JPH1183371A - Laminated heat exchanger for cooling - Google Patents

Laminated heat exchanger for cooling

Info

Publication number
JPH1183371A
JPH1183371A JP24147197A JP24147197A JPH1183371A JP H1183371 A JPH1183371 A JP H1183371A JP 24147197 A JP24147197 A JP 24147197A JP 24147197 A JP24147197 A JP 24147197A JP H1183371 A JPH1183371 A JP H1183371A
Authority
JP
Japan
Prior art keywords
groove
heat exchanger
fin
louver
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24147197A
Other languages
Japanese (ja)
Other versions
JP4003259B2 (en
Inventor
Isao Azeyanagi
功 畔柳
Toshio Ohara
敏夫 大原
Sadayuki Kamiya
定行 神谷
Eiichi Torigoe
栄一 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24147197A priority Critical patent/JP4003259B2/en
Publication of JPH1183371A publication Critical patent/JPH1183371A/en
Application granted granted Critical
Publication of JP4003259B2 publication Critical patent/JP4003259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve drainage of a laminated heat exchanger. SOLUTION: In a laminated heat exchanger for cooling, a depth H of a groove 94 recessed in a direction toward an inside of a flat tube 91 is set to 0.9±0.2 mm, and a louver ending position L corresponding to a contact part 94a of a side wall 94b with a fin 93 is set to 0 to 0.6 mm. Thus, since the condensate water can be drained by the groove 94 while ensuring a sufficient suction force for turning the condensed water toward the groove 94 by the louver 93c, drainage of the heat exchanger can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、椀(バスタブ)状
に形成された一対のプレートにより偏平チューブを構成
した冷却用積層型熱交換器(以下、積層型熱交換器と略
す。)に関するもので、車両用空調装置の蒸発器に適用
して有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger for cooling (hereinafter abbreviated as a laminated heat exchanger) in which a flat tube is formed by a pair of plates formed in a bowl (bathtub) shape. This is effective when applied to an evaporator of a vehicle air conditioner.

【0002】[0002]

【従来の技術】車両用空調装置の蒸発器は、周知のごと
く、冷媒の蒸発熱により室内に吹き出す空気を冷却する
ものであるため、蒸発器の偏平チューブやコルゲート
(波状)フィン(以下、フィンと略す。)に凝縮水が付
着滞留し、蒸発器での通風抵抗を増大させるとともに、
凝縮水が室内に向けて吹き飛ばされるといった問題が発
生し易い。
2. Description of the Related Art As is well known, an evaporator of a vehicle air conditioner cools air blown into a room by the heat of evaporation of a refrigerant. Therefore, a flat tube or a corrugated fin (hereinafter, fin) of the evaporator is used. Condensed water adheres and accumulates in the evaporator, increasing the ventilation resistance in the evaporator.
The problem that condensed water is blown toward the room easily occurs.

【0003】この問題に対して、出願人は既に特公平8
−23477号に記載のごとく、偏平チューブに凝縮水
を排水するための溝部を形成したもの出願している。
[0003] In response to this problem, the applicant has already disclosed
As described in JP-A-234377, an application has been made in which a flat tube is formed with a groove for draining condensed water.

【0004】[0004]

【発明が解決しようとする課題】ところで、発明者等
は、凝縮水の排水性をさらに向上させるべく、偏平チュ
ーブやフィンに付着した凝縮水の流れを詳細に検討した
とことろ、以下に述べる点を明らかになった。すなわ
ち、図9に示すように、凝縮水の経路は、フィン93の
谷部93bを樋として空気流れ下流側に向かって流れ、
ルーバ等の切断部93cで転向して溝部94に向かう第
1排水経路Aと、切断部で転向することなくフィン93
の谷部93bを樋として空気流れ下流側に向かって流
れ、フィン93の端部にて反対側の谷部に転向する第2
排水経路Bと、偏平チューブ91のプレート面91cに
沿って空気流れ下流側の溝部に向かう第3排水経路Cと
がある。
The inventors of the present invention have studied in detail the flow of condensed water adhering to flat tubes and fins in order to further improve the drainage of condensed water. The point became clear. That is, as shown in FIG. 9, the path of the condensed water flows toward the downstream side of the air flow with the valley 93b of the fin 93 as a gutter,
The first drainage path A is turned at the cutting portion 93c such as a louver toward the groove 94, and the fin 93 is turned at the cutting portion without turning.
The second valley 93b flows toward the downstream side of the air flow with the valley 93b as a gutter, and turns to the opposite valley at the end of the fin 93.
There is a drainage path B and a third drainage path C that goes to the groove on the downstream side of the air flow along the plate surface 91c of the flat tube 91.

