に示す電子装置1Aは、導波管10の上部導体12に、少なくとも1つのスロット12aが設けられている点で、上記図3等に示した電子装置1と相違する。図21には、1つのスロット12aを例示するが、上部導体12には複数のスロット12aが設けられてよい。また、スロット12aの形状や位置、複数のスロット12aの並び(スロットパターン)等は、送信又は受信する信号の周波数等の特性に基づき、適宜設定することができる。
上部導体12にスロット12aを設けることで、導波管10に、信号伝送機能と共に、アンテナ機能を持たせることができる。信号の送信又は受信が可能で、導体ピン40を上部導体12と短絡させた変換部を有しその変換部の伝送損失が抑えられた薄型の導波管10を備える、電子装置1Aを実現することができる。
このような電子装置1Aは、例えば、上記電子装置1の形成方法として図13〜図19で述べた例に従って、形成することができる。電子装置1Aを形成する場合には、上記図19(C)で述べた上部導体12の形成工程において、予めスロット12aが設けられている金属箔等の上部導体12を、ラミネートにより絶縁層30(34)、側壁導体13及び導体ピン40の上に接着する。
また、電子装置1Aは、次のような方法を用いて形成することもできる。
電子装置1Aの形成では、例えば、上記電子装置1の形成方法として述べた図18(A)のシード層53の形成工程までは同じとすることができる。その後の形成工程について、図22及び図23を参照して説明する。
まず、上記図18(A)のようにシード層53を形成した後、図22(A)に示すように、導体ピン40のピン43、導波管10の側壁導体13及び上部導体12を形成する領域に対応した開口部65aを有するレジストパターン65を形成する。
次いで、図22(B)に示すように、レジストパターン65の開口部65aに、導体ピン40のピン43(上層)、導波管10の側壁導体13(上層)、及びスロット12aを有する上部導体12を形成する。ピン43、側壁導体13及び上部導体12は、シード層53を給電層に用いた電解めっきによってCu等の導体材料を堆積することで、形成される。
次いで、図22(C)に示すように、レジストパターン65を除去し、その除去後に露出するシード層53を除去する。
そして、アセトン等のエッチャントを用いて、犠牲層62及び犠牲層64を除去することで、図23に示すような、中空部を有する導波管10を形成する。犠牲層62及び犠牲層64の除去時には、エッチャントが、上部導体12のスロット12aを通して導波管10内に流入し、導波管10外に流出することで、犠牲層62及び犠牲層64がエッチングされ、導波管10内から除去される。
このような方法を用いて、スロット12aを有する導波管10を備えた電子装置1Aを得ることができる。レジストパターン65をマスクにして、めっき法により上部導体12を形成する本方法では、様々な形状、配置、サイズのスロットパターンを精度良く形成することができる。
尚、ここでは、上記図18(A)の工程後、図22(A)〜図22(C)及び図23のような工程を行う例を示した。このほか、上記図19(A)の工程まで行って、ピン43及び側壁導体13を形成した状態から、図22(A)〜図22(C)及び図23の手順の例に従い、スロット12aを有する上部導体12を形成するようにしてもよい。
以上説明したように、下部導体11、側壁導体13及び上部導体12を有する導波管10の、その上部導体12に、半導体チップ22の信号端子22ab上に立設する導体ピン40の上端を接続して短絡させる。導体ピン40は、半導体チップ22と導波管10の間でインピーダンス整合が取れるように径が調整される。このような導波管10によれば、半導体チップ22と導波管10の間の低損失な信号伝送が可能になり、ミリ波を超えるような高周波信号でも低損失で伝送することが可能になる。
また、導波管10は、上記のように、再配線技術を用いて形成することができ、半導体プロセスで形成されるような配線に比べて幅広で、且つ、厚みが再配線技術で形成される再配線層の絶縁部(絶縁層)程度である薄い導波管10を形成することができる。このような導波管10を形成することで、伝送損失の低い、薄型の電子装置1,1Aを実現することが可能になる。
ミリ波のような高周波領域において、各素子間を接続する伝送線路での損失抑制には、上記のような擬似SoC等の異種デバイス集積で利用されている再配線技術が有効な手段となる。再配線技術によれば、各素子間の伝送線路長を比較的短く、且つ、半導体プロセスよりも比較的幅広の伝送線路を実現することができるためである。一方で、ミリ波より更に高い周波数領域になると、波長に対して伝送線路長が無視できない長さになる、表皮効果による導体の損失が増加する、絶縁材料の誘電損失が無視できなくなる、といった問題が生じ得る。そのため、このような高周波の信号伝送では、内部が中空の導波管を伝送線路に用いることが有効となる。しかし、これまでは、再配線層内に中空の領域を設ける手法や、導波管が従来のものに比べて幅広薄型になることによる素子と導波管の間での信号のモード変換が課題となっていた。
