JP2004251554A - Exterior heat exchanger for heat pump - Google Patents

Exterior heat exchanger for heat pump Download PDF

Info

Publication number
JP2004251554A
JP2004251554A JP2003042850A JP2003042850A JP2004251554A JP 2004251554 A JP2004251554 A JP 2004251554A JP 2003042850 A JP2003042850 A JP 2003042850A JP 2003042850 A JP2003042850 A JP 2003042850A JP 2004251554 A JP2004251554 A JP 2004251554A
Authority
JP
Japan
Prior art keywords
heat exchanger
flat tube
ventilation
corrugated
louver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042850A
Other languages
Japanese (ja)
Inventor
Takashi Sugio
孝 杉尾
Shoichi Yokoyama
昭一 横山
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003042850A priority Critical patent/JP2004251554A/en
Priority to CNA2004100050863A priority patent/CN1523317A/en
Priority to KR1020040005998A priority patent/KR20040075712A/en
Publication of JP2004251554A publication Critical patent/JP2004251554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/3204Motor driven, i.e. by means of an electric or IC motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/02Apparatus for the manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/10Waste collection, transportation, transfer or storage, e.g. segregated refuse collecting, electric or hybrid propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a conventional parallel flow heat exchanger has poor water drainage property during defrosting and freezes if heating operation is continued for a long time in winter at low temperatures. <P>SOLUTION: The parallel flow type exterior heat exchanger for a heat pump is configured to comprise small louvers having a narrow width, not normal louvers, only at both ends of a corrugated fin in a portion protruding from a flat tube toward the upstream and downstream sides of an air flowing direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ルームエアコン、パッケージエアコンなどのパラレルフロー型のヒートポンプ用室外熱交換器に関する。
【0002】
【従来の技術】
平行に配された複数の扁平チューブとコルゲートフィンとが通風直角方向に交互に積層され、その扁平チューブのおのおのの両端が1対の中空ヘッダに連結されているパラレルフロー熱交換器については、図3は熱交換器全体の斜視図であり、図4はその一部の拡大図である。(例えば特許文献1参照)。平行に配された多数の扁平チューブ1の間にその扁平チューブに熱的に接続されたコルゲートフィン2が挟み込まれている。
【0003】
コルゲートフィンの通風方向奥行幅FDを、前記扁平チューブの通風方向奥行幅TDより大きくし、前記コルゲートフィンの通風上流端部分を前記扁平チューブの通風上流端より通風上流方向へ突き出している。
【0004】
前記コルゲートフィンの通風上流端から通風方向に沿った一定の長さより下流側にのみルーバ3が設けられている。
【0005】
通風空気4はコルゲートフィン2の間に流入してルーバ3の隙間を流れながらコルゲートフィン2を通過するにつれて通風空気の有する冷熱(または温熱)を放出し、扁平チューブ1の中に設けられた多数の小孔5の中を流れる蒸発性媒体6に伝達する。蒸発性媒体6の流れ方向は、エアコンの冷房運転の場合、図4の図示Mと逆方向になり、暖房運転の場合図示のMの方向となる。平行に配された扁平チューブ1の両端は上下の中空ヘッダ11に繋がりこれが蒸発性媒体6の出入口を形成している。熱交換器の左右端には端板12が取り付けられており、コルゲートフィン2を保護している。
【0006】
【特許文献1】
特開平6−147785号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、以下のような問題がある。
【0008】
エアコンが暖房運転をしている場合、室外熱交換器に送られる通風空気4は冷たく、その上、扁平チューブ1が蒸発器として動作してコルゲートフィン2を介して通風空気4から凝縮の潜熱を奪うので、通風空気4はコルゲートフィン2の間を通過する間に更に次第に冷却される。このため空気が保有していた水蒸気は過飽和状態となり、扁平チューブ1やコルゲートフィン2の壁面温度が0℃以下の時は過飽和水蒸気が氷となってこれら壁面に着霜し、時間と共に生長して遂には通風路を閉塞するに至る。
【0009】
このように、着霜がある程度以上進行すると、暖房性能が低下するため、冷媒を逆転させるなどして、除霜運転を行う。除霜運転を行うと、扁平チューブやコルゲートフィン表面の霜が溶けて、コルゲートフィンに設けられたルーバを介して、下方向に流れ落ちる。
【0010】
しかしながら、上記従来の構成では、コルゲートフィンの通風上流端から通風方向に沿った一定の長さより下流側にのみルーバが設けられているため、ルーバのない上流側フィン上に流れ落ちずに滞留する水滴もあり、除霜時、このようにフィン上に滞留した水滴は、除霜運転から暖房運転に復帰すると氷結し、次回の除霜運転では溶けず、最悪の場合、氷が成長してゆくことがあるという欠点があった。
【0011】
本発明の目的は、除霜時にフィン面上に残る水を確実に熱交換器外に排出し、氷結の恐れのないパラレルフロー型のヒートポンプ用室外熱交換器を提供することにある。
【0012】
【課題を解決するための手段】
この目的を達成するために、平行に配された複数の扁平チューブとコルゲートフィンとが通風直角方向に交互に積層されてなるパラレルフロー型のヒートポンプ用室外熱交換器であって、前記コルゲートフィンの通風方向奥行幅を、前記扁平チューブの通風方向奥行幅より大きくし、前記コルゲートフィンが、前記扁平チューブより通風方向上流および下流に突き出した部分あるいはその一部において、前記コルゲートフィンの中央部分より横幅の短い小ルーバを設ける。
【0013】
本構成によって、除霜時にフィン面上に水を残さず、確実に流れ落ち、氷結の恐れのないパラレルフロー型のヒートポンプ用室外熱交換器を提供する。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0015】
(実施の形態1)
図1、3は本発明の実施の形態1を示す、部分斜視図と全体斜視図である。
【0016】
ヒートポンプ用室外熱交換器では、平行に配された多数の扁平チューブ1の間にその扁平チューブに熱的に接続されたコルゲートフィン2が挟み込まれている。各扁平チューブ1は垂直方向に立てられ、扁平チューブ1の通風方向奥行幅TDに対し、コルゲートフィン2の通風方向奥行幅FDが大きくしている。
【0017】
これは、コルゲートフィン2の通風方向奥行幅FDが大きくすることで、より熱交換器性能を向上させるためである。
【0018】
コルゲートフィン2には、ルーバ3を設ける。また、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分あるいはその一部において、コルゲートフィン2の両端部分のみに幅の短い小ルーバ31を横方向に2つ設けている。
【0019】
平行に配された扁平チューブ1の両端は上下の中空ヘッダ11に繋がりこれが蒸発性媒体6の出入口を形成している。熱交換器の左右端には端板12が取り付けられており、コルゲートフィン2を保護している。
【0020】
通風空気4はコルゲートフィン2を通り抜ける間に通風空気の有する温熱(または冷熱)を効率良く伝達して扁平チューブ1の中に設けられた多数の小孔5の中を流れる蒸発性媒体6を加熱(または冷却)する。小孔5の内面には小さな凹凸を設けて伝熱促進を図っている。蒸発性媒体6はエアコンの暖房運転の場合加熱されて蒸発し図1の図示Mの方向に流れる。
【0021】
着霜発生条件下のエアコン暖房運転では、熱交換器に霜が付き熱交換器の温度が下がると、除霜運転に入る。除霜運転に入ると、蒸発性媒体6はエアコンの暖房運転の場合とは逆に、熱交換器に熱を与えながら凝縮する。この熱によって、フィン表面の霜は融解して水となるが、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分を含めて、フィン全面に一様にルーバ3、31を配してあるために、フィン面上に水を残さず、確実に流れ落ち、氷結の恐れがない。
