【0001】
【発明の属する技術分野】
本発明は、ルームエアコン,パッケージエアコンなどのパラレルフロー型のヒートポンプ用室外熱交換器に関する。
【0002】
【従来の技術】
平行に配された複数の扁平チューブとコルゲートフィンとが通風直角方向に交互に積層され、その扁平チューブのおのおのの両端が1対の中空ヘッダに連結されているパラレルフロー熱交換器については、凝縮器として使用される場合、即ちエアコンが冷房用として使用される場合を対象にしているため、着霜・除霜に対する考慮がなされていない。図3はヒートポンプ用室外熱交換器全体の斜視図であり、図4はその一部の拡大図である。平行に配された多数の扁平チューブ1の間にその扁平チューブに熱的に接続されたコルゲートフィン2が挟み込まれている。扁平チューブ1の通風方向奥行TDとコルゲートフィン2の通風方向奥行FDは同一で、両端は揃えられている。コルゲートフィン2には通風上流側と下流側で傾き方向を逆にしてはあるが、同形状のルーバ3が設けられている。
【0003】
通風空気4はコルゲートフィン2の間に流入してルーバ3の隙間を流れながらコルゲートフィン2を通過するにつれて通風空気の有する冷熱(または温熱)を放出し、扁平チューブ1の中に設けられた多数の小孔5の中を流れる蒸発性媒体6に伝達する。小孔5の内面には小さな凹凸を設けて伝熱促進を図ることがある。蒸発性媒体6の流れ方向は、エアコンの冷房運転の場合、図4の図示Mと逆方向になり、暖房運転の場合図示のMの方向となる。平行に配された扁平チューブ1の両端は上下の中空ヘッダ11に繋がりこれが蒸発性媒体6の出入口を形成している。熱交換器の左右端には端板12が取り付けられており、コルゲートフィン2を保護している(例えば、特許文献1参照)。
【0004】
【特許文献1】
特公平3−45300号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、以下のような問題がある。
【0006】
すなわち、エアコンが暖房運転をしている場合、室外熱交換器に送られる通風空気4は冷たく、その上扁平チューブ1が蒸発器として動作してコルゲートフィン2を介して通風空気4から凝縮の潜熱を奪うので、通風空気4はコルゲートフィン2の間を通過する間に更に次第に冷却される。このため空気が保有していた水蒸気は過飽和状態となり、扁平チューブ1やコルゲートフィン2の壁面温度が0℃以下の時は過飽和水蒸気が氷となってこれら壁面に着霜し、時間と共に生長して遂には通風路を閉塞するに至る。
【0007】
このように、着霜がある程度以上進行すると、暖房性能が低下するため、冷媒を逆転させるなどして、除霜運転を行う。除霜運転に入ると、扁平チューブやコルゲートフィン表面の霜が溶けて、コルゲートフィンに設けられたルーバを介して、下方向に流れ落ちる。
【0008】
しかしながら、前記従来の構成では、コルゲートフィンにルーバが設けられているために、ルーバ前縁で霜が成長し、ルーバのないフィンに比べて急速な着霜の進行と暖房性能の低下を招くという欠点があった。ただし、ルーバがないと、結露水が流れ落ちないため、ルーバをなくすこともできなかった。
【0009】
本発明の目的は、暖房時、除霜時にフィン面上に残る水を確実に熱交換器外に排出し、なおかつ、急速な着霜の進行のないパラレルフロー型のヒートポンプ用室外熱交換器を提供することにある。
【0010】
【課題を解決するための手段】
この目的を達成するために、平行に配された複数の扁平チューブとコルゲートフィンとが通風直角方向に交互に積層されてなるパラレルフロー型のヒートポンプ用室外熱交換器において、前記コルゲートフィンの波型の谷線と稜線を熱交換器奥行き方向に、熱交換器奥行き方向中央部を底とする谷型形状として、その谷底部分でかつ前記コルゲートフィンの扁平チューブとの接合部に、貫通穴を設ける。
【0011】
本構成によって、暖房時、除霜時にフィン面上に残る水を確実に熱交換器外に排出し、なおかつ、急速な着霜の進行のないパラレルフロー型のヒートポンプ用室外熱交換器を提供する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0013】
(実施の形態1)
図1、3は本発明の実施の形態1を示す、部分斜視図と全体斜視図である。
【0014】
ヒートポンプ用室外熱交換器では、平行に配された多数の扁平チューブ1の間にその扁平チューブに熱的に接続されたコルゲートフィン2が挟み込まれている。各扁平チューブ1は垂直方向に立てられ、扁平チューブ1の通風方向奥行TDとコルゲートフィン2の通風方向奥行FDは同一で、両端は揃えられている。コルゲートフィン2の波型の谷線と稜線を熱交換器奥行き方向に、熱交換器奥行き方向中央部を底とする谷型形状としている。
【0015】
また、その谷底部分でかつコルゲートフィン2の扁平チューブ1との接合部に、貫通穴13を設けている。貫通穴13は、コルゲートフィン2の扁平チューブ1との接合線を直径とする略半円形状をしている。
【0016】