これに対し、上記導波管10及びその形成方法によれば、再配線技術を用いて、幅広薄型の中空の導波管10を実現することができ、更に、導波管10に短絡させる導体ピン40の径を調整して低損失な信号伝送を実現することができる。例えば、長さ1mmの伝送線路で周波数300GHzの信号を伝送する場合において、マイクロストリップラインでは伝送損失が−2.5dBになるのに対し、中空の導波管10では伝送損失を−0.5dBに抑えることができる。また、周波数300GHzの信号の伝送に用いる導波管10として、幅が500μm以上、厚みが40μm程度、通過特性が−0.5dBの導波管10を実現することができる。
尚、以上の説明では、導波管10の内部を中空とする場合を例示したが、導波管10の内部に誘電体を設けることも可能である。
また、以上の説明では、基板20に擬似SoC基板を用いる場合を例示した。このほか、上記のような導波管10(アンテナ機能を有する導波管10を含む)は、擬似SoC基板に限らず、半導体チップ単体の上に設けたり、プリント基板やインターポーザ等の回路基板の上に設けたりすることもできる。
図24は半導体チップ上に設けられた導波管を備える電子装置の一例を示す図である。ここで、図24(A)には、半導体チップ上に設けられた導波管を備える電子装置の第1構成例の要部断面を模式的に図示し、図24(B)には、半導体チップ上に設けられた導波管を備える電子装置の第2構成例の要部断面を模式的に図示している。
図24(A)に示す電子装置1Bは、半導体チップ70と、半導体チップ70上に設けられた導波管10とを有している。半導体チップ70は、シリコン(Si)等の半導体基板71と、半導体基板71上に設けられた配線層72を含む。半導体基板71には、その表面(配線層72の配設面)側に、トランジスタ、抵抗、容量等の回路素子(図示せず)が形成されている。配線層72は、半導体基板71に形成されたトランジスタ等の回路素子に電気的に接続された配線やビア等の導体部(図示せず)と、その導体部の周囲に設けられた絶縁部(図示せず)とを含んでいる。配線層72の最上層の導体部には、GND端子22aa及び信号端子22abが設けられている。電子装置1Bでは、このような半導体チップ70の配線層72上に、導波管10が設けられている。信号端子22ab上に設けられる導体ピン40は、導波管10の上部導体12に接続されている。導波管10の下部導体11は、GND端子22aaに接続されている。
図24(B)に示す電子装置1Cも同様に、半導体チップ70と、半導体チップ70上に設けられた導波管10とを有している。電子装置1Cでは、半導体チップ70に、半導体基板71を貫通しその表面(トランジスタ等の回路素子の形成面)側に設けられている配線層72に電気的に接続された貫通電極73が、TSV(Through Silicon Via)技術等を用いて形成されている。貫通電極73の、配線層72の配設面と反対の面側に、GND端子22aa及び信号端子22abが設けられている。信号端子22ab上に設けられる導体ピン40は、導波管10の上部導体12に接続されている。導波管10の下部導体11は、GND端子22aaに接続されている。
図24(A)及び図24(B)に示すように、導波管10は、半導体チップ70上に設けることができ、その際は、配線層72の配設面側、或いは半導体基板71の裏面(配線層72の配設面と反対の面)側に設けることができる。尚、導波管10の上部導体12にスロット(上記のスロット12a等)を設け、電子装置1B及び電子装置1Cにアンテナ機能を持たせることもできる。
また、図25は回路基板上に設けられた導波管を備える電子装置の一例を示す図である。ここで、図25には、回路基板上に設けられた導波管を備える電子装置の構成例の要部断面を模式的に図示している。
図25に示す電子装置1Dは、回路基板80と、回路基板80上に設けられた導波管10とを有している。回路基板80は、基材81と、基材81の内部や表面等に設けられた導体部82(配線やビア等)とを含んでいる。ここでは一例として、表裏面(両主面)間を導体部82によって導通させた回路基板80を図示している。回路基板80は、例えば、基材81に樹脂等の絶縁材料を用いたプリント基板やインターポーザであり、或いは基材81の少なくとも一部にSi等の半導体基板を用いたSiインターポーザであってもよい。回路基板80の一方の面側に露出する導体部82に、GND端子22aa及び信号端子22abが設けられている。電子装置1Dでは、このような回路基板80上に、導波管10が設けられている。信号端子22ab上に設けられる導体ピン40は、導波管10の上部導体12に接続されている。導波管10の下部導体11は、GND端子22aaに接続されている。
図25に示すように、導波管10は、回路基板80上に設けることもできる。尚、導波管10の上部導体12にスロット(上記のスロット12a等)を設け、電子装置1Dにアンテナ機能を持たせることもできる。
以上、本発明の実施形態を例示した。
