WO2021241619A1 - Heat exchanger and refrigerator - Google Patents

Heat exchanger and refrigerator Download PDF

Info

Publication number
WO2021241619A1
WO2021241619A1 PCT/JP2021/019932 JP2021019932W WO2021241619A1 WO 2021241619 A1 WO2021241619 A1 WO 2021241619A1 JP 2021019932 W JP2021019932 W JP 2021019932W WO 2021241619 A1 WO2021241619 A1 WO 2021241619A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
fins
air flow
flow path
Prior art date
Application number
PCT/JP2021/019932
Other languages
French (fr)
Japanese (ja)
Inventor
元康 市場
克則 堀井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180023329.8A priority Critical patent/CN115315602A/en
Publication of WO2021241619A1 publication Critical patent/WO2021241619A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This disclosure relates to heat exchangers and refrigerators having a cold storage function.
  • Patent Document 1 discloses an evaporator with a cold storage function.
  • two rows of refrigerant flow pipes are provided at intervals in the ventilation direction.
  • the refrigerant flow pipes of both refrigerant flow pipes are located at the same position in the left-right direction, and ventilation gaps are formed between the adjacent refrigerant flow pipes of both refrigerant flow pipes.
  • a cold storage material container containing a cold storage material is arranged so as to straddle a plurality of ventilation gaps located at the same position in the left-right direction among all the ventilation gaps of both refrigerant flow pipes. Fins are arranged so as to straddle the remaining ventilation gaps at the same position in the left-right direction of the ventilation gaps.
  • the present disclosure provides a heat exchanger and a refrigerator that can efficiently cool the inside of the refrigerator and improve energy saving.
  • the heat exchanger in the present disclosure includes a refrigerant conduction member having a plurality of flat tubes arranged at intervals from each other, and a first flat tube and a second flat tube adjacent to each other among the plurality of flat tubes of the refrigerant conduction member.
  • a cold storage material container arranged between the flat pipes and filled with a cold storage material, and a first flat pipe on the opposite side of the second flat pipe, which is another flat pipe among a plurality of flat pipes. It is provided with an air flow path formed between the first flat tube and another flat tube adjacent to the first flat tube, and a fin provided in the air flow path.
  • the width direction of the refrigerant conduction member is directed to the ventilation direction, and the ventilation direction of the air flow path is the gravity direction.
  • FIG. 1 is a schematic cross-sectional configuration diagram showing an outline of the refrigerator according to the first embodiment.
  • FIG. 2 is a perspective view showing the heat exchanger for refrigeration according to the first embodiment.
  • FIG. 3 is a plan view showing the heat exchanger for refrigeration according to the first embodiment.
  • FIG. 4 is a front view showing the heat exchanger for refrigeration according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a block diagram showing a control configuration of the first embodiment.
  • FIG. 7 is a graph showing an operation corresponding to a demand response.
  • FIG. 8 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
  • FIG. 9 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
  • FIG. 10 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
  • FIG. 11 is a front view showing a heat exchanger according to another embodiment of the present
  • this conventional technology is applied to car air conditioners for vehicles, it is supplementarily cooled by a cold storage material while the engine is stopped, for example, during idling stop.
  • a cold storage material due to the installation space, it is not possible to secure a large capacity of the cold storage material. Therefore, the inventors have discovered a problem that this conventional technique cannot be applied to a refrigerator as it is, and in order to solve the problem, they have constructed the subject matter of the present disclosure.
  • the present disclosure provides a heat exchanger and a refrigerator that can efficiently cool the inside of the refrigerator and improve energy saving.
  • FIG. 1 is a schematic cross-sectional configuration diagram showing an outline of the refrigerator according to the first embodiment of the present disclosure.
  • the refrigerator 1 includes a box-shaped main body 10.
  • a partition plate 11 for partitioning the internal space of the main body 10 is provided at a substantially central portion in the vertical direction of the main body 10.
  • the upper side of the partition plate 11 is a refrigerating chamber 12, and the lower side of the partition plate 11 is a freezing chamber 13.
  • a refrigerating room door 14 is provided openable and closable on the front surface of the refrigerating room 12, and a freezing room door 15 is provided openable and closable on the front surface of the freezing room 13.
  • a refrigerating duct 20 extending in the vertical direction is provided at the rear of the refrigerating chamber 12.
  • a freezing duct 21 extending in the vertical direction is provided at the rear of the freezing chamber 13.
  • a refrigerating heat exchanger 22 as an example of the heat exchanger of the present disclosure is housed.
  • a refrigerating fan 23 is arranged above the refrigerating heat exchanger 22.
  • the refrigerator 1 sucks the internal air of the refrigerating chamber 12 from below the refrigerating duct 20, exchanges heat through the refrigerating heat exchanger 22, and then cools the refrigerating duct 20. It is configured to be blown into the inside of the refrigerating chamber 12 from above.
  • a freezing heat exchanger 24 is housed inside the freezing duct 21.
  • a freezing fan 25 is arranged above the refrigerating heat exchanger 24. By driving the freezing fan 25, the refrigerator 1 sucks the internal air of the freezing chamber 13 from below the freezing duct 21, exchanges heat through the freezing heat exchanger 24, and then the freezing duct 21. It is configured to be blown into the inside of the freezing chamber 13 from above.
  • a heater 26 is arranged below the freezing duct 21.
  • a compressor 30 is installed above the rear part of the main body 10.
  • a condenser 31 is connected to the compressor 30 via a refrigerant pipe 32.
  • a three-way valve 33 is connected to the condenser 31 via a refrigerant pipe 32, and a refrigerating heat exchanger 22 is connected to the three-way valve 33 via an expansion mechanism 34.
  • a refrigerating heat exchanger 24 is connected to the three-way valve 33 via an expansion mechanism 35.
  • a refrigerating refrigerant cycle is formed in which the refrigerant sequentially circulates through the compressor 30, the condenser 31, the three-way valve 33, the expansion mechanism 34, and the refrigerating heat exchanger 22. Further, a refrigerating refrigerant cycle is formed in which the refrigerant sequentially circulates through the compressor 30, the condenser 31, the three-way valve 33, the expansion mechanism 35, and the refrigerating heat exchanger 24.
  • the refrigerating refrigerant cycle and the freezing refrigerant cycle can be switched by switching the three-way valve 33.
  • FIG. 2 is a perspective view showing the refrigerating heat exchanger 22 of the first embodiment.
  • FIG. 3 is a plan view showing the refrigerating heat exchanger 22 of the first embodiment.
  • FIG. 4 is a front view showing the refrigerating heat exchanger 22 of the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • the refrigerating heat exchanger 22 includes a refrigerant conduction member 40 through which a refrigerant flows.
  • the refrigerant conduction member 40 is composed of a perforated flat tube in which a plurality of substantially square passages are continuously arranged.
  • the refrigerant conduction member 40 is formed in a meandering shape including a plurality of flat pipes 41 formed substantially parallel to each other at predetermined intervals and a plurality of curved portions 42 connecting the ends of the flat pipes 41. .. That is, the refrigerant conduction member 40 is configured so that the flow path through which the refrigerant flows meanders.
  • the refrigerant conduction member 40 is configured by arranging six flat pipes 41 between headers, which will be described later.
  • the number of flat tubes 41 is not limited to this, and can be set arbitrarily.
  • each flat tube 41 and each curved portion 42 may be integrally configured, and one flat tube 41 may be meandered and arranged between the headers.
  • the flat tube 41 and the curved portion 42 are vertically divided into three regions, that is, an upper region 43, a middle region 44, and a lower region 45.
  • the region is divided into three regions in the vertical direction, but it may be divided into two regions or four or more regions in the vertical direction.
  • an inlet side header 46 and an outlet side header 47 are provided at one end in the extending direction of the flat pipe 41, respectively.
  • the inlet side header 46 and the exit side header 47 are provided so as to extend in the vertical direction.
  • the inlet side header 46 and the outlet side header 47 are attached so as not to protrude from the end face of the refrigerant conduction member 40.
  • the end faces of the inlet side header 46 and the outlet side header 47 are flush with the outer surface of the flat pipe 41 of the refrigerant conduction member 40.
  • the thickness dimension of the refrigerant conducting member 40 (the dimension of the refrigerant conducting member 40 in the arrangement direction of the flat pipes 41) can be reduced. Therefore, when the refrigerant conduction member 40 is housed inside the refrigerating duct 20, the internal space of the refrigerating duct 20 can be reduced. As a result, the internal space of the refrigerator compartment 12 can be increased.
  • the refrigerant is configured to flow in from the upper part of the inlet side header 46, and the refrigerant is configured to flow out from the lower part of the outlet side header 47.
  • the inlet side header 46 and the outlet side header 47 are provided at different ends of the flat pipe 41 in the extending direction, and the inlet side header 46 and the outlet side header 47 are arranged on both sides of the refrigerant conduction member 40. You may do so.
  • the refrigerant inlet of the inlet side header 46 may be provided below instead of above, and the refrigerant outlet of the outlet side header 47 may be provided above instead of below.
  • a partition plate 48 is provided at a position corresponding to the boundary between the upper region 43 and the middle region 44 of the inlet side header 46.
  • the portion corresponding to the middle region 44 of the entrance side header 46 and the portion corresponding to the lower region 45 communicate with each other.
  • a partition plate 49 is provided at a position corresponding to the boundary between the middle region 44 and the lower region 45 of the exit side header 47.
  • the portion corresponding to the upper region 43 of the exit side header 47 and the portion corresponding to the middle region 44 communicate with each other.
  • the refrigerant flowing in from the upper part of the inlet side header 46 passes through the inside of the upper region 43 of the refrigerant conduction member 40 and flows to the outlet side header 47.
  • the refrigerant flowing to the outlet side header 47 flows into the central region 44 of the refrigerant conduction member 40, flows to the inlet side header 46, flows through the lower region 45 via the inlet side header 46, and then flows to the lower part of the outlet side header 47. Leaked from.
  • the refrigerant conducting member 40 is arranged so that its width direction (vertical direction in FIG. 4, that is, the flat direction of the flat tube 41) is directed to the air flow direction in the refrigerating duct 20, and the refrigerant conducting member 40 is arranged.
  • the flowing refrigerant flows in a direction orthogonal to the air flow direction.
  • the flat direction here means the longitudinal direction in the cross section (FIG. 5) of the flat tube 41.
  • the air flow path 50 and the cold storage material container 52 in which the cold storage material 51 is enclosed are alternately arranged between the flat pipes 41 of the refrigerant conduction member 40.
  • a holding member 53 for holding the cold storage material container 52 is provided on the lower surface of the flat pipe 41 of the refrigerant conduction member 40.
  • the air flow path 50 is formed in the outermost part and the central part, and the cold storage material container 52 is arranged between the adjacent air flow paths 50.
  • Fins 54 are arranged inside the air flow path 50.
  • the fins 54 are continuously provided by being inclined at a predetermined angle with respect to the flat tube 41 and being bent in a zigzag shape. These fins 54 continuously form an air flow path 50 having a substantially triangular cross-sectional shape inside the air flow path 50.
  • an air flow path having a rectangular cross-sectional shape may be continuously formed.
  • the air flow path 50 is formed in the vertical direction (gravity direction) along the vertical direction of the refrigerating duct 20.
  • the air inside the refrigerator flowing from the lower side to the upper side of the refrigerating duct 20 flows through the air flow path 50, and at this time, heat exchange with the refrigerant flowing inside the refrigerant conducting member 40. It is configured to be cooled to a predetermined temperature by doing so. Further, the refrigerating heat exchanger 22 is configured such that the cold storage material 51 is also cooled to a predetermined temperature by exchanging heat between the refrigerant flowing inside the refrigerant conduction member 40 and the cold storage material 51.