【0005】そして、第1、3排水経路A、Cでは、凝
縮水は下流に向かうと自然(直接)に溝部94に流れ込
むのに対して、第2排水経路Bでは、フィン93の端部
にて転向する際に、一部の凝縮水は、その表面張力によ
りフィン93の端部で滞留してしまう。また、凝縮水が
反対側の谷部に向かって流れる際に、蒸発器を流れる空
気により吹き飛ばされる可能性がある。
[0005] In the first and third drainage paths A and C, the condensed water naturally (directly) flows into the groove 94 when going downstream, whereas in the second drainage path B, the condensed water flows into the end of the fin 93. When turning, the condensed water stays at the end of the fin 93 due to its surface tension. Also, when the condensed water flows toward the opposite valley, it may be blown off by the air flowing through the evaporator.

【0006】したがって、凝縮水の排水性をさらに向上
させるには、第2排水経路を流れる凝縮水を第1排水経
路と同様に、ルーバ等の切断部で転向させて溝部に導く
ようにする必要がある。ところで、凝縮水を切断部で溝
部に向けて転向させる力は、溝部における毛細管現象
(表面張力)による吸引力である。このため、溝部の溝
深さを小さくすれば、毛細管現象による吸引力を大きく
することができるものの、その表面張力によって凝縮水
が溝部で流通し難くなる。したがって、凝縮水を切断部
で溝部に向けて転向させるい十分な吸引力を確保しつ
つ、溝部にて凝縮水を流通させることができる溝深さを
選定する必要がある。
Accordingly, in order to further improve the drainage of the condensed water, it is necessary to turn the condensed water flowing through the second drainage path by a cutting part such as a louver and guide the condensed water to the groove, similarly to the first drainage path. There is. By the way, the force for turning the condensed water toward the groove at the cut portion is a suction force due to the capillary phenomenon (surface tension) in the groove. For this reason, if the groove depth of the groove is reduced, the suction force due to the capillary phenomenon can be increased, but the surface tension makes it difficult for the condensed water to flow through the groove. Therefore, it is necessary to select a groove depth at which the condensed water can flow in the groove while ensuring a sufficient suction force to turn the condensed water toward the groove at the cut portion.

【0007】本発明は、上記点に鑑み、積層型熱交換器
の排水性を向上させることを目的とする。
[0007] In view of the above, it is an object of the present invention to improve the drainage performance of a laminated heat exchanger.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1〜
4に記載の発明では、偏平チューブ(91)の内側に向
かう向きに陥没する、溝部(94)の溝深さ(H)は、
0.9±0.2mmであることを特徴とする。
The present invention uses the following technical means to achieve the above object. Claim 1
According to the invention described in Item 4, the groove depth (H) of the groove (94), which is depressed toward the inside of the flat tube (91), is:
0.9 ± 0.2 mm.

【0009】これにより、後述する試験結果から明らか
なように、凝縮水を切断部(93c)で溝部(94)に
向けて転向させるに十分な吸引力を確保しつつ、溝部
(94)にて凝縮水を流通させることができるので、積
層型熱交換器の排水性を向上させることができる。な
お、溝部(94)の溝深さ(H)は、請求項2に記載の
ごとく、0.9±0.1mmとすることが、排水性を向
上させる上で更に良い。
[0009] Thus, as is apparent from the test results described later, while ensuring a sufficient suction force to turn the condensed water toward the groove portion (94) at the cutting portion (93c), the condensed water is formed at the groove portion (94). Since the condensed water can be circulated, the drainage performance of the stacked heat exchanger can be improved. The groove depth (H) of the groove portion (94) is more preferably 0.9 ± 0.1 mm, as described in claim 2, in order to improve drainage.

【0010】請求項3に記載の発明では、切断部(93
c)の端部位置(93d)は、気体の流通方向上流側の
側壁部(94b)とフィン(93)との接触部(94
a)に対応する位置と同位置であることを特徴とする。
これにより、切断部(93c)まで流れて来た凝縮水に
対して、大きな吸引力を(溝部(94)における毛細管
現象(表面張力)による力)を作用させることができる
ので、より多くの凝縮水を溝部(94)に向けて転向さ
せることができる。したがって、排水性をより一層向上
させることができる。
In the invention according to claim 3, the cutting portion (93)
The end position (93d) of c) is a contact portion (94) between the side wall portion (94b) on the upstream side in the gas flow direction and the fin (93).
The position is the same as the position corresponding to a).
Thereby, a large suction force (force due to capillary action (surface tension) in the groove portion (94)) can be applied to the condensed water flowing to the cut portion (93c), so that more condensation Water can be diverted towards the groove (94). Therefore, the drainage performance can be further improved.