上記については単に本発明の原理を示すものである。更に、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応する全ての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
1,1a,1A,1B,1C,1D 電子装置
10,100,100a 導波管
11,110 下部導体
11a,31a,61a,62a,63a,64a,65a 開口部
12,120 上部導体
12a スロット
13,130 側壁導体
20,81 基板
21 樹脂層
21a 表面
22,70 半導体チップ
22a 端子
22aa GND端子
22ab 信号端子
30,31,32,33,34 絶縁層
40,40a 導体ピン
41,42,43 ピン
51,52,53 シード層
61,63,65 レジストパターン
62,64 犠牲層
71 半導体基板
72 配線層
73 貫通電極
80 回路基板
82 導体部
200 同軸信号線
210 中心導体
220 絶縁材料
230 被覆導体

Claims (15)

  1. 端子を有する基板と、
    前記基板の上方に設けられ、前記端子に対応する位置に開口部を有する下部導体と、前記下部導体の上方に配置された上部導体とを含む導波管と、
    前記端子の上方に設けられ、前記下部導体と非接触で前記開口部を貫通し、前記上部導体に接続される柱状導体と
    を含むことを特徴とする電子装置。
  2. 前記下部導体から前記上部導体までの高さが、前記端子と前記導波管の間を伝送される信号の1/4波長以下であることを特徴とする請求項1に記載の電子装置。
  3. 前記柱状導体は、
    前記端子側から前記開口部内に延びる第1導体部と、
    前記第1導体部の上方に設けられ、前記上部導体に接続される第2導体部と
    を含むことを特徴とする請求項1に記載の電子装置。
  4. 前記第2導体部は、前記第1導体部とは径が異なることを特徴とする請求項3に記載の電子装置。
  5. 前記第2導体部は、互いに径が異なる複数の部位を含むことを特徴とする請求項3に記載の電子装置。
  6. 前記開口部は、前記下部導体と前記柱状導体の前記開口部内に位置する部位とを同軸線とした時の特性インピーダンスが所定値となる径に設定されていることを特徴とする請求項1に記載の電子装置。
  7. 前記上部導体は、スロットを有することを特徴とする請求項1に記載の電子装置。
  8. 前記基板は、
    樹脂層と、
    前記端子を有し、前記樹脂層に埋設され、前記端子が前記樹脂層から露出する半導体素子と
    を含むことを特徴とする請求項1に記載の電子装置。
  9. 前記導波管は、中空であることを特徴とする請求項1乃至8のいずれかに記載の電子装置。
  10. 端子を有する基板を準備する工程と、
    前記基板の上方に、前記端子に対応する位置に開口部を有する下部導体と、前記下部導体の上方に配置された上部導体とを含む導波管を形成する工程と
    を含み、
    前記導波管を形成する工程は、前記端子の上方に、前記下部導体と非接触で前記開口部を貫通して前記上部導体に接続される柱状導体を形成する工程を含むことを特徴とする電子装置の製造方法。
  11. 前記導波管を形成する工程は、
    前記基板の上方に、前記開口部を有する前記下部導体と、前記端子側から前記開口部内に前記下部導体と非接触で延びる第1導体部とを形成する工程と、
    前記第1導体部の上方に第2導体部を形成し、前記第1導体部及び前記第2導体部を有する前記柱状導体を形成する工程と、
    前記下部導体の上方に、前記第2導体部と接続されるように前記上部導体を形成する工程と
    を含むことを特徴とする請求項10に記載の電子装置の製造方法。
  12. 前記下部導体と前記第1導体部とを形成する工程後に、前記第1導体部に対応する位置に貫通孔を有する犠牲層を形成する工程を含み、
    前記第2導体部を形成する工程では、前記貫通孔内に前記第2導体部を形成し、
    前記第2導体部を形成する工程後に、前記犠牲層を除去する工程を含み、
    前記犠牲層を除去する工程後に、前記上部導体を形成することを特徴とする請求項11に記載の電子装置の製造方法。
  13. 前記下部導体と前記第1導体部とを形成する工程後に、前記第1導体部に対応する位置に貫通孔を有する犠牲層を形成する工程を含み、
    前記第2導体部を形成する工程では、前記貫通孔内に前記第2導体部を形成し、
    前記上部導体を形成する工程では、前記犠牲層及び前記第2導体部の上方に前記上部導体を形成し、
    前記上部導体を形成する工程後に、前記犠牲層を除去する工程を含むことを特徴とする請求項11に記載の電子装置の製造方法。
  14. 前記第2導体部を形成する工程は、互いに径が異なる複数の部位を形成する工程を含むことを特徴とする請求項11に記載の電子装置の製造方法。