  • the cold storage material 51 needs to cool the low temperature chamber (about -3 ° C) in the refrigerating chamber 12 which is cooled to about 3 ° C. Therefore, a cold storage material 51 having a melting point lower than ⁇ 3 ° C., for example, a cold storage material 51 having a melting point of ⁇ 5 ° C. to ⁇ 15 ° C. is used.
  • the lower end of the fin 54 is located below the lower end of the refrigerant conducting member 40.
  • the upper end of the fin 54 may be positioned above the upper end of the refrigerant conduction member 40. As a result, since the fins 54 are cooled by the refrigerant, the heat exchange efficiency of the air inside the refrigerator can be improved.
  • FIG. 6 is a block diagram showing the control configuration of the first embodiment.
  • the refrigerator 1 includes a control unit 60.
  • the control unit 60 includes, for example, a processor that executes programs such as a CPU (Central Processing Unit) and an MPU (Micro-processing unit), and a memory such as a ROM (Read only memory) and a RAM (Random access memory). , Various processes are executed by the cooperation of hardware and software so as to read the control program stored in the memory and execute the processes.
  • a processor Central Processing Unit
  • MPU Micro-processing unit
  • a memory such as a ROM (Read only memory) and a RAM (Random access memory).
  • the control unit 60 controls the compressor 30, the refrigerating fan 23, the refrigerating fan 25, the three-way valve 33, and the heater 26 based on the detection temperatures of the refrigerating room temperature sensor 61 and the refrigerating room temperature sensor 62.
  • the refrigerant sent to the refrigerating heat exchanger 22 flows in from the inlet side header 46 of the refrigerant conduction member 40 and flows inside the upper region 43.
  • the refrigerant flowing to the outlet side header 47 flows through the central region 44 via the outlet side header 47, is sent to the inlet side header 46, and flows through the lower region 45 via the inlet side header 46.
  • the refrigerant flowing through the lower region 45 flows out from the outlet side header 47 and is returned to the compressor 30.
  • the air inside the refrigerator compartment 12 exchanges heat with the refrigerant flowing through the refrigerant conduction member 40 and is cooled.
  • the cold storage material 51 is also cooled by the refrigerant flowing through the refrigerant conduction member 40.
  • the refrigerant sent to the refrigerating heat exchanger 24 exchanges heat with the internal air flowing from below to above the refrigerating duct 21 by driving the refrigerating fan 25, and the refrigerant cooled by the refrigerant is refrigerated. Returned to room 13.
  • DR Demand Response
  • Demand response is the power consumption of the entire society by curbing the power consumption of factories and households in response to requests from electric power companies at the timing when the power consumption of the entire society reaches its peak (for example, around 14:00 in the summer). It is a mechanism to reduce the peak value of consumption.
  • FIG. 7 is a graph showing the operation corresponding to the demand response.
  • the control of the present embodiment is a control of stopping the compressor 30 in a time zone of 1 hour before and after 14:00, which is the peak of power consumption.
  • the refrigerator 1 receives a demand response signal requesting reduction of power consumption from an external server such as an electric power company at 11 o'clock.
  • an external server such as an electric power company at 11 o'clock.
  • the device that has received the demand response signal needs to be switched to the operation of suppressing the power consumption after 2 hours.
  • the refrigerator 1 When the refrigerator 1 receives the demand response signal, the refrigerator 1 starts the demand response control. Specifically, the control unit 60 switches the three-way valve 33 at 11 o'clock to control the flow of the refrigerant to the refrigerating heat exchanger 24.
  • the refrigerant discharged from the compressor 30 is sent to the refrigerating heat exchanger 24 through the condenser 31 and the expansion mechanism 35.
  • the refrigerant sent to the refrigerating heat exchanger 24 exchanges heat with the internal air in the refrigerating heat exchanger 24 to cool the inside of the freezing chamber 13 to a predetermined temperature.
  • the predetermined temperature in this case is usually set lower than the set internal temperature.
  • the cooling is controlled to, for example, from about -19 ° C to about -24 ° C.
  • control unit 60 switches the three-way valve 33 to control the flow of the refrigerant to the refrigerating heat exchanger 22.
  • the refrigerant discharged from the compressor 30 is sent to the refrigerating heat exchanger 22 through the condenser 31 and the expansion mechanism 34.
  • the refrigerant sent to the refrigerating heat exchanger 22 exchanges heat with the internal air in the refrigerating heat exchanger 22 to cool the inside of the refrigerating chamber 12 to a predetermined temperature.
  • the cold storage material 51 is cooled by the refrigerant flowing through the refrigerating heat exchanger 22, and the cold storage material 51 is stored cold.
  • the control unit 60 stops the compressor 30. By stopping the compressor 30, the refrigerator 1 executes an operation of suppressing power consumption.
  • the temperature of the refrigerating chamber 12 can be maintained at a substantially constant temperature due to the cooling capacity of the cold storage material 51. Although the temperature of the freezing chamber 13 gradually rises, it can be maintained at an appropriate temperature even at 15:00 when the demand response control ends.
  • the heat exchanger of the present embodiment is arranged between the refrigerant conducting member 40 made of the flat tubes 41 formed at intervals from each other and the adjacent flat tubes 41 of the refrigerant conducting members 40. It includes a cold storage material 51 container in which a cold storage material 51 is sealed, an air flow path 50 formed between other flat pipes 41 and through which air flows, and fins 54 provided in the air flow path 50.
  • the width direction of the refrigerant conduction member 40 is directed to the ventilation direction, and the ventilation direction of the air flow path 50 is the gravity direction.
  • the width direction of the refrigerant conduction member 40 is directed to the ventilation direction, and the ventilation direction of the air flow path 50 is the gravity direction. Therefore, when frost or dew condensation adheres to the fin 54, dew condensation water is formed. It can be drained by its own weight. Therefore, the amount of dew condensation water remaining on the fins 54 can be reduced. Therefore, it is possible to suppress an increase in ventilation resistance due to dew condensation water and a reduction in the heat exchange area between the fin 54 and the air inside the refrigerator, and it is possible to efficiently cool the inside of the refrigerator chamber 12. Further, the cold storage material 51 can be cooled by the heat exchanger, and the internal air can be cooled by the cold storage material 51, so that the energy saving performance can be improved.
  • the lower end of the fin 54 is located below the lower end of the refrigerant conducting member 40.
  • the refrigerant conduction member 40 includes a holding member 53 that holds the cold storage material container 52.
  • the refrigerating heat exchanger 22 is arranged so that the cold storage material container 52 of the refrigerant conduction member 40 is located in the vertical direction (gravity direction), the cold storage material container 52 can be supported. Therefore, it is possible to prevent the cold storage material container 52 from falling.
  • the refrigerant conduction member 40 includes an inlet side header 46 and an outlet side header 47 of the refrigerant, and the inlet side header 46 and the outlet side header 47 do not protrude from the end face of the refrigerant conduction member 40. It is attached to.
  • the thickness dimension of the refrigerant conduction member 40 can be reduced. Therefore, when the refrigerant conduction member 40 is housed inside the refrigerating duct 20, the internal space of the refrigerating duct 20 can be reduced. Therefore, the internal space of the refrigerator compartment 12 can be increased.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.
  • FIG. 8 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
  • the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so as to be offset from each other. More specifically, the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so that the repeating phases of the zigzag shape are shifted by 1/2.
  • the triangular air flow path 50 in the upper region 43 and the triangular air flow path 50 in the lower region 45 are formed so as to overlap each other in a plan view.
  • the phase here means a repeating phase in which the triangular shape of the fins 54 forming the air flow path 50 is one unit (one cycle).
  • the phase of the fins 54 of the middle region 44 may be shifted from the fins 54 of the upper region 43.
  • FIG. 9 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
  • the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so as to be offset from each other. More specifically, the inclination angle of the fin 54 of the lower region 45 on the upstream side of the air flow path is formed to be larger than the inclination angle of the fin 54 of the upper region 43 on the downstream side of the air flow path. be.
  • FIG. 9 shows a partial combination of a view of the fin 54 viewed from the upper region 43 and a view of the fin 54 viewed only from the lower region 45 in a plan view.
  • the fin 54 of the lower region 45 is formed at a large angle corresponding to the apex of the triangular air flow path 50.
  • the refrigerating fan 23 is rotated in the reverse direction to make the upper region 43 the upstream side of the air flow path 50.
  • the lower region 45 may be the downstream side of the air flow path 50.
  • FIG. 10 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
  • the refrigerating heat exchanger 22 is provided with a liquid refrigerant reservoir 55.
  • a refrigerant outlet 47a is provided above the outlet side header 47, and a refrigerant pipe 32 through which the refrigerant flows is connected to the refrigerant outlet 47a.
  • the refrigerant outlet 47a of the outlet side header 47 is arranged above the upper end of the flat pipe 41 constituting the refrigerant conduction member 40.
  • a refrigerant inlet 46a is provided below the inlet side header 46, and a refrigerant pipe 32 is connected to the refrigerant inlet 46a.
  • the refrigerant flowing in from the refrigerant inlet 46a of the inlet side header 46 is sent from the lower region 45 to the upper region 43 via the middle region 44, and flows out from the refrigerant outlet 47a of the outlet side header 47. Will be done.
  • FIG. 11 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
  • the refrigerating heat exchanger 22 is provided with the liquid refrigerant reservoir 55.
  • a refrigerant outlet 47a is provided below the outlet side header 47, and a refrigerant pipe 32 through which the refrigerant flows is connected to the refrigerant outlet 47a.
  • the refrigerant outlet 47a of the outlet side header 47 is arranged above the upper end of the flat pipe 41 in the lower region 45.
  • the refrigerant inlet 46a of the inlet side header 46 is provided at the upper end portion of the inlet side header 46.
  • the refrigerant flowing in from the refrigerant inlet 46a of the inlet side header 46 is sent from the upper region 43 to the lower region 45 via the middle region 44, and flows out from the refrigerant outlet 47a of the outlet side header 47. NS.
  • a cold storage material 51 may be provided in the refrigerating heat exchanger 24 as in the refrigerating heat exchanger 22.
  • the melting point of the cold storage material 51 is preferably ⁇ 20 ° C. to ⁇ 30 ° C.
  • the width direction of the refrigerant conduction member is directed to the ventilation direction, and the ventilation direction of the air flow path is the gravity direction, so that the air inside the refrigerator compartment flows in the gravity direction.
  • Refrigerant 10 Main body 11 Partition plate 12 Refrigerator room 13 Refrigerator room 14 Refrigerator room door 15 Refrigerator room door 20 Refrigerant duct 21 Refrigerant duct 22 Refrigerant heat exchanger 23 Refrigerator fan 24 Refrigerator heat exchanger 25 Refrigerator fan 26 Heater 30 Compressor 31 Condenser 32 Refrigerant piping 33 Three-way valve 34 Expansion mechanism 35 Expansion mechanism 40 Refrigerant conduction member 41 Flat tube 42 Curved part 43 Upper area 44 Middle area 45 Lower area 46 Inlet side header 46a Refrigerant inlet 47 Exit side header 47a Refrigerant outlet 48 Partition plate 49 Partition plate 50 Air flow path 51 Cold storage material 52 Cold storage material container 53 Holding member 54 Fin 55 Refrigerant pool 60 Control unit 61 Refrigerating room temperature sensor 62 Refrigerating room temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger (22) for refrigeration comprises: a refrigerant conduction member (40) having a plurality of flat tubes (41) disposed with gaps therebetween; a cold storage material container (52) which is disposed between adjacent flat tubes (41) of the refrigerant conduction member (40) and in which a cold storage material (51) is encapsulated; an air flow path (50) which is disposed between other adjacent flat tubes (41) and in which air flows; and fins (54) provided in the air flow path (50). The width direction of the refrigerant conduction member (40) is directed to a ventilation direction, and the ventilation direction of the air flow path (50) is the direction of gravity.