【0011】なお、上記各手段の括弧内の符号は、後述
する実施形態記載の具体的手段との対応関係を示すもの
である。
The reference numerals in parentheses of the above means indicate the correspondence with the specific means described in the embodiments described later.

【0012】[0012]

【発明の実施の形態】本実施形態は、本発明に係る積層
型熱交換器を車両用空調装置の蒸発器9に適用したもの
であって、図1は車両用空調装置1の模式図である。空
調ケーシング2の空気上流側部位には、車室内気を吸入
するための内気吸入口3と外気を吸入するための外気吸
入口4とが形成されるとともに、これらの吸入口3、4
を選択的に開閉する吸入口切換ドア5が設けられてい
る。また、この吸入口切換ドア5は、サーボモータ等の
駆動手段または手動操作によって開閉される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, a laminated heat exchanger according to the present invention is applied to an evaporator 9 of a vehicle air conditioner. FIG. 1 is a schematic diagram of the vehicle air conditioner 1. is there. At the air upstream side of the air-conditioning casing 2, there are formed an inside air inlet 3 for sucking the air inside the vehicle and an outside air inlet 4 for sucking the outside air.
Is provided with an inlet switching door 5 for selectively opening and closing the suction port. The inlet switching door 5 is opened and closed by driving means such as a servomotor or by manual operation.

【0013】この吸入口切換ドア5の下流側部位には、
本実施形態に係る送風機7が配設されており、この送風
機7により両吸入口3、4から吸入された空気が、後述
する各吹出口14、15、17に向けて送風されてい
る。送風機7の空気下流側には、空気冷却手段をなす蒸
発器9が配設されており、送風機7により送風された空
気は全てこの蒸発器9を通過する。蒸発器9の空気下流
側には、空気加熱手段をなすヒータコア10が配設され
ており、このヒータコア10は、エンジン11の冷却水
を熱源として空気を加熱している。
In the downstream portion of the inlet switching door 5,
A blower 7 according to the present embodiment is provided, and the air sucked from both suction ports 3 and 4 by this blower 7 is blown toward respective outlets 14, 15 and 17 described below. An evaporator 9 serving as an air cooling means is provided downstream of the blower 7 in the air, and all the air blown by the blower 7 passes through the evaporator 9. A heater core 10 serving as air heating means is provided downstream of the evaporator 9 in the air. The heater core 10 heats the air using the cooling water of the engine 11 as a heat source.

【0014】空調ケーシング2には、ヒータコア10を
バイパスするバイパス通路12が形成されており、ヒー
タコア10の空気上流側には、ヒータコア10を通る風
量とバイパス通路12を通る風量との風量割合を調節す
るエアミックスドア13が配設されている。この風量割
合の調節は、このエアミックスドア13の開度を調節す
ることにより調節される。
A bypass passage 12 for bypassing the heater core 10 is formed in the air-conditioning casing 2, and an air flow ratio between an air flow passing through the heater core 10 and an air flow passing through the bypass passage 12 is adjusted upstream of the heater core 10. An air mix door 13 is provided. The adjustment of the air volume ratio is adjusted by adjusting the opening of the air mix door 13.

【0015】また、空調ケーシング2の最下流側部位に
は、車室内乗員の上半身に空調空気を吹き出すためのフ
ェイス吹出口14と、車室内乗員の足元に空気を吹き出
すためのフット吹出口15と、フロントガラス16の内
面に向かって空気を吹き出すためのデフロスタ吹出口1
7とが形成されている。そして、上記各吹出口14、1
5、17の空気上流側部位には、それぞれ吹出モード切
換ドア(吹出調節手段)18、19、20が配設されて
いる。なお、これらの吹出モード切換ドア18、19、
20は、サーボモータ等の駆動手段または手動操作によ
って開閉される。
At the most downstream side of the air-conditioning casing 2, there are provided a face outlet 14 for blowing out conditioned air to the upper body of the passenger in the passenger compartment, and a foot outlet 15 for blowing air to the feet of the passenger in the passenger compartment. Defroster outlet 1 for blowing air toward the inner surface of windshield 16
7 are formed. Each of the outlets 14, 1
Blow-out mode switching doors (blow-out adjusting means) 18, 19, and 20 are provided at the air upstream side of the air blowers 5 and 17, respectively. In addition, these blowing mode switching doors 18, 19,
20 is opened and closed by driving means such as a servomotor or by manual operation.