【0022】
また、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分あるいはその一部においては、通常のルーバ3ではなく、コルゲートフィン2の両端部分のみに小ルーバ31を設けているため、除霜運転時に扁平チューブ1からフィンに伝わる熱の経路が、ルーバ3で阻害されることが少なく、除霜時間短縮が図れる。
【0023】
小ルーバ31を横方向に2つ設けることにより、熱の流れが、大ルーバと小ルーバの間を通る部分で狭く、経路も長くなりますが、ブリッジが発生しやすいフィン両側の折り返し部に、ルーバがあるため水切れがより良いと言える。
【0024】
(実施の形態2)
図2は本発明の実施の形態2を示す、部分斜視図である。
【0025】
図2において、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分あるいはその一部において、ルーバの幅を短くした小ルーバ32を横方向に1つ設けている。
【0026】
かかる構成によれば、着霜発生条件下の除霜運転時、フィン表面の霜が融解した水は、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分を含めて、フィン全面に一様にルーバ3、32を配してあるために、フィン面上に水を残さず、確実に流れ落ち、氷結の恐れがない。
【0027】
また、コルゲートフィン2が、扁平チューブ1より通風方向上流および下流に、突き出した部分あるいはその一部においては、通常のルーバ3ではなく、ルーバの幅を短くした小ルーバ32を設けているため、除霜運転時に扁平チューブ1からフィンに伝わる熱の経路が、ルーバ3で阻害されることが少なく、除霜時間短縮がはかれる。
【0028】
なお、上記各実施例ではコルゲートフィン2が、扁平チューブ1より通風方向上流および下流に突き出したとしているが、上流あるいは下流のみに突き出した場合でも、本発明の効果が損なわれることはない。
【0029】
本実施例では小ルーバ32を横方向に1つとしたが、これにより、フィン両側の折り返し部を熱の経路とするため、幅も広く経路も単純になる。しかし、ブリッジした水の切れは若干悪くなる可能性もあるが、フィン端中央付近も水滴の残りやすいところであり、その観点からは、ここにルーバーがある小ルーバ1つの場合のほうが第1実施例より水切れも良いということになる。
【0030】
【発明の効果】
以上のように本発明のパラレルフロー型のヒートポンプ用室外熱交換器によれば、コルゲートフィンが、扁平チューブより通風方向上流および下流に、突き出した部分あるいはその一部においては、通常のルーバではなく、コルゲートフィンの両端部分のみに小ルーバを設けているため、フィン表面の霜が融解した水は、確実に流れ落ち、氷結の恐れがない。また、除霜運転時に扁平チューブからフィンに伝わる熱の経路が、ルーバで阻害されることが少なく、除霜時間短縮が図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における、ヒートポンプ用室外熱交換器の部分斜視図
【図2】本発明の実施の形態2における、ヒートポンプ用室外熱交換器の部分斜視図
【図3】本発明及び従来のパラレルフロー型のヒートポンプ用室外熱交換器の全体斜視図
【図4】従来のパラレルフロー型のヒートポンプ用室外熱交換器の部分斜視図
【符号の説明】
1 扁平チューブ
2 コルゲートフィン
3 ルーバ
4 通風空気
5 扁平チューブ内小孔
6 蒸発性媒体
11 中空ヘッダ
12 端版
31 小ルーバ
32 小ルーバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a parallel flow type heat pump outdoor heat exchanger such as a room air conditioner and a package air conditioner.
[0002]
[Prior art]
A parallel flow heat exchanger in which a plurality of flat tubes and corrugated fins arranged in parallel are alternately stacked in the direction perpendicular to the air flow, and both ends of each of the flat tubes are connected to a pair of hollow headers is shown in FIG. 3 is a perspective view of the entire heat exchanger, and FIG. 4 is an enlarged view of a part thereof. (See, for example, Patent Document 1). Corrugated fins 2 thermally connected to the flat tubes are sandwiched between a number of flat tubes 1 arranged in parallel.
[0003]
The depth FD of the corrugated fin in the ventilation direction is made larger than the depth TD of the flat tube in the ventilation direction, and the ventilation upstream end portion of the corrugated fin projects from the ventilation upstream end of the flat tube in the ventilation upstream direction.
[0004]
The louver 3 is provided only on the downstream side of a certain length along the ventilation direction from the ventilation upstream end of the corrugated fin.
[0005]
The ventilation air 4 flows between the corrugated fins 2 and flows through the gaps of the louvers 3 to release the cold (or hot) of the ventilation air as it passes through the corrugated fins 2. To the evaporable medium 6 flowing through the small holes 5 of the slab. The flow direction of the evaporative medium 6 is opposite to the direction M in FIG. 4 in the cooling operation of the air conditioner, and is the direction M in the heating operation. Both ends of the flat tubes 1 arranged in parallel are connected to upper and lower hollow headers 11, which form entrances and exits of the evaporable medium 6. End plates 12 are attached to the left and right ends of the heat exchanger to protect the corrugated fins 2.
[0006]
[Patent Document 1]
JP-A-6-147785
[Problems to be solved by the invention]
However, the conventional configuration has the following problems.
[0008]
When the air conditioner performs the heating operation, the ventilation air 4 sent to the outdoor heat exchanger is cold, and the flat tube 1 operates as an evaporator to extract latent heat of condensation from the ventilation air 4 through the corrugated fin 2. Since the air is taken away, the ventilation air 4 is further gradually cooled while passing between the corrugated fins 2. For this reason, the water vapor held in the air becomes supersaturated. When the wall temperature of the flat tube 1 and the corrugated fin 2 is 0 ° C. or lower, the supersaturated water vapor becomes ice and frosts on these walls, and grows with time. Eventually, the ventilation path is closed.
[0009]