Description

熱交換器および冷蔵庫Heat exchanger and refrigerator
 本開示は、蓄冷機能を有する熱交換器および冷蔵庫に関する。 This disclosure relates to heat exchangers and refrigerators having a cold storage function.
 特許文献1は、蓄冷機能付きエバポレータ(evaporator)を開示する。このエバポレータは、冷媒流通管列が通風方向に間隔をおいて2列設けられている。両冷媒流通管列の冷媒流通管部が左右方向の同一位置にあり、両冷媒流通管列の隣り合う冷媒流通管部間にそれぞれ通風間隙が形成されている。両冷媒流通管列の全通風間隙のうち左右方向に同一位置にある一部の複数の通風間隙に跨るように、蓄冷材が封入された蓄冷材容器が配置され、両冷媒流通管列の全通風間隙のうち左右方向に同一位置にある残りの通風間隙に跨るようにフィンが配置されている。 Patent Document 1 discloses an evaporator with a cold storage function. In this evaporator, two rows of refrigerant flow pipes are provided at intervals in the ventilation direction. The refrigerant flow pipes of both refrigerant flow pipes are located at the same position in the left-right direction, and ventilation gaps are formed between the adjacent refrigerant flow pipes of both refrigerant flow pipes. A cold storage material container containing a cold storage material is arranged so as to straddle a plurality of ventilation gaps located at the same position in the left-right direction among all the ventilation gaps of both refrigerant flow pipes. Fins are arranged so as to straddle the remaining ventilation gaps at the same position in the left-right direction of the ventilation gaps.
日本国特許第5525726号公報Japanese Patent No. 5525726
 本開示は、冷蔵庫の庫内を効率よく冷却することができ、省エネルギ性の向上を図ることができる熱交換器および冷蔵庫を提供する。 The present disclosure provides a heat exchanger and a refrigerator that can efficiently cool the inside of the refrigerator and improve energy saving.
 本開示における熱交換器は、互いに間隔をおいて配置された複数の扁平管を有する冷媒導通部材と、冷媒導通部材の複数の扁平管のうちの互いに隣接する第1の扁平管と第2の扁平管との間に配置され、蓄冷材が封入された蓄冷材容器と、複数の扁平管のうちの他の扁平管であって、第2の扁平管とは反対側において第1の扁平管に隣接する他の扁平管と、第1の扁平管との間に形成され、空気が流れる空気流路と、空気流路に設けられたフィンと、を備える。冷媒導通部材の幅方向が通風方向に指向されているとともに、空気流路の通風方向が重力方向とされている。 The heat exchanger in the present disclosure includes a refrigerant conduction member having a plurality of flat tubes arranged at intervals from each other, and a first flat tube and a second flat tube adjacent to each other among the plurality of flat tubes of the refrigerant conduction member. A cold storage material container arranged between the flat pipes and filled with a cold storage material, and a first flat pipe on the opposite side of the second flat pipe, which is another flat pipe among a plurality of flat pipes. It is provided with an air flow path formed between the first flat tube and another flat tube adjacent to the first flat tube, and a fin provided in the air flow path. The width direction of the refrigerant conduction member is directed to the ventilation direction, and the ventilation direction of the air flow path is the gravity direction.
図1は、実施の形態1における冷蔵庫の概略を示す概略の断面構成図である。FIG. 1 is a schematic cross-sectional configuration diagram showing an outline of the refrigerator according to the first embodiment. 図2は実施の形態1の冷蔵用熱交換器を示す斜視図である。FIG. 2 is a perspective view showing the heat exchanger for refrigeration according to the first embodiment. 図3は実施の形態1の冷蔵用熱交換器を示す平面図である。FIG. 3 is a plan view showing the heat exchanger for refrigeration according to the first embodiment. 図4は実施の形態1の冷蔵用熱交換器を示す正面図である。FIG. 4 is a front view showing the heat exchanger for refrigeration according to the first embodiment. 図5は図3のV-V線における断面図である。FIG. 5 is a cross-sectional view taken along the line VV of FIG. 図6は実施の形態1の制御構成を示すブロック図である。FIG. 6 is a block diagram showing a control configuration of the first embodiment. 図7はデマンドレスポンスに対応する動作を示すグラフである。FIG. 7 is a graph showing an operation corresponding to a demand response. 図8は本開示の他の実施の形態の熱交換器を示す平面図である。FIG. 8 is a plan view showing a heat exchanger according to another embodiment of the present disclosure. 図9は本開示の他の実施の形態の熱交換器を示す平面図である。FIG. 9 is a plan view showing a heat exchanger according to another embodiment of the present disclosure. 図10は本開示の他の実施の形態の熱交換器を示す正面図である。FIG. 10 is a front view showing a heat exchanger according to another embodiment of the present disclosure. 図11は本開示の他の実施の形態の熱交換器を示す正面図である。FIG. 11 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、熱交換器(エバポレータ)に蓄冷材を配置し、熱交換器により空気の冷却を行うとともに、蓄冷材により空気の冷却を行う技術があった。
(Findings, etc. that form the basis of this disclosure)
At the time when the inventors came up with the present disclosure, there was a technique of arranging a cold storage material in a heat exchanger (evaporator), cooling the air with the heat exchanger, and cooling the air with the cold storage material. ..
 しかしながら、この従来の技術では、車両用のカーエアコンに適用する技術であるため、例えば、アイドリングストップ中などエンジンが停止している状態で、補助的に蓄冷材による冷却を行う。また、設置スペースの関係で、蓄冷材の容量を大きく確保することができない。そのため、この従来の技術を冷蔵庫にそのまま適用することはできないという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。 However, since this conventional technology is applied to car air conditioners for vehicles, it is supplementarily cooled by a cold storage material while the engine is stopped, for example, during idling stop. In addition, due to the installation space, it is not possible to secure a large capacity of the cold storage material. Therefore, the inventors have discovered a problem that this conventional technique cannot be applied to a refrigerator as it is, and in order to solve the problem, they have constructed the subject matter of the present disclosure.
 そこで本開示は、冷蔵庫の庫内を効率よく冷却することができ、省エネルギ性の向上を図ることができる熱交換器および冷蔵庫を提供する。 Therefore, the present disclosure provides a heat exchanger and a refrigerator that can efficiently cool the inside of the refrigerator and improve energy saving.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted. This is to prevent the following explanation from becoming unnecessarily redundant and to facilitate the understanding of those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図7を用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 7.
 [1-1.構成]
 [1-1-1.冷蔵庫の構成]
 図1は、本開示の実施の形態1に係る冷蔵庫の概略を示す概略の断面構成図である。
[1-1. composition]
[1-1-1. Refrigerator configuration]
FIG. 1 is a schematic cross-sectional configuration diagram showing an outline of the refrigerator according to the first embodiment of the present disclosure.
 図1に示すように、冷蔵庫1は、箱型の本体10を備えている。本体10の上下方向の略中央部には、本体10の内部空間を仕切る仕切板11が設けられている。仕切板11の上方側は冷蔵室12とされ、仕切板11の下方側は冷凍室13とされている。 As shown in FIG. 1, the refrigerator 1 includes a box-shaped main body 10. A partition plate 11 for partitioning the internal space of the main body 10 is provided at a substantially central portion in the vertical direction of the main body 10. The upper side of the partition plate 11 is a refrigerating chamber 12, and the lower side of the partition plate 11 is a freezing chamber 13.
 冷蔵室12の前面には、冷蔵室扉14が開閉自在に設けられ、冷凍室13の前面には、冷凍室扉15が開閉自在に設けられている。 A refrigerating room door 14 is provided openable and closable on the front surface of the refrigerating room 12, and a freezing room door 15 is provided openable and closable on the front surface of the freezing room 13.
 冷蔵室12の後部には、上下方向に延在する冷蔵用ダクト20が設けられている。冷凍室13の後部には、上下方向に延在する冷凍用ダクト21が設けられている。冷蔵用ダクト20の内部には、本開示の熱交換器の一例としての冷蔵用熱交換器22が収容されている。 A refrigerating duct 20 extending in the vertical direction is provided at the rear of the refrigerating chamber 12. A freezing duct 21 extending in the vertical direction is provided at the rear of the freezing chamber 13. Inside the refrigerating duct 20, a refrigerating heat exchanger 22 as an example of the heat exchanger of the present disclosure is housed.
 冷蔵用熱交換器22の上方には、冷蔵用ファン23が配置されている。冷蔵庫1は、冷蔵用ファン23を駆動することで、冷蔵室12の内部空気が、冷蔵用ダクト20の下方から吸い込まれ、冷蔵用熱交換器22を通って熱交換した後、冷蔵用ダクト20の上方から冷蔵室12の内部に吹き出されるように構成されている。 A refrigerating fan 23 is arranged above the refrigerating heat exchanger 22. By driving the refrigerating fan 23, the refrigerator 1 sucks the internal air of the refrigerating chamber 12 from below the refrigerating duct 20, exchanges heat through the refrigerating heat exchanger 22, and then cools the refrigerating duct 20. It is configured to be blown into the inside of the refrigerating chamber 12 from above.
 冷凍用ダクト21の内部には、冷凍用熱交換器24が収容されている。冷凍用熱交換器24の上方には、冷凍用ファン25が配置されている。冷蔵庫1は、冷凍用ファン25を駆動することで、冷凍室13の内部空気が、冷凍用ダクト21の下方から吸い込まれ、冷凍用熱交換器24を通って熱交換した後、冷凍用ダクト21の上方から冷凍室13の内部に吹き出されるように構成されている。 A freezing heat exchanger 24 is housed inside the freezing duct 21. A freezing fan 25 is arranged above the refrigerating heat exchanger 24. By driving the freezing fan 25, the refrigerator 1 sucks the internal air of the freezing chamber 13 from below the freezing duct 21, exchanges heat through the freezing heat exchanger 24, and then the freezing duct 21. It is configured to be blown into the inside of the freezing chamber 13 from above.
 冷凍用ダクト21より下方には、ヒータ26が配置されている。 A heater 26 is arranged below the freezing duct 21.
 本体10の後部上方には、圧縮機30が設置されている。圧縮機30には、凝縮器31が冷媒配管32を介して接続されている。凝縮器31には、三方弁33が冷媒配管32を介して接続されており、三方弁33には、冷蔵用熱交換器22が膨張機構34を介して接続されている。 A compressor 30 is installed above the rear part of the main body 10. A condenser 31 is connected to the compressor 30 via a refrigerant pipe 32. A three-way valve 33 is connected to the condenser 31 via a refrigerant pipe 32, and a refrigerating heat exchanger 22 is connected to the three-way valve 33 via an expansion mechanism 34.
 また、三方弁33には、冷凍用熱交換器24が膨張機構35を介して接続されている。 Further, a refrigerating heat exchanger 24 is connected to the three-way valve 33 via an expansion mechanism 35.
 そして、圧縮機30、凝縮器31、三方弁33、膨張機構34および冷蔵用熱交換器22を冷媒が順次循環する冷蔵用冷媒サイクルが形成される。また、圧縮機30、凝縮器31、三方弁33、膨張機構35および冷凍用熱交換器24を冷媒が順次循環する冷凍用冷媒サイクルが形成される。 Then, a refrigerating refrigerant cycle is formed in which the refrigerant sequentially circulates through the compressor 30, the condenser 31, the three-way valve 33, the expansion mechanism 34, and the refrigerating heat exchanger 22. Further, a refrigerating refrigerant cycle is formed in which the refrigerant sequentially circulates through the compressor 30, the condenser 31, the three-way valve 33, the expansion mechanism 35, and the refrigerating heat exchanger 24.
 冷蔵用冷媒サイクルと、冷凍用冷媒サイクルとは、三方弁33を切り替えることで、切り替えが可能となっている。 The refrigerating refrigerant cycle and the freezing refrigerant cycle can be switched by switching the three-way valve 33.
 [1-1-2.冷蔵用熱交換器22の構成]
 次に、冷蔵用熱交換器22の構成について説明する。
[1-1-2. Configuration of heat exchanger 22 for refrigeration]
Next, the configuration of the refrigerating heat exchanger 22 will be described.
 図2は、実施の形態1の冷蔵用熱交換器22を示す斜視図である。図3は、実施の形態1の冷蔵用熱交換器22を示す平面図である。図4は、実施の形態1の冷蔵用熱交換器22を示す正面図である。図5は、図3のV-V線における断面図である。 FIG. 2 is a perspective view showing the refrigerating heat exchanger 22 of the first embodiment. FIG. 3 is a plan view showing the refrigerating heat exchanger 22 of the first embodiment. FIG. 4 is a front view showing the refrigerating heat exchanger 22 of the first embodiment. FIG. 5 is a cross-sectional view taken along the line VV of FIG.
 図2から図5に示すように、冷蔵用熱交換器22は、冷媒が流れる冷媒導通部材40を備えている。冷媒導通部材40は、略四角形状の複数の通路が連続して配列された多孔扁平管で構成されている。 As shown in FIGS. 2 to 5, the refrigerating heat exchanger 22 includes a refrigerant conduction member 40 through which a refrigerant flows. The refrigerant conduction member 40 is composed of a perforated flat tube in which a plurality of substantially square passages are continuously arranged.