  15. 前記複数の部位を形成する工程は、前記端子側と前記導波管側のインピーダンスが整合するようにそれぞれ設定された径で前記複数の部位を形成する工程を含むことを特徴とする請求項14に記載の電子装置の製造方法。
JP2016537656A 2014-07-30 2014-07-30 電子装置及び電子装置の製造方法 Active JP6330911B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070085 WO2016016968A1 (ja) 2014-07-30 2014-07-30 電子装置及び電子装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2016016968A1 true JPWO2016016968A1 (ja) 2017-04-27
JP6330911B2 JP6330911B2 (ja) 2018-05-30

Family

ID=55216911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016537656A Active JP6330911B2 (ja) 2014-07-30 2014-07-30 電子装置及び電子装置の製造方法

Country Status (4)

Country Link
US (1) US10389006B2 (ja)
EP (1) EP3176868B1 (ja)
JP (1) JP6330911B2 (ja)
WO (1) WO2016016968A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3293814B1 (de) * 2016-09-13 2020-04-29 Dyconex AG Schaltungssubstrat und elektronisches höchstfrequenz-bauteil
JP6747301B2 (ja) 2017-01-12 2020-08-26 富士通株式会社 高周波モジュール及びその製造方法
WO2019102646A1 (ja) * 2017-11-24 2019-05-31 森田テック株式会社 アンテナ装置、アンテナシステム、及び計測システム
JP6835358B2 (ja) * 2017-11-24 2021-02-24 森田テック 株式会社 アンテナ装置、アンテナシステム、及び計測システム
JP7053005B2 (ja) * 2018-02-06 2022-04-12 株式会社雄島試作研究所 同軸切替器および導波管切替器
JP7149820B2 (ja) * 2018-11-26 2022-10-07 日本特殊陶業株式会社 導波管スロットアンテナ
US20240224423A1 (en) * 2022-12-30 2024-07-04 Nxp B.V. Interposers with millimeter-wave coaxial-to-waveguide transistions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129563A (en) * 1977-04-18 1978-11-11 Hitachi Ltd Coaxial waveguide converter
WO2007091470A1 (ja) * 2006-02-06 2007-08-16 Mitsubishi Electric Corporation 高周波モジュール
JP2008148041A (ja) * 2006-12-11 2008-06-26 Toshiba Corp 半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212030A (en) * 1960-12-20 1965-10-12 Trw Inc Variable delay line using electromagnetic energy coupling
JP2638985B2 (ja) 1988-08-26 1997-08-06 日本電気株式会社 電界効果トランジスタ増幅器
US20050024841A1 (en) * 2003-07-31 2005-02-03 Dobbs Robert William Circuit board that comprises one or more mounting pins
US7315222B2 (en) * 2004-03-11 2008-01-01 United States Of America As Represented By The Secretary Of The Navy Matching feed partially inside a waveguide ridge
JP5129046B2 (ja) * 2008-07-04 2013-01-23 株式会社ヨコオ 電磁波伝送媒体
