JP2004218852A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004218852A
JP2004218852A JP2003003254A JP2003003254A JP2004218852A JP 2004218852 A JP2004218852 A JP 2004218852A JP 2003003254 A JP2003003254 A JP 2003003254A JP 2003003254 A JP2003003254 A JP 2003003254A JP 2004218852 A JP2004218852 A JP 2004218852A
Authority
JP
Japan
Prior art keywords
header tanks
tubes
tube
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003254A
Other languages
Japanese (ja)
Inventor
Hirohide Shindo
進藤  寛英
Koji Ito
伊藤  功治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003003254A priority Critical patent/JP2004218852A/en
Publication of JP2004218852A publication Critical patent/JP2004218852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators

Abstract

<P>PROBLEM TO BE SOLVED: To increase a surface area of a heat exchanging core while inhibiting the increase of assembling man-hour for assembling tubes and header tanks, and the increase of the number of header tanks. <P>SOLUTION: The header tanks 9d are mounted on longitudinal end parts of tubes 9a, and heat exchanging cores 9c and the header tanks 9d are curved into the approximately V-shape so that they are projected in the direction orthogonal to the arrow direction B, when observed from the arrow direction B in parallel with the longitudinal direction of the tubes 9a. Whereby the number of pieces of header tanks 9d is not increased or decreased regardless of the number of curved parts. In a case when the header tanks 9d are mounted at longitudinal both end sides of the tubes 9a, the number of header tanks 9d are two as it was, even when the heat exchanging cores 9c and the header tanks 9d are curved into the approximately W-shape, and the number of pieces of header tanks 9d is not increased and decreased regardless of the number of curved parts. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は熱交換器に関するもので、車両用熱交換器等の空調装置用の蒸発器に適用して有効である。
【0002】
【従来の技術】
従来の蒸発器では、図5(a)に示すように、2枚の熱交換コア部を略V字状に配置し、この2枚の熱交換コアCをヘッダタンクHTを介して連結することにより、空気流通方向から見た蒸発器の前面投影面積を大型にすることなく、実質的な熱交換コアの表面積を増大させている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平2002−81796号公報
【0004】
【発明が解決しようとする課題】
しかし、特許文献1に記載の発明において、仮に熱交換コアの表面積を増大させるべく熱交換コアの枚数を増やすと、図5(b)に示すように、熱交換コアCの枚数の増大に応じてヘッダタンクHTの本数が増大するので、チューブTとヘッダタンクHTとを組み付けるための組み付け工数がヘッダタンクの増大に応じて増大してしまう。
