JPWO2016013100A1 - HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER - Google Patents

HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER Download PDF

Info

Publication number
JPWO2016013100A1
JPWO2016013100A1 JP2016535601A JP2016535601A JPWO2016013100A1 JP WO2016013100 A1 JPWO2016013100 A1 JP WO2016013100A1 JP 2016535601 A JP2016535601 A JP 2016535601A JP 2016535601 A JP2016535601 A JP 2016535601A JP WO2016013100 A1 JPWO2016013100 A1 JP WO2016013100A1
Authority
JP
Japan
Prior art keywords
heat exchanger
drainage
flat tube
rows
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016535601A
Other languages
Japanese (ja)
Inventor
石橋 晃
晃 石橋
真哉 東井上
真哉 東井上
伊東 大輔
大輔 伊東
繁佳 松井
繁佳 松井
中村 伸
伸 中村
裕樹 宇賀神
裕樹 宇賀神
岡崎 多佳志
多佳志 岡崎
厚志 望月
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016013100A1 publication Critical patent/JPWO2016013100A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/22Safety or protection arrangements; Arrangements for preventing malfunction for draining

Abstract

熱交換器奥行き方向に列間隙間を空けて複数列設けられた扁平管群11A、11Bと、複数列の前記扁平管群11A、11Bに共通に設けられたコルゲートフィン12とを有し、扁平管群11A、11Bが重力方向に立てて配置される複数の扁平管11から構成された熱交換部10を備え、コルゲートフィン12は複数列の扁平管群11A、11Bに共通に設けられており、扁平管群11A、11Bの列同士の間に位置する部分に、列間隙間16に連通する第1排水部17を有するものである。A flat tube group 11A, 11B provided in a plurality of rows with gaps between rows in the depth direction of the heat exchanger, and corrugated fins 12 provided in common in the plurality of flat tube groups 11A, 11B. The tube groups 11A and 11B are provided with a heat exchanging portion 10 composed of a plurality of flat tubes 11 arranged upright in the direction of gravity, and the corrugated fins 12 are provided in common to the plurality of rows of flat tube groups 11A and 11B. The first drainage portion 17 communicating with the inter-row gap 16 is provided in a portion located between the rows of the flat tube groups 11A and 11B.

Description

本発明は、熱交換器およびこの熱交換器を備えた空調冷凍装置に関するものである。   The present invention relates to a heat exchanger and an air conditioning refrigeration apparatus including the heat exchanger.

従来より、扁平管とコルゲートフィンとが空気流れ方向と直交する方向に交互に積層され、複数の扁平管の各々の両端が一対のヘッダに連結された熱交換器がある(例えば、特許文献1、2参照)。   Conventionally, there is a heat exchanger in which flat tubes and corrugated fins are alternately stacked in a direction orthogonal to the air flow direction, and both ends of each of the plurality of flat tubes are connected to a pair of headers (for example, Patent Document 1). 2).

コルゲートフィンは、平面部と湾曲部とが交互に連なってジグザグ状に形成されたものであり、特許文献1には、この種のコルゲートフィンを用いた熱交換器を蒸発器として使用した場合の凝縮水の排水性を確保する技術が開示されている。具体的には、特許文献1では、コルゲートフィンの平面部を、空気流れ方向の中央部が底となる谷底形状とし、その谷底部分と扁平管との接合部に貫通穴を設け、コルゲートフィン表面の凝縮水を平面部の谷底部分へと導いて貫通穴から排水するようにしている。   The corrugated fin is formed in a zigzag shape in which flat portions and curved portions are alternately connected, and in Patent Document 1, a heat exchanger using this type of corrugated fin is used as an evaporator. A technique for ensuring drainage of condensed water is disclosed. Specifically, in Patent Document 1, the flat portion of the corrugated fin is formed into a valley bottom shape with the center in the air flow direction as the bottom, and a through hole is provided at the junction between the valley bottom portion and the flat tube, and the corrugated fin surface The condensed water is led to the bottom of the flat part and drained from the through hole.

また、特許文献2には、間隔を空けて並設された複数の扁平管からなる扁平管群が扁平管の並設方向と直交する方向である熱交換器奥行き方向に2列配置されるとともに、扁平管の並列方向に扁平管とコルゲートフィンとが交互に積層された熱交換部を有する熱交換器が開示されている。特許文献2において熱交換部の上下には一対のヘッダが配置されており、下側のヘッダの上に溜まる凝縮水の排水性を向上する技術が開示されている。   Further, in Patent Document 2, flat tube groups composed of a plurality of flat tubes arranged in parallel at intervals are arranged in two rows in the heat exchanger depth direction, which is a direction orthogonal to the parallel arrangement direction of the flat tubes. A heat exchanger having a heat exchanging portion in which flat tubes and corrugated fins are alternately stacked in the parallel direction of the flat tubes is disclosed. In patent document 2, a pair of header is arrange | positioned at the upper and lower sides of a heat exchange part, and the technique which improves the drainage property of the condensed water collected on the lower header is disclosed.

特開2005−245187号公報(図1)Japanese Patent Laying-Open No. 2005-245187 (FIG. 1) 特許4786234号公報(図1)Japanese Patent No. 4786234 (FIG. 1)

上記特許文献1には凝縮水の排水性を改善する技術が開示されているものの、扁平管群が一列の構成に対する技術であった。   Although Patent Document 1 discloses a technique for improving the drainage of condensed water, it is a technique for a configuration in which the flat tube group is in a single row.

近年では、熱交換器の小型軽量化および高性能化の要求に応えるべく、特許文献2のように扁平管群を多列とする構成が増えてきている。特許文献2では2列設けられた扁平管群に共通にコルゲートフィンが設けられており、1列対応のコルゲートフィンに比べて熱交換器奥行き方向に長くなる。このようにコルゲートフィンが熱交換器奥行き方向に長くなる分、凝縮水の排水性の向上が求められるが、特許文献2には、コルゲートフィン自体からの凝縮水の排水性については何等検討されていない。   In recent years, in order to meet the demands for smaller and lighter heat exchangers and higher performance, a configuration in which flat tube groups are arranged in multiple rows as in Patent Document 2 is increasing. In Patent Document 2, corrugated fins are provided in common in flat tube groups provided in two rows, and are longer in the depth direction of the heat exchanger than corrugated fins corresponding to one row. Thus, although the corrugated fins become longer in the heat exchanger depth direction, improvement in drainage of condensed water is required, but Patent Document 2 does not discuss anything about drainage of condensed water from the corrugated fin itself. Absent.