【0016】次に、蒸発器9の構造について述べる。図
2は、蒸発器9を空気流れ方向で切断した断面を示して
おり、91は椀状(バスタブ)に形成された一対のプレ
ート91a、91bの外周部を接合することにより構成
された複数本の偏平チューブ(以下、チューブと略
す。)であり、このチューブ91内には、フロン等の冷
媒(冷却媒体)が流通する。
Next, the structure of the evaporator 9 will be described. FIG. 2 shows a cross section of the evaporator 9 cut in the direction of air flow. Reference numeral 91 denotes a plurality of plates formed by joining the outer peripheral portions of a pair of plates 91a and 91b formed in a bowl shape (bathtub). (Hereinafter, abbreviated as a tube), in which a refrigerant (cooling medium) such as Freon flows.

【0017】因みに、92は、チューブ91内には、冷
媒とチューブ91(プレート91a、91b)間の熱伝
達率を向上させる波状のインナーフィン92である。ま
た、チューブ91間には、チューブ91の偏平面91c
に略平行に流通する空気と冷媒との間の熱交換を促進す
るアウターフィン(以下、フィンと略す。)93が配設
されており、このフィン93は、空気の流通方向と略平
行な平面部93aを有するように波(コルゲート)状に
形成されている。
Incidentally, in the tube 91, there are wavy inner fins 92 for improving the heat transfer coefficient between the refrigerant and the tube 91 (plates 91a and 91b). In addition, between the tubes 91, the uneven surface 91c of the tube 91
Outer fins (hereinafter abbreviated as fins) 93 for promoting heat exchange between the air and the refrigerant flowing substantially parallel to the fins 93 are provided. It is formed in a wave (corrugated) shape so as to have a portion 93a.

【0018】なお、フィン93の谷部(屈曲部)93b
は、チューブ91の偏平面91cにて接触した状態でろ
う付け接合されており、フィン93、インナーフィン9
2およびチューブ91(プレート91a、91b)は、
アルミニウム製である。ところで、本実施形態では、両
プレート91a、91bは、板厚0.4〜0.6のアル
ミニウム材をプレス加工することにより成形され、一
方、フィン93は、平面部93aに形成されたルーバ
(切断部)93cとともに、ローラ成形法により成形さ
れている。
The valleys (bends) 93b of the fins 93
Are joined by brazing in a state where they are in contact with each other at the uneven plane 91 c of the tube 91, and the fin 93 and the inner fin 9 are joined together.
2 and tubes 91 (plates 91a, 91b)
It is made of aluminum. In the present embodiment, both plates 91a and 91b are formed by pressing an aluminum material having a plate thickness of 0.4 to 0.6, while the fins 93 are formed by louvers (not shown) formed on the plane portion 93a. It is formed by a roller forming method together with the cutting portion 93c.

【0019】なお、ルーバ93cは、空気を平面部93
aの表裏両側に蛇行させることにより、フィン93と空
気との間の熱伝達率を向上させるものである。また、チ
ューブ91(プレート91a、91b)のうちルーバ9
3cに対応する部位には、偏平チューブ91の内側に向
かう向きに陥没するとともに、平面部93aと直交する
方向(重力方向)に延びる複数本の溝部94が形成され
ており、この溝部94の溝深さHは、本実施形態では、
約0.9mmである。
The louver 93c deflects air into the flat portion 93.
The heat transfer coefficient between the fins 93 and the air is improved by meandering both sides of a. Also, the louver 9 of the tube 91 (plates 91a and 91b) is used.
3c, a plurality of grooves 94 which are depressed toward the inside of the flat tube 91 and extend in a direction (gravity direction) orthogonal to the flat portion 93a are formed. In the present embodiment, the depth H is
It is about 0.9 mm.