 冷媒導通部材40は、所定間隔をもって略平行に形成された複数の扁平管41と、これら扁平管41の端部を接続する複数の曲成部42と、を備えて蛇行状に形成されている。すなわち、冷媒導通部材40は、冷媒の流れる流路が蛇行するように構成されている。 The refrigerant conduction member 40 is formed in a meandering shape including a plurality of flat pipes 41 formed substantially parallel to each other at predetermined intervals and a plurality of curved portions 42 connecting the ends of the flat pipes 41. .. That is, the refrigerant conduction member 40 is configured so that the flow path through which the refrigerant flows meanders.
 本実施の形態においては、冷媒導通部材40は、後述するヘッダ間において扁平管41が6つ配置されて構成されている。 In the present embodiment, the refrigerant conduction member 40 is configured by arranging six flat pipes 41 between headers, which will be described later.
 なお、扁平管41の数はこれに限定されるものではなく、任意に設定可能である。 The number of flat tubes 41 is not limited to this, and can be set arbitrarily.
 また、各扁平管41と各曲成部42とを一体で構成し、1本の扁平管41を蛇行させてヘッダ間に配置してもよい。 Further, each flat tube 41 and each curved portion 42 may be integrally configured, and one flat tube 41 may be meandered and arranged between the headers.
 また、扁平管41および曲成部42は、本実施の形態においては、上下方向に3つの領域、すなわち上部領域43、中部領域44及び下部領域45に分割されている。 Further, in the present embodiment, the flat tube 41 and the curved portion 42 are vertically divided into three regions, that is, an upper region 43, a middle region 44, and a lower region 45.
 なお、本実施の形態においては、上下方向に3つの領域に分割するようにしたが、上下方向に2つの領域、または4つ以上の領域に分割するようにしてもよい。 In the present embodiment, the region is divided into three regions in the vertical direction, but it may be divided into two regions or four or more regions in the vertical direction.
 最も外側に位置する2本の扁平管41における、扁平管41の延設方向の一端部には、入口側ヘッダ46および出口側ヘッダ47がそれぞれ設けられている。入口側ヘッダ46および出口側ヘッダ47は、上下方向に延在して設けられている。 In the two flat pipes 41 located on the outermost side, an inlet side header 46 and an outlet side header 47 are provided at one end in the extending direction of the flat pipe 41, respectively. The inlet side header 46 and the exit side header 47 are provided so as to extend in the vertical direction.
 入口側ヘッダ46および出口側ヘッダ47は、冷媒導通部材40の端面から突出しないように取付けられている。本実施の形態では、入口側ヘッダ46および出口側ヘッダ47の端面は、冷媒導通部材40の扁平管41の外面と面一とされている。これにより、冷媒導通部材40の厚さ寸法(扁平管41の配列方向における冷媒導通部材40の寸法)を低減させることができる。従って、冷蔵用ダクト20の内部に冷媒導通部材40を収容した場合に、冷蔵用ダクト20の内部スペースを小さくすることができる。その結果、冷蔵室12の内部空間を大きくすることができる。 The inlet side header 46 and the outlet side header 47 are attached so as not to protrude from the end face of the refrigerant conduction member 40. In the present embodiment, the end faces of the inlet side header 46 and the outlet side header 47 are flush with the outer surface of the flat pipe 41 of the refrigerant conduction member 40. As a result, the thickness dimension of the refrigerant conducting member 40 (the dimension of the refrigerant conducting member 40 in the arrangement direction of the flat pipes 41) can be reduced. Therefore, when the refrigerant conduction member 40 is housed inside the refrigerating duct 20, the internal space of the refrigerating duct 20 can be reduced. As a result, the internal space of the refrigerator compartment 12 can be increased.
 本実施の形態においては、入口側ヘッダ46の上部から冷媒が流入するように構成されており、出口側ヘッダ47の下部から冷媒が流出するように構成されている。 In the present embodiment, the refrigerant is configured to flow in from the upper part of the inlet side header 46, and the refrigerant is configured to flow out from the lower part of the outlet side header 47.
 なお、入口側ヘッダ46および出口側ヘッダ47は、扁平管41の延設方向における異なる端部にそれぞれ設けられて、入口側ヘッダ46と出口側ヘッダ47とが冷媒導通部材40の両側に配置されるようにしてもよい。なお、入口側ヘッダ46の冷媒入口は、上方ではなく下方に設けるようにしてもよいし、出口側ヘッダ47の冷媒出口は、下方ではなく上方に設けるようにしてもよい。 The inlet side header 46 and the outlet side header 47 are provided at different ends of the flat pipe 41 in the extending direction, and the inlet side header 46 and the outlet side header 47 are arranged on both sides of the refrigerant conduction member 40. You may do so. The refrigerant inlet of the inlet side header 46 may be provided below instead of above, and the refrigerant outlet of the outlet side header 47 may be provided above instead of below.
 図2に示すように、入口側ヘッダ46の上部領域43と中部領域44との境界に相当する位置には、仕切板48が設けられている。入口側ヘッダ46の中部領域44に相当する部分と下部領域45に相当する部分とは、連通している。 As shown in FIG. 2, a partition plate 48 is provided at a position corresponding to the boundary between the upper region 43 and the middle region 44 of the inlet side header 46. The portion corresponding to the middle region 44 of the entrance side header 46 and the portion corresponding to the lower region 45 communicate with each other.
 出口側ヘッダ47の中部領域44と下部領域45との境界に相当する位置には、仕切板49が設けられている。出口側ヘッダ47の上部領域43に相当する部分と中部領域44に相当する部分とは、連通している。 A partition plate 49 is provided at a position corresponding to the boundary between the middle region 44 and the lower region 45 of the exit side header 47. The portion corresponding to the upper region 43 of the exit side header 47 and the portion corresponding to the middle region 44 communicate with each other.
 入口側ヘッダ46の上部から流入した冷媒は、冷媒導通部材40の上部領域43の内部を通って、出口側ヘッダ47に流れる。出口側ヘッダ47に流れた冷媒は、冷媒導通部材40の中部領域44に流入して入口側ヘッダ46に流れ、入口側ヘッダ46を介して下部領域45を流れた後、出口側ヘッダ47の下部から流出される。 The refrigerant flowing in from the upper part of the inlet side header 46 passes through the inside of the upper region 43 of the refrigerant conduction member 40 and flows to the outlet side header 47. The refrigerant flowing to the outlet side header 47 flows into the central region 44 of the refrigerant conduction member 40, flows to the inlet side header 46, flows through the lower region 45 via the inlet side header 46, and then flows to the lower part of the outlet side header 47. Leaked from.
 すなわち、冷媒導通部材40は、その幅方向(図4における上下方向、すなわち扁平管41の扁平方向)が冷蔵用ダクト20内の空気の流れ方向に指向するように配置され、冷媒導通部材40を流れる冷媒は、空気の流れ方向に対して直交する方向に流れる。なお、ここでの扁平方向とは、扁平管41の断面(図5)における長手方向のことを意味する。 That is, the refrigerant conducting member 40 is arranged so that its width direction (vertical direction in FIG. 4, that is, the flat direction of the flat tube 41) is directed to the air flow direction in the refrigerating duct 20, and the refrigerant conducting member 40 is arranged. The flowing refrigerant flows in a direction orthogonal to the air flow direction. The flat direction here means the longitudinal direction in the cross section (FIG. 5) of the flat tube 41.
 冷媒導通部材40の扁平管41の間には、空気流路50と、蓄冷材51が封入された蓄冷材容器52と、が交互に配列されている。図5に示すように、冷媒導通部材40の扁平管41の下面には、蓄冷材容器52を保持する保持部材53が設けられている。 The air flow path 50 and the cold storage material container 52 in which the cold storage material 51 is enclosed are alternately arranged between the flat pipes 41 of the refrigerant conduction member 40. As shown in FIG. 5, a holding member 53 for holding the cold storage material container 52 is provided on the lower surface of the flat pipe 41 of the refrigerant conduction member 40.
 本実施の形態においては、最外部と中央部に空気流路50が形成され、隣接空気流路50の間に蓄冷材容器52が配置される。 In the present embodiment, the air flow path 50 is formed in the outermost part and the central part, and the cold storage material container 52 is arranged between the adjacent air flow paths 50.
 空気流路50の内部にはフィン54が配列されている。フィン54は、扁平管41に対して所定角度で傾斜されジグザグ状に折り曲げられて連続して設けられている。これらフィン54により、空気流路50の内部に、断面形状が略三角形状の空気流路50が連続して形成される。 Fins 54 are arranged inside the air flow path 50. The fins 54 are continuously provided by being inclined at a predetermined angle with respect to the flat tube 41 and being bent in a zigzag shape. These fins 54 continuously form an air flow path 50 having a substantially triangular cross-sectional shape inside the air flow path 50.
 なお、断面形状が矩形状の空気流路が連続して形成されていてもよい。 It should be noted that an air flow path having a rectangular cross-sectional shape may be continuously formed.
 空気流路50は、冷蔵用ダクト20の上下方向に沿うように、上下方向(重力方向)に形成される。 The air flow path 50 is formed in the vertical direction (gravity direction) along the vertical direction of the refrigerating duct 20.
 これにより、冷蔵用熱交換器22は、冷蔵用ダクト20の下方から上方に向かって流れる庫内空気が空気流路50を流れ、このとき、冷媒導通部材40の内部を流れる冷媒と熱交換を行うことで所定温度に冷却されるように構成されている。また、冷蔵用熱交換器22は、冷媒導通部材40の内部を流れる冷媒と、蓄冷材51とが熱交換を行うことで、蓄冷材51も所定温度に冷却されるように構成されている。 As a result, in the refrigerating heat exchanger 22, the air inside the refrigerator flowing from the lower side to the upper side of the refrigerating duct 20 flows through the air flow path 50, and at this time, heat exchange with the refrigerant flowing inside the refrigerant conducting member 40. It is configured to be cooled to a predetermined temperature by doing so. Further, the refrigerating heat exchanger 22 is configured such that the cold storage material 51 is also cooled to a predetermined temperature by exchanging heat between the refrigerant flowing inside the refrigerant conduction member 40 and the cold storage material 51.
 なお、本実施の形態においては、蓄冷材51は、約3℃に冷却される冷蔵室12内の低温室(約-3℃)を冷却する必要がある。このため、融点が-3℃よりも低い蓄冷材51、例えば、融点が-5℃から-15℃の蓄冷材51が使用される。 In the present embodiment, the cold storage material 51 needs to cool the low temperature chamber (about -3 ° C) in the refrigerating chamber 12 which is cooled to about 3 ° C. Therefore, a cold storage material 51 having a melting point lower than −3 ° C., for example, a cold storage material 51 having a melting point of −5 ° C. to −15 ° C. is used.
 なお、本実施の形態においては、フィン54の下端は、冷媒導通部材40の下端よりも下方に位置している。これにより、庫内空気と冷媒とが熱交換した際に、着霜や結露などで発生する水をフィン54の下端に集めることができ、排水性を高めることが可能となる。 In the present embodiment, the lower end of the fin 54 is located below the lower end of the refrigerant conducting member 40. As a result, when heat is exchanged between the air inside the refrigerator and the refrigerant, water generated by frost formation or dew condensation can be collected at the lower end of the fin 54, and drainage can be improved.
 なお、フィン54の上端を冷媒導通部材40の上端より上方に位置させるようにしてもよい。これにより、フィン54が冷媒により冷却されていることから、庫内空気の熱交換効率を高めることができる。 The upper end of the fin 54 may be positioned above the upper end of the refrigerant conduction member 40. As a result, since the fins 54 are cooled by the refrigerant, the heat exchange efficiency of the air inside the refrigerator can be improved.
 [1-1-3.制御構成の説明]
 図6は、実施の形態1の制御構成を示すブロック図である。
[1-1-3. Explanation of control configuration]
FIG. 6 is a block diagram showing the control configuration of the first embodiment.
 図6に示すように、冷蔵庫1は、制御部60を備えている。制御部60は、例えば、CPU(Central Processing Unit)やMPU(Micro―processing unit)などのプログラムを実行するプロセッサおよびROM(Read only memory)、RAM(Random access memory)などのメモリを備え、プロセッサが、メモリに記憶された制御プログラムを読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。 As shown in FIG. 6, the refrigerator 1 includes a control unit 60. The control unit 60 includes, for example, a processor that executes programs such as a CPU (Central Processing Unit) and an MPU (Micro-processing unit), and a memory such as a ROM (Read only memory) and a RAM (Random access memory). , Various processes are executed by the cooperation of hardware and software so as to read the control program stored in the memory and execute the processes.
 制御部60は、冷蔵室温センサ61および冷凍室温センサ62の検出温度に基づいて、圧縮機30、冷蔵用ファン23、冷凍用ファン25、三方弁33およびヒータ26を制御する。 The control unit 60 controls the compressor 30, the refrigerating fan 23, the refrigerating fan 25, the three-way valve 33, and the heater 26 based on the detection temperatures of the refrigerating room temperature sensor 61 and the refrigerating room temperature sensor 62.
 [1-2.動作]