本発明は、上記のような課題を解決するためになされたもので、多列構成の熱交換器において、凝縮水の排水性を高めることが可能な熱交換器およびこの熱交換器を備えた空調冷凍装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and in a multi-row heat exchanger, the heat exchanger capable of improving drainage of condensed water and the heat exchanger are provided. It aims at obtaining an air-conditioning freezer.

本発明に係る熱交換器は、熱交換器奥行き方向に列間隙間を空けて複数列設けられた扁平管群と、複数列の前記扁平管群に共通に設けられたコルゲートフィンとを有し、扁平管群が重力方向に立てて配置される複数の扁平管から構成された熱交換部を備え、コルゲートフィンは、扁平管群の列同士の間に位置する部分に、列間隙間に連通する第1排水部を有するものである。   The heat exchanger according to the present invention includes a flat tube group provided in a plurality of rows with a space between rows in the depth direction of the heat exchanger, and corrugated fins provided in common to the plurality of flat tube groups. The heat exchanger is composed of a plurality of flat tubes in which the flat tube groups are arranged upright in the direction of gravity, and the corrugated fins communicate with the gaps between the rows of the flat tube groups. It has a 1st drainage part to do.

また、本発明に係る空調冷凍装置は、上記の熱交換器を備えたものである。   Moreover, the air-conditioning refrigerating apparatus which concerns on this invention is equipped with said heat exchanger.

本発明によれば、多列構成の熱交換器において、凝縮水の排水性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the drainage of condensed water can be improved in the heat exchanger of a multi-row structure.

本発明の実施の形態1に係る熱交換器の正面図と側面図とをまとめて示した図である。It is the figure which showed collectively the front view and side view of a heat exchanger which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の扁平管の模式斜視図である。It is a model perspective view of the flat tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の正面拡大模式図である。It is a front expansion schematic diagram of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の横断面図である。It is a cross-sectional view of the heat exchanger according to Embodiment 1 of the present invention. 図4のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施の形態2に係る熱交換器の横断面図である。It is a cross-sectional view of the heat exchanger according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る熱交換器の横断面図である。It is a cross-sectional view of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の横断面図である。It is a cross-sectional view of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る空調冷凍装置の冷媒回路図である。It is a refrigerant circuit diagram of the air-conditioning refrigerating apparatus which concerns on Embodiment 5 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器の正面図と側面図とをまとめて示した図である。図1(a)は正面図、図1(b)は側面図である。図2は、本発明の実施の形態1に係る熱交換器の扁平管の模式斜視図である。図1、図2および後述の図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a diagram collectively showing a front view and a side view of a heat exchanger according to Embodiment 1 of the present invention. 1A is a front view, and FIG. 1B is a side view. FIG. 2 is a schematic perspective view of a flat tube of the heat exchanger according to Embodiment 1 of the present invention. In FIG. 1, FIG. 2, and the figure mentioned later, what attached | subjected the same code | symbol is the same or it corresponds, and this is common in the whole text of a specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

熱交換器1は、例えば空調機の室外機に使用されるものであり、主として、熱交換部10と、ヘッダ20と、ヘッダ30とを有する。図1においてヘッダ20部分に示した矢印は冷媒の流れ方向を示しており、白抜き矢印は図1(b)における空気の流れ方向を示している。   The heat exchanger 1 is used for an outdoor unit of an air conditioner, for example, and mainly includes a heat exchange unit 10, a header 20, and a header 30. In FIG. 1, the arrow shown in the header 20 indicates the flow direction of the refrigerant, and the white arrow indicates the flow direction of air in FIG.

熱交換部10は、間隔を空けて並設した複数の扁平管11からなる扁平管群11A、11Bを扁平管11の並設方向と直交する方向である熱交換器奥行き方向に間隔を空けて複数列(ここでは2列)有している。そして、扁平管11の並設方向に扁平管11とコルゲートフィン12とが交互に積層されている。コルゲートフィン12は、風上側扁平管群11Aと風下側扁平管群11Bとに共通に設けられた2列共通フィンとなっており、熱交換部10は全体として2列一体に構成されている。   The heat exchanging unit 10 has a flat tube group 11 </ b> A and 11 </ b> B composed of a plurality of flat tubes 11 arranged side by side at intervals, with a space in the heat exchanger depth direction that is a direction orthogonal to the direction in which the flat tubes 11 are arranged. It has multiple rows (here 2 rows). Then, the flat tubes 11 and the corrugated fins 12 are alternately stacked in the direction in which the flat tubes 11 are arranged side by side. The corrugated fins 12 are two-row common fins provided in common to the windward side flat tube group 11A and the leeward side flat tube group 11B, and the heat exchanging unit 10 is configured in two rows as a whole.

各扁平管11は、図2に示すように冷媒流路となる貫通孔11aを複数(ここでは、一例として4つとしている)有したものであり、重力方向に立てて配置され、各扁平管11の重力方向両端が一対のヘッダ20、30に連結されている。具体的には、各扁平管11の下端は出入口ヘッダとしてのヘッダ20(20a、20b)に連通接続され、各扁平管11の上端は折り返しヘッダとしてのヘッダ30に連通接続されている扁平管11、コルゲートフィン12およびヘッダ20、30は例えばアルミまたはアルミ合金で構成されている。   As shown in FIG. 2, each flat tube 11 has a plurality of through-holes 11a (four as an example here) serving as a refrigerant flow path, and is arranged in a gravitational direction. 11 are connected to a pair of headers 20 and 30 at both ends in the direction of gravity. Specifically, the lower end of each flat tube 11 is connected to a header 20 (20a, 20b) as an inlet / outlet header, and the upper end of each flat tube 11 is connected to a header 30 as a folded header. The corrugated fins 12 and the headers 20 and 30 are made of, for example, aluminum or an aluminum alloy.