FR2951321B1 (fr) * 2009-10-08 2012-03-16 St Microelectronics Sa Dispositif semi-conducteur comprenant un guide d'ondes electro-magnetiques
JP5766972B2 (ja) * 2011-02-17 2015-08-19 日本無線株式会社 導波管伝送線路変換器
JP5947917B2 (ja) * 2012-12-27 2016-07-06 株式会社フジクラ モード変換器
US9245916B2 (en) * 2013-07-09 2016-01-26 Rememdia LC Optical positioning sensor
JP6303443B2 (ja) * 2013-11-27 2018-04-04 Tdk株式会社 Ic内蔵基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129563A (en) * 1977-04-18 1978-11-11 Hitachi Ltd Coaxial waveguide converter
WO2007091470A1 (ja) * 2006-02-06 2007-08-16 Mitsubishi Electric Corporation 高周波モジュール
JP2008148041A (ja) * 2006-12-11 2008-06-26 Toshiba Corp 半導体装置

Also Published As

Publication number Publication date
JP6330911B2 (ja) 2018-05-30
WO2016016968A1 (ja) 2016-02-04
US20170125871A1 (en) 2017-05-04
US10389006B2 (en) 2019-08-20
EP3176868A1 (en) 2017-06-07
EP3176868A4 (en) 2017-08-16
EP3176868B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6330911B2 (ja) 電子装置及び電子装置の製造方法
US7940143B2 (en) Vertical transmission line structure that includes bump elements for flip-chip mounting
US11276910B2 (en) Substrate integrated waveguide and method for manufacturing the same
JP6372113B2 (ja) 高周波モジュール及びその製造方法
WO2017134761A1 (ja) キャパシタ内蔵多層配線基板及びその製造方法
US9263176B2 (en) Conductor pattern and electronic component having the same
US20040150487A1 (en) Semi-suspended coplanar waveguide on a printed circuit board
US12003023B2 (en) In-package 3D antenna
WO2018131452A1 (ja) 高周波モジュール及びその製造方法
US6483403B2 (en) Filter element and fabrication thereof
US10374280B2 (en) Quadrature coupler
CN103887601B (zh) 折叠槽天线结构及其制作方法
JP2019096979A (ja) インピーダンス変換器
JP7120336B2 (ja) 高周波モジュール及び高周波モジュールの製造方法
CN109346821A (zh) 圆片级硅基集成小型化分形天线及其制备方法
CN111900522B (zh) 硅基空气填充微同轴结构及硅基空气填充微同轴传输线
US7777307B2 (en) High-frequency signal transmission circuit device
Pan et al. A broadband surface-micromachined 15-45 GHz microstrip coupler
CN117080703A (zh) 一种微带线的垂直过渡结构和制造方法
CN114976565A (zh) 一种环柱微同轴射频传输线及其制作方法
JP6193750B2 (ja) 配線基板、半導体モジュール、及び配線基板の製造方法
TW201401449A (zh) 具有印刷濾波器的封裝
KR20060023584A (ko) 반도체소자 부착용 금속지그를 이용한비방사마이크로스트립선로에서의 모드변환기
JP2010154516A (ja) 樹脂多層デバイスおよびフリップチップ実装装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150