As described above, if the frosting progresses to a certain degree or more, the heating performance decreases, and thus the defrosting operation is performed by reversing the refrigerant. When the defrosting operation is performed, frost on the surface of the flat tube or the corrugated fin melts and flows downward through a louver provided on the corrugated fin.
[0010]
However, in the above-described conventional configuration, since the louver is provided only on the downstream side of a certain length along the ventilation direction from the ventilation upstream end of the corrugated fin, water droplets that do not flow down on the upstream fin without the louver and stay there are not dropped. During defrosting, the water droplets that have accumulated on the fins will freeze when returning from defrosting operation to heating operation, and will not melt in the next defrosting operation, and in the worst case, ice will grow. There was a disadvantage that there is.
[0011]
An object of the present invention is to provide a parallel flow type heat pump outdoor heat exchanger that reliably discharges water remaining on the fin surface during defrosting to the outside of the heat exchanger and does not cause freezing.
[0012]
[Means for Solving the Problems]
In order to achieve this object, a parallel flow type heat pump outdoor heat exchanger in which a plurality of flat tubes arranged in parallel and corrugated fins are alternately stacked in a direction perpendicular to the ventilation, wherein the corrugated fins The depth width in the ventilation direction is made larger than the depth width in the ventilation direction of the flat tube, and the corrugated fins project from the flat tube in the upstream and downstream in the ventilation direction or a part thereof, and are wider than the central portion of the corrugated fins. A small louver with a short length is provided.
[0013]
With this configuration, a parallel flow type heat pump outdoor heat exchanger that does not leave water on the fin surface during defrosting, reliably flows down, and is free from icing is provided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(Embodiment 1)
1 and 3 are a partial perspective view and an overall perspective view showing a first embodiment of the present invention.
[0016]
In the heat pump outdoor heat exchanger, corrugated fins 2 thermally connected to the flat tubes are interposed between a number of flat tubes 1 arranged in parallel. Each flat tube 1 is set up vertically, and the depth FD of the corrugated fin 2 in the ventilation direction is larger than the depth TD of the flat tube 1 in the ventilation direction.
[0017]
This is because the performance of the heat exchanger is further improved by increasing the depth FD of the corrugated fin 2 in the ventilation direction.
[0018]
A louver 3 is provided on the corrugated fin 2. Further, in the protruding part or a part of the corrugated fin 2 protruding upstream and downstream of the flat tube 1 in the ventilation direction, two small louvers 31 having a short width are provided only at both ends of the corrugated fin 2 in the lateral direction. .
[0019]
Both ends of the flat tubes 1 arranged in parallel are connected to upper and lower hollow headers 11, which form entrances and exits of the evaporable medium 6. End plates 12 are attached to the left and right ends of the heat exchanger to protect the corrugated fins 2.
[0020]
The ventilation air 4 efficiently transmits the heat (or cold) of the ventilation air while passing through the corrugated fins 2 to heat the evaporative medium 6 flowing through the many small holes 5 provided in the flat tube 1. (Or cool). Small irregularities are provided on the inner surface of the small holes 5 to promote heat transfer. The evaporable medium 6 is heated and evaporated in the heating operation of the air conditioner, and flows in the direction indicated by M in FIG.
[0021]
In the air conditioner heating operation under the condition of frost formation, when the heat exchanger is frosted and the temperature of the heat exchanger falls, the defrost operation starts. In the defrosting operation, the evaporative medium 6 condenses while applying heat to the heat exchanger, contrary to the heating operation of the air conditioner. Due to this heat, the frost on the fin surface is melted into water, but the corrugated fin 2 is uniformly distributed over the entire fin surface, including the protruding portion, upstream and downstream of the flat tube 1 in the ventilation direction. Because of the arrangement, no water is left on the fin surface, it flows down reliably, and there is no danger of freezing.