ヘッダ20は、ここでは、風上側扁平管群11Aと風下側扁平管群11Bとで独立した2つのヘッダ20a、20bで構成した例を示したが、一つのヘッダの内部を仕切板で分離した構成としてもよい。また、ここでは、ヘッダ20、30として角ヘッダを図示したが、円筒ヘッダとしてもよい。   Here, an example in which the header 20 is composed of two headers 20a and 20b independent of the windward side flat tube group 11A and the leeward side flat tube group 11B is shown, but the inside of one header is separated by a partition plate. It is good also as a structure. In addition, although the square headers are illustrated as the headers 20 and 30 here, they may be cylindrical headers.

以上のように構成された熱交換器1が蒸発器として用いられる場合、冷媒は重力方向下部且つ風上側のヘッダ20aに流入し、ヘッダ20aで風上側扁平管群11Aの本数と同一のパスに分離され、風上側扁平管群11Aの各扁平管11内を上昇する。その後、風上側扁平管群11Aの各扁平管11の上端から流出した冷媒がヘッダ30で合流した後、ヘッダ30内で折り返され、風下側扁平管群11Bの各扁平管11に上端から流入する。風下側扁平管群11Bの各扁平管11の上端から流入した冷媒は、扁平管11内を通過して下端から流出し、ヘッダ20bで合流した後、熱交換器1を流出する。   When the heat exchanger 1 configured as described above is used as an evaporator, the refrigerant flows into the header 20a in the lower part of the gravity direction and on the windward side, and the header 20a makes the same path as the number of the windward flat tube group 11A. It separates and raises the inside of each flat tube 11 of 11A of windward flat tube groups. Thereafter, the refrigerant that has flowed out from the upper ends of the flat tubes 11 in the windward flat tube group 11A merges in the header 30, is folded back in the header 30, and flows into the flat tubes 11 in the leeward flat tube group 11B from the upper ends. . The refrigerant that has flowed in from the upper ends of the respective flat tubes 11 in the leeward flat tube group 11B passes through the flat tubes 11 and flows out from the lower ends, merges in the header 20b, and then flows out of the heat exchanger 1.

図3は、本発明の実施の形態1に係る熱交換器の正面拡大模式図である。図4は、本発明の実施の形態1に係る熱交換器の横断面図である。図5は図4のA−A断面図である。
図3に示すようにコルゲートフィン12は、平面部13と湾曲部14とが交互に連なってジグザグ状に形成されており、各平面部13には複数のルーバ15が形成されている。ルーバ15は、コルゲートフィン12の平面部13に対して傾斜するようにして切り起こされたものであり、平面部13において熱交換器奥行き方向(空気の流れ方向に同じ)に複数(ここでは、一例として8つとしている)並設されている。各ルーバ15は図5に示すように熱交換器奥行き方向の中央部に向かって下方に傾斜して形成されている。
FIG. 3 is an enlarged schematic front view of the heat exchanger according to Embodiment 1 of the present invention. FIG. 4 is a cross-sectional view of the heat exchanger according to Embodiment 1 of the present invention. FIG. 5 is a cross-sectional view taken along the line AA in FIG.
As shown in FIG. 3, the corrugated fins 12 are formed in a zigzag shape in which the plane portions 13 and the curved portions 14 are alternately arranged, and a plurality of louvers 15 are formed in each plane portion 13. The louver 15 is cut and raised so as to be inclined with respect to the flat surface portion 13 of the corrugated fin 12, and in the flat surface portion 13, a plurality of louvers 15 (here, the same as the air flow direction) (here, (It is eight as an example.) As shown in FIG. 5, each louver 15 is formed so as to be inclined downward toward the center in the depth direction of the heat exchanger.

本実施の形態1においてコルゲートフィン12は風上側扁平管群11Aおよび風下側扁平管群11Bの2列に共通の構成であるため、一列対応のものよりも熱交換器奥行き方向に長い。このため、コルゲートフィン12の表面に発生した凝縮水の排水性の向上が求められる。そこで、本実施の形態1では、コルゲートフィン12において風上側扁平管群11Aと風下側扁平管群11Bとの間に位置する部分に、コルゲートフィン12に発生した凝縮水を、扁平管11の列同士の間の隙間(以下、列間隙間という)16に導く第1排水部17を設けた構成としている。   In the first embodiment, the corrugated fins 12 have a configuration common to the two rows of the windward flat tube group 11A and the leeward flat tube group 11B, and are therefore longer in the heat exchanger depth direction than those corresponding to one row. For this reason, the improvement of the drainage property of the condensed water which generate | occur | produced on the surface of the corrugated fin 12 is calculated | required. Therefore, in the first embodiment, in the corrugated fins 12, the condensed water generated in the corrugated fins 12 is placed in a portion located between the windward flat tube group 11 </ b> B and the leeward flat tube group 11 </ b> B. A first drainage portion 17 is provided to guide a gap 16 between them (hereinafter referred to as an inter-column gap) 16.

第1排水部17は平面部13の熱交換器奥行き方向の中央部において扁平管11の並設方向(図4の左右方向)に延び、重力方向下方向に凹状の溝であり、各平面部13に形成されている。第1排水部17は列間隙間16と熱交換器奥行き方向の位置が一致しており、並設方向(図4の左右方向)に第1排水部17と、排水経路となる列間隙間16とが交互に並んで互いに連通して形成されている。   The first drainage portion 17 is a groove that extends in the parallel direction of the flat tubes 11 (the left-right direction in FIG. 4) at the center of the flat portion 13 in the depth direction of the heat exchanger, and is concave downward in the gravitational direction. 13 is formed. The first drainage portion 17 is aligned in the inter-row gap 16 and the heat exchanger depth direction, and the first drainage portion 17 and the inter-row gap 16 serving as a drainage path in the juxtaposed direction (left-right direction in FIG. 4). Are alternately arranged and communicated with each other.

また、コルゲートフィン12はフィン風上側端12aが扁平管11の風上側端11bよりも風上側に延出されており、この延出部分で第2排水部18が構成されている。   Further, the corrugated fin 12 has a fin windward side end 12a extending to the windward side of the flat tube 11 from the windward side end 11b, and a second drainage portion 18 is formed by this extended portion.