【0005】
本発明は、上記点に鑑み、第1には、従来と異なる新規な熱交換器を提供し、第2には、前面投影面積を大型にすることなく、チューブとヘッダタンクとを組み付けるための組み付け工数及びヘッダタンクの本数が増大することを抑制しながら熱交換コアの表面積を増大させることを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、流体が流通する複数本のチューブ(9a)及びチューブ(9a)の外表面に設けられて熱交換を促進するフィン(9b)からなる熱交換コア(9c)と、チューブ(9a)の長手方向端部に設けられ、複数本のチューブ(9a)と連通するヘッダタンク(9d)とを備え、熱交換コア(9c)及びヘッダタンク(9d)は、チューブ(9a)の長手方向と平行な矢視方向から見て、この矢視方向と直交する方向に凸となるように湾曲していることを特徴とする。
【0007】
これにより、ヘッダタンク(9d)の本数は、湾曲箇所の個数によらず、増減しない。つまり、仮にヘッダタンク(9d)がチューブ9aの長手方向両端側に配置されている場合には、熱交換コア(9c)及びヘッダタンク(9d)を略W字状に湾曲させても略V字状に湾曲させてもヘッダタンク(9d)の本数は2本であり、ヘッダタンク(9d)の本数は、湾曲箇所の個数によらず、増減しない。
【0008】
したがって、熱交換コア(9c)の前面投影面積を大型にすることなく、チューブ(9a)とヘッダタンク(9d)とを組み付けるための組み付け工数及びヘッダタンクの本数が増大することを抑制しながら熱交換コア(9c)の表面積を増大させることができる。
【0009】
請求項2に記載の発明では、チューブ(9a)は、断面形状が扁平状に形成されているとともに、その長径方向が矢視方向と略平行となるように配置されていることを特徴とする。
【0010】
これにより、チューブ(9a)の長径方向と空気の流通方向とを一致させることが容易にできるので、熱交換器を空気が通過する際のの通風抵抗が増大することを確実に防止できる。
【0011】
請求項3に記載の発明では、ヘッダタンク(9d)は、チューブ(9a)の長手方向両端部に設けられていることを特徴とするものである。
【0012】
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の熱交換器(9)にて室内に吹き出空気を加熱又は冷却することを特徴とするものである。
【0013】
請求項5に記載の発明では、請求項1ないし3のいずれか1つに記載の熱交換器(9)にて室内に吹き出空気と冷媒とを熱交換させて冷媒を熱交換器(9)内で蒸発させることを特徴とするものである。
【0014】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0015】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る熱交換器を車両用空調装置の蒸発器に適用したものであって、図1は本実施形態に係る車両用空調装置1の模式図である。
【0016】
空気流路をなす空調ケーシング2の空気上流側部位には、車室内気を吸入するための内気吸入口3と外気を吸入するための外気吸入口4とが形成されているとともに、これらの吸入口3、4を選択的に開閉する吸入口切換ドア5が設けられている。
【0017】
そして、吸入口切換ドア5の空気流れ下流側には、空気中の塵埃を取り除くフィルタ(図示せず。)及び本実施形態に係る送風機7が配設されており、この送風機7により両吸入口3、4から吸入された空気が、後述する各吹出口14、15、17に向けて送風される。
【0018】
また、送風機7の空気下流側には、室内に吹き出す空気を冷却する蒸発器9が配設されており、送風機7により送風された空気は全てこの蒸発器9を通過する。なお、蒸発器9の詳細構造は、後述する。
【0019】
因みに、蒸発器9は冷媒を蒸発させることにより冷凍能力を発揮する蒸気圧縮式冷凍機の低圧側熱交換器であり、本実施形態では、室内に吹き出す空気から吸熱して冷媒が蒸発することにより室内に吹き出す空気を冷却する。
【0020】
また、蒸発器9の空気下流側には、室内に吹き出す空気を加熱するヒータ10が配設されており、このヒータ10は、エンジン11の冷却水を熱源として空気を加熱している。
【0021】
そして、空調ケーシング2には、ヒータコア10を迂回するバイパス通路12が形成されており、ヒータコア10の空気上流側には、ヒータコア10を通る風量とバイパス通路12を通る風量との風量割合を調節することにより、車室内に吹き出す空気の温度を調節するエアミックスドア13が配設されている。
【0022】
また、空調ケーシング2の最下流側部位には、車室内乗員の上半身に空調空気を吹き出すためのフェイス吹出口14と、車室内乗員の足元に空気を吹き出すためのフット吹出口15と、フロントガラス16の内面に向かって空気を吹き出すためのデフロスタ吹出口17とが形成されている。
【0023】
そして、上記各吹出口14、15、17の空気上流側部位には、それぞれ吹出モード切換ドア18、19、20が配設されている。因みに、これらの吹出モード切換ドア18、19、20は、サーボモータ等の駆動手段又は手動操作によって開閉される。
【0024】
次に、蒸発器9の構造について述べる。
【0025】
図2(a)は蒸発器9の斜視図であり、図2(b)は図2(a)のA矢視図であり、図3は図2(b)のB−B断面図である。
【0026】
そして、蒸発器9は、冷媒が流通する複数本のチューブ9a及びチューブ9aの外表面に設けられて熱交換を促進するフィン9bからなる熱交換コア9c、並びにチューブ9aの長手方向両端部に設けられて複数本のチューブ9aと連通するヘッダタンク9d等からなるものである。
【0027】
なお、本実施形態では、チューブ9a、フィン9b及びヘッダタンク9dをアルミニウム合金製として、これら9a、9b、9dをろう付けにて一体化している。
【0028】
そして、熱交換コア9c及びヘッダタンク9dは、チューブ9aの長手方向と平行な矢視方向Bから見て、この矢視方向Bと直交する方向に凸となるように略V字状に湾曲している。また、チューブ9aは、図3に示すように、断面形状が扁平状に形成されているとともに、その長径方向が矢視方向Bと略平行となるように配置されている。
【0029】
次に、本実施形態の作用効果を述べる。
【0030】
ヘッダタンク9dがチューブ9aの長手方向端部に配置され、かつ、熱交換コア9c及びヘッダタンク9dは、チューブ9aの長手方向と平行な矢視方向Bから見て、この矢視方向Bと直交する方向に凸となるように略V字状に湾曲しているので、ヘッダタンク9dの本数は、湾曲箇所の個数によらず、増減しない。
【0031】
つまり、ヘッダタンク9dがチューブ9aの長手方向両端側に配置されている場合には、仮に熱交換コア9c及びヘッダタンク9dを略W字状に湾曲させてもヘッダタンク9dの本数は2本のままであり、ヘッダタンク9dの本数は、湾曲箇所の個数によらず、増減しない。
【0032】
したがって、熱交換コア9cの前面投影面積を大型にすることなく、チューブ9aとヘッダタンク9dとを組み付けるための組み付け工数及びヘッダタンクの本数が増大することを抑制しながら熱交換コア9cの表面積を増大させることができる。
【0033】
ところで、特許文献1には、図6に示すように、1枚の熱交換コアCをチューブの長手方向の直交する方向に凸となるように湾曲させて、ヘッダタンクHTの長手方向と平行な方向から熱交換コアCを見たときに、熱交換コアが略V字状となるようにしている。
【0034】
しかし、図6に示す蒸発器では、図7(a)に示すように、湾曲部にておいてフィンFが密集してしまい、通風抵抗がが過度に大きくなってしまうおそれがある。
【0035】
この問題に対しては、図7(c)に示すように、湾曲部のうちフィンが密集してしまう部位にはフィンFを設けないといった手段が考えられるが、この手段では、蒸発器の熱交換能力が低下してしまう。
【0036】
これに対して、本実施形態では、図3に示すように、湾曲部においても、それ以外の部位と同等にフィン9bを設けることができるので、通風抵抗の増大及び蒸発器9の熱交換能力の低下といった問題は発生しない。
【0037】
また、本実施形態では、チューブ9aは、その長径方向が矢視方向Bと略平行となるように配置されているので、長径方向と空気の流通方向とが一致する。したがって、蒸発器9を空気が通過する際のの通風抵抗が増大することを確実に防止できる。
【0038】
(第2実施形態)
本実施形態は、図4に示すように、チューブ9aの長径方向が熱交換コア9cのコア面に対して略直交するようにしたものである。
【0039】
(その他の実施形態)
上述の実施形態では、本発明に係る熱交換器の空調装置の蒸発器に適用したが、本発明はこれに限定されるものではなく、例えばヒータ等のその他の室内熱交換器にも適用することができる。
【0040】
また、上述の実施形態では、チューブ9aの長手方向両端側にヘッダタンク9dを配置したが本発明はこれに限定されるものではなく、例えば長手方向一端側で内部通路がUターンするチューブを用いてヘッダタンクを1本としてもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係る空調装置の模式図である。
【図2】(a)は本発明の第1実施形態に係る蒸発器の斜視図であり、(b)は(a)のA矢視図である。
【図3】図2(b)のB−B断面図である。
【図4】本発明の第1実施形態に係る蒸発器の断面図である。
【図5】従来の技術に係る蒸発器の問題点を示す図である。
【図6】従来の技術に係る蒸発器の問題点を示す図である。
【図7】従来の技術に係る蒸発器の問題点を示す図である。
【符号の説明】
9…蒸発器、9a…チューブ、9b…フィン、9c…熱交換コア、
9d…ヘッダタンク。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger, and is effective when applied to an evaporator for an air conditioner such as a vehicle heat exchanger.
[0002]
[Prior art]
In a conventional evaporator, as shown in FIG. 5A, two heat exchange cores are arranged in a substantially V shape, and the two heat exchange cores C are connected via a header tank HT. Thereby, the substantial surface area of the heat exchange core is increased without increasing the front projected area of the evaporator viewed from the air flow direction (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-81796
[Problems to be solved by the invention]
However, in the invention described in Patent Document 1, if the number of heat exchange cores is increased so as to increase the surface area of the heat exchange core, as shown in FIG. Therefore, the number of header tanks HT increases, so that the number of assembling steps for assembling the tubes T and the header tanks HT increases as the number of header tanks increases.
[0005]
In view of the above, the present invention provides, firstly, a novel heat exchanger different from the conventional one, and secondly, a method for assembling a tube and a header tank without increasing the front projected area. An object is to increase the surface area of a heat exchange core while suppressing an increase in the number of assembly steps and the number of header tanks.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of tubes (9a) through which a fluid flows and fins provided on the outer surface of the tubes (9a) to promote heat exchange are provided. A heat exchange core (9c) comprising a heat exchange core (9c) provided at a longitudinal end of the tube (9a) and communicating with the plurality of tubes (9a); ) And the header tank (9d) are characterized in that they are curved so as to be convex in a direction perpendicular to the arrow direction as viewed from a direction parallel to the longitudinal direction of the tube (9a).
[0007]
Thus, the number of header tanks (9d) does not increase or decrease regardless of the number of curved portions. That is, if the header tank (9d) is disposed at both ends in the longitudinal direction of the tube 9a, the heat exchange core (9c) and the header tank (9d) may be bent into a substantially W shape even if they are bent into a substantially W shape. The number of header tanks (9d) is two even if they are curved in a shape, and the number of header tanks (9d) does not increase or decrease regardless of the number of curved portions.
[0008]
Therefore, without increasing the front projection area of the heat exchange core (9c), heat is suppressed while increasing the number of assembling steps for assembling the tube (9a) and the header tank (9d) and the number of header tanks. The surface area of the exchange core (9c) can be increased.
[0009]
According to the second aspect of the present invention, the tube (9a) has a flat cross section and is arranged such that its major axis direction is substantially parallel to the direction of the arrow. .
[0010]
Thereby, it is easy to make the major axis direction of the tube (9a) coincide with the flow direction of air, so that it is possible to reliably prevent an increase in ventilation resistance when air passes through the heat exchanger.
[0011]
According to the third aspect of the present invention, the header tank (9d) is provided at both ends in the longitudinal direction of the tube (9a).
[0012]
According to a fourth aspect of the present invention, the air blown into the room is heated or cooled by the heat exchanger (9) according to any one of the first to third aspects.
[0013]
According to a fifth aspect of the present invention, in the heat exchanger (9) according to any one of the first to third aspects, the refrigerant exchanges heat with the air blown into the room by the heat exchanger (9). It is characterized by being evaporated within.
[0014]
Incidentally, reference numerals in parentheses of the above-mentioned units are examples showing the correspondence with specific units described in the embodiments described later.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the heat exchanger according to the present invention is applied to an evaporator of a vehicle air conditioner, and FIG. 1 is a schematic diagram of a vehicle air conditioner 1 according to the present embodiment.
[0016]
At an air upstream side of the air-conditioning casing 2 forming an air flow path, an inside air suction port 3 for sucking vehicle interior air and an outside air suction port 4 for sucking outside air are formed. An inlet switching door 5 for selectively opening and closing the ports 3 and 4 is provided.
[0017]
A filter (not shown) for removing dust in the air and a blower 7 according to the present embodiment are disposed downstream of the air flow of the inlet switching door 5. The air taken in from 3 and 4 is blown toward each of the outlets 14, 15 and 17 described below.
[0018]
An evaporator 9 for cooling air blown into the room is provided downstream of the blower 7 in the air. All the air blown by the blower 7 passes through the evaporator 9. The detailed structure of the evaporator 9 will be described later.
[0019]
Incidentally, the evaporator 9 is a low-pressure side heat exchanger of a vapor compression refrigerator that exhibits a refrigerating ability by evaporating the refrigerant. In the present embodiment, the evaporator 9 absorbs heat from air blown into the room and evaporates the refrigerant. Cool the air blown into the room.
[0020]
Further, a heater 10 for heating the air blown into the room is provided downstream of the evaporator 9 in the air, and the heater 10 heats the air using the cooling water of the engine 11 as a heat source.
[0021]
A bypass passage 12 is formed in the air-conditioning casing 2 to bypass the heater core 10, and on the upstream side of the heater core 10, the ratio of the amount of air flowing through the heater core 10 to the amount of air flowing through the bypass passage 12 is adjusted. Accordingly, an air mix door 13 for adjusting the temperature of the air blown into the vehicle compartment is provided.
[0022]
A face outlet 14 for blowing out conditioned air to the upper body of the passenger in the passenger compartment, a foot outlet 15 for blowing air to the feet of the passenger in the passenger compartment, A defroster outlet 17 for blowing air toward the inner surface of the nozzle 16 is formed.
[0023]
The air outlet mode switching doors 18, 19, and 20 are disposed at the upstream side of the air outlets 14, 15, and 17, respectively. Incidentally, these blow-out mode switching doors 18, 19, 20 are opened and closed by driving means such as a servomotor or by manual operation.
[0024]
Next, the structure of the evaporator 9 will be described.
[0025]
2 (a) is a perspective view of the evaporator 9, FIG. 2 (b) is a view on arrow A in FIG. 2 (a), and FIG. 3 is a cross-sectional view along BB in FIG. 2 (b). .
[0026]
The evaporator 9 is provided at a plurality of tubes 9a through which the refrigerant flows and a heat exchange core 9c formed of fins 9b provided on the outer surface of the tubes 9a to promote heat exchange, and provided at both longitudinal ends of the tubes 9a. And a header tank 9d which communicates with a plurality of tubes 9a.
[0027]
In this embodiment, the tubes 9a, the fins 9b, and the header tank 9d are made of an aluminum alloy, and these 9a, 9b, 9d are integrated by brazing.
[0028]
The heat exchange core 9c and the header tank 9d are curved in a substantially V shape so as to be convex in a direction perpendicular to the arrow B when viewed from the arrow B parallel to the longitudinal direction of the tube 9a. ing. Further, as shown in FIG. 3, the tube 9a has a flat cross section and is arranged such that its major axis direction is substantially parallel to the arrow B direction.
[0029]
Next, the operation and effect of the present embodiment will be described.
[0030]
The header tank 9d is disposed at an end in the longitudinal direction of the tube 9a, and the heat exchange core 9c and the header tank 9d are orthogonal to the arrow direction B when viewed from an arrow direction B parallel to the longitudinal direction of the tube 9a. Since it is curved in a substantially V-shape so as to be convex in the direction in which it is bent, the number of header tanks 9d does not increase or decrease regardless of the number of curved portions.
[0031]
That is, when the header tank 9d is disposed at both ends in the longitudinal direction of the tube 9a, the number of header tanks 9d is two even if the heat exchange core 9c and the header tank 9d are curved in a substantially W shape. The number of header tanks 9d does not increase or decrease regardless of the number of curved portions.
[0032]
Therefore, the surface area of the heat exchange core 9c can be reduced without increasing the number of man-hours for assembling the tube 9a and the header tank 9d and the number of header tanks without increasing the front projected area of the heat exchange core 9c. Can be increased.
[0033]
By the way, in Patent Document 1, as shown in FIG. 6, one heat exchange core C is curved so as to be convex in a direction orthogonal to the longitudinal direction of the tube, and is parallel to the longitudinal direction of the header tank HT. When the heat exchange core C is viewed from the direction, the heat exchange core has a substantially V shape.
[0034]
However, in the evaporator shown in FIG. 6, as shown in FIG. 7A, the fins F may be densely formed in the curved portion, and the ventilation resistance may be excessively increased.
[0035]
To solve this problem, as shown in FIG. 7 (c), it is conceivable to provide a fin F at a portion of the curved portion where the fins are densely packed. Exchange capacity will be reduced.
[0036]
On the other hand, in the present embodiment, as shown in FIG. 3, the fins 9 b can be provided in the curved portion as well as other portions, so that the ventilation resistance is increased and the heat exchange capacity of the evaporator 9 is increased. There is no problem such as a decrease in
[0037]
Further, in the present embodiment, the tube 9a is disposed so that its major axis direction is substantially parallel to the arrow direction B, so that the major axis direction coincides with the direction of air flow. Therefore, it is possible to reliably prevent the ventilation resistance when the air passes through the evaporator 9 from increasing.
[0038]
(2nd Embodiment)
In the present embodiment, as shown in FIG. 4, the major axis direction of the tube 9a is substantially perpendicular to the core surface of the heat exchange core 9c.
[0039]
(Other embodiments)
In the above-described embodiment, the present invention is applied to the evaporator of the air conditioner of the heat exchanger according to the present invention. However, the present invention is not limited to this, and may be applied to other indoor heat exchangers such as a heater. be able to.
[0040]
Further, in the above-described embodiment, the header tank 9d is arranged at both ends in the longitudinal direction of the tube 9a. However, the present invention is not limited to this. For example, a tube in which the internal passage makes a U-turn at one end in the longitudinal direction is used. One header tank may be used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner according to an embodiment of the present invention.
FIG. 2A is a perspective view of an evaporator according to the first embodiment of the present invention, and FIG. 2B is a view of FIG.
FIG. 3 is a sectional view taken along line BB of FIG. 2 (b).
FIG. 4 is a sectional view of the evaporator according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a problem of an evaporator according to the related art.
FIG. 6 is a diagram showing a problem of an evaporator according to the related art.
FIG. 7 is a diagram showing a problem of the evaporator according to the related art.
[Explanation of symbols]
9 evaporator, 9a tube, 9b fin, 9c heat exchange core,
9d: Header tank.

Claims (5)

流体が流通する複数本のチューブ(9a)及び前記チューブ(9a)の外表面に設けられて熱交換を促進するフィン(9b)からなる熱交換コア(9c)と、
前記チューブ(9a)の長手方向端部に設けられ、前記複数本のチューブ(9a)と連通するヘッダタンク(9d)とを備え、
前記熱交換コア(9c)及び前記ヘッダタンク(9d)は、前記チューブ(9a)の長手方向と平行な矢視方向から見て、この矢視方向と直交する方向に凸となるように湾曲していることを特徴とする熱交換器。
A heat exchange core (9c) comprising a plurality of tubes (9a) through which fluid flows and fins (9b) provided on the outer surface of the tubes (9a) to promote heat exchange;
A header tank (9d) provided at a longitudinal end of the tube (9a) and communicating with the plurality of tubes (9a);
The heat exchange core (9c) and the header tank (9d) are curved so as to be convex in a direction perpendicular to the arrow direction when viewed from a direction parallel to the longitudinal direction of the tube (9a). A heat exchanger.
前記チューブ(9a)は、断面形状が扁平状に形成されているとともに、その長径方向が前記矢視方向と略平行となるように配置されていることを特徴とする請求項1に記載の熱交換器。2. The heat according to claim 1, wherein the tube (9 a) is formed to have a flat cross-sectional shape, and is arranged such that a major axis direction thereof is substantially parallel to the arrow direction. 3. Exchanger. 前記ヘッダタンク(9d)は、前記チューブ(9a)の長手方向両端部に設けられていることを特徴とする請求項1に記載の熱交換器。The heat exchanger according to claim 1, wherein the header tank (9d) is provided at both ends in the longitudinal direction of the tube (9a). 請求項1ないし3のいずれか1つに記載の熱交換器(9)にて室内に吹き出空気を加熱又は冷却することを特徴とする空調装置。An air conditioner for heating or cooling air blown into a room by the heat exchanger (9) according to any one of claims 1 to 3. 請求項1ないし3のいずれか1つに記載の熱交換器(9)にて室内に吹き出空気と冷媒とを熱交換させて冷媒を前記熱交換器(9)内で蒸発させることを特徴とする空調装置。The heat exchanger (9) according to any one of claims 1 to 3, wherein the refrigerant exchanges heat with the air blown into the room to evaporate the refrigerant in the heat exchanger (9). Air conditioner.
JP2003003254A 2003-01-09 2003-01-09 Heat exchanger Pending JP2004218852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003254A JP2004218852A (en) 2003-01-09 2003-01-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003254A JP2004218852A (en) 2003-01-09 2003-01-09 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004218852A true JP2004218852A (en) 2004-08-05

Family

ID=32894574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003254A Pending JP2004218852A (en) 2003-01-09 2003-01-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004218852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962040A1 (en) * 2007-02-23 2008-08-27 Delphi Technologies, Inc. Bend relief spacer
DE102009052121A1 (en) * 2008-11-05 2010-05-12 Mann + Hummel Gmbh Heat exchanger i.e. air intercooler, for use in intake section of internal combustion to cool supercharged air, has heat exchange pipes integrated in plastic holding plate in two adjacent rows and fastened to plate at front sides
US20140041841A1 (en) * 2009-01-20 2014-02-13 Liu Huazhao Micro-channel heat exchanger
CN105258532A (en) * 2013-08-28 2016-01-20 杭州三花微通道换热器有限公司 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962040A1 (en) * 2007-02-23 2008-08-27 Delphi Technologies, Inc. Bend relief spacer
US7900689B2 (en) 2007-02-23 2011-03-08 Delphi Technologies, Inc. Bend relief spacer
DE102009052121A1 (en) * 2008-11-05 2010-05-12 Mann + Hummel Gmbh Heat exchanger i.e. air intercooler, for use in intake section of internal combustion to cool supercharged air, has heat exchange pipes integrated in plastic holding plate in two adjacent rows and fastened to plate at front sides
US20140041841A1 (en) * 2009-01-20 2014-02-13 Liu Huazhao Micro-channel heat exchanger
US9115939B2 (en) * 2009-01-20 2015-08-25 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Micro-channel heat exchanger
CN105258532A (en) * 2013-08-28 2016-01-20 杭州三花微通道换热器有限公司 Heat exchanger
CN105258532B (en) * 2013-08-28 2017-08-29 杭州三花微通道换热器有限公司 Heat exchanger

Similar Documents

Publication Publication Date Title
JP3879296B2 (en) Heat exchanger
JP6088905B2 (en) Double heat exchanger
JPH116693A (en) Heat-exchanger for air-conditioner in vehicle
JP2017144951A (en) Vehicular air conditioner
JP2018012365A (en) Vehicular air conditioner
JP6026956B2 (en) Indoor heat exchanger
JP3677922B2 (en) Air conditioner
JP2004218852A (en) Heat exchanger
JP3136534B2 (en) Automotive air conditioners
JP3900592B2 (en) Air conditioner for vehicles
WO2018025528A1 (en) Cold storage evaporator
JP6537928B2 (en) Heat exchanger and heat pump system
JP6874498B2 (en) Heat exchanger
JPH10329532A (en) Vehicular air conditioner
JP2006162176A (en) Heat exchanger and vehicular air conditioner
JP2004338644A (en) Heat exchange device for vehicle
JP2021008981A (en) Air conditioning unit, heat exchanger, and air conditioner
JP2004125346A (en) Heat exchanger
JP2001039144A (en) Air conditioner for vehicle
WO2015098696A1 (en) Heat exchanger
JP3896670B2 (en) Air conditioner for vehicles
JP2005035386A (en) Vehicular air-conditioner
JPS6247026Y2 (en)
JPH0872530A (en) Automobile air-conditioner
KR20070101693A (en) Case structure of air conditioning system for a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A131 Notification of reasons for refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A02