平行に配された扁平チューブ1の両端は上下の中空ヘッダ11に繋がりこれが蒸発性媒体6の出入口を形成している。熱交換器の左右端には端板12が取り付けられており、コルゲートフィン2を保護している。
【0017】
通風空気4はコルゲートフィン2を通り抜ける間に通風空気の有する温熱(または冷熱)を効率良く伝達して扁平チューブ1の中に設けられた多数の小孔5の中を流れる蒸発性媒体6を加熱(または冷却)する。小孔5の内面には小さな凹凸を設けて伝熱促進を図っている。蒸発性媒体6はエアコンの暖房運転の場合加熱されて蒸発し図1の図示Mの方向に流れる。
【0018】
エアコン暖房運転では、熱交換器に露が付くが、コルゲートフィン2上に付いた結露水は、コルゲートフィン2の扁平チューブ1との接合部に設けた貫通穴13を通過して、順次下方に流れ落ちる。
【0019】
本実施例では、コルゲートフィン2の波型の谷線と稜線を熱交換器奥行き方向に、熱交換器奥行き方向中央部を底とする谷型形状として、その谷底部分でかつコルゲートフィン2の扁平チューブ1との接合部に貫通穴13を設けているため、熱交換器奥行き方向中央部から遠く離れたフィン風上端あるいは風下端に結露した水も、フィン傾斜に沿って確実に熱交換器奥行き方向中央部に向かって流れ、確実に貫通穴13に誘い込むことができる。
【0020】
着霜発生条件下のエアコン暖房運転では、熱交換器の特にコルゲートフィン2に霜が付き、風の通路が狭くなる結果、通風抵抗が上昇して、送風機の風量が低下し、熱交換器の能力、温度が低下して、さらに霜が成長するという悪循環を繰り返して、ついには風の通路がほとんど閉塞する。このような状況下では、暖房能力も大幅に低下する。
【0021】
通常、この種の熱交換器のコルゲートフィン2には、図4に示すようにルーバ3が設けられているが、ルーバ3があると、ルーバ前縁にも霜が厚く成長するため、前述の風の通路が狭くなる時間が大幅に短くなり、短時間で暖房能力が大幅に低下して、除霜運転に入り暖房感を損ねる。
【0022】
しかし、本実施例では着霜を促進して暖房感を損ねるルーバ3がなくても、前述のように、貫通穴13を通して結露水を流すことが可能であり、除霜運転時も、霜の融解水は貫通穴13を通過して、チューブに沿って流れ落ち、熱交換器外に排出されるため、氷結の恐れがない。
【0023】
(実施の形態2)
図2は本発明の実施の形態2を示す、部分斜視図である。図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
【0024】
図2において、コルゲートフィン2上の各場所から貫通穴13に向かって伸びる誘導溝14を設けた。
【0025】
かかる構成によれば、通常暖房運転時や着霜発生条件下の除霜運転時、フィン表面の水は、コルゲートフィン2上の誘導溝14に誘導されて、より確実に貫通穴13まで誘導され、チューブに沿って流れ落ち、熱交換器外に排出されるため、氷結の恐れ等がない。
【0026】
なお、上記各実施例では扁平チューブ1の通風方向奥行TDとコルゲートフィン2の通風方向奥行FDは同一で、両端は揃えられているとしているが、扁平チューブ1の通風方向奥行TDがコルゲートフィン2の通風方向奥行FDより大きくても、小さくてもかまわないし、双方の位置が通風方向にずれていても本発明の効果が損なわれることはない。
【0027】
なお、上記各実施の形態では扁平チューブを用いているため、管の肉厚が同等でも、管径が小さいため、耐圧が大きくなり、特に圧力の高い二酸化炭素冷媒を用いる時に、上記各実施の形態の熱交換器が有効である。
【0028】
また、扁平チューブの管内容積が小さいため、冷媒量を減らすことができ、可燃性冷媒であるHC冷媒等を用いる時、上記各実施の形態の熱交換器が有効である。
【0029】
【発明の効果】
以上のように本発明のパラレルフロー型のヒートポンプ用室外熱交換器によれば、前記コルゲートフィンの波型の谷線と稜線を熱交換器奥行き方向に、熱交換器奥行き方向中央部を底とする谷型形状として、その谷底部分でかつ前記コルゲートフィンの扁平チューブとの接合部に、貫通穴を設けたことにより、暖房時、除霜時にフィン面上に残る水を確実に熱交換器外に排出し、なおかつ、急速な着霜の進行のないヒートポンプ用室外熱交換器を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるヒートポンプ用室外熱交換器の部分斜視図
【図2】本発明の実施の形態2におけるヒートポンプ用室外熱交換器の部分斜視図
【図3】本発明及び従来のパラレルフロー型のヒートポンプ用室外熱交換器の全体斜視図
【図4】従来のパラレルフロー型のヒートポンプ用室外熱交換器の部分斜視図
【符号の説明】
1 扁平チューブ
2 コルゲートフィン
3 ルーバ
4 通風空気
5 扁平チューブ内小孔
6 蒸発性媒体
11 中空ヘッダ
12 端版
13 貫通穴
14 誘導溝[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a parallel flow type heat pump outdoor heat exchanger such as a room air conditioner and a packaged air conditioner.