以上のように構成された熱交換器1を蒸発器として用いる場合、コルゲートフィン12の表面に凝縮水が発生する。その凝縮水は、コルゲートフィン12上およびルーバ15を介して第1排水部17に集められて扁平管11側に移動し、列間隙間16から重力方向下部へ排水される。ここで、平面部13は重力方向に傾斜しているため、第1排水部17から列間隙間16へ凝縮水が流れやすくなっている。   When the heat exchanger 1 configured as described above is used as an evaporator, condensed water is generated on the surface of the corrugated fins 12. The condensed water is collected on the first drainage part 17 on the corrugated fins 12 and via the louver 15, moves to the flat tube 11 side, and is drained from the inter-column gap 16 to the lower part in the gravity direction. Here, since the plane portion 13 is inclined in the direction of gravity, the condensed water easily flows from the first drainage portion 17 to the inter-row gap 16.

また、蒸発器においては、最初に空気が衝突する風上側部分で凝縮しやすいため、コルゲートフィン12の風上側で発生した凝縮水が平面部13の傾斜により第2排水部18を流れて重力方向下部へ排水される。   Further, in the evaporator, since it is easy to condense in the windward part where the air first collides, the condensed water generated on the windward side of the corrugated fin 12 flows through the second drainage part 18 due to the inclination of the flat part 13 and moves in the direction of gravity. Drained to the bottom.

以上説明したように本実施の形態1によれば、熱交換部10において熱交換器奥行き方向において風上側扁平管群11Aと風下側扁平管群11Bとの間に位置する部分に、列間隙間16に排水する第1排水部17を設けたので、以下の効果を有する。すなわち、コルゲートフィン12が熱交換器奥行き方向に長い構成であっても、フィン全体の凝縮水を第1排水部17に集めることができ、列間隙間16を利用した排水が可能であり、排水性を高めることができる。   As described above, according to the first embodiment, in the heat exchanger 10, the inter-column gap is located in the portion located between the windward flat tube group 11 </ b> A and the leeward flat tube group 11 </ b> B in the heat exchanger depth direction. Since the 1st drainage part 17 which drains to 16 was provided, it has the following effects. That is, even if the corrugated fins 12 are long in the heat exchanger depth direction, the condensed water of the entire fins can be collected in the first drainage part 17 and drainage using the inter-row gaps 16 is possible. Can increase the sex.

また、コルゲートフィン12を2列の扁平管11間に共通の2列共通フィンとしているため、2列分割フィンを用いた場合に比べ、製造時のフィン挿入が一度で済むため製造性が向上する。   In addition, since the corrugated fins 12 are common two-row common fins between the two rows of flat tubes 11, compared to the case where the two-row divided fins are used, the fin insertion at the time of manufacturing is only once, thereby improving the productivity. .

また、低外気温条件下において熱交換器1を蒸発器として使用する場合に、コルゲートフィン12の表面に付着した凝縮水が凍結して着霜する場合がある。特に、最初に空気が衝突する風上側の部分は着霜しやすい。ここで、本実施の形態1では第2排水部18を設け、コルゲートフィン12における風上側部分の排水性を高めたため、着霜が生じる条件下で運転する場合でも、コルゲートフィン12のフィン風上側端12a付近に霜が集中することを避けることができる。   Further, when the heat exchanger 1 is used as an evaporator under a low outside air temperature condition, condensed water adhering to the surface of the corrugated fins 12 may freeze and form frost. In particular, the portion on the windward side where the air collides first tends to frost. Here, in this Embodiment 1, since the 2nd drainage part 18 was provided and the drainage property of the windward side part in the corrugated fin 12 was improved, even when driving | running on the conditions where frost formation occurs, the fin windward side of the corrugated fin 12 Concentration of frost near the end 12a can be avoided.

また、コルゲートフィン12の平面部13においてルーバ15を熱交換器奥行き方向の中央部に向かって下方に傾斜する構成としたが、ルーバ15の傾斜の向きはこの向きに限られたものではなく、全て同一の向きとしてもよい。   Moreover, although it was set as the structure which inclines below the louver 15 toward the center part of the heat exchanger depth direction in the plane part 13 of the corrugated fin 12, the direction of the inclination of the louver 15 is not restricted to this direction. All may be in the same orientation.

実施の形態2.
実施の形態2は、列間隙間16に排水促進体を備えたものである。実施の形態2で説明しない項目については実施の形態1と同様とする。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
Embodiment 2. FIG.
In the second embodiment, the inter-row gap 16 is provided with a drainage promoting body. Items not described in the second embodiment are the same as those in the first embodiment. The following description will focus on the differences of the second embodiment from the first embodiment.

図6は、本発明の実施の形態2に係る熱交換器の横断面図である。
凝縮水が重力方向下部に排水される場合、列間隙間16が小さい程、つまり排水経路が小さい程、凝縮水の表面張力が大きくなり、第1排水部17から列間隙間16に流入する凝縮水が増え、排水性が向上する。よって、本実施の形態2では、列間隙間16に排水促進体としての棒40を2本配置することで列間隙間16内を第1排水部17に連通する部分とそれ以外の部分とに仕切り、第1排水部17に連通する部分を排水経路41としたものである。
FIG. 6 is a cross-sectional view of a heat exchanger according to Embodiment 2 of the present invention.
When the condensed water is drained to the lower part in the direction of gravity, the smaller the inter-row gap 16, that is, the smaller the drainage path, the greater the surface tension of the condensed water and the condensate flowing from the first drainage portion 17 into the inter-row gap 16. Water increases and drainage improves. Therefore, in the second embodiment, by arranging two rods 40 as drainage promotion bodies in the inter-row gap 16, the inter-row gap 16 communicates with the first drainage portion 17 and the other portions. A part that communicates with the partition and the first drainage part 17 is a drainage path 41.

棒40は、外周に予めロウ材をクラッド(付着)した断面円形状の棒であり、例えばアルミまたはアルミ合金で構成され、コルゲートフィン12および扁平管11の少なくとも一方に固定されている。   The rod 40 is a rod having a circular cross section in which a brazing material is clad (adhered) to the outer periphery in advance, and is made of, for example, aluminum or an aluminum alloy, and is fixed to at least one of the corrugated fin 12 and the flat tube 11.