 以上のように構成された冷蔵庫1について、その動作を以下説明する。
[1-2. motion]
The operation of the refrigerator 1 configured as described above will be described below.
 [1-2-1.冷却動作]
 まず、圧縮機30を駆動することにより、冷媒を凝縮器31に送り、三方弁33を切り替えることで、冷却器として作用する冷蔵用熱交換器22または冷凍用熱交換器24のいずれかに冷媒を送る。
[1-2-1. Cooling operation]
First, by driving the compressor 30, the refrigerant is sent to the condenser 31, and by switching the three-way valve 33, the refrigerant is sent to either the refrigerating heat exchanger 22 or the refrigerating heat exchanger 24, which acts as a cooler. To send.
 冷蔵用熱交換器22に送られた冷媒は、冷媒導通部材40の入口側ヘッダ46から流入して上部領域43の内部を流れる。出口側ヘッダ47に流れた冷媒は、出口側ヘッダ47を介して中部領域44を流れ、入口側ヘッダ46に送られ、入口側ヘッダ46を介して下部領域45を流れる。下部領域45を流れた冷媒は、出口側ヘッダ47から流出して、圧縮機30に戻される。 The refrigerant sent to the refrigerating heat exchanger 22 flows in from the inlet side header 46 of the refrigerant conduction member 40 and flows inside the upper region 43. The refrigerant flowing to the outlet side header 47 flows through the central region 44 via the outlet side header 47, is sent to the inlet side header 46, and flows through the lower region 45 via the inlet side header 46. The refrigerant flowing through the lower region 45 flows out from the outlet side header 47 and is returned to the compressor 30.
 冷媒導通部材40の内部を冷媒が流れている状態で、冷蔵用ファン23を駆動することで、冷蔵室12の庫内空気が冷蔵用ダクト20の下方から上方に流れる際に、冷蔵用熱交換器22の空気流路50を通過する。 By driving the refrigerating fan 23 while the refrigerant is flowing inside the refrigerant conducting member 40, heat exchange for refrigeration occurs when the air inside the refrigerating chamber 12 flows from below to above the refrigerating duct 20. It passes through the air flow path 50 of the vessel 22.
 これにより、冷蔵室12の庫内空気が冷媒導通部材40を流れる冷媒と熱交換して冷却される。 As a result, the air inside the refrigerator compartment 12 exchanges heat with the refrigerant flowing through the refrigerant conduction member 40 and is cooled.
 この場合に、冷媒導通部材40を流れる冷媒により、蓄冷材51も一緒に冷却される。 In this case, the cold storage material 51 is also cooled by the refrigerant flowing through the refrigerant conduction member 40.
 冷凍用熱交換器24に送られた冷媒は、冷凍用ファン25を駆動することで、冷凍用ダクト21の下方から上方に流れる庫内空気と熱交換し、冷媒により冷却された冷媒は、冷凍室13に戻される。 The refrigerant sent to the refrigerating heat exchanger 24 exchanges heat with the internal air flowing from below to above the refrigerating duct 21 by driving the refrigerating fan 25, and the refrigerant cooled by the refrigerant is refrigerated. Returned to room 13.
 [1-2-1.デマンドレスポンス制御動作]
 次に、例えば、夏季など電力消費が多くなる時期に行われるデマンドレスポンス(DR:DemandResponse)に対応する制御について説明する。デマンドレスポンスとは、社会全体の電力消費がピークを迎えるタイミング(例えば、夏季の14時頃)に、電力会社からの要請に応じて工場や家庭の電力消費を抑制することで、社会全体の電力消費のピーク値を減らす仕組みである。
[1-2-1. Demand response control operation]
Next, for example, a control corresponding to a demand response (DR: Demand Response) performed at a time when power consumption is high such as in summer will be described. Demand response is the power consumption of the entire society by curbing the power consumption of factories and households in response to requests from electric power companies at the timing when the power consumption of the entire society reaches its peak (for example, around 14:00 in the summer). It is a mechanism to reduce the peak value of consumption.
 図7は、デマンドレスポンスに対応する動作を示すグラフである。 FIG. 7 is a graph showing the operation corresponding to the demand response.
 本実施の形態においては、例えば、夏季の14時頃に電力消費のピークを迎える状態を例に説明する。 In the present embodiment, for example, a state in which the peak power consumption is reached around 14:00 in the summer will be described as an example.
 本実施の形態の制御は、電力消費のピークである14時の前後1時間の時間帯で圧縮機30を停止する制御である。 The control of the present embodiment is a control of stopping the compressor 30 in a time zone of 1 hour before and after 14:00, which is the peak of power consumption.
 冷蔵庫1が、電力消費を抑えることを要求するデマンドレスポンス信号を電力会社等の外部のサーバから11時に受信したとする。本実施の形態において、デマンドレスポンス信号を受信した機器は、2時間後に電力消費を抑える動作に切り替える必要があるとする。 It is assumed that the refrigerator 1 receives a demand response signal requesting reduction of power consumption from an external server such as an electric power company at 11 o'clock. In the present embodiment, it is assumed that the device that has received the demand response signal needs to be switched to the operation of suppressing the power consumption after 2 hours.
 デマンドレスポンス信号を冷蔵庫1が受信すると、冷蔵庫1はデマンドレスポンス制御を開始する。具体的には、制御部60は、11時に三方弁33を切り替えて、冷凍用熱交換器24に冷媒が流れるように制御する。 When the refrigerator 1 receives the demand response signal, the refrigerator 1 starts the demand response control. Specifically, the control unit 60 switches the three-way valve 33 at 11 o'clock to control the flow of the refrigerant to the refrigerating heat exchanger 24.
 この状態で、圧縮機30を駆動することで、圧縮機30から吐出された冷媒は、凝縮器31及び膨張機構35を通り、冷凍用熱交換器24に送られる。冷凍用熱交換器24に送られた冷媒は、冷凍用熱交換器24で庫内空気と熱交換して冷凍室13の内部を所定温度に冷却する。 By driving the compressor 30 in this state, the refrigerant discharged from the compressor 30 is sent to the refrigerating heat exchanger 24 through the condenser 31 and the expansion mechanism 35. The refrigerant sent to the refrigerating heat exchanger 24 exchanges heat with the internal air in the refrigerating heat exchanger 24 to cool the inside of the freezing chamber 13 to a predetermined temperature.
 なお、この場合の所定温度は、通常、設定される庫内温度より低く設定される。本実施の形態においては、例えば約-19℃から約-24℃にまで冷却するように制御される。 The predetermined temperature in this case is usually set lower than the set internal temperature. In this embodiment, the cooling is controlled to, for example, from about -19 ° C to about -24 ° C.
 冷凍室13の冷却が完了したら、制御部60は、三方弁33を切り替えて、冷蔵用熱交換器22に冷媒が流れるように制御する。 When the cooling of the freezing chamber 13 is completed, the control unit 60 switches the three-way valve 33 to control the flow of the refrigerant to the refrigerating heat exchanger 22.
 この状態で、圧縮機30を駆動することで、圧縮機30から吐出された冷媒は、凝縮器31及び膨張機構34を通り、冷蔵用熱交換器22に送られる。冷蔵用熱交換器22に送られた冷媒は、冷蔵用熱交換器22で庫内空気と熱交換して冷蔵室12の内部を所定温度に冷却する。この冷蔵室12の冷却と同時に、冷蔵用熱交換器22を流れる冷媒により、蓄冷材51が冷却され、蓄冷材51の蓄冷が行われる。 By driving the compressor 30 in this state, the refrigerant discharged from the compressor 30 is sent to the refrigerating heat exchanger 22 through the condenser 31 and the expansion mechanism 34. The refrigerant sent to the refrigerating heat exchanger 22 exchanges heat with the internal air in the refrigerating heat exchanger 22 to cool the inside of the refrigerating chamber 12 to a predetermined temperature. At the same time as cooling the refrigerating chamber 12, the cold storage material 51 is cooled by the refrigerant flowing through the refrigerating heat exchanger 22, and the cold storage material 51 is stored cold.
 デマンドレスポンス信号を冷蔵庫1が受信してから2時間が経過すると(本実施の形態の場合は13時)、制御部60は、圧縮機30を停止させる。圧縮機30を停止させることで、冷蔵庫1は電力消費を抑える動作を実行することになる。 When 2 hours have passed since the refrigerator 1 received the demand response signal (13:00 in the case of this embodiment), the control unit 60 stops the compressor 30. By stopping the compressor 30, the refrigerator 1 executes an operation of suppressing power consumption.
 この状態で、冷蔵室12の温度は、蓄冷材51の冷却能力により、ほぼ一定の温度に保持することができる。冷凍室13の温度は徐々に上昇するが、デマンドレスポンス制御が終了する15時でも、適正な温度に保持することができる。 In this state, the temperature of the refrigerating chamber 12 can be maintained at a substantially constant temperature due to the cooling capacity of the cold storage material 51. Although the temperature of the freezing chamber 13 gradually rises, it can be maintained at an appropriate temperature even at 15:00 when the demand response control ends.
 [1-3.効果等]
 以上述べたように、本実施の形態の熱交換器は、互いに間隔をおいて形成された扁平管41からなる冷媒導通部材40と、冷媒導通部材40の隣接する扁平管41の間に配置され蓄冷材51が封入された蓄冷材51容器と、扁平管41の他の間に形成され空気が流れる空気流路50と、空気流路50に設けられたフィン54と、を備える。冷媒導通部材40の幅方向が通風方向に指向させられるとともに、空気流路50の通風方向が重力方向とされている。
[1-3. Effect, etc.]
As described above, the heat exchanger of the present embodiment is arranged between the refrigerant conducting member 40 made of the flat tubes 41 formed at intervals from each other and the adjacent flat tubes 41 of the refrigerant conducting members 40. It includes a cold storage material 51 container in which a cold storage material 51 is sealed, an air flow path 50 formed between other flat pipes 41 and through which air flows, and fins 54 provided in the air flow path 50. The width direction of the refrigerant conduction member 40 is directed to the ventilation direction, and the ventilation direction of the air flow path 50 is the gravity direction.
 これにより、冷媒導通部材40の幅方向を通風方向に指向させるとともに、空気流路50の通風方向が重力方向とされていることで、フィン54に霜や結露が付着した場合に、結露水の自重により排水することができる。このため、フィン54に残留する結露水を減らすことができる。従って、結露水による通風抵抗増大の抑制、及びフィン54と庫内空気との熱交換面積低減の抑制ができ、冷蔵室12の庫内を効率よく冷却することができる。また、熱交換器により蓄冷材51の冷却を行うことができ、蓄冷材51により庫内空気の冷却を行うことで、省エネルギ性能の向上を図ることができる。 As a result, the width direction of the refrigerant conduction member 40 is directed to the ventilation direction, and the ventilation direction of the air flow path 50 is the gravity direction. Therefore, when frost or dew condensation adheres to the fin 54, dew condensation water is formed. It can be drained by its own weight. Therefore, the amount of dew condensation water remaining on the fins 54 can be reduced. Therefore, it is possible to suppress an increase in ventilation resistance due to dew condensation water and a reduction in the heat exchange area between the fin 54 and the air inside the refrigerator, and it is possible to efficiently cool the inside of the refrigerator chamber 12. Further, the cold storage material 51 can be cooled by the heat exchanger, and the internal air can be cooled by the cold storage material 51, so that the energy saving performance can be improved.
 なお、本実施の形態においては、フィン54の下端は、冷媒導通部材40の下端よりも下方に位置している。 In the present embodiment, the lower end of the fin 54 is located below the lower end of the refrigerant conducting member 40.
 これにより、庫内空気が冷媒と熱交換した際に、フィン54に霜や結露が付着した場合に、フィン54の下端を冷媒導通部材40より下方に位置させているので、結露水をフィン54の下端に効率よく集めることができる。そのため、排水性を高めることができる。 As a result, when frost or dew condensation adheres to the fin 54 when the air inside the refrigerator exchanges heat with the refrigerant, the lower end of the fin 54 is positioned below the refrigerant conduction member 40, so that the dew condensation water is transferred to the fin 54. Can be efficiently collected at the lower end of. Therefore, the drainage property can be improved.
 なお、本実施の形態においては、冷媒導通部材40は、蓄冷材容器52を保持する保持部材53を備えている。 In the present embodiment, the refrigerant conduction member 40 includes a holding member 53 that holds the cold storage material container 52.
 これにより、冷媒導通部材40の蓄冷材容器52が上下方向(重力方向)に位置するように冷蔵用熱交換器22を配置した場合でも、蓄冷材容器52を支持することができる。そのため、蓄冷材容器52の落下を防止することができる。 Thereby, even when the refrigerating heat exchanger 22 is arranged so that the cold storage material container 52 of the refrigerant conduction member 40 is located in the vertical direction (gravity direction), the cold storage material container 52 can be supported. Therefore, it is possible to prevent the cold storage material container 52 from falling.
 なお、本実施の形態においては、冷媒導通部材40は、冷媒の入口側ヘッダ46および出口側ヘッダ47を備え、入口側ヘッダ46および出口側ヘッダ47は、冷媒導通部材40の端面から突出しないように取付けられている。 In the present embodiment, the refrigerant conduction member 40 includes an inlet side header 46 and an outlet side header 47 of the refrigerant, and the inlet side header 46 and the outlet side header 47 do not protrude from the end face of the refrigerant conduction member 40. It is attached to.
 これにより、冷媒導通部材40の厚さ寸法を低減させることができる。従って、冷蔵用ダクト20の内部に冷媒導通部材40を収容した場合に、冷蔵用ダクト20の内部スペースを小さくすることができる。そのため、冷蔵室12の内部空間を大きくすることができる。 Thereby, the thickness dimension of the refrigerant conduction member 40 can be reduced. Therefore, when the refrigerant conduction member 40 is housed inside the refrigerating duct 20, the internal space of the refrigerating duct 20 can be reduced. Therefore, the internal space of the refrigerator compartment 12 can be increased.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.
 図8は、本開示の他の実施の形態の熱交換器を示す平面図である。 FIG. 8 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
 図8に示すように、本実施の形態においては、下部領域45のフィン54と、上部領域43のフィン54との位置をずらして配置するようにしたものである。より詳細には、下部領域45のフィン54と、上部領域43のフィン54とは、ジグザグ形状の繰り返しの位相を1/2ずらして配置されている。 As shown in FIG. 8, in the present embodiment, the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so as to be offset from each other. More specifically, the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so that the repeating phases of the zigzag shape are shifted by 1/2.
 すなわち、上部領域43における三角形状の空気流路50と、下部領域45における三角形状の空気流路50と、が平面視において互いに重なるように形成される。なお、ここでの位相とは、空気流路50を形成するフィン54の三角形状を一単位(一周期)とする繰り返しの位相のことを意味する。 That is, the triangular air flow path 50 in the upper region 43 and the triangular air flow path 50 in the lower region 45 are formed so as to overlap each other in a plan view. The phase here means a repeating phase in which the triangular shape of the fins 54 forming the air flow path 50 is one unit (one cycle).
 なお、フィン54の位相のずらし方としては、上部領域43のフィン54に対して中部領域44のフィン54の位相をずらすようにしてもよい。 As a method of shifting the phase of the fins 54, the phase of the fins 54 of the middle region 44 may be shifted from the fins 54 of the upper region 43.
 このように構成することで、庫内空気が空気流路50を流れる際の抵抗は多少増加するものの、空気の流れ方向に対してフィン54の端部との熱交換面積が増えることで前縁効果を高めることができる。そのため、熱交換効率を高めることができる。 With this configuration, the resistance when the air inside the refrigerator flows through the air flow path 50 increases slightly, but the heat exchange area with the end of the fin 54 increases with respect to the air flow direction, which increases the leading edge. The effect can be enhanced. Therefore, the heat exchange efficiency can be improved.
 図9は、本開示の他の実施の形態の熱交換器を示す平面図である。 FIG. 9 is a plan view showing a heat exchanger according to another embodiment of the present disclosure.
 図9に示すように、本実施の形態においても、下部領域45のフィン54と、上部領域43のフィン54との位置をずらして配置するようにしたものである。より詳細には、空気流路の上流側となる下部領域45のフィン54の傾斜角度は、空気流路の下流側となる上部領域43のフィン54の傾斜角度より大きく形成するようにしたものである。 As shown in FIG. 9, also in the present embodiment, the fins 54 in the lower region 45 and the fins 54 in the upper region 43 are arranged so as to be offset from each other. More specifically, the inclination angle of the fin 54 of the lower region 45 on the upstream side of the air flow path is formed to be larger than the inclination angle of the fin 54 of the upper region 43 on the downstream side of the air flow path. be.
 図9は、平面視において上部領域43から見たフィン54の図と下部領域45だけを見たフィン54の図とを部分的に合わせて示している。 FIG. 9 shows a partial combination of a view of the fin 54 viewed from the upper region 43 and a view of the fin 54 viewed only from the lower region 45 in a plan view.
 すなわち、下部領域45のフィン54は、三角形状の空気流路50の頂点に相当する角度が大きく形成されている。 That is, the fin 54 of the lower region 45 is formed at a large angle corresponding to the apex of the triangular air flow path 50.
 このように構成することで、空気流路50の上流側となる下部領域45における空気流路50の断面積を大きく確保することができる。そのため、庫内空気が冷媒と熱交換した際に、フィン54に霜や結露が付着した場合でも、霜や結露により、空気流路50が塞がれてしまうことを防止することができ、空気の流れを確保することができる。 With this configuration, it is possible to secure a large cross-sectional area of the air flow path 50 in the lower region 45 on the upstream side of the air flow path 50. Therefore, even if frost or dew condensation adheres to the fins 54 when the air in the refrigerator exchanges heat with the refrigerant, it is possible to prevent the air flow path 50 from being blocked by the frost or dew condensation, and the air. The flow of water can be secured.
 なお、下部領域45を空気流路50の上流側、上部領域43を空気流路50の下流側としたが、冷蔵用ファン23を逆回転させて上部領域43を空気流路50の上流側、下部領域45を空気流路50の下流側としてもよい。 Although the lower region 45 is the upstream side of the air flow path 50 and the upper region 43 is the downstream side of the air flow path 50, the refrigerating fan 23 is rotated in the reverse direction to make the upper region 43 the upstream side of the air flow path 50. The lower region 45 may be the downstream side of the air flow path 50.
 図10は、本開示の他の実施の形態の熱交換器を示す正面図である。 FIG. 10 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
 図10に示すように、本実施の形態においては、冷蔵用熱交換器22に、液冷媒溜まり55が設けられている。 As shown in FIG. 10, in the present embodiment, the refrigerating heat exchanger 22 is provided with a liquid refrigerant reservoir 55.
 具体的には、出口側ヘッダ47の上部に冷媒出口47aを設け、この冷媒出口47aに冷媒が流出する冷媒配管32が接続されている。出口側ヘッダ47の冷媒出口47aは、冷媒導通部材40を構成する扁平管41の上端より上方に配置されている。 Specifically, a refrigerant outlet 47a is provided above the outlet side header 47, and a refrigerant pipe 32 through which the refrigerant flows is connected to the refrigerant outlet 47a. The refrigerant outlet 47a of the outlet side header 47 is arranged above the upper end of the flat pipe 41 constituting the refrigerant conduction member 40.
 入口側ヘッダ46の下部には冷媒入口46aが設けられ、冷媒入口46aに冷媒配管32が接続されている。 A refrigerant inlet 46a is provided below the inlet side header 46, and a refrigerant pipe 32 is connected to the refrigerant inlet 46a.
 このように構成されることで、入口側ヘッダ46の冷媒入口46aから流入した冷媒は、下部領域45から中部領域44を介して上部領域43に送られ、出口側ヘッダ47の冷媒出口47aから流出される。 With this configuration, the refrigerant flowing in from the refrigerant inlet 46a of the inlet side header 46 is sent from the lower region 45 to the upper region 43 via the middle region 44, and flows out from the refrigerant outlet 47a of the outlet side header 47. Will be done.
 このとき、上部領域43の扁平管41を流れる冷媒のうち、ガス冷媒のみが冷媒出口47aから流出され、液冷媒は上部領域43の扁平管41の内部下方に貯留されて冷媒溜まり55が形成される。 At this time, of the refrigerant flowing through the flat pipe 41 in the upper region 43, only the gas refrigerant flows out from the refrigerant outlet 47a, and the liquid refrigerant is stored inside and below the flat pipe 41 in the upper region 43 to form a refrigerant reservoir 55. NS.
 これにより、簡単な構成で、冷蔵用熱交換器22にアキュムレータの機能を持たせることができる。 This makes it possible to give the refrigerating heat exchanger 22 the function of an accumulator with a simple configuration.
 図11は、本開示の他の実施の形態の熱交換器を示す正面図である。 FIG. 11 is a front view showing a heat exchanger according to another embodiment of the present disclosure.
 図11に示すように、本実施の形態においても、冷蔵用熱交換器22に、液冷媒溜まり55を設けるようにしている。 As shown in FIG. 11, also in the present embodiment, the refrigerating heat exchanger 22 is provided with the liquid refrigerant reservoir 55.
 具体的には、出口側ヘッダ47の下方に冷媒出口47aを設け、この冷媒出口47aに冷媒が流出する冷媒配管32が接続されている。 Specifically, a refrigerant outlet 47a is provided below the outlet side header 47, and a refrigerant pipe 32 through which the refrigerant flows is connected to the refrigerant outlet 47a.
 出口側ヘッダ47の冷媒出口47aは、下部領域45の扁平管41の上端より上方に配置されている。 The refrigerant outlet 47a of the outlet side header 47 is arranged above the upper end of the flat pipe 41 in the lower region 45.
 入口側ヘッダ46の冷媒入口46aは、入口側ヘッダ46は、その上端部に設けられている。 The refrigerant inlet 46a of the inlet side header 46 is provided at the upper end portion of the inlet side header 46.
 このように構成することで、入口側ヘッダ46の冷媒入口46aから流入した冷媒は、上部領域43から中部領域44を介して下部領域45に送られ、出口側ヘッダ47の冷媒出口47aから流出される。 With this configuration, the refrigerant flowing in from the refrigerant inlet 46a of the inlet side header 46 is sent from the upper region 43 to the lower region 45 via the middle region 44, and flows out from the refrigerant outlet 47a of the outlet side header 47. NS.
 このとき、下部領域45の扁平管41を流れる冷媒のうち、ガス冷媒のみが冷媒出口47aから流出され、液冷媒は下部領域45の扁平管41の内部下方に貯留されて冷媒溜まり55が形成される。 At this time, of the refrigerant flowing through the flat pipe 41 in the lower region 45, only the gas refrigerant flows out from the refrigerant outlet 47a, and the liquid refrigerant is stored in the lower part inside the flat pipe 41 in the lower region 45 to form a refrigerant reservoir 55. NS.
 これにより、簡単な構成で、冷蔵用熱交換器22にアキュムレータの機能を持たせることができる。 This makes it possible to give the refrigerating heat exchanger 22 the function of an accumulator with a simple configuration.
 また、変形例として、冷蔵用熱交換器22と同様に冷凍用熱交換器24に蓄冷材51を設けてもよい。この場合、蓄冷材51は、冷凍室13を冷却する必要があるので、蓄冷材51の融点は-20℃から-30℃が望ましい。 Further, as a modification, a cold storage material 51 may be provided in the refrigerating heat exchanger 24 as in the refrigerating heat exchanger 22. In this case, since the cold storage material 51 needs to cool the freezing chamber 13, the melting point of the cold storage material 51 is preferably −20 ° C. to −30 ° C.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Since the above-described embodiment is for exemplifying the technology in the present disclosure, various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or the equivalent thereof.
 本開示における熱交換器は、冷媒導通部材の幅方向が通風方向に指向されるとともに、空気流路の通風方向が重力方向とされていることで、冷蔵室の庫内空気を重力方向に流して熱交換することができる。そのため、冷蔵室の庫内を効率よく冷却することができる。また、熱交換器により蓄冷材の冷却を行い、蓄冷材により庫内空気の冷却を行うことで、省エネルギ性の向上を図ることができる。従って、種々の冷蔵庫に適用可能である。 In the heat exchanger in the present disclosure, the width direction of the refrigerant conduction member is directed to the ventilation direction, and the ventilation direction of the air flow path is the gravity direction, so that the air inside the refrigerator compartment flows in the gravity direction. Can exchange heat. Therefore, the inside of the refrigerator compartment can be efficiently cooled. Further, by cooling the cold storage material with the heat exchanger and cooling the air inside the refrigerator with the cold storage material, energy saving can be improved. Therefore, it can be applied to various refrigerators.
 1 冷蔵庫
 10 本体
 11 仕切板
 12 冷蔵室
 13 冷凍室
 14 冷蔵室扉
 15 冷凍室扉
 20 冷蔵用ダクト
 21 冷凍用ダクト
 22 冷蔵用熱交換器
 23 冷蔵用ファン
 24 冷凍用熱交換器
 25 冷凍用ファン
 26 ヒータ
 30 圧縮機
 31 凝縮器
 32 冷媒配管
 33 三方弁
 34 膨張機構
 35 膨張機構
 40 冷媒導通部材
 41 扁平管
 42 曲成部
 43 上部領域
 44 中部領域
 45 下部領域
 46 入口側ヘッダ
 46a 冷媒入口
 47 出口側ヘッダ
 47a 冷媒出口
 48 仕切板
 49 仕切板
 50 空気流路
 51 蓄冷材
 52 蓄冷材容器
 53 保持部材
 54 フィン
 55 冷媒溜まり
 60 制御部
 61 冷蔵室温センサ
 62 冷凍室温センサ
1 Refrigerant 10 Main body 11 Partition plate 12 Refrigerator room 13 Refrigerator room 14 Refrigerator room door 15 Refrigerator room door 20 Refrigerant duct 21 Refrigerant duct 22 Refrigerant heat exchanger 23 Refrigerator fan 24 Refrigerator heat exchanger 25 Refrigerator fan 26 Heater 30 Compressor 31 Condenser 32 Refrigerant piping 33 Three-way valve 34 Expansion mechanism 35 Expansion mechanism 40 Refrigerant conduction member 41 Flat tube 42 Curved part 43 Upper area 44 Middle area 45 Lower area 46 Inlet side header 46a Refrigerant inlet 47 Exit side header 47a Refrigerant outlet 48 Partition plate 49 Partition plate 50 Air flow path 51 Cold storage material 52 Cold storage material container 53 Holding member 54 Fin 55 Refrigerant pool 60 Control unit 61 Refrigerating room temperature sensor 62 Refrigerating room temperature sensor