【0020】因みに、溝深さHとは、図3に示すよう
に、2つの側壁部94b、94cおよび底部94dから
なる溝部94において、空気の流通方向上流側の側壁部
94bとフィン93との接触部94aから底部94dま
での陥没深さを示す寸法である。また、ルーバ93cの
切断端部位置93dは、側壁部94bとフィン93との
接触部94aに対応する位置と同位置である(図3〜5
参照)。ここで、切断端部位置93dが接触部94aに
対応する位置と同位置とは、厳密に同位置のみを言うの
ではなく(L=0)、例えばL=0〜+0.6mm程度
の範囲を言うものである。
Incidentally, as shown in FIG. 3, the groove depth H is defined by the distance between the fin 93 and the side wall 94b on the upstream side in the air flow direction in the groove 94 formed of the two side walls 94b and 94c and the bottom 94d. This is a dimension indicating a depression depth from the contact portion 94a to the bottom portion 94d. The cut end position 93d of the louver 93c is the same as the position corresponding to the contact portion 94a between the side wall portion 94b and the fin 93 (FIGS. 3 to 5).
reference). Here, the position where the cut end portion position 93d corresponds to the contact portion 94a and the same position do not mean exactly only the same position (L = 0), but, for example, a range of about L = 0 to +0.6 mm. That's what it says.

【0021】なお、+の向きとは空気の通風方向下流に
向かう向きを言い、Lは、接触部94aから+の向きに
見て、最初に遭遇する切断端部位置93dと接触部94
aと間で通風方向と平行な部分の距離を言う。因みに、
複数本の溝部94の側壁部94b、94cのうち、空気
の流通方向最下流側の溝部94の側壁部94cは、図2
に示すように、フィン93と接触しておらず、僅かな空
隙δが形成されている(図3〜5参照)。
The direction of + means the direction toward the downstream of the air flow direction, and L is the cutting edge position 93d first encountered and the contact portion 94a when viewed from the contact portion 94a in the + direction.
The distance between a and a portion parallel to the ventilation direction. By the way,
Of the side wall portions 94b and 94c of the plurality of groove portions 94, the side wall portion 94c of the groove portion 94 on the most downstream side in the air flow direction is shown in FIG.
As shown in FIG. 5, the fins 93 are not in contact with each other, and a slight gap δ is formed (see FIGS. 3 to 5).

【0022】次に、本実施形態に係る蒸発器9の特徴を
述べる。図6は、L(以下、Lをルーバ切れ位置Lを呼
ぶ。)をパラメータとして、凝縮水が吹き飛ばされる時
の風速(以下、この風速を水飛び風速と呼ぶ。)と溝深
さHとの関係を示す試験結果であり、この試験結果から
明らかなように、溝深さH=0.9mmで最も水飛び風
速が大きくなるとともに、ルーバ切れ位置Lを小さくす
る程、水飛び風速が大きくなることが判る。
Next, features of the evaporator 9 according to the present embodiment will be described. FIG. 6 shows the relationship between the wind speed when the condensed water is blown off (hereinafter, this wind speed is referred to as a water jumping wind speed) and the groove depth H, using L (hereinafter, L is referred to as a louver break position L) as a parameter. This is a test result showing the relationship. As is clear from this test result, the water jumping wind speed becomes the largest when the groove depth H is 0.9 mm, and the water jumping wind speed increases as the louver break position L decreases. You can see that.

【0023】したがって、溝深さH=0.9mmとし、
ルーバ切れ位置L=0とすれば、凝縮水をルーバ93c
で溝部94に向けて転向させるに十分な吸引力を確保し
つつ、溝部94で凝縮水を流通させることができるの
で、蒸発器(積層型熱交換器)9の排水性を向上させる
ことができる。なお、溝深さHは、理想的には前述のご
とく、溝深さH=0.9mmとすることが望ましいが、
製造交差等のバラツキを考慮すると、溝深さH=0.9
±0.2mmまたはH=0.9±0.1とすれば、実用
上十分な排水性を得ることができる。
Therefore, the groove depth H is set to 0.9 mm,
Assuming that the louver break position L = 0, the condensed water is passed through the louver 93c.
The condensed water can be circulated in the groove portion 94 while securing a suction force sufficient to turn toward the groove portion 94, so that the drainage of the evaporator (stacked heat exchanger) 9 can be improved. . Note that the groove depth H is ideally preferably set to 0.9 mm as described above,
In consideration of variations such as manufacturing intersection, the groove depth H = 0.9
If ± 0.2 mm or H = 0.9 ± 0.1, practically sufficient drainage can be obtained.