以上説明したように本実施の形態2では、実施の形態1と同様の効果が得られるとともに、列間隙間16内に棒40を配置して列間隙間16内を仕切り、列間隙間16よりも小さい排水経路41を構成したため、以下の効果が得られる。すなわち、上記実施の形態1ではいわば列間隙間16全体が排水経路であったが、実施の形態2では棒40を配置したことで排水経路を縮小したため、棒40を設けない場合に比べて凝縮水を排水経路41に導く作用が向上する。また、棒40は重力方向に延びているため、凝縮水を重力方向に導く作用が向上する。よって、排水性を更に向上することができる。   As described above, in the second embodiment, the same effects as those of the first embodiment can be obtained, and the rod 40 is disposed in the inter-column gap 16 to partition the inter-column gap 16. Since the small drainage channel 41 is configured, the following effects can be obtained. That is, in the first embodiment, the entire inter-row gap 16 is a drainage path, but in the second embodiment, the drainage path is reduced by disposing the rod 40, so that the condensation is performed compared to the case where the rod 40 is not provided. The effect | action which guides water to the drainage path 41 improves. Moreover, since the rod 40 extends in the direction of gravity, the effect of guiding condensed water in the direction of gravity is improved. Therefore, drainage can be further improved.

また、外周にロウ材を付着した棒40を用いることで、コルゲートフィン12および扁平管11との接合が容易となり、製造性も良好となる。   Further, by using the rod 40 with the brazing material adhered to the outer periphery, the corrugated fin 12 and the flat tube 11 can be easily joined, and the productivity can be improved.

なお、本実施の形態2では、棒40を断面円形状としたが、これに限られたものではなく断面長方形状、断面楕円形状などとしてもよい。   In the second embodiment, the rod 40 has a circular cross section, but is not limited to this, and may have a rectangular cross section, an elliptical cross section, or the like.

また、棒40の本数は、ここでは2本としたが、本数はこれに限られたものではなく、1本としてもよいし、3本以上としてもよい。要するに、棒40を配置することで、列間隙間16内を仕切って列間隙間16内に別途、第1排水部17に連通する排水経路が形成されればよく、棒40の本数は任意である。   The number of bars 40 is two here, but the number is not limited to this, and may be one or three or more. In short, by disposing the rods 40, it is only necessary to form a drainage path that separates the inter-row gap 16 and communicates with the first drainage portion 17 in the inter-row gap 16, and the number of the rods 40 is arbitrary. is there.

実施の形態3.
実施の形態3は、排水促進体の構成が実施の形態2と異なるものであり、実施の形態3で説明しない項目については実施の形態1、2と同様とする。以下、実施の形態3が実施の形態1、2と異なる点を中心に説明する。
Embodiment 3 FIG.
The third embodiment is different from the second embodiment in the configuration of the drainage promotion body, and items not described in the third embodiment are the same as those in the first and second embodiments. The following description will focus on the differences of the third embodiment from the first and second embodiments.

図7は、本発明の実施の形態3に係る熱交換器の横断面図である。
実施の形態3では、短手方向に円弧状に湾曲する長方形状の板50を扁平管11の列間隙間16に挿入している。この板50は、各列間隙間16に2本ずつ配置され、円弧の両端側面に予め付着されたロウ材によりコルゲートフィン12に固定されている。この板50とコルゲートフィン12との間の隙間で、列間隙間16内に別途、第1排水部17に連通する排水経路51を形成している。
FIG. 7 is a cross-sectional view of a heat exchanger according to Embodiment 3 of the present invention.
In the third embodiment, a rectangular plate 50 curved in an arc shape in the short direction is inserted into the inter-column gap 16 of the flat tube 11. Two plates 50 are disposed in the inter-row gaps 16 and are fixed to the corrugated fins 12 by brazing material previously attached to both side surfaces of the arc. In the gap between the plate 50 and the corrugated fins 12, a drainage path 51 communicating with the first drainage unit 17 is formed separately in the inter-row gap 16.

本実施の形態3によれば、実施の形態2と同様の作用効果を得ることができる。   According to the third embodiment, the same effect as that of the second embodiment can be obtained.

また、板50の本数は、ここでは2本としたが、本数はこれに限られたものではない。要するに、板50を配置することで、列間隙間16内を仕切って列間隙間16内に別途、第1排水部17に連通する排水経路が形成されればよく、板50の本数は任意である。   Further, the number of the plates 50 is two here, but the number is not limited to this. In short, by disposing the plates 50, it is only necessary to form a drainage path that divides the gaps 16 between the rows and communicates with the first drainage portions 17 separately in the gaps 16 between the rows, and the number of the plates 50 is arbitrary. is there.

実施の形態4.
実施の形態4は、コルゲートフィン12の風下側端の排水性向上に関するものである。実施の形態4で説明しない項目については実施の形態1と同様とする。以下、実施の形態4が実施の形態1と異なる点を中心に説明する。
Embodiment 4 FIG.
The fourth embodiment relates to the improvement of drainage at the leeward side end of the corrugated fin 12. Items not described in the fourth embodiment are the same as those in the first embodiment. Hereinafter, the difference between the fourth embodiment and the first embodiment will be mainly described.

図8は、本発明の実施の形態4に係る熱交換器の横断面図である。
実施の形態4の熱交換器1のコルゲートフィン12は、フィン風下側端12bが風下側扁平管群11Bの扁平管風下側端11cよりも風下側に延出されており、この延出部分で第3排水部19が形成されている。そして、第3排水部19の延出距離aが第2排水部18の延出距離bよりも短く構成されている。
FIG. 8 is a cross-sectional view of a heat exchanger according to Embodiment 4 of the present invention.
In the corrugated fin 12 of the heat exchanger 1 of the fourth embodiment, the fin leeward side end 12b extends further to the leeward side than the flat tube leeward side end 11c of the leeward side flat tube group 11B. A third drainage part 19 is formed. The extension distance a of the third drainage part 19 is configured to be shorter than the extension distance b of the second drainage part 18.