Claims (9)

  1.  互いに間隔をおいて配置された複数の扁平管を有する冷媒導通部材と、
     前記冷媒導通部材の前記複数の扁平管のうちの互いに隣接する第1の扁平管と第2の扁平管との間に配置され、蓄冷材が封入された蓄冷材容器と、
     前記複数の扁平管のうちの他の扁平管であって、前記第2の扁平管とは反対側において前記第1の扁平管に隣接する前記他の扁平管と、前記第1の扁平管との間に形成され、空気が流れる空気流路と、
     前記空気流路に設けられたフィンと、を備え、
     前記冷媒導通部材の幅方向が通風方向に指向されており、前記空気流路の通風方向が重力方向とされている、
    熱交換器。
    A refrigerant conduction member having a plurality of flat tubes arranged at intervals from each other,
    A cold storage material container arranged between the first flat pipe and the second flat pipe adjacent to each other among the plurality of flat pipes of the refrigerant conduction member and containing a cold storage material, and a cold storage material container.
    The other flat tube of the plurality of flat tubes, which is adjacent to the first flat tube on the opposite side of the second flat tube, and the first flat tube. The air flow path formed between the air flow paths and the air flow path,
    With fins provided in the air flow path,
    The width direction of the refrigerant conducting member is directed to the ventilation direction, and the ventilation direction of the air flow path is the gravity direction.
    Heat exchanger.
  2.  前記フィンの下端は、前記冷媒導通部材の下端よりも下方に位置している、
    請求項1に記載の熱交換器。
    The lower end of the fin is located below the lower end of the refrigerant conducting member.
    The heat exchanger according to claim 1.
  3.  前記冷媒導通部材は、上下方向に冷媒を分けて流す領域として、上部領域及び下部領域を有し、
     前記フィンのうち、前記下部領域に配置されたフィンは、前記上部領域に配置されたフィンと位置をずらして配置されている、
    請求項1または請求項2に記載の熱交換器。
    The refrigerant conduction member has an upper region and a lower region as regions for flowing the refrigerant separately in the vertical direction.
    Among the fins, the fins arranged in the lower region are arranged so as to be displaced from the fins arranged in the upper region.
    The heat exchanger according to claim 1 or 2.
  4.  前記フィンは、所定角度で傾斜して配置されて略三角形状の空気流路を形成し、
     前記下部領域の前記フィンの傾斜角度は、前記上部領域の前記フィンの傾斜角度より大きく形成されている、
    請求項3に記載の熱交換器。
    The fins are arranged so as to be inclined at a predetermined angle to form a substantially triangular air flow path.
    The tilt angle of the fins in the lower region is formed to be larger than the tilt angle of the fins in the upper region.
    The heat exchanger according to claim 3.
  5.  前記フィンは、所定角度で傾斜して配置されて略三角形状の空気流路を形成し、
     前記下部領域の前記フィンと、前記上部領域の前記フィンとは、位相をずらして配置されている、
    請求項3に記載の熱交換器。
    The fins are arranged so as to be inclined at a predetermined angle to form a substantially triangular air flow path.
    The fins in the lower region and the fins in the upper region are arranged in phase with each other.
    The heat exchanger according to claim 3.
  6.  前記冷媒導通部材は、前記蓄冷材容器を保持する保持部材を備えている、
    請求項1から請求項5のいずれか一項に記載の熱交換器。
    The refrigerant conducting member includes a holding member for holding the cold storage material container.
    The heat exchanger according to any one of claims 1 to 5.
  7.  前記冷媒導通部材は、冷媒の入口側に配置されたヘッダ及び出口側に配置されたヘッダを備え、
     前記入口側の前記ヘッダ及び前記出口側の前記ヘッダはそれぞれ、冷媒導通部材の端面から突出しないように取付けられている、
    請求項1から請求項6のいずれか一項に記載の熱交換器。
    The refrigerant conduction member includes a header arranged on the inlet side and a header arranged on the outlet side of the refrigerant.
    The header on the inlet side and the header on the outlet side are attached so as not to protrude from the end faces of the refrigerant conducting members, respectively.
    The heat exchanger according to any one of claims 1 to 6.
  8.  前記出口側の前記ヘッダの冷媒出口は、前記扁平管の上端より上方に配置されている、
    請求項7に記載の熱交換器。
    The refrigerant outlet of the header on the outlet side is arranged above the upper end of the flat pipe.
    The heat exchanger according to claim 7.
  9.  請求項1から請求項8に記載の熱交換器を搭載した冷蔵庫。 A refrigerator equipped with the heat exchanger according to claims 1 to 8.
PCT/JP2021/019932 2020-05-29 2021-05-26 Heat exchanger and refrigerator WO2021241619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180023329.8A CN115315602A (en) 2020-05-29 2021-05-26 Heat exchanger and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094749 2020-05-29
JP2020094749A JP2021188836A (en) 2020-05-29 2020-05-29 Heat exchanger and refrigerator

Publications (1)

Publication Number Publication Date
WO2021241619A1 true WO2021241619A1 (en) 2021-12-02

Family

ID=78744572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019932 WO2021241619A1 (en) 2020-05-29 2021-05-26 Heat exchanger and refrigerator

Country Status (3)

Country Link
JP (2) JP2021188836A (en)
CN (1) CN115315602A (en)
WO (1) WO2021241619A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023058069A (en) * 2021-10-13 2023-04-25 パナソニックIpマネジメント株式会社 refrigerator
JP2023161995A (en) * 2022-04-26 2023-11-08 パナソニックIpマネジメント株式会社 Cooler
JP2024051960A (en) * 2022-09-30 2024-04-11 パナソニックIpマネジメント株式会社 Cooling device, method for operating cooling device, and system for controlling cooling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264675A (en) * 1998-03-19 1999-09-28 Zexel:Kk Juxtaposed integral heat exchanger
JP2010149814A (en) * 2008-12-26 2010-07-08 Showa Denko Kk Evaporator with cold storage function
WO2013011945A1 (en) * 2011-07-20 2013-01-24 ダイキン工業株式会社 Flat tube for heat exchanger
JP2014044002A (en) * 2012-08-27 2014-03-13 Sumitomo Precision Prod Co Ltd Heat exchange unit
JP2014159891A (en) * 2013-02-19 2014-09-04 Sharp Corp Evaporator, and refrigerator using the same
WO2019207799A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129587U (en) * 1988-02-23 1989-09-04
JP2000161647A (en) * 1998-12-01 2000-06-16 Babcock Hitachi Kk Waste gas processing device, and gas re-heater
JP2001255093A (en) * 2000-03-09 2001-09-21 Zexel Valeo Climate Control Corp Evaporator
JP2013119959A (en) * 2011-12-06 2013-06-17 Showa Denko Kk Offset fin and method for manufacturing the same
CN104154682B (en) * 2014-08-20 2016-05-25 上海加冷松芝汽车空调股份有限公司 A kind of cold storage evaporimeter
JP2018048769A (en) * 2016-09-21 2018-03-29 豊田通商株式会社 Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264675A (en) * 1998-03-19 1999-09-28 Zexel:Kk Juxtaposed integral heat exchanger
JP2010149814A (en) * 2008-12-26 2010-07-08 Showa Denko Kk Evaporator with cold storage function
WO2013011945A1 (en) * 2011-07-20 2013-01-24 ダイキン工業株式会社 Flat tube for heat exchanger
JP2014044002A (en) * 2012-08-27 2014-03-13 Sumitomo Precision Prod Co Ltd Heat exchange unit
JP2014159891A (en) * 2013-02-19 2014-09-04 Sharp Corp Evaporator, and refrigerator using the same
WO2019207799A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger

Also Published As

Publication number Publication date
JP2021188836A (en) 2021-12-13
JP2023118975A (en) 2023-08-25
CN115315602A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2021241619A1 (en) Heat exchanger and refrigerator
JP5772748B2 (en) Evaporator
JP5868088B2 (en) Cooling unit for vehicle air conditioner
JP5764335B2 (en) Evaporator with cool storage function
JP2013061136A5 (en)
JP2006284133A (en) Heat exchanger
KR101611694B1 (en) Tube-fin thermal storage evaporator
JP4618529B2 (en) Ice thermal storage air conditioner
JP2004069228A (en) Heat exchanger
WO2022091908A1 (en) Heat exchanger and refrigerator
WO2014129621A1 (en) Heat exchanger and vehicle air conditioning device
JP2021196122A (en) Outdoor heat exchanger
JP2019039597A (en) Double-pipe heat exchanger, and heat exchange system with the same
KR20210027573A (en) Local cooling system in data center using latent heat of evaporation of refrigerant
JP6097520B2 (en) Evaporator with cool storage function
JP6511710B2 (en) Refrigeration system
JP4633967B2 (en) Ice thermal storage air conditioner
JPH07167548A (en) Freezer and refrigerator
JP2017030391A (en) Air conditioner for vehicle
JP3886244B2 (en) Heat exchanger
KR100485140B1 (en) Fin Tube installed Energy Storage-and-Recovery Device using Latent Heat of Fusion of Water and Air-Conditioning System with the Device
JPH0124550Y2 (en)
JP2024089045A (en) Refrigerating device and defrosting method for load cooler
JP2726941B2 (en) Ventilation heat exchanger
KR100547668B1 (en) Header tank for automotive heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812740

Country of ref document: EP

Kind code of ref document: A1