[0022]
Also, at the portions or portions thereof where the corrugated fins 2 protrude upstream and downstream of the flat tube 1 in the ventilation direction, the small louvers 31 are provided only at both end portions of the corrugated fins 2 instead of the normal louvers 3. Therefore, the path of the heat transmitted from the flat tube 1 to the fins during the defrosting operation is less likely to be hindered by the louver 3, and the defrosting time can be reduced.
[0023]
By providing two small louvers 31 in the horizontal direction, the heat flow is narrower at the part passing between the large louver and the small louver and the path becomes longer, but at the folded parts on both sides of the fin where bridging is likely to occur, It can be said that drainage is better because of the louver.
[0024]
(Embodiment 2)
FIG. 2 is a partial perspective view showing Embodiment 2 of the present invention.
[0025]
In FIG. 2, one small louver 32 having a reduced louver width is provided laterally at a portion or a part of the corrugated fin 2 protruding upstream or downstream of the flat tube 1 in the ventilation direction.
[0026]
According to such a configuration, at the time of the defrosting operation under the condition of frost formation, the water in which the frost on the fin surface is melted includes the corrugated fins 2 including the protruding portions upstream and downstream of the flat tube 1 in the ventilation direction. Since the louvers 3 and 32 are uniformly arranged on the entire surface of the fin, no water is left on the fin surface, the water surely flows down, and there is no danger of freezing.
[0027]
In addition, at a portion or a part thereof where the corrugated fin 2 protrudes upstream and downstream of the flat tube 1 in the ventilation direction, a small louver 32 having a reduced louver width is provided instead of the normal louver 3. The path of heat transmitted from the flat tube 1 to the fins during the defrosting operation is less likely to be obstructed by the louver 3, and the defrosting time can be reduced.
[0028]
In each of the embodiments described above, the corrugated fins 2 protrude upstream and downstream from the flat tube 1 in the ventilation direction. However, even if they protrude only upstream or downstream, the effects of the present invention are not impaired.
[0029]
In this embodiment, the number of the small louvers 32 is one in the lateral direction. However, since the folded portions on both sides of the fins are used as the heat path, the width is wide and the path is simple. However, there is a possibility that the bridging water may be slightly deteriorated, but water droplets are also likely to remain near the center of the fin end. From this viewpoint, the case of one small louver having a louver here is the first embodiment. It means that draining is better.
[0030]
【The invention's effect】
As described above, according to the outdoor heat exchanger for a parallel flow heat pump of the present invention, the corrugated fins are not normal louvers at the protruding part or a part thereof at the upstream and downstream of the flat tube in the ventilation direction, but at the part thereof. Since the small louvers are provided only at both ends of the corrugated fin, the water in which the frost on the fin surface is melted flows down without fail and there is no danger of freezing. In addition, the path of heat transmitted from the flat tube to the fin during the defrosting operation is less likely to be hindered by the louver, and the defrosting time can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of a heat pump outdoor heat exchanger according to a first embodiment of the present invention. FIG. 2 is a partial perspective view of a heat pump outdoor heat exchanger according to a second embodiment of the present invention. FIG. 4 is an overall perspective view of the present invention and a conventional parallel flow type heat pump outdoor heat exchanger. FIG. 4 is a partial perspective view of a conventional parallel flow type heat pump outdoor heat exchanger.
DESCRIPTION OF SYMBOLS 1 Flat tube 2 Corrugated fin 3 Louver 4 Ventilation air 5 Flat tube small hole 6 Evaporable medium 11 Hollow header 12 End plate 31 Small louver 32 Small louver