実施の形態4によれば、実施の形態1と同様の効果が得られるとともに、蒸発器として用いられる場合、空気の流れにより風下側に流れた凝縮水を第3排水部19を伝って列間隙間16aから重力方向に排水することができる。   According to the fourth embodiment, the same effects as those of the first embodiment can be obtained, and when used as an evaporator, the condensed water that has flowed to the leeward side due to the flow of air travels along the third drainage section 19 and between the rows. It can drain in the direction of gravity from the gap 16a.

また、コルゲートフィン12のフィン風上側端12aおよびフィン風下側端12bの両方を扁平管風上側端11bおよび扁平管風下側端11cから延出させて第2排水部18および第3排水部19を形成するにあたり、延出距離の配分を第3排水部19の延出距離aが第2排水部18の延出距離bよりも短くなる配分とした。これにより、フィン風上側の第2排水部18の排水性および着霜耐力を十分確保しつつ、フィン風下側の第3排水部19においても排水性を確保することができる。   Further, both the fin windward end 12a and the fin windward end 12b of the corrugated fin 12 are extended from the flat tube windward end 11b and the flat tube windward end 11c so that the second drainage portion 18 and the third drainage portion 19 are provided. In the formation, the distribution of the extension distance was set such that the extension distance a of the third drainage portion 19 was shorter than the extension distance b of the second drainage portion 18. Thereby, drainage property can be ensured also in the 3rd drainage part 19 on the fin leeward side, while ensuring the drainage property and frosting resistance of the second drainage part 18 on the fin leeward side.

実施の形態5.
図9は、本発明の実施の形態5に係る空調冷凍装置の冷媒回路図である。
空調冷凍装置は、圧縮機61、凝縮器62、絞り装置63、蒸発器64を有し、冷媒が循環する冷媒回路と、送風機65とを備えている。凝縮器62および蒸発器64では、送風機モータ66で回転駆動される送風機65によって送風される空気と冷媒との熱交換が行われる。凝縮器62または蒸発器64、もしくは両方に上述の各実施の形態1〜4のいずれかの熱交換器を用いることにより、エネルギ効率の高い空調冷凍装置を実現することができる。
Embodiment 5. FIG.
FIG. 9 is a refrigerant circuit diagram of an air-conditioning refrigeration apparatus according to Embodiment 5 of the present invention.
The air conditioning refrigeration apparatus includes a compressor 61, a condenser 62, an expansion device 63, and an evaporator 64, and includes a refrigerant circuit in which refrigerant circulates and a blower 65. In the condenser 62 and the evaporator 64, heat exchange between the air blown by the blower 65 rotated by the blower motor 66 and the refrigerant is performed. By using the heat exchanger of any of the first to fourth embodiments described above for the condenser 62 or the evaporator 64, or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.

ここで、エネルギ効率は、次式で構成されるものである。
暖房エネルギ効率 = 室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率 = 室内熱交換器(蒸発器)能力/全入力
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = Indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = Indoor heat exchanger (evaporator) capacity / total input

なお、上述の実施の形態1〜5で述べた熱交換器およびこの熱交換器を備えた空調冷凍装置については、R410A、R32、HFO1234yf等の冷媒においてその効果を達成することができる。   In addition, about the heat exchanger described in the above-mentioned Embodiment 1-5 and the air-conditioning refrigerating apparatus provided with this heat exchanger, the effect can be achieved in refrigerant | coolants, such as R410A, R32, HFO1234yf.

また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。   Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.

また、上述の実施の形態1〜5で述べた熱交換器を室内機で用いた場合においても同様な効果を奏することができる。   Moreover, the same effect can be produced even when the heat exchanger described in the first to fifth embodiments is used in an indoor unit.

また、上述の実施の形態1〜5で述べた熱交換器およびそれを用いた空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   In addition, with respect to the heat exchanger described in the first to fifth embodiments and the air-conditioning refrigeration apparatus using the heat exchanger, a refrigerant and an oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil are used. The effect can be achieved with any refrigeration oil, whether or not it melts.

なお、上述の実施の形態1〜5では扁平管群を風上側扁平管群11Aと風下側扁平管群11Bとの2列構成としたが、更に複数列の構成としてもよい。この場合も、コルゲートフィン12において列間相当部分に上記と同様の第1排水部17を設けることで、排水性を確保することができる。また、複数列構成において第2排水部18および第3排水部19も同様に適用できる。   In the first to fifth embodiments described above, the flat tube group has a two-row configuration of the windward flat tube group 11A and the leeward flat tube group 11B, but may have a plurality of rows. Also in this case, drainage performance can be secured by providing the first drainage portion 17 similar to the above in the corrugated fins 12 at the portion corresponding to the inter-row. Moreover, the 2nd drainage part 18 and the 3rd drainage part 19 are similarly applicable in a multi-row structure.

なお、上述の実施の形態1〜5では、それぞれ別の実施の形態として説明したが、各実施の形態の特徴的な構成を適宜組み合わせて熱交換器およびこの熱交換器を備えた空調冷凍装置を構成してもよい。例えば、図6に示した実施の形態2と図8に示した実施の形態8とを組み合わせ、図6において更に第3排水部19を設けた構成としてもよい。   In the above-described first to fifth embodiments, the embodiments have been described as different embodiments, but a heat exchanger and an air-conditioning refrigeration apparatus including the heat exchanger by appropriately combining the characteristic configurations of the embodiments. May be configured. For example, the second embodiment shown in FIG. 6 may be combined with the eighth embodiment shown in FIG. 8, and the third drainage unit 19 may be further provided in FIG.

また、実施の形態1〜5のそれぞれにおいて、同様の構成部分について適用される変形例はその変形例を説明した実施の形態以外の他の実施の形態においても同様に適用される。   Further, in each of the first to fifth embodiments, the modification applied to the same components is similarly applied to other embodiments other than the embodiment described for the modification.

本発明の活用例として、製造が容易で、熱交換性能を向上し、省エネルギ性能を向上することが必要なヒートポンプ装置に使用することができる。   As an application example of the present invention, it can be used in a heat pump device that is easy to manufacture, needs to improve heat exchange performance, and improve energy saving performance.