【0024】また、「発明が解決しようとする課題」の
欄で述べたように、凝縮水をルーバ93cで溝部94に
向けて転向させる力は、溝部94における毛細管現象
(表面張力)による吸引力であるので、切断端部位置9
3dをできるだけ溝部94に接近させることが、排水性
を向上させる上で望ましい。したがって、ルーバ切れ位
置Lのみならず、ルーバ切れ位置Lと直交する方向の寸
法LR (図3参照)も小さくすることが望ましい。
Further, as described in the section of "Problems to be Solved by the Invention", the force for turning condensed water toward the groove 94 by the louver 93c is the suction force due to the capillary phenomenon (surface tension) in the groove 94. Therefore, the cut end position 9
It is desirable to make the 3d as close to the groove 94 as possible in order to improve drainage. Therefore, it is desirable to reduce not only the louver cut position L but also the dimension L R (see FIG. 3) in the direction orthogonal to the louver cut position L.

【0025】また、空気の流通方向最下流側の溝部94
の側壁部94cには空隙δが形成されているので、この
溝部94において、溝部94内に凝縮水が滞留すること
を確実に防止できる。したがって、蒸発器9の排水性を
さらに向上させることができる。ところで、上述の実施
形態では、平面部93aの一部を切断する切断部93A
としてルーバ93cを形成したが、本発明はこれに限定
されるものではなく、打ち抜き、スリット、切欠き部等
その他のものでもよい(図7、8参照)。
The groove 94 at the most downstream side in the air flow direction
Since the gap δ is formed in the side wall portion 94c of the groove 94, it is possible to reliably prevent the condensed water from staying in the groove portion 94 in the groove portion 94. Therefore, the drainage of the evaporator 9 can be further improved. By the way, in the above-described embodiment, the cutting portion 93A that cuts a part of the flat portion 93a.
The louver 93c is formed as described above, but the present invention is not limited to this, and other types such as punching, slits, notches, etc. may be used (see FIGS. 7 and 8).

【0026】なお、図8に示す変形例では、切断部93
Aをフィン93の空気流通方向側端部のうち、谷部(屈
曲部)93bに形成している。これにより、排水性を一
層向上させることができる。また、上述の実施形態で
は、フィン93を単純な波状としたが、本発明はこれに
限定されるものではなく、図7に示すように、オフセッ
トフィン等その他の形状のフィンであってもよい。
In the modified example shown in FIG.
A is formed in a valley (bent portion) 93 b of the end of the fin 93 on the air flow direction side. Thereby, drainage can be further improved. Further, in the above-described embodiment, the fin 93 has a simple wavy shape. However, the present invention is not limited to this, and may have another shape such as an offset fin as shown in FIG. .

【0027】また、上述の実施形態では、図2に示すよ
うに、空気の流通方向に対して上流、中流、下流と3つ
に部位に溝部94を形成したが、本発明はこれに限定さ
れるものではなく、少なくとも下流側に溝部94を形成
すればよい。また、本発明は、ルーバ切れ位置Lは上記
した寸法に限定されるものではなく、溝深さHを上記所
定の寸法とすれば、排水性の向上を図ることができる。
In the above-described embodiment, as shown in FIG. 2, the grooves 94 are formed at three positions, that is, upstream, middle, and downstream with respect to the air flow direction. However, the present invention is not limited to this. Instead, the groove 94 may be formed at least on the downstream side. Further, in the present invention, the louver break position L is not limited to the above-mentioned size, and the drainage can be improved if the groove depth H is set to the above-mentioned predetermined size.

【0028】また、上述の実施形態では、本発明に係る
冷却用積層型熱交換器を蒸発器に適用したが、本発明に
係る冷却用積層型熱交換器は、これに限定されるもので
はなく、水等その他の冷却媒体にて気体を冷却する冷却
用積層型熱交換器に対しても適用することができる。
Further, in the above-described embodiment, the laminated heat exchanger for cooling according to the present invention is applied to the evaporator, but the laminated heat exchanger for cooling according to the present invention is not limited to this. Instead, the present invention can be applied to a laminated heat exchanger for cooling in which gas is cooled by another cooling medium such as water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車両用空調装置の模式図である。FIG. 1 is a schematic diagram of a vehicle air conditioner.

【図2】蒸発器を空気流れ方向で切断した断面図であ
る。
FIG. 2 is a cross-sectional view of the evaporator cut in the air flow direction.