Claims (2)

平行に配された複数の扁平チューブとコルゲートフィンとが通風直角方 向に交互に積層されてなるパラレルフロー型のヒートポンプ用室外熱交換器であって、前記コルゲートフィンの通風方向奥行幅を、前記扁平チューブの通風方向奥行幅より大きくし、前記コルゲートフィンが前記扁平チューブより通風方向上流および下流に突き出した部分あるいはその一部において、前記コルゲートフィンの中央部分より横幅の短い小ルーバを設けたことを特徴とするヒートポンプ用室外熱交換器。An outdoor heat exchanger for a parallel flow heat pump in which a plurality of flat tubes arranged in parallel and corrugated fins are alternately stacked in a direction perpendicular to the ventilation direction, wherein the corrugated fins have a depth width in the ventilation direction. A small louver having a width larger than a central portion of the corrugated fin is provided at a portion or a part of the portion where the corrugated fin projects upstream and downstream from the flat tube in the ventilation direction, which is larger than a depth width of the flat tube in the ventilation direction. An outdoor heat exchanger for a heat pump. 前記小ルーバを横方向に複数個配したことを特徴とする請求項1に記載のヒートポンプ用室外熱交換器。The outdoor heat exchanger for a heat pump according to claim 1, wherein a plurality of the small louvers are arranged in a lateral direction.
JP2003042850A 2003-02-20 2003-02-20 Exterior heat exchanger for heat pump Pending JP2004251554A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003042850A JP2004251554A (en) 2003-02-20 2003-02-20 Exterior heat exchanger for heat pump
CNA2004100050863A CN1523317A (en) 2003-02-20 2004-01-16 Outdoor heat exchanger for heat pump
KR1020040005998A KR20040075712A (en) 2003-02-20 2004-01-30 Outdoor-heat exchanger for heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042850A JP2004251554A (en) 2003-02-20 2003-02-20 Exterior heat exchanger for heat pump

Publications (1)

Publication Number Publication Date
JP2004251554A true JP2004251554A (en) 2004-09-09

Family

ID=33026021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042850A Pending JP2004251554A (en) 2003-02-20 2003-02-20 Exterior heat exchanger for heat pump

Country Status (3)

Country Link
JP (1) JP2004251554A (en)
KR (1) KR20040075712A (en)
CN (1) CN1523317A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232246A (en) * 2006-02-28 2007-09-13 Denso Corp Heat exchanger
JP2012032111A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Heat exchanger
US8564901B2 (en) 2009-03-06 2013-10-22 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd Disk drive device and method of press-fitting with reduced hub deformation
JP2015105767A (en) * 2013-11-29 2015-06-08 三菱重工業株式会社 Heat exchanger, heat exchanger structure, and heat exchanger fin
JP2015224844A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Heat exchanger
JPWO2018100738A1 (en) * 2016-12-02 2019-10-17 三菱電機株式会社 Heat exchanger and air conditioner
WO2020045913A1 (en) * 2018-08-27 2020-03-05 삼성전자주식회사 Heat exchanger and air conditioner including same
KR20210015957A (en) * 2018-07-11 2021-02-10 미쓰비시덴키 가부시키가이샤 Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2022140876A (en) * 2021-03-15 2022-09-29 パナソニックIpマネジメント株式会社 refrigerator
JP2022163494A (en) * 2021-04-14 2022-10-26 マレリ株式会社 Heat exchanger

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130199760A1 (en) * 2008-08-06 2013-08-08 Delphi Technologies, Inc. Heat exchanger assembly having split mini-louvered fins
CN101846479B (en) * 2009-03-25 2012-02-22 三花丹佛斯(杭州)微通道换热器有限公司 Fins for heat exchanger and heat exchanger using same
CN101963418B (en) * 2009-07-21 2012-09-05 约克(无锡)空调冷冻设备有限公司 Micro channel heat exchanger for air-conditioner heat pump
JP5499957B2 (en) * 2009-07-24 2014-05-21 株式会社デンソー Heat exchanger
CN101619950B (en) * 2009-08-13 2011-05-04 三花丹佛斯(杭州)微通道换热器有限公司 Fin and heat exchanger with same
CN101713617A (en) * 2009-10-22 2010-05-26 天津三电汽车空调有限公司 Flat pipe structure of heat exchanger and heat exchanger thereof
CN102748977A (en) * 2009-10-22 2012-10-24 天津三电汽车空调有限公司 Flat heat exchange tube of heat exchanger and heat exchanger of flat heat exchange tube
CN101839590B (en) 2010-02-22 2012-03-21 三花丹佛斯(杭州)微通道换热器有限公司 Micro-passage heat exchanger
CN101865574B (en) 2010-06-21 2013-01-30 三花控股集团有限公司 Heat exchanger
KR101451056B1 (en) * 2011-01-21 2014-10-16 다이킨 고교 가부시키가이샤 Heat exchanger and air conditioner
JP5196043B2 (en) * 2011-01-21 2013-05-15 ダイキン工業株式会社 Heat exchanger and air conditioner
CN102252558B (en) 2011-05-06 2013-04-10 三花控股集团有限公司 Heat exchange device
EP2733452B1 (en) * 2011-07-14 2018-10-17 Panasonic Intellectual Property Management Co., Ltd. Outdoor heat exchanger, and air conditioning device for vehicle
JP5796530B2 (en) * 2012-04-02 2015-10-21 株式会社デンソー Cold storage case for evaporator with cold storage function
CN103017422A (en) * 2012-12-28 2013-04-03 合肥美的荣事达电冰箱有限公司 Roll-bond evaporator and refrigerator with same
CN103256850A (en) * 2013-05-24 2013-08-21 南京北大工道软件技术有限公司 Sweepback-type louver fin
KR102203435B1 (en) * 2014-07-17 2021-01-14 엘지전자 주식회사 Heat Exchanger and Heat Pump having the same
CN106482397A (en) * 2015-08-24 2017-03-08 广州汽车集团股份有限公司 Parallel-flow heat exchanger
CN107543443B (en) * 2017-08-24 2019-03-22 美度汽车零部件股份有限公司 A kind of automobile radiators full fitting cancave cambered surface heat-radiation belt and design method
CN112567192A (en) * 2018-08-27 2021-03-26 三菱电机株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232246A (en) * 2006-02-28 2007-09-13 Denso Corp Heat exchanger
US8564901B2 (en) 2009-03-06 2013-10-22 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd Disk drive device and method of press-fitting with reduced hub deformation
JP2012032111A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Heat exchanger
JP2015105767A (en) * 2013-11-29 2015-06-08 三菱重工業株式会社 Heat exchanger, heat exchanger structure, and heat exchanger fin
JP2015224844A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Heat exchanger
JPWO2018100738A1 (en) * 2016-12-02 2019-10-17 三菱電機株式会社 Heat exchanger and air conditioner
JP6997722B2 (en) 2016-12-02 2022-01-18 三菱電機株式会社 Heat exchanger and air conditioner
KR102505390B1 (en) 2018-07-11 2023-03-02 미쓰비시덴키 가부시키가이샤 Heat exchanger, heat exchanger unit, and refrigeration cycle device
KR20210015957A (en) * 2018-07-11 2021-02-10 미쓰비시덴키 가부시키가이샤 Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2020045913A1 (en) * 2018-08-27 2020-03-05 삼성전자주식회사 Heat exchanger and air conditioner including same
US11796191B2 (en) 2018-08-27 2023-10-24 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including same
JP2022140876A (en) * 2021-03-15 2022-09-29 パナソニックIpマネジメント株式会社 refrigerator
JP2022163494A (en) * 2021-04-14 2022-10-26 マレリ株式会社 Heat exchanger

Also Published As

Publication number Publication date
CN1523317A (en) 2004-08-25
KR20040075712A (en) 2004-08-30

Similar Documents

Publication Publication Date Title
JP2004251554A (en) Exterior heat exchanger for heat pump
WO2006025169A1 (en) Refrigeration unit
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
JPWO2018078800A1 (en) Heat exchanger and refrigeration cycle device
JPH06147785A (en) Outdoor heat exchanger for heat pump
JP2004177040A (en) Outdoor heat exchanger for heat pump
WO2021241619A1 (en) Heat exchanger and refrigerator
JPH10300271A (en) Outdoor heat exchanger of heat pump type heating-cooling combination apparatus
JP2005024187A (en) Outdoor heat exchanger for heat pump
JP7112053B2 (en) Heat exchanger and refrigeration cycle device using the same
JP2004069228A (en) Heat exchanger
JP4618529B2 (en) Ice thermal storage air conditioner
JP2004271113A (en) Heat exchanger
JP2021196122A (en) Outdoor heat exchanger
US9746232B2 (en) Heat exchanger assembly having a heated condensate drainage system
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP6932262B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2005201492A (en) Heat exchanger
JPH1089806A (en) Refrigerator
JP4995308B2 (en) Air conditioner indoor unit
JP3215587B2 (en) Heat exchanger
JPH109786A (en) Finned heat exchanger
JPH11201679A (en) Heat exchanger with fin
JP3886244B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016