1 熱交換器、10 熱交換部、11 扁平管、11A 風上側扁平管群、11B 風下側扁平管群、11a 貫通孔、11b 扁平管風上側端、11c 扁平管風下側端、12 コルゲートフィン、12a フィン風上側端、12b フィン風下側端、13 平面部、14 湾曲部、15 ルーバ、16 列間隙間、16a 列間隙間、17 第1排水部、18 第2排水部、19 第3排水部、20(20a、20b) ヘッダ、30 ヘッダ、40 棒、41 排水経路、50 板、51 排水経路、61 圧縮機、62 凝縮器、63 絞り装置、64 蒸発器、65 送風機、66 送風機モータ。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 10 Heat exchange part, 11 Flat tube, 11A Upwind flat tube group, 11B Downward flat tube group, 11a Through-hole, 11b Flat tube wind upper end, 11c Flat tube leeward end, 12 Corrugated fin, 12a Fin wind upper end, 12b Fin wind lower end, 13 plane portion, 14 curved portion, 15 louver, 16 row clearance, 16a row clearance, 17 first drainage portion, 18 second drainage portion, 19 third drainage portion , 20 (20a, 20b) header, 30 header, 40 bar, 41 drainage path, 50 plate, 51 drainage path, 61 compressor, 62 condenser, 63 throttle device, 64 evaporator, 65 blower, 66 blower motor.

特開2005−24187号公報(図1)Japanese Patent Laying-Open No. 2005-24187 (FIG. 1) 特許4786234号公報(図1)Japanese Patent No. 4786234 (FIG. 1)

本発明に係る熱交換器は、熱交換器奥行き方向に列間隙間を空けて複数列設けられた扁平管群と、複数列の扁平管群に共通に設けられたコルゲートフィンとを有し、扁平管群が重力方向に立てて配置される複数の扁平管から構成された熱交換部を備え、コルゲートフィンは、扁平管群の列同士の間に位置する部分に形成され、列間隙間に連通する第1排水部と、フィン表面に対して傾斜するようにして切り起こされた複数のルーバとを有し、複数のルーバのそれぞれは、第1排水部に向かって下方に傾斜して形成されているものである。 The heat exchanger according to the present invention has a flat tube group provided in a plurality of rows with gaps between rows in the depth direction of the heat exchanger, and corrugated fins provided in common in the plurality of flat tube groups, The flat tube group is provided with a heat exchanging portion composed of a plurality of flat tubes arranged in a gravitational direction, and the corrugated fin is formed in a portion located between the rows of the flat tube group, and between the row gaps It has the 1st drainage part which communicates, and a plurality of louvers cut and raised so as to incline with respect to the fin surface, and each of the plurality of louvers is inclined downward toward the first drainage part. It is what has been .

Claims (14)

熱交換器奥行き方向に列間隙間を空けて複数列設けられた扁平管群と、前記複数列の前記扁平管群に共通に設けられたコルゲートフィンとを有し、前記扁平管群が重力方向に立てて配置される複数の扁平管から構成された熱交換部を備え、
前記コルゲートフィンは、前記扁平管群の列同士の間に位置する部分に、前記列間隙間に連通する第1排水部を有する
熱交換器。
A flat tube group provided in a plurality of rows with gaps between rows in the depth direction of the heat exchanger, and corrugated fins provided in common to the flat tube groups in the plurality of rows, wherein the flat tube group is in the direction of gravity A heat exchanging part composed of a plurality of flat tubes arranged upright,
The corrugated fin has a first drainage portion that communicates between the row gaps at a portion located between the rows of the flat tube group.
前記第1排水部は重力方向下方向に凹状の溝である請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the first drainage part is a groove that is concave downward in the direction of gravity. 前記コルゲートフィンは、平面部と湾曲部とが交互に連なった形状を有し、前記第1排水部は前記平面部に形成されている請求項1または請求項2記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the corrugated fin has a shape in which flat portions and curved portions are alternately arranged, and the first drainage portion is formed in the flat portion. 前記平面部は重力方向に傾斜している請求項3記載の熱交換器。   The heat exchanger according to claim 3, wherein the flat portion is inclined in the direction of gravity. 重力方向に延びた部材であって、前記列間隙間内を前記第1排水部に連通する部分とそれ以外の部分とに仕切る排水促進体が前記列間隙間に配置されている請求項1〜請求項4のいずれか一項に記載の熱交換器。   A member that extends in the direction of gravity, wherein a drainage promoting body that divides the gap between the rows into a portion that communicates with the first drainage portion and other portions is disposed between the row gaps. The heat exchanger according to any one of claims 4 to 5. 前記排水促進体は棒である請求項5記載の熱交換器。   The heat exchanger according to claim 5, wherein the drainage promotion body is a rod. 前記棒は前記棒の外周に予め付着されたロウ材によって前記コルゲートフィンおよび前記扁平管の少なくとも一方に固定されている請求項6記載の熱交換器。   The heat exchanger according to claim 6, wherein the rod is fixed to at least one of the corrugated fin and the flat tube by a brazing material previously attached to an outer periphery of the rod. 前記排水促進体は短手方向に円弧状に湾曲する長方形状の板である請求項5記載の熱交換器。   The heat exchanger according to claim 5, wherein the drainage promotion body is a rectangular plate that is curved in an arc shape in a short direction. 前記板は、前記板の円弧の両端側面に貼られたロウ材によって前記コルゲートフィンに固定されている請求項8記載の熱交換器。   The heat exchanger according to claim 8, wherein the plate is fixed to the corrugated fin by a brazing material attached to both side surfaces of an arc of the plate. 前記コルゲートフィンの風上側端が前記扁平管の風上側端よりも風上側に延出されて構成された第2排水部を更に有する請求項1〜請求項9のいずれか一項に記載の熱交換器。   The heat according to any one of claims 1 to 9, further comprising a second drainage portion configured such that an upwind end of the corrugated fin extends to an upwind side of an upwind end of the flat tube. Exchanger. 前記コルゲートフィンの風下側端を前記扁平管の風下側端よりも風下側に延出されて構成された第3排水部を更に有する請求項1〜請求項10のいずれか一項に記載の熱交換器。   The heat according to any one of claims 1 to 10, further comprising a third drainage portion configured such that the leeward side end of the corrugated fin extends to the leeward side of the leeward side end of the flat tube. Exchanger. 前記第3排水部の延出距離は前記第2排水部の延出距離よりも短い請求項10に従属する請求項11記載の熱交換器。   The heat exchanger according to claim 11, which is dependent on claim 10, wherein the extension distance of the third drainage part is shorter than the extension distance of the second drainage part. 前記コルゲートフィンはフィン表面に対して傾斜するようにして切り起こされた複数のルーバを有し、前記複数のルーバのそれぞれは、前記熱交換器奥行き方向の中央部に向かって下方に傾斜して形成されている請求項1〜請求項12のいずれか一項に記載の熱交換器。   The corrugated fin has a plurality of louvers cut and raised so as to be inclined with respect to the fin surface, and each of the plurality of louvers is inclined downward toward a central portion in the depth direction of the heat exchanger. The heat exchanger as described in any one of Claims 1-12 currently formed. 請求項1〜請求項13のいずれか一項に記載の熱交換器を備えた空調冷凍装置。   An air-conditioning refrigeration apparatus comprising the heat exchanger according to any one of claims 1 to 13.
JP2016535601A 2014-07-25 2014-07-25 HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER Pending JPWO2016013100A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069642 WO2016013100A1 (en) 2014-07-25 2014-07-25 Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger

Publications (1)

Publication Number Publication Date
JPWO2016013100A1 true JPWO2016013100A1 (en) 2017-04-27

Family

ID=55162654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016535601A Pending JPWO2016013100A1 (en) 2014-07-25 2014-07-25 HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER

Country Status (3)

Country Link
EP (1) EP3173725A4 (en)
JP (1) JPWO2016013100A1 (en)
WO (1) WO2016013100A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380449B2 (en) * 2016-04-07 2018-08-29 ダイキン工業株式会社 Indoor heat exchanger
EP3534103B1 (en) * 2016-10-28 2020-12-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7406297B2 (en) * 2018-03-01 2023-12-27 ダイキン工業株式会社 Heat exchanger
JP2020034184A (en) * 2018-08-27 2020-03-05 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
DE102018214871A1 (en) * 2018-08-31 2020-03-05 Mahle International Gmbh Heat pump heater
US20240085122A1 (en) * 2019-11-11 2024-03-14 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
EP4350273A1 (en) * 2021-05-25 2024-04-10 Mitsubishi Electric Corporation Heat exchanger and air conditioner
JP7305085B1 (en) 2022-04-12 2023-07-07 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110892A (en) * 1979-02-16 1980-08-26 Nippon Radiator Co Ltd Corrugated fin and blade forming the same
JPS58217195A (en) * 1982-06-10 1983-12-17 Mitsubishi Electric Corp Heat exchanger
JPH06241678A (en) * 1993-02-19 1994-09-02 Hitachi Ltd Parallel flow heat exchanger for heat pump
JPH1183371A (en) * 1997-09-05 1999-03-26 Denso Corp Laminated heat exchanger for cooling
JP2004085170A (en) * 2002-08-22 2004-03-18 Lg Electronics Inc Heat exchanger
JP2005024187A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Outdoor heat exchanger for heat pump
JP2007113802A (en) * 2005-10-18 2007-05-10 Denso Corp Evaporator
JP2008298391A (en) * 2007-06-01 2008-12-11 Denso Corp Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
WO2010122684A1 (en) * 2009-04-22 2010-10-28 シャープ株式会社 Heat exchanger and air conditioner having the heat exchanger mounted therein
JP4786234B2 (en) * 2004-07-05 2011-10-05 昭和電工株式会社 Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753016B2 (en) * 1989-01-25 1998-05-18 松下冷機株式会社 Finned heat exchanger
JP4122608B2 (en) * 1998-12-10 2008-07-23 株式会社デンソー Refrigerant evaporator
JP2001255093A (en) * 2000-03-09 2001-09-21 Zexel Valeo Climate Control Corp Evaporator
US20070251681A1 (en) * 2004-10-13 2007-11-01 Naohisa Higashiyama Evaporator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110892A (en) * 1979-02-16 1980-08-26 Nippon Radiator Co Ltd Corrugated fin and blade forming the same
JPS58217195A (en) * 1982-06-10 1983-12-17 Mitsubishi Electric Corp Heat exchanger
JPH06241678A (en) * 1993-02-19 1994-09-02 Hitachi Ltd Parallel flow heat exchanger for heat pump
JPH1183371A (en) * 1997-09-05 1999-03-26 Denso Corp Laminated heat exchanger for cooling
JP2004085170A (en) * 2002-08-22 2004-03-18 Lg Electronics Inc Heat exchanger
JP2005024187A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Outdoor heat exchanger for heat pump
JP4786234B2 (en) * 2004-07-05 2011-10-05 昭和電工株式会社 Heat exchanger
JP2007113802A (en) * 2005-10-18 2007-05-10 Denso Corp Evaporator
JP2008298391A (en) * 2007-06-01 2008-12-11 Denso Corp Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
WO2010122684A1 (en) * 2009-04-22 2010-10-28 シャープ株式会社 Heat exchanger and air conditioner having the heat exchanger mounted therein

Also Published As

Publication number Publication date
EP3173725A4 (en) 2018-04-04
WO2016013100A1 (en) 2016-01-28
EP3173725A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
US9651317B2 (en) Heat exchanger and air conditioner
US9657996B2 (en) Flat tube heat exchanger and outdoor unit of air-conditioning apparatus including the heat exchanger
US10082344B2 (en) Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
EP3156752B1 (en) Heat exchanger
JPWO2016158193A1 (en) Heat exchanger and air conditioner
JP6120978B2 (en) Heat exchanger and air conditioner using the same
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP2014142138A (en) Air conditioner
JPWO2017183180A1 (en) Heat exchanger
KR20140018199A (en) Heat exchanger and air conditioner equipped with same
CN110741216B (en) Heat exchanger, refrigeration cycle device, and air conditioner
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
WO2017158795A1 (en) Heat exchanger and air conditioner
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
WO2018185824A1 (en) Heat exchanger and refrigeration cycle device
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2007139278A (en) Heat exchanger, and cold instrument using it
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP2015014397A (en) Heat exchanger
JP6621928B2 (en) Heat exchanger and air conditioner
JP2012154491A (en) Air conditioner
JP6415597B2 (en) Refrigeration cycle equipment
JP2010127511A (en) Heat exchanger
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306