【図3】図2の空気流通方向下流側端部の拡大図であ
る。
FIG. 3 is an enlarged view of a downstream end portion in the air flow direction of FIG. 2;

【図4】図2の空気流通方向下流側端部の拡大図であ
る。
FIG. 4 is an enlarged view of a downstream end portion in the air flow direction of FIG. 2;

【図5】溝深さHおよびルーバ切れ位置Lを示す模式図
である。なお、図中、ルーバについては断面形状をも示
している。
FIG. 5 is a schematic diagram showing a groove depth H and a louver break position L. In the drawings, the louver also shows a cross-sectional shape.

【図6】ルーバ切れ位置Lをパラメータとして、水飛び
風速と溝深さHとの関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a water splashing wind speed and a groove depth H using a louver break position L as a parameter.

【図7】フィンおよび切断部の変形例を示す斜視図であ
る。
FIG. 7 is a perspective view showing a modified example of a fin and a cutting section.

【図8】(a)はフィンの斜視図であり、(b)〜
(f)は切断部93Aの変形例を示す斜視図である。
FIG. 8A is a perspective view of a fin, and FIGS.
(F) is a perspective view showing a modification of cutting part 93A.

【図9】排水経路を示す斜視図である。FIG. 9 is a perspective view showing a drain path.

【符号の説明】[Explanation of symbols]

91…偏平チューブ、92…インナーフィン、93…ア
ウターフィン、94…溝部。
91: flat tube, 92: inner fin, 93: outer fin, 94: groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥越 栄一 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Eiichi Torikoshi 1-1-1, Showa-cho, Kariya-shi, Aichi, Japan

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 椀状に形成された一対のプレート(91
a、91b)の外周部を接合することにより構成され、
冷却媒体が流通する複数本の偏平チューブ(91)と、 前記偏平チューブ(91)間にて前記偏平チューブ(9
1)に接触するように配設され、前記偏平チューブ(9
1)外を流通する気体と前記冷却媒体との間の熱交換を
促進する波状のフィン(93)とを有し、 前記フィン(93)には、その一部を切断した切断部
(93c)が形成され、 前記偏平チューブ(91)のうち前記切断部(93c)
に対応する部位には、前記偏平チューブ(91)の内側
に向かう向きに陥没するとともに、前記気体の流通方向
と交差する方向に延びる溝部(94)が形成されてお
り、 さらに、前記溝部(94)の溝深さ(H)は、0.9±
0.2mmであることを特徴とする請求項1に記載の冷
却用積層型熱交換器。
1. A pair of plates (91) formed in a bowl shape.
a, 91b) by joining the outer peripheral portions thereof,
A plurality of flat tubes (91) through which a cooling medium flows, and the flat tubes (9) interposed between the flat tubes (91).
1), the flat tube (9)
1) A wavy fin (93) for promoting heat exchange between the gas flowing outside and the cooling medium, and the fin (93) has a cut portion (93c) obtained by cutting a part thereof. Is formed, and the cutting portion (93c) of the flat tube (91) is formed.
A groove (94) that is depressed in a direction toward the inside of the flat tube (91) and extends in a direction intersecting with the gas flow direction is formed at a portion corresponding to the groove (94). ) Is 0.9 ± 0.9 ±
The heat exchanger according to claim 1, wherein the heat exchanger has a thickness of 0.2 mm.
【請求項2】 前記溝部(94)の溝深さ(H)は、
0.9±0.1mmであることを特徴とする冷却用積層
型熱交換器。
2. A groove depth (H) of the groove (94) is:
A laminated heat exchanger for cooling, characterized by being 0.9 ± 0.1 mm.
【請求項3】 前記溝部(94)は、2つの側壁部(9
4b、94c)および底部(94d)を有して形成され
ており、 前記切断部(93c)の端部の位置(93d)は、前記
2つの側壁部(94b、94c)のうち前記気体の流通
方向上流側の側壁部(94b)と前記フィン(93)と
の接触部(94a)に対応する位置と同位置であること
を特徴とする請求項1または2に記載の冷却用積層型熱
交換器。
3. The groove (94) has two side walls (9).
4b, 94c) and a bottom portion (94d). The position (93d) of the end of the cut portion (93c) is determined by the flow of the gas in the two side wall portions (94b, 94c). The heat exchanger according to claim 1, wherein the heat exchanger is located at the same position as a position corresponding to a contact portion (94 a) between the side wall portion (94 b) on the upstream side in the direction and the fin (93). vessel.
【請求項4】 前記切断部(93c)は、前記気体を前
記フィン(93)の表裏両側に蛇行させるルーバを構成
していることを特徴とする請求項1ないし3のいずれか
1つに記載の冷却用積層型熱交換器。
4. The louver according to claim 1, wherein the cut portion (93c) forms a louver for meandering the gas on both sides of the fin (93). Laminated heat exchanger for cooling.
JP24147197A 1997-09-05 1997-09-05 Laminate heat exchanger for cooling Expired - Fee Related JP4003259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24147197A JP4003259B2 (en) 1997-09-05 1997-09-05 Laminate heat exchanger for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24147197A JP4003259B2 (en) 1997-09-05 1997-09-05 Laminate heat exchanger for cooling