[0002]
[Prior art]
A parallel flow heat exchanger in which multiple flat tubes and corrugated fins arranged in parallel are alternately stacked in the direction perpendicular to the ventilation, and each end of each flat tube is connected to a pair of hollow headers is condensed. Since it is intended for use as an air conditioner, that is, when the air conditioner is used for cooling, no consideration is given to frost formation and defrosting. FIG. 3 is a perspective view of the whole heat pump outdoor heat exchanger, and FIG. 4 is an enlarged view of a part thereof. Corrugated fins 2 thermally connected to the flat tubes are sandwiched between a large number of flat tubes 1 arranged in parallel. The ventilation direction depth TD of the flat tube 1 and the ventilation direction depth FD of the corrugated fin 2 are the same, and both ends are aligned. The corrugated fin 2 is provided with a louver 3 having the same shape although the direction of inclination is reversed between the upstream side and the downstream side.
[0003]
The ventilating air 4 flows between the corrugated fins 2 and flows through the gaps of the louvers 3 and releases the cold heat (or hot heat) of the ventilating air as it passes through the corrugated fins 2. Is transmitted to the evaporative medium 6 flowing in the small holes 5. A small unevenness may be provided on the inner surface of the small hole 5 to promote heat transfer. The flow direction of the evaporative medium 6 is opposite to the direction M illustrated in FIG. 4 in the case of the air-conditioner cooling operation, and is the direction M illustrated in the case of the heating operation. Both ends of the flat tube 1 arranged in parallel are connected to the upper and lower hollow headers 11, which form the entrance / exit of the evaporative medium 6. End plates 12 are attached to the left and right ends of the heat exchanger to protect the corrugated fins 2 (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Examined Patent Publication No. 3-45300
[Problems to be solved by the invention]
However, the conventional configuration has the following problems.
[0006]
That is, when the air conditioner is in a heating operation, the ventilation air 4 sent to the outdoor heat exchanger is cold, and the flat tube 1 operates as an evaporator, and the latent heat of condensation from the ventilation air 4 via the corrugated fins 2. Therefore, the ventilation air 4 is gradually cooled while passing between the corrugated fins 2. For this reason, the water vapor possessed by the air becomes supersaturated, and when the wall surface temperature of the flat tube 1 and the corrugated fin 2 is 0 ° C. or lower, the supersaturated water vapor becomes frost on these wall surfaces and grows with time. Eventually the air passage is blocked.
[0007]
Thus, when frost formation progresses to some extent, the heating performance is reduced, so the defrosting operation is performed by reversing the refrigerant. When the defrosting operation is started, the frost on the surface of the flat tube and the corrugated fin melts and flows downward through the louver provided on the corrugated fin.
[0008]
However, in the conventional configuration, since the louver is provided on the corrugated fin, frost grows on the leading edge of the louver, leading to a rapid progress of frost formation and a decrease in heating performance as compared with the fin without the louver. There were drawbacks. However, if there was no louver, the condensed water would not flow down, so the louver could not be lost.
[0009]
An object of the present invention is to provide a parallel flow type heat pump outdoor heat exchanger that reliably discharges water remaining on the fin surface during heating and defrosting to the outside of the heat exchanger and does not cause rapid frosting. It is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve this object, in a parallel flow type heat pump outdoor heat exchanger in which a plurality of flat tubes and corrugated fins arranged in parallel are alternately stacked in a direction perpendicular to the ventilation, the corrugated fin corrugated The valley line and the ridge line in the heat exchanger depth direction, and a valley shape with the center in the depth direction of the heat exchanger as the bottom, a through hole is provided at the bottom of the valley and at the junction with the flat tube of the corrugated fin .
[0011]
This configuration provides a parallel flow heat pump outdoor heat exchanger that reliably discharges water remaining on the fin surface during heating and defrosting to the outside of the heat exchanger and that does not cause rapid frosting. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
(Embodiment 1)
1 and 3 are a partial perspective view and an overall perspective view, respectively, showing Embodiment 1 of the present invention.
[0014]
In the outdoor heat exchanger for heat pump, corrugated fins 2 thermally connected to the flat tubes are sandwiched between a number of flat tubes 1 arranged in parallel. Each flat tube 1 is erected in the vertical direction, and the ventilation direction depth TD of the flat tube 1 and the ventilation direction depth FD of the corrugated fin 2 are the same, and both ends are aligned. The corrugated fin 2 has a corrugated trough line and a ridge line in the depth direction of the heat exchanger and a valley shape with the center in the depth direction of the heat exchanger as the bottom.
[0015]
Further, a through-hole 13 is provided at the junction between the corrugated fin 2 and the flat tube 1 at the bottom of the valley. The through hole 13 has a substantially semicircular shape whose diameter is a joint line between the corrugated fin 2 and the flat tube 1.
[0016]
Both ends of the flat tube 1 arranged in parallel are connected to the upper and lower hollow headers 11, which form the entrance / exit of the evaporative medium 6. End plates 12 are attached to the left and right ends of the heat exchanger to protect the corrugated fins 2.
[0017]
While the ventilation air 4 passes through the corrugated fins 2, it efficiently transmits the heat (or cold energy) of the ventilation air and heats the evaporative medium 6 flowing through the numerous small holes 5 provided in the flat tube 1. (Or cool). A small unevenness is provided on the inner surface of the small hole 5 to promote heat transfer. In the heating operation of the air conditioner, the evaporable medium 6 is heated and evaporated, and flows in the direction indicated by M in FIG.
[0018]
In the air-conditioner heating operation, dew is attached to the heat exchanger, but the dew condensation water attached on the corrugated fins 2 passes through the through holes 13 provided in the joint portions of the corrugated fins 2 with the flat tubes 1 and sequentially downwards. run down.
[0019]
In the present embodiment, the corrugated fin 2 has a corrugated fin 2 having a corrugated valley line and a ridge line in the depth direction of the heat exchanger and a valley shape having the center in the depth direction of the heat exchanger as the bottom. Since the through-hole 13 is provided in the joint with the tube 1, water condensed on the fin wind upper end or the wind lower end far from the center in the depth direction of the heat exchanger is also reliably transferred along the fin inclination. It flows toward the center of the direction and can be surely drawn into the through hole 13.
[0020]
In the air conditioner heating operation under the condition of frost formation, frost is formed on the corrugated fins 2 of the heat exchanger and the wind passage is narrowed. As a result, the ventilation resistance is increased, the air flow of the blower is decreased, and the heat exchanger The vigorous cycle of capacity and temperature drop and further frost growth is repeated, and finally the wind passage is almost blocked. Under such circumstances, the heating capacity is also greatly reduced.
[0021]
Normally, the corrugated fin 2 of this type of heat exchanger is provided with a louver 3 as shown in FIG. 4, but if the louver 3 is present, frost grows thick on the leading edge of the louver. The time during which the wind passage is narrowed is greatly shortened, and the heating capacity is greatly reduced in a short time, and the defrosting operation is started and the feeling of heating is impaired.
[0022]
However, in this embodiment, even without the louver 3 that promotes frost formation and impairs the feeling of heating, the dew condensation water can flow through the through-hole 13 as described above. Since the molten water passes through the through hole 13 and flows down along the tube and is discharged out of the heat exchanger, there is no risk of freezing.
[0023]
(Embodiment 2)
FIG. 2 is a partial perspective view showing Embodiment 2 of the present invention. In FIG. 2, the same components as those in FIG.
[0024]
In FIG. 2, a guide groove 14 extending from each location on the corrugated fin 2 toward the through hole 13 is provided.
[0025]
According to this configuration, during normal heating operation or defrosting operation under frost generation conditions, the water on the fin surface is guided to the guide groove 14 on the corrugated fin 2 and more reliably guided to the through hole 13. Because it flows down along the tube and is discharged outside the heat exchanger, there is no risk of freezing.
[0026]
In each of the above embodiments, the ventilation direction depth TD of the flat tube 1 and the ventilation direction depth FD of the corrugated fin 2 are the same and both ends are aligned. However, the ventilation direction depth TD of the flat tube 1 is the corrugated fin 2. It may be larger or smaller than the ventilation direction depth FD, and the effect of the present invention is not impaired even if both positions are shifted in the ventilation direction.
[0027]
In each of the above embodiments, since a flat tube is used, even if the tube thickness is the same, the tube diameter is small, so that the pressure resistance is large. A heat exchanger of the form is effective.
[0028]
Further, since the volume of the flat tube is small, the amount of refrigerant can be reduced, and the heat exchanger of each of the above embodiments is effective when HC refrigerant or the like that is a flammable refrigerant is used.
[0029]
【The invention's effect】
As described above, according to the parallel flow type heat pump outdoor heat exchanger of the present invention, the corrugated fin corrugated valley line and ridge line are in the heat exchanger depth direction, and the heat exchanger depth direction center is the bottom. As a trough shape, through holes are provided at the bottom of the corrugated fin and the flat tube of the corrugated fin, so that water remaining on the fin surface during heating and defrosting can be reliably removed from the heat exchanger. It is possible to provide an outdoor heat exchanger for a heat pump that is exhausted to a low temperature and does not cause rapid frosting.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of an outdoor heat exchanger for a heat pump according to Embodiment 1 of the present invention. FIG. 2 is a partial perspective view of an outdoor heat exchanger for a heat pump according to Embodiment 2 of the present invention. FIG. 4 is a partial perspective view of a conventional parallel flow type heat pump outdoor heat exchanger. FIG. 4 is a partial perspective view of a conventional parallel flow type heat pump outdoor heat exchanger.
DESCRIPTION OF SYMBOLS 1 Flat tube 2 Corrugated fin 3 Louver 4 Ventilation air 5 Small hole in flat tube 6 Evaporable medium 11 Hollow header 12 End plate 13 Through-hole 14 Guide groove