Publications (2)

Publication Number Publication Date
JPH1183371A true JPH1183371A (en) 1999-03-26
JP4003259B2 JP4003259B2 (en) 2007-11-07

Family

ID=17074817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24147197A Expired - Fee Related JP4003259B2 (en) 1997-09-05 1997-09-05 Laminate heat exchanger for cooling

Country Status (1)

Country Link
JP (1) JP4003259B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932153B2 (en) * 2002-08-22 2005-08-23 Lg Electronics Inc. Heat exchanger
US6959561B2 (en) * 2001-06-22 2005-11-01 Calsonic Kansei Corporation Automotive air conditioner
US7677057B2 (en) 2006-11-22 2010-03-16 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar tube spacing
US7802439B2 (en) 2006-11-22 2010-09-28 Johnson Controls Technology Company Multichannel evaporator with flow mixing multichannel tubes
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US8287107B2 (en) 2007-10-30 2012-10-16 Brother Kogyo Kabushiki Kaisha Ink passages, platens for an inkjet recording device, and inkjet recording devices
WO2016013100A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959561B2 (en) * 2001-06-22 2005-11-01 Calsonic Kansei Corporation Automotive air conditioner
US6932153B2 (en) * 2002-08-22 2005-08-23 Lg Electronics Inc. Heat exchanger
US7895860B2 (en) 2006-11-22 2011-03-01 Johnson Controls Technology Company Multichannel evaporator with flow mixing manifold
US7757753B2 (en) 2006-11-22 2010-07-20 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar multichannel tubes
US7802439B2 (en) 2006-11-22 2010-09-28 Johnson Controls Technology Company Multichannel evaporator with flow mixing multichannel tubes
US7832231B2 (en) 2006-11-22 2010-11-16 Johnson Controls Technology Company Multichannel evaporator with flow separating manifold
US7677057B2 (en) 2006-11-22 2010-03-16 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar tube spacing
US7980094B2 (en) 2006-11-22 2011-07-19 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar tube spacing
US8287107B2 (en) 2007-10-30 2012-10-16 Brother Kogyo Kabushiki Kaisha Ink passages, platens for an inkjet recording device, and inkjet recording devices
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US8938988B2 (en) 2008-08-28 2015-01-27 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
WO2016013100A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
JPWO2016013100A1 (en) * 2014-07-25 2017-04-27 三菱電機株式会社 HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER

Also Published As

Publication number Publication date
JP4003259B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
US6308770B1 (en) Air conditioning apparatus
JP2000179988A (en) Refrigerant evaporator
JPH11287580A (en) Heat exchanger
JP2001194082A (en) Continuous combination fin for heat exchanger
US6092592A (en) Air conditioner for vehicle
JPH11115471A (en) Air conditioner
JPH0791873A (en) Fin and tube type heat exchanger
JPH1183371A (en) Laminated heat exchanger for cooling
JP3085137B2 (en) Stacked heat exchanger
JPH0829016A (en) Outdoor heat exchanger for heat pump
JPH0914793A (en) Laminated heat exchanger
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JP6874498B2 (en) Heat exchanger
US7377121B2 (en) Vehicle air conditioner
JP3136534B2 (en) Automotive air conditioners
JP2002048491A (en) Heat exchanger for cooling
JP2624336B2 (en) Finned heat exchanger
JPH10281674A (en) Cross fin heat exchanger for outdoor machine
JPH08291992A (en) Laminate type heat exchanger
JP3805665B2 (en) Heat exchanger
JP2004291701A (en) Air conditioner for vehicle
JP3765141B2 (en) Heat transfer fins
JP2004218852A (en) Heat exchanger
JP2003139484A (en) Stacked type heat exchanger
JP2002127737A (en) Heat exchanger for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees