JPWO2015194508A1 - 光学活性体の製造方法 - Google Patents

光学活性体の製造方法 Download PDF

Info

Publication number
JPWO2015194508A1
JPWO2015194508A1 JP2016529335A JP2016529335A JPWO2015194508A1 JP WO2015194508 A1 JPWO2015194508 A1 JP WO2015194508A1 JP 2016529335 A JP2016529335 A JP 2016529335A JP 2016529335 A JP2016529335 A JP 2016529335A JP WO2015194508 A1 JPWO2015194508 A1 JP WO2015194508A1
Authority
JP
Japan
Prior art keywords
group
substituent
optionally substituted
formula
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016529335A
Other languages
English (en)
Other versions
JP6630667B2 (ja
Inventor
祐希 竹内
祐希 竹内
健裕 浅野
健裕 浅野
浩一 和田
浩一 和田
和也 津崎
和也 津崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Pharma Chemical Co Ltd
Original Assignee
Kyowa Pharma Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Pharma Chemical Co Ltd filed Critical Kyowa Pharma Chemical Co Ltd
Publication of JPWO2015194508A1 publication Critical patent/JPWO2015194508A1/ja
Application granted granted Critical
Publication of JP6630667B2 publication Critical patent/JP6630667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/44Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton bound to carbon atoms of the same ring or condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Quinoline Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

式(1):【化1】(式中、Xは、−O−または−NR−であり、R、R1、R2、R3およびR4は、それぞれ独立に、C1−6アルキル基等である)で表される化合物と、式(2):【化2】(式中、Yは、−O−、−NR6−または−S−であり、R5およびR6はそれぞれ独立に、C1−6アルキル基等である)で表される化合物と、を植物加工物の存在下反応させ、式(3):【化3】(式中、X、Y、R1、R2、R3、R4およびR5は、前記定義と同一である)で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。

Description

本発明は、光学活性体の製造方法に関する。
式(Z)で表される化合物(以下、「化合物(Z)」ともいう。)は、連続する2つの炭素原子に、それぞれ酸素原子または窒素原子が結合した化合物であり、1分子中に少なくとも2つの不斉炭素を有するため、複数の光学異性体が存在する。光学活性な化合物(Z)は、医薬品または農薬の開発の分野において汎用される化学構造の1つであり、不斉反応で使用する遷移金属触媒のリガンドとしても使用できる。
Figure 2015194508
なお、式中、Xは−O−または−NR−を示し、Yは−O−、−NR−または−S−を示し、R、R、R、R、R、RおよびRは、それぞれ独立に水素原子または有機基を示し、アスタリスクはその炭素原子が不斉炭素であることを示す。
化合物(Z)は、具体的には、例えば、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)である。
現在までに、光学活性な化合物(Z)の製造方法について、多くの検討が行われている。なかでも、入手が容易なエポキシド構造またはアジリジン構造を有する化合物に求核剤を反応させ、立体選択的に開環することにより光学活性な化合物(Z)を得る方法は、原子効率が高く有用である。
例えば、エポキシド構造を有する化合物に求核剤を反応させて、光学活性な化合物(Z)を得る方法としては、(A)ラセミ体を光学分割する方法(例えば、特許文献1〜3、非特許文献1、2)、(B)他の位置に不斉炭素を導入し、生じたジアステレオマーを分離する方法(例えば、特許文献4、非特許文献3)、(C)光学活性な触媒の存在下でエポキシド構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、特許文献5、非特許文献4〜6)等がある。特に、(A)の方法としては、分割剤として光学活性な酸を用いる方法、光学活性な充填剤を利用したカラムクラマトグラフィーを用いて分離する方法、および動物または微生物に由来する酵素を利用する方法などが知られている。
また、アジリジン構造を有する化合物に求核剤を反応させて、化合物(Z)を得る方法としては、(D)ラセミ体を光学分割する方法(例えば、特許文献6)、(E)光学活性な触媒の存在下でアジリジン構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、非特許文献7,8)等がある。
特許第4406483号公報 特許第4406482号公報 米国特許第5981267号明細書 特開平9−157258号公報 特開2003−206266号公報 特開2011−83934号公報
Tetrahedron,56,9773−9779(2000) Synth.Commun.,29,1369−1377(1999) J.Med.Chem.41,38−45(1998) Tetrahedron:Asymmetry,9,1747−1752(1998) Bull.Chem.Soc.Jpn.,61,1213−1220(1988) Chemistry Letters,36,34−35(2007) Org.Biomol.Chem.,9,6205−6207(2011) J.Org.Chem.,68,5160−5167(2003)
しかしながら、(A)、(B)および(D)の方法では、理論上の収率が50%を超えることはなく、製造物と同じ量の分割剤の使用、または、大容量カラムによる精製が必要となり、工業的に製造する方法としては問題がある。
一方、(C)および(E)の方法では、短工程で目的の光学活性な化合物(Z)を製造することができるが、多くの場合、光学活性な触媒として金属触媒または強力な酸触媒を用いる。そのため、(C)および(E)の方法では、使用できる含ヘテロ3員環構造を有する化合物または求核剤が限定され、高価な金属触媒の回収工程が必要となる。
したがって、本発明の目的は、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシドまたはアジリジンを有する化合物と求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率よく製造する方法を提供することである。
本発明は、以下の[1]〜[9]を提供する。
[1]式(1):
Figure 2015194508
(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよい)
Figure 2015194508
(式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、
式(2):
Figure 2015194508
(式中、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない)
Figure 2015194508
(式中、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、を植物加工物の存在下反応させ、
式(3):
Figure 2015194508
(式中、X、Y、R、R、R、RおよびRは、前記定義と同一である)
で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。
[2]前記式(1)で表される化合物が、式(1c)で表される化合物である、請求項1に記載の製造方法。
Figure 2015194508
(式中、XおよびRは、前記定義と同一である)
[3]前記式(1)で表される化合物が、式(1a)で表される化合物である、[1]に記載の製造方法。
Figure 2015194508
(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す)
[4]Yが−NR−である、[1]〜[3]のいずれか一項に記載の製造方法。
[5]Yが−O−である、[1]〜[3]のいずれか一項に記載の製造方法。
[6]Yが−S−である、[1]〜[3]のいずれか一項に記載の製造方法。
[7]前記植物加工物が、マメ科、ウリ科、ナス科、ウルシ科、ショウガ科、ミカン科、ヒガンバナ科、セリ科、アブラナ科、ハス科、マタタビ科、バラ科、ユリ科、イネ科、モクセイ科、バショウ科、ツバキ科およびネギ科の植物からなる群から選択される植物を粉砕して調製される、[1]〜[6]のいずれか一項に記載の製造方法。
[8]7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程を含む、(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールの製造方法。
[9](1) 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程と、
(2a) (1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとを反応させ、または、
(2b) 保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを反応させ、
保護された6−(3−アミノプロポキシ)−2(1H)−キノリノンを用いた場合は、さらに脱保護を行うことによって、
(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを得る工程と、
を含む、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンの製造方法。
本発明によれば、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシド構造またはアジリジン構造を有する化合物と種々の求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率的に製造することができる。
また、本発明で使用する触媒は、入手容易な植物加工物であり、必ずしも触媒の回収を必要としない。さらに、触媒は、反応終了後、回収して再利用することも可能である。
以下、本発明について詳細に説明する。
本発明の一実施形態は、式(1)で表される化合物(以下、「化合物(1)」等ともいう。)と化合物(2)を植物加工物の存在下で反応させ、化合物(3)を得るものである。
Figure 2015194508
<式(1)で表される化合物(化合物(1))>
式(1)において、Xは、−O−または−NR−である。すなわち、化合物(1)は、エポキシド構造を有する化合物またはアジリジン構造を有する化合物を意味する。
Figure 2015194508
Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基である。
また、R、R、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。
1−6アルキル基とは、炭素数1〜6のアルキル基を意味する。C1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。
3−6シクロアルキル基とは、炭素数3〜6のシクロアルキル基を意味する。C3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
2−6アルケニル基とは、炭素数2〜6のアルケニル基を意味する。C2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。
3−6シクロアルケニル基とは、炭素数3〜6のシクロアルケニル基を意味する。C3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。
2−6アルキニル基とは、炭素数2〜6のアルキニル基を意味する。C2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。
6−10アリール基とは、炭素数6〜10のアリール基を意味する。C6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。
1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。
化合物(1)としては、例えば、Cis−2,3−エポキシブタンが挙げられる。
また、化合物(1)の代わりに、Xが−S−であるチイラン構造を有する化合物を用いてもよい。チイラン構造を有する化合物を用いた場合、1,2−メルカプトアミン、1,2−メルカプトアルコール、1,2−ジチオールを得ることができる。
また、化合物(1)は、化合物(1b)であってもよい。
Figure 2015194508
式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。
式(1b)中、Xは、−O−または−NR−を示し、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRとが置換基を介して結合して形成される態様も包含する。
1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(1)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。
とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。
式(1b)で表される化合物の具体例としては、6−オキサビシクロ[3.1.0]ヘキサン、7−オキサビシクロ[4.1.0]ヘプタン、8−オキサビシクロ[5.1.0]オクタンおよび3,6−ジオキサビシクロ[3.1.0]ヘキサンが挙げられる。
<式(2)で表される化合物(化合物(2))>
式(2)において、Yは、−O−、−NR−または−S−である。すなわち、化合物(2)は、アルコール、アミンまたはチオールを意味する。ただし、水および硫化水素は、化合物(2)の範囲から除かれる。
Figure 2015194508
また、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。
1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。
3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。
3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。
2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。
6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。
1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C6−10アリール基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。
化合物(2)の具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロパノール)、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、フェノール、アンモニア、メチルアミン、エチルアミン、プロピルアミン、2−プロピルアミン(イソプロピルアミン)、2−ペンチルアミン、3−ペンチルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、tert−ブチルアミン、アリルアミン、プロパルギルアミン、ベンジルアミン、2−フェニルエチルアミン、アニリン、ジメチルアミン、ジエチルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン、メタンチオール、エタンチオール、1−プロパンチオール、2−プロパンチオール、ブタンチオールが挙げられる。
また、化合物(2)は、化合物(2a)であってもよい。
Figure 2015194508
式中、Rは、RおよびRが互いに結合して形成される基を示す。
式(2a)中、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRが置換基を介して結合して形成される態様も包含する。
1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(2)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。
とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。
化合物(2a)の具体例としては、ピロリジン、ピペリジン、モルホリン、ピペラジン、ホモピペラジン、チオモルホリンである。
化合物(2)の量は、経済性、回収性を考慮した任意の量を用いることができる。このような量としては、例えば、化合物(1)のモル数に対して0.01〜100当量、好ましくは0.1〜10当量、更に好ましくは0.5〜2当量である。
<式(3)で表される化合物(化合物(3))>
化合物(3)とは、式(3)で表される化合物であり、式中、X、Y、R、R、R、R、R、R、RおよびRは、上記定義と同一である。
Figure 2015194508
また、化合物(1)が化合物(1b)である場合、化合物(2)が化合物(2a)である場合を考慮すると、化合物(3)には化合物(3a)〜(3c)が包含される。
Figure 2015194508
化合物(3)の具体例としては、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)が挙げられる。
<植物加工物>
本明細書において、植物加工物とは、食用植物の一部を加工して得られる粉末または抽出物である。
上記「食用植物」とは、ヒトがその一部を食べることができる植物として、一般的に知られた植物を意味する。食用植物としては、例えば、穀類、豆類、野菜、果物またはいも類に分類される植物であり、食用植物の一部とは、果実全体、果肉、果皮、茎、種子、胚芽、根、球根および葉から適宜選択することができる。食用植物としては、具体的には、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、モクセイ科(例えば、オリーブ)、バショウ科(例えば、バナナ)、イネ科(例えば、小麦)、ウリ科(例えば、カボチャ)、ナス科(例えば、トマト、ジャガイモ)、ウルシ科(例えば、ピスタチオ、カシューナッツ)、ショウガ科(例えば、ウコン)、ツバキ科(例えば、茶)、ミカン科(例えば、ナツミカン、柚子、花柚子、ブンタン)、ヒガンバナ科(例えば、ニンニク)、セリ科(例えば、ニンジン)、アブラナ科(例えば、ダイコン)、ハス科(例えば、レンコン)、マタタビ科(例えば、キウイ)、バラ科(例えば、リンゴ)およびネギ科(例えば、ネギ)の植物が挙げられる。食用植物としては、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、ツバキ科(例えば、茶)、セリ科(例えば、ニンジン)、マタタビ科(例えば、キウイ)およびユリ科(例えば、ネギ)からなる群から選択されることが好ましい。なお、ネギは、ネギ科として分類される場合もある。
上記「加工」とは、必要に応じて、乾燥する、加熱する、火であぶる、焙煎する、油であげる、発酵させる、不要な部位を除去する等の処理を行った後、粉末状になるまで粉砕すること、あるいは成分を抽出することを意味する。また、上記植物加工物には、食用植物のエキスを抽出した後、乾燥したものを粉砕して得られる粉末も包含される。したがって、上記茶は、緑茶であってもよく、紅茶であってもよい。また、上記大豆は、きな粉であってもよく、納豆であってもよい。
植物加工物は、粉末状または液状に加工された状態で市販されたものを使用してもよく、加工された状態で市販されたものを適宜粉末状に粉砕して使用してもよい。市販されたものとしては、きな粉、脱脂大豆粉(例えば、フジプロF(不二製油(株)製、商品名)、サンリッチF(昭和産業(株)製、商品名)、ソーヤフラワーFT−N(日清オイリオ(株)製、商品名)、エスサンミート特等(味の素(株)製、商品名)、豊年ソイプロ(J−オイルミルズ(株)製、商品名)、水溶性大豆多糖類(例えば、ソヤファイブS−DN(不二製油(株)製、商品名)等の大豆加工物を用いることが好ましく、きな粉、ソーヤフラワーFT−NまたはソヤファイブS−DNを用いることがより好ましい。
植物加工物の量としては、経済性、回収性を考慮した任意の量を用いることができる。このような植物加工物の量としては、例えば、式(1)で表される化合物の質量に対して、質量比で0.01〜100倍量、好ましくは0.1〜10倍量、更に好ましくは1〜5倍量である。
<不斉開環反応>
本発明の実施形態に係る不斉開環反応は、溶媒中で行ってもよい。溶媒中で行う場合は、化合物(1)および化合物(2)と反応しない溶媒であれば、通常、有機合成化学でよく知られた有機溶媒および水を使用することができる。このような有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類が挙げられる。また、これらの溶媒は、単独で使用してもよく、2種以上を混合して用いてもよい。2種以上を混合して用いる場合は、有機溶媒と水を混合して用いることが好ましく、回収性、安全性、経済性の面からトルエンまたはヘプタンと水との混合溶媒を用いることが特に好ましい。
不斉開環反応に使用できる溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。このような溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0〜100倍量、好ましくは0.5〜50倍量、更に好ましくは2〜10倍量である。
不斉開環反応に使用できる水の含量は、触媒に対して水を質量比で0.05〜1倍量の範囲とすることができ、触媒に対して水を0.20〜0.50倍量の範囲であることが更に好ましい。このような範囲であれば、反応の変換率および生成物の光学純度がより向上する。
反応温度は−20℃〜100℃が好ましく、特に30℃〜50℃が好ましい。反応終了後、触媒をろ別することで、対応する化合物(3)を得ることができる。本発明の不斉開環反応を行う際に、ろ別によって回収された触媒を再利用することができる。
反応時間は、経済性を考慮した任意の変換率が得られる時間まで反応を行うことができる。このような反応時間としては、例えば、1〜500時間、好ましくは1〜100時間、更に好ましくは1〜48時間である。
反応終了後、触媒をろ別することで化合物(3)を得ることができる。得られた化合物(3)は、更に晶析、蒸留等の定法により、容易に精製することもできる。
晶析に使用できる溶媒は、通常、有機合成化学で使用される溶媒であれば特に限定されず、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類;トルエン、ベンゼン、キシレン等の芳香族炭化水素類;ジイソプロピルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類などを用いることができ、これらの溶媒を単独または2種以上を混合して用いてもよい。
上記溶媒の量は、単独溶媒、混合溶媒のいずれの場合においても、経済性を考慮した量とすることができ、化合物(3)の質量に対して、容量比で0.1〜100倍量、好ましくは0.5〜50倍量、さらに好ましくは1〜10倍量である。
<塩形成反応>
本発明により得られた化合物(3)は、有機合成化学で通常使用される無機酸または有機酸と、塩を形成することにより、光学純度を高めることができる。上記酸としては、例えば、塩酸、硫酸、亜硫酸、硝酸、過塩素酸、塩素酸、ヨウ素酸、リン酸等の無機酸;ギ酸、酢酸、乳酸、シュウ酸、クエン酸、マレイン酸、フマル酸、安息香酸、フタル酸、サリチル酸、メタンスルホン酸、トルエンスルホン酸等の有機酸が挙げられる。
化合物(3)の光学純度を高めるために、光学活性な酸との塩を形成させてもよい。上記光学活性な酸としては、例えば、酒石酸、リンゴ酸、マンデル酸、フェニルグリシン等が挙げられ、上記酸は置換されているものであってもよい。
塩を形成する際の溶媒としては経済性、回収性等を考慮して、有機合成化学で通常使用される溶媒を用いることができる。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;水等を挙げることができ、これらの溶媒を単独または2種以上混合してもよい。
塩を形成する際に使用する溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。上記溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0〜100倍量、好ましくは0.5〜50倍量、更に好ましくは2〜10倍量である。
塩形成反応において、より高純度の化合物(3)を得るために、当業者によく知られた方法により、精製することができる。
<医薬候補化合物への応用>
本発明で得られる(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノール(以下、「化合物A」ともいう。)は、6−(3−アミノプロポキシ)−2(1H)−キノリノン(以下、「化合物B」ともいう。)と反応させることにより、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを製造することができる。
(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンは、インビボ(in vivo)での強い抗血栓作用および血管内皮肥厚抑制作用の2つの作用を有する物質であり、血小板凝集抑制作用、血小板塊解離作用、脳および末梢血管増加作用等を有している。したがって、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンは、血栓性疾患や動脈硬化性疾患の治療および予防に有用である。
化合物Aおよび化合物Bから(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを製造する方法としては、公知の方法を用いることができる。公知の方法とは、例えば、特許文献4に記載の方法である。
化合物Aおよび化合物Bを反応させる際には、下記式(Eq.1)のように、予め化合物Aおよびカルボニル化試薬を反応させた後に、化合物Bを反応させることができる。化合物Aおよびカルボニル化試薬を反応させた後に、反応生成物を精製してもよい。
Figure 2015194508
[式中、Rはカルボニル化試薬の残基を意味する。]
反応(i)は、無溶媒または溶媒中で行うことができる。反応(i)で使用できる溶媒としては、例えば、ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;N,N−ジメチルホルムアミド、アセトン、ジメチルスルホキシド、アセトニトリル、水等の極性溶媒が挙げられる。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
上記カルボニル化試薬には、例えば、クロロぎ酸フェニル等のクロロぎ酸エステル、炭酸ジエチル等の炭酸エステル、カルボニルジイミダゾール、ホスゲン、トリホスゲンが挙げられる。
反応(i)は、通常、−20〜150℃で行われ、好ましくは−20〜100℃である。
反応(i)は、塩基性化合物の存在下または非存在下で行うことができる。反応(i)で使用できる塩基性化合物としては、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、水素化ナトリウム等の無機塩基;トリエチルアミン、N,N−ジイソプロピルエチルアミン、イミダゾール、ピリジン等の有機塩基などを用いることができる。
反応(i)には、反応をより効率よく進行させるために、さらに添加剤を使用してもよい。このような添加剤の例には、ヨウ化カリウム、ヨウ化ナトリウム、イミダゾール、4−ジメチルアミノピリジン、4−ピロリジノピリジン等が挙げられる。
反応(ii)は、無溶媒または溶媒中で行うことができる。反応(ii)で使用できる溶媒には、反応(i)で挙げた溶媒を使用することができる。
反応(ii)は、通常、−20〜150℃で行われ、好ましくは−20〜100℃である。
反応(ii)は、塩基性化合物の存在下または非存在下で行うことができる。反応(ii)で使用できる塩基性化合物には、反応(i)で挙げた塩基性化合物を使用することができる。
また、下記式(Eq.2)のように、予め化合物Bおよびカルボニル化試薬を反応させた後に、化合物Aを反応させてもよい。この場合、各工程は式(Eq.1)のときと同様の方法により、行うことができる。
Figure 2015194508
[式中、Rはカルボニル化試薬の残基を意味する。]
本発明に用いる化合物Bは、保護された化合物Bであってもよい。保護された化合物Bは、キノリノンの1位が保護基で置換されているものを用いることができる。このような保護基としては、例えば、メトキシメチル基、ベンジル基等のアルキル基;トリエチルシリル基、トリフェニルシリル基等の置換シリル基、アセチル基、トリフルオロアセチル基等の置換アシル基、tert−ブトキシカルボニル基等のアルコキシカルボニル基などが挙げられる。
また、保護された化合物Bとして、2位が置換された6−(3−アミノプロポキシ)−キノリンを用いることもできる。2位が置換された6−(3−アミノプロポキシ)−キノリンの置換基は、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、メトキシメトキシ基等のアルコキシ基;ベンジルオキシ基等のアリールアルキルオキシ基;アセトキシ基、ピバロイルオキシ基等のアシルオキシ基;トリエチルシリルオキシ基等のシリルオキシ基などが挙げられる。
保護された化合物Bを反応に用いた場合、反応後に公知の方法によって脱保護し、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンへと変換することもできる。このような脱保護の条件としては、プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、John Wiley and Sons刊(1980)に記載の方法を使用することができ、例えば、酸性条件、アルカリ性条件、水素添加が挙げられる。
以下、本発明を実施例、参考例により具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
合成した化合物は、テトラメチルシランを内部標準としたH−NMRおよび13C−NMRスペクトルにより、その構造式を決定した。データは、内部標準として用いたTMS(テトラメチルシラン)を0ppmとしたときの化学シフト値(δ)を記載した。また、水酸基およびアミノ基等の幅広いピークの場合は、記載していない。
明細書中で用いられる「変換率」とは、下記式に基づいて算出した値である。変換率の算出方法は、具体的には、次のとおりである。まず、植物加工物の存在下、化合物(1)と化合物(2)との反応を行った際の反応液を少量採取する。次に、ガスクロマトグラフィーを用いて採取した反応液を測定し、化合物(1)および化合物(3)の各ピーク面積を得る。得られた各ピーク面積から、有効炭素数法(ECN)によって化合物(1)と化合物(3)のモル比を算出し、下記式に基づいて算出した値である。なお、有効炭素数法(ECN)とは、例えば、Gas Chromatography,Academic Press,NewYork,1962,p207および分析化学便覧改訂5版(村田誠四郎、日本分析化学会編、丸善(株))に記載の方法である。例えば、7−オキサビシクロ[4.1.0]ヘプタンの有効炭素数は、5.00であり、2−シクロプロピルアミノ−1−シクロヘキサノールの有効炭素数は、7.50である。
変換率(%)=100×化合物(3)のモル数/(化合物(1)のモル数+化合物(3)のモル数)
光学純度は、鏡像体過剰率(%ee)を算出して記載した。測定条件は以下のとおりである。
「選択率(%ee)」は、特記しない限り、ガスクロマトグラフィー(GC)を用いて測定した後、ピーク面積の比から、下記式に基づいて計算した。すなわち、選択率が負の値の場合は、「短いGC保持時間のピーク面積」の値が「長いGC保持時間のピーク面積」の値より大きかったことを示す。なお、「選択率(R,R)%ee」と記載されている場合は、(R,R)体の選択率を示す。
選択率(%ee)=100×{(保持時間が長いピークのピーク面積)−(保持時間が短いピークのピーク面積)}/{(保持時間が長いピークのピーク面積)+(保持時間が短いピークのピーク面積)}
分析条件
(1)ガスクロマトグラフィー法
得られた化合物の分析条件は、表1に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
キャリアガス:ヘリウム
検出器:水素炎イオン化検出器
圧力:94kPa
気化室温度:220℃
検出器温度:300℃
スプリット比: 1:150
注入量:0.5μL
サンプル前処理:試料約1mgをジクロロメタンに溶解し、塩化トリメチルシランとトリエチルアミンを加え撹拌し、不溶物をろ過した。
カラム:
BETADEX 120(長さ:30m、内径:0.25μm、Supelco社製)
CP−CHIRASIL−DEX CB(長さ:25m、内径:0.25mm、膜厚:0.25μm、VARIAN社製)
Figure 2015194508
(2)液体クロマトグラフィー法
得られた化合物の分析条件は、表2に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
注入量:5μL
検出器:紫外吸光検出器(波長254nm)
カラム:
CHIRALCEL OB−H(4.6×250mm、株式会社ダイセル製)
CHIRALPAK AS−RH(4.6×150mm、株式会社ダイセル製)
CHIRALCEL OD−H(4.6×250mm、株式会社ダイセル製)
Figure 2015194508
分析の為のラセミ体合成と分析方法は、以下の参考例に示した。
参考例1 trans−2−(イソプロピルアミノ)シクロヘキサノール合成
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 1.45gとイソプロピルアミン0.87gを量りとり、メタノール8mLと水2mL、塩化リチウム0.13gを加え、50℃で48時間反応した。反応後、減圧下に濃縮し、粗体を得た。粗体は柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(イソプロピルアミノ)シクロヘキサノールを1.26g得た。(外浴温度135−140℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.82−0.94(m,1H), 1.00(d,J=6.31Hz,3H), 1.06(d,J=6.31Hz,3H), 1.20−1.31(m,3H), 1.69−1.73(m,2H), 2.06−2.10(m,2H), 2.18−2.26(m,1H), 2.96(sep,J=6.31Hz,1H),3.09(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.79(CH3), 24.28(CH2), 24.73(CH3), 25.36(CH2), 31.29(CH2), 32.98(CH2), 45.05(CH), 60.64(CH), 73.87(CH)
分析条件A 保持時間 12.9分、13.2分
参考例2 trans−2−(シクロプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.19−0.55(m、4H),0.94−1.07(m,1H),1.18−1.30(m,3H),1.71−1.76(m,2H),2.00−2.06(m,1H),2.19−2.36(m,3H),3.06−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 5.69(CH2),7.22(CH2),24.19(CH2),24.85(CH2),27.50(CH),30.71(CH2),33.26(CH2),63.54(CH),72.94(CH)
分析条件B 保持時間 (S,S)体:26.9分、(R,R)体:27.4分
参考例3 trans−2−(プロピルアミノ)シクロヘキサンノール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度115−120℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−0.99(m,4H),1.21−1.29(m,3H),1.42−1.55(m,2H),1.71−1.73(m,2H),2.02−2.22(m,3H),2.39−2.47(m,1H),2.70−2.79(m,1H),3.10−3.18(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.69(CH3),23.60(CH2),24.39(CH2),25.03(CH2),30.43(CH2),33.52(CH2),48.54(CH2),63.47(CH), 73.46(CH)
分析条件B 保持時間 20.0分、20.3分
参考例4 trans−2−(3−ペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに替えて、3−アミノペンタンを用いる他は全て参考例1と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,7H),1.20−1.56(m,7H),1.69−1.73(m,2H),2.05−2.09(m,2H),2.14−2.22(m,1H),2.44−2.52(m,1H),3.02−3.10(m,1H)
13C−NMR(75.45MHz,CDCl) δ 8.99(CH3),10.26(CH3),24.28(CH2),25.40(CH2),26.19(CH2),26.89(CH2),31.41(CH2),32.89(CH2),56.76(CH),61.14(CH),74.12(CH)
分析条件B 保持時間 30.3分、31.3分
参考例5 trans−2−(tert−ブチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、tert−ブチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−1.19(m,1H),1.13(s,9H),1.24−1.32(m,3H),1.67−1.71(m,2H),1.98−2.07(m,2H),2.19−2.27(m,1H),2.89−2.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.47(CH2),25.88(CH2),30.63(CH3),32.64(CH2),34.88(CH2),50.68(C),58.13(CH),74.31(CH)
分析条件B 保持時間 15.6分、16.0分
参考例6 trans−2−(アリルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.04(m,1H),1.19−1.31(m,3H),1.70−1.72(m,2H), 1.97−2.07(m,2H),2.24−2.32(m,1H),3.11−3.26(m,2H),3.36−3.42(m,1H),5.06−5.22(m,2H),5.84−5.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.28(CH2),24.71(CH2),30.07(CH2),33.62(CH2),49.17(CH2),62.65(CH),73.27(CH),115.61(CH2),136.85(CH)
分析条件A 保持時間 34.8分、35.2分
参考例7 trans−2−(プロパルギルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.05(m,1H),1.21−1.38(m,3H),1.68−1.73(m,2H),1.96−2.08(m,2H),2.24(t,J=2.40Hz,1H),2.40−2.48(m,1H),3.21−3.29(m,1H),3.47(dq,J1=16.82Hz,J2=2.40Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 24.31(CH2),24.56(CH2),29.79(CH2),33.80(CH2),35.35(CH2),62.01(CH),71.30(C),73.61(CH),82.22(CH)
分析条件C 保持時間 47.1分、47.6分
参考例8 trans−2−(シクロペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.87−0.95(m,1H),1.20−1.38(m,5H),1.50−1.87(m,8H),2.01−2.22(m,3H),3.01−3.09(m,1H),3.19−3.27(m,1H)
13C−NMR(75.45MHz,CDCl3)δ 23.59(CH2),23.79(CH2),24.31(CH2),25.27(CH2),30.91(CH2),33.08(CH2),33.12(CH2),34.59(CH2),56.14(CH),61.86(CH),73.75(CH)
分析条件D 保持時間 24.7分、25.1分
参考例9 trans−2−(シクロヘキシルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロヘキシルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−1.04(m,2H),1.08−1.36(m,7H),1.62−1.73(m,6H),1.90(d,J=12.32Hz,1H),1.97−2.08(m,2H),2.21−2.30(m,1H),2.51−2.60(m,1H),3.01−3.09(m,1H)
13C−NMR(75.45MHz,CDCl3) δ 24.29(CH2),24.56(CH2),25.06(CH2),25.29(CH2),26.00(CH2),31.47(CH2),33.04(CH2),33.50(CH2),35.19(CH2),53.18(CH),60.26(CH),73.77(CH)
分析条件E 保持時間 31.4分、31.9分
参考例10 trans−2−(ジメチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジメチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度70−75℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.03−1.31(m,4H),1.69−1.78(m,3H),2.07−2.33(m,8H),3.27−3.35(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.16(CH2),23.97(CH2),25.14(CH2),33.05(CH2),39.98(CH3),69.11(CH),69.36(CH)
分析条件F 保持時間 46.5分、47.1分
参考例11 trans−2−(ジエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度80−85℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.04(t,J=6.91Hz,6H),1.13−1.31(m,4H),1.69−1.77(m,3H),2.10−2.14(m,1H),2.26−2.42(m,3H),2.57−2.69(m,2H),3.26−3.34(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.58(CH3),22.69(CH2),24.04(CH2),25.61(CH2),33.07(CH2),43.08(CH2),66.05(CH),68.89(CH)
分析条件G 保持時間 29.7分、30.6分
参考例12 trans−2−(1−ピロリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピロリジンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.17−1.27(m,4H),1.69−1.78(m,7H),2.05−2.15(m,1H),2.42−2.59(m,3H),2.64−2.71(m,2H),3.29−3.37(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.99(CH2),23.43(CH2),24.03(CH2),25.16(CH2),33.13(CH2),47.03(CH2),64.78(CH),70.51(CH)
分析条件H 保持時間 23.0分、23.2分
参考例13 trans−2−(1−ピペリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例1と同様に操作した。(外浴温度105−115℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.12−1.26(m,4H),1.43−1.79(m,9H),2.10−2.17(m,2H),2.31−2.34(m,2H),2.63−2.70(m,2H),3.31−3.39(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 22.06(CH2),24.04(CH2),24.79(CH2),25.56(CH2),26.67(CH2),33.19(CH2),49.63(CH2),68.45(CH),70.93(CH)
分析条件H 保持時間 35.6分、35.8分
参考例14 trans−2−(フェニルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.98−1.11(m,1H),1.24−1.47(m,3H),1.70−1.79(m,2H),2.10−2.14(m,2H),3.10−3.18(m,1H),3.31−3.39(m,1H),6.70−6.77(m,3H),7.15−7.25(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 24.15(CH2),24.82(CH2),31.42(CH2),33.09(CH2),59.89(CH),74.25(CH),114.17(CH),118.07(CH),129.18(CH),147.73(C)
分析条件α 保持時間 27.5分、29.7分
参考例15 trans−2−(2−フェニルエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.84−0.96(m,1H),1.18−1.32(m,3H),1.67−1.71(m,2H),1.99−2.07(m,2H),2.16−2.25(m,1H),2.70−2.86(m,3H),3.00−3.15(m,2H),7.18−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.29(CH2),25.15(CH2),30.55(CH2),33.25(CH2),37.01(CH2),47.89(CH2),63.55(CH),73.62(CH),126.06(CH),128.36(CH),128.63(CH),140.06(C)
分析条件α 保持時間 25.0分、35.0分
参考例16 trans−2−(ベンジルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度175−180℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.91−1.05(m,1H),1.16−1.35(m,3H),1.71−1.74(m,2H),2.01−2.07(m,1H),2.15−2.21(m,1H),2.25−2.33(m,1H),3.16−3.24(m,1H),3.69(d,J=12.92Hz,1H),3.96(d,J=12.92Hz,1H),7.22−7.36(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.25(CH2),24.85(CH2),30.20(CH2),33.40(CH2),50.68(CH2),62.89(CH),73.41(CH),126.81(CH),127.96(CH),128.25(CH),140.32(C)
分析条件α 保持時間 16.9分、26.9分
参考例17 trans−2−(3−エトキシプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.91−1.03(m,1H),1.15−1.30(m,6H),1.70−1.79(m,4H),1.99−2.09(m,2H),2.17−2.25(m,1H),2.52−2.61(m,1H),2.82−2.91(m,1H),3.14−3.22(m,1H),3.43−3.51(m,4H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),24.26(CH2),24.86(CH2),30.21(CH2),30.33(CH2),33.42(CH2),43.90(CH2),63.35(CH),65.98(CH2),68.80(CH2),73.27(CH)
分析条件AA 保持時間 25.6分、25.8分
参考例18 trans−2−(イソプロピルアミノ)シクロペンタノール合成
エポキシドとして6−オキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度95−100℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05−1.10(m、6H),1.21−1.31(m、1H),1.48−1.78(m、3H),1.88−2.08(m、2H),2.67−2.95(m、2H),3.78−3.85(m、1H)
13C−NMR(75.45MHz,CDCl) δ 20.03(CH2),22.44(CH3),23.85(CH3),30.41(CH2),32.18(CH2),47.03(CH),63.90(CH),77.78(CH)
分析条件I 保持時間 14.3分、14.7分
参考例19 trans−2−(シクロプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロプロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度105−110℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.31−0.52(m,4H),1.27−1.40(m,1H),1.48−1.79(m,3H),1.88−1.99(m,1H),2.03−2.19(m,2H),2.90−2.97(m,1H),3.85(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 5.89(CH2),6.46(CH2),20.08(CH2),29.30(CH),30.13(CH2),32.12(CH2),66.95(CH),77.21(CH)
分析条件J 保持時間 15.5分、15.7分
参考例20 trans−2−(プロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.71(t,J=7.51Hz,3H),1.22−1.35(m,1H),1.45−1.78(m,5H),1.88−2.11(m,2H),2.50−2.66(m,2H),2.78−2.86(m,1H),3.85(q,J=6.61Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 11.66(CH3),20.15(CH2),23.22(CH2),29.93(CH2),32.53(CH2),50.41(CH2),66.57(CH),77.43(CH)
分析条件K 保持時間 17.3分、17.6分
参考例21 trans−2−(アリルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アリルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.48−1.78(m,3H),1.89−2.06(m,2H),2.82−2.90(m,1H),3.18−3.34(m,4H),3.83−3.89(m,1H),5.10(d,J=10.21Hz,1H),5.18(dd,J1=17.12Hz,J2=1.50Hz,1H),5.85−5.98(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.02(CH2),29.67(CH2),32.38(CH2),50.87(CH2),65.81(CH),77.31(CH),115.97(CH2),136.31(CH)
分析条件L 保持時間 32.9分、34.0分
参考例22 trans−2−(プロパルギルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロパルギルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.25−1.37(m,1H),1.51−1.81(m,3H),1.89−2.07(m,2H),2.27−2.29(m,1H),3.01−3.08(m,1H),3.35−3.54(m,2H),3.89(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 20.12(CH2),29.39(CH2),32.48(CH2),36.57(CH2),64.97(CH),71.50(C),77.53(CH),81.89(CH)
分析条件M 保持時間 40.1分、41.9分
参考例23 trans−2−(シクロペンチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロペンチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度165−170℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,3H),1.47−1.77(m,7H),1.82−2.06(m,4H),2.82−2.89(m,1H),3.11(quin,J=7.21Hz,1H),3.81(q,J=6.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 19.83(CH2),23.57(CH2),23.66(CH2),29.98(CH2),32.10(CH2),32.63(CH2),33.65(CH2),58.34(CH),65.01(CH),77.25(CH)
分析条件N 保持時間 24.3分、24.5分
参考例24 trans−2−(1−ピロリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピロリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.46−1.83(m,8H),1.86−2.00(m,2H),2.41−2.48(m,1H),2.59−2.61(m,4H),4.06−4.12(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.34(CH2),22.96(CH2),29.70(CH2),34.51(CH2),52.46(CH2),73.19(CH),76.28(CH)
分析条件O 保持時間 19.9分、20.3分
参考例25 trans−2−(1−ピペリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピペリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.41−1.75(m,10H),1.80−1.97(m,2H),2.48−2.56(m,5H),4.10−4.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.71(CH2),24.29(CH2),25.76(CH2),26.92(CH2),34.36(CH2),52.14(CH2),74.38(CH),75.17(CH)
分析条件N 保持時間 23.1分、23.4分
参考例26 trans−2−(フェニルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アニリン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.29−1.38(m,1H),1.41−2.02(m,4H),2.16−2.28(m,1H),3.52−3.58(m,1H),3.96−4.01(m,1H),6.62−6.73(m,3H),7.09−7.21(m,2H)
13C−NMR(75.45MHz,CDCl) δ 20.84(CH2),30.97(CH2),32.61(CH2),61.93(CH),77.97(CH),113.30(CH),117.42(CH),129.17(CH),147.64(C)
分析条件P 保持時間 51.3分、51.6分
参考例27 trans−2−(2−フェニルエチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.18−1.31(m,1H),1.47−1.76(m,3H),1.86−2.04(m,2H),2.72−2.96(m,5H),3.82(q,J=6.31Hz,1H),7.18−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.24(CH2),30.02(CH2),32.63(CH2),36.32(CH2),49.63(CH2),66.50(CH),77.61(CH),126.07(CH),128.36(CH),128.54(CH),139.69(C)
分析条件α 保持時間 13.6分、18.3分
参考例28 trans−2−(ベンジルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、ベンジルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.43−1.57(m,1H),1.59−1.75(m,2H),1.84−2.04(m,2H),2.81−2.88(m,1H),3.66−3.85(m,3H),7.20−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.22(CH2),29.96(CH2),32.46(CH2),52.45(CH2),66.03(CH),77.69(CH),126.88(CH),128.07(CH),128.30(CH),140.04(C)
分析条件β 保持時間 33.2分、34.9分
参考例29 trans−2−(3−エトキシプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミン用いる他は全て参考例18と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.26−1.36(m,1H),1.48−1.81(m,5H),1.89−2.07(m,2H),2.64−2.86(m,3H),3.35−3.51(m,4H),3.83−3.89(m,1H)
13C−NMR(75.45MHz,CDCl) δ 15.01(CH3),20.18(CH2),29.90(CH2),29.99(CH2),32.48(CH2),45.91(CH2),66.02(CH2),66.04(CH),68.98(CH2),77.42(CH)
分析条件γ 保持時間 23.6分、24.7分
参考例30 trans−4−(イソプロピルアミノ)−3−テトラヒドロフラン−3−オール合成
エポキシドとして3,6−ジオキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度120−125℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.08(d,J=6.31Hz,3H),1.08(d,J=6.31Hz,3H),2.86(sep,J=6.31Hz,1H),3.23−3.26(m,1H),3.55(dd,J1=9.01Hz,J2=3.91Hz,1H),3.62−3.66(m,1H),3.98(dd,J1=9.61Hz,J2=5.11Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.11−4.15(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.46(CH3),23.11(CH3),46.70(CH),63.73(CH),72.17(CH2),73.63(CH2),76.33(CH)
分析条件γ 保持時間 25.5分、25.7分
参考例31 trans−4−(シクロプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.41−0.53(m,4H), 2.12−2.19(m,1H), 3.27−3.31(m,1H), 3.61−3.68(m,2H), 3.97(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H), 4.21(q,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 6.18(CH2),6.35(CH2),28.93(CH),66.57(CH),71.90(CH2),73.62(CH2),75.59(CH)
分析条件γ 保持時間 26.2分、28.2分
参考例32 trans−4−(プロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.93(t,J=7.21Hz,3H),1.50(sext,J=7.21Hz,2H),2.58(t,J=7.21Hz,2H),3.13−3.15(m,1H),3.58(dd,J1=9.31Hz,J2=3.60Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.99(dd,J1=9.61Hz,J2=4.81Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.13−4.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.54(CH3),23.02(CH2),49.96(CH2),66.52(CH),71.96(CH2),73.80(CH2),75.98(CH)
分析条件Q 保持時間 18.3分、18.9分
参考例33 trans−4−(アリルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 3.17−3.27(m,3H),3.56−3.68(m,2H),3.95−4.05(m,2H),4.10−4.16(m,1H)5.11−5.23(m,2H),5.81−5.95(m,1H)
13C−NMR(75.45MHz,CDCl) δ 50.39(CH2),65.59(CH),71.78(CH2),73.70(CH2),75.86(CH),116.58(CH2),135.67(CH)
分析条件R 保持時間 20.3分、20.7分
参考例34 trans−4−(プロパルギルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 2.31(s,1H),3.37−3.52(m,3H),3.57−3.72(m,2H),3.97−4.18(m,3H)
13C−NMR(75.45MHz,CDCl) δ 36.28(CH2),64.88(CH),71.94(CH2),72.07(C),73.87(CH2),75.97(CH),81.48(CH)
分析条件S 保持時間 24.5分、25.1分
参考例35 trans−4−(シクロペンチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,2H),1.53−1.74(m,4H),1.87−1.90(m,2H),3.06−3.22(m,2H),3.56(dd,J1=9.01Hz,J2=3.91Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.95−4.15(m,3H)
13C−NMR(75.45MHz,CDCl) δ 23.67(CH2),33.00(CH2),33.38(CH2),58.13(CH),65.27(CH),72.33(CH2),73.73(CH2),76.37(CH)
分析条件γ 保持時間 28.5分、28.7分
参考例36 trans−4−(ジエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度115−120℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05(t,J=7.21Hz.6H),2.62(q,J=7.21Hz,4H),3.21(dt,J1=6.61Hz,J2=3.00Hz,1H),3.61−3.69(m,2H),3.93−4.03(m,2H),4.27−4.32(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.55(CH3),43.97(CH2),69.59(CH2),70.33(CH),74.48(CH),74.76(CH2)
分析条件T 保持時間 15.8分、16.1分
参考例37 trans−4−(1−ピペリジニル)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.47(d,J=4.81Hz,2H),1.56−1.63(m,4H),2.34−2.40(m,2H),2.54−2.57(m,2H),2.81(dt,J1=6.61Hz,J2=2.70Hz,1H),3.66−3.71(m,2H),3.95(dd,J1=9.61Hz,J2=5.71Hz,1H),4.02(dd,J1=9.01Hz,J2=7.21Hz,1H),4.32−4.36(m,1H)
13C−NMR(75.45MHz,CDCl) δ 23.99(CH2),25.48(CH2),52.39(CH2),69.63(CH2),74.11(CH),74.95(CH),75.13(CH2)
分析条件U 保持時間 16.6分、17.0分
参考例38 trans−4−(フェニルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例30と同様に操作した。(外浴温度195−200℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDOD) δ 3.66−3.78(m,3H),3.95(dd,J1=9.61Hz,J2=3.91Hz,1H),4.16−4.21(m,2H),6.60−6.68(m,3H),7.08−7.13(m,2H)
13C−NMR(75.45MHz,CDOD) δ 62.66(CH),72.96(CH2),74.95(CH2),76.52(CH),114.11(CH),118.24(CH),130.07(CH),148.72(C)
分析条件V 保持時間 50.8分、51.2分
参考例39 trans−4−(2−フェニルエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度190−195℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 2.76−2.90(m,4H),3.15(s,1H),3.51(dd,J1=9.01Hz,J2=3.30Hz,1H),3.63(dd,J1=9.61Hz,J2=1.80Hz,1H),3.93(dd,J1=9.61Hz,J2=4.81Hz,1H),4.00−4.08(m,2H),7.17−7.31(m,5H)
13C−NMR(75.45MHz,CDCl) δ 36.17(CH2),49.28(CH2),66.56(CH),72.17(CH2),73.92(CH2),76.28(CH),126.27(CH),128.47(CH),128.53(CH),139.34(C)
分析条件γ 保持時間 29.2分、29.4分
参考例40 trans−4−(ベンジルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度185−190℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 3.15(s,1H),3.54(dd,J1=9.31Hz,J2=3.30Hz,1H),3.62(dd,J1=9.61Hz,J2=1.80Hz,1H),3.74(s,2H),3.94(dd,J1=9.61Hz,J2=4.51Hz,1H),4.00(dd,J1=9.31Hz,J2=5.71Hz,1H),4.08−4.10(m,1H),7.22−7.34(m,5H)
13C−NMR(75.45MHz,CDCl) δ 52.03(CH2),65.82(CH),72.08(CH2),73.82(CH2),76.18(CH),127.15(CH),128.07(CH),128.42(CH),139.37(C)
分析条件γ 保持時間 29.1分、29.3分
参考例41 trans−4−(3−エトキシプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.76(quin,J=6.61Hz,2H),2.69−2.73(m,2H),3.13−3.17(m,1H),3.46−3.51(m,4H),3.57(dd,J1=9.01Hz,J2=3.30Hz,1H),3.66(dd,J1=9.61Hz,J2=2.40Hz,1H),3.98(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H),4.14(quin,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),29.78(CH2),45.74(CH2),66.05(CH2),66.55(CH),68.89(CH2),72.08(CH2),73.84(CH2),75.91(CH)
分析条件ζ 保持時間 7.3分、9.1分
参考例42 trans−2−(イソプロピルアミノ)シクロヘプタノール合成
エポキシドとして8−オキサビシクロ[5.1.0]オクタンを用いる他は参考例1同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.02(d,J=6.01Hz,3H),1.06(d,J=6.01Hz,3H),1.36−1.72(m,8H),1.88−2.05(m,2H),2.23−2.31(m,1H),2.94(sep,J=6.01Hz,1H),3.08−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.35(CH3),22.56(CH2),24.07(CH3),24.38(CH2),26.50(CH2),30.69(CH2),32.96(CH2),45.56(CH),62.52(CH),75.09(CH)
分析条件W 保持時間 9.4分、9.5分
参考例43 trans−2−(シクロプロピルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 0.22−0.56(m,4H),1.21−1.32(m,1H),1.39−1.71(m,7H),1.89−1.99(m,1H),2.07−2.14(m,1H),2.21−2.28(m,1H),2.33−2.41(m,1H),3.06−3.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 6.20(CH2),7.13(CH2),22.03(CH2),23.71(CH2),26.55(CH2),27.62(CH), 29.90(CH2),32.75(CH2),65.76(CH),74.90(CH)
分析条件γ 保持時間 25.8分、30.8分
参考例44 trans−2−(2−フェニルエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09−1.20(m,1H),1.33−1.67(m,7H),1.83−1.98(m,2H),2.24(dt,J1=9.31Hz,J2=2.70Hz,1H),2.67−3.07(m,5H),3.13−3.20(m,1H),7.15−7.29(m,5H)
13C−NMR(75.45MHz,CDCl) δ 21.95(CH2),23.80(CH2),26.52(CH2),29.27(CH2),33.25(CH2),36.55(CH2),47.99(CH2),65.39(CH),74.96(CH),125.83(CH),128.11(CH),128.34(CH),139.65(C)
分析条件β 保持時間 9.7分、12.4分
参考例45 trans−2−(ベンジルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.17−1.30(m,1H), 1.34−1.72(m,7H), 1.89−2.02(m,2H), 2.32(dt,J1=9.31Hz,J2=3.00Hz,1H), 3.19−3.26(m,1H),3.64(d,J=12.62Hz,1H),3.90(d,J=12.62Hz,1H), 7.19−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.80(CH2),26.65(CH2),29.11(CH2),33.31(CH2),50.88(CH2),64.90(CH),75.22(CH),126.81(CH),127.97(CH),128.19(CH),139.89(C)
分析条件β 保持時間 8.1分、10.1分
参考例46 trans−2−(プロパルギルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.20−1.31(m,1H),1.34−1.74(m,7H),1.81−1.98(m,2H),2.21−2.26(m,1H),2.44−2.52(m,1H),3.26−3.33(m,1H),3.38−3.55(m,2H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.54(CH2),26.76(CH2),28.63(CH2),33.69(CH2),35.65(CH2),64.42(CH),71.10(C),75.41(CH),82.03(CH)
分析条件X 保持時間 22.0分、22.3分
参考例47 trans−2−(シクロペンチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.10−2.05(m,18H),2.23(dt,J1=9.31Hz,J2=3.00Hz,1H),3.07−3.14(m,1H),3.22(quin,J=6.01Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 22.28(CH2),23.47(CH2),23.69(CH2),24.03(CH2),26.49(CH2),30.15(CH2),32.77(CH2),33.03(CH2),34.26(CH2),56.33(CH),63.63(CH),75.09(CH)
分析条件Y 保持時間 21.0分、21.2分
参考例48 trans−2−(ジエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09(t,J=7.21Hz,6H),1.19−1.78(m,9H),2.01−2.09(m,1H),2.34−2.52(m,3H),2.64−2.76(m,2H),3.38−3.45(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.08(CH3),22.00(CH2),22.47(CH2),24.74(CH2),26.90(CH2),33.52(CH2),43.59(CH2),67.37(CH),71.27(CH)
分析条件C 保持時間 21.0分、21.2分
参考例49 trans−2−(1−ピペリジニル)シクロヘプタノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.14−1.26(m,1H),1.30−1.83(m,14H),2.01−2.08(m,1H),2.14−2.21(m,1H),2.31−2.33(m,2H),2.60−2.67(m,2H),3.33−3.41(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.46(CH2),21.67(CH2),24.02(CH2),24.40(CH2),26.22(CH2),26.44(CH2),33.03(CH2),48.96(CH2),70.60(CH),71.88(CH)
分析条件Z 保持時間 21.0分、21.2分
参考例50 trans−2−アミノシクロヘキサノール
trans−2−アミノシクロヘキサン−1−オールは、シグマアルドリッチ社製のものをそのまま用いた。
分析条件A 保持時間 (S,S)体:18.3分、(R,R)体:18.7分
参考例51 trans−3−シクロプロピルアミノ−2−ブタノール
Cis−2,3−エポキシブタンとシクロプロピルアミンを用いる他は、参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。(外浴温度135−140℃、圧力0.1mmHg)
分析条件G 保持時間 11.0分、11.3分
参考例52 trans−2−(2−プロピルチオ)シクロヘキサノール
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 2.00gと2−プロパンチオール1.70mLを量りとり、メタノール8mLと水2mL、トリエチルアミン2.84mLを加え、50℃で20時間反応した。反応後、減圧下に濃縮し、残渣3.12g得た。残渣1.00gを柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(2−プロピルチオ)シクロヘキサン−1−オールを0.77g得た。(外浴温度140−150℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.20−1.51(m,4H),1.29(d,J=6.61Hz,3H),1.30(d,J=6.61Hz,3H),1.68−1.79(m,2H),2.07−2.15(m,2H),2.38−2.46(m,1H),3.03(sep.,J=6.61Hz,1H),3.26(dt,J1=4.51Hz,J2=9.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 24.24(CH3),24.31(CH2),24.39(CH3),26.23(CH2),33.67(CH2),34.05(CH2),35.08(CH),53.58(CH),72.56(CH)
分析条件AB 保持時間 17.6分,18.8分
参考例53 7−トシル−7−アザビシクロ[4.1.0]ヘプタン
温度計、攪拌子を設置した50mL四つ口フラスコに2−アミノシクロヘキサノール1.00g、THF15mL,トリエチルアミン1.81mLを加え、氷冷し、内温3℃で塩化トシル1.74gを加えた。この時内温は10℃まで上昇した。氷冷下で30分、室温(26℃)で30分攪拌した後、水20mL、トルエン20mLを加えて分液し、トルエン層を水10mLで2回洗浄した。洗浄後のトルエン層を硫酸ナトリウムで乾燥し、ロータリーエバポレーターで減圧濃縮した。得られたオイルを真空ポンプで乾燥しtrans−N−トシル−2−アミノシクロヘキサノール(結晶)を2.27g得た。
H−NMR(300.4MHz,CDCl) δ 1.10−1.30(m,4H),1.53−1.76(m,3H),2.00−2.04(m,1H),2.43(s,3H),2.65(d,J=3.30Hz,1H),2.80−2.90(m,1H),3.26−3.35(m,1H),4.96(d,J=6.91Hz,1H),7.32(d,J=8.11Hz,1H),7.80(d,J=8.11Hz,1H)
温度計、攪拌子、塩化カルシウム管を設置した50mL四つ口フラスコにtrans−N−トシル−2−アミノシクロヘキサノール2.17g、トリフェニルホスフィン2.75g、THF22mLを加え、氷冷し、内温2℃でアゾジカルボン酸ジイソプロピル(90.0+%)2.17gを滴下ロートを用いて10分かけて滴下した。このとき内温は5℃まで上昇した。氷冷下で80分、室温(26℃)で60分攪拌した後、水20mL、酢酸エチル30mLを加えて分液し、酢酸エチル層をロータリーエバポレーターで減圧濃縮し、残渣7.21gを得た。残渣をシリカゲル140g、展開溶媒トルエン:酢酸エチル=5:1を用いてカラムクロマトグラフィーを行い、7−トシル−7−アザビシクロ[4.1.0]ヘプタン1.33gを得た。
H−NMR(300.4MHz,CDCl) δ 1.15−1.27(m,2H),1.35−1.44(m,2H),1.79(t,J=5.11Hz,4H),2.44(s,3H),2.97−2.98(m,2H),7.32(d,J=8.11Hz,2H),7.82(d,J=8.11Hz,2H)
参考例54 trans−N−トシル−(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)
イソプロピルアミンに代えて、2−フェニルエチルアミンを、7−オキサビシクロ[4.1.0]ヘプタンに代えて、7−トシル−7−アザビシクロ[4.1.0]ヘプタンを用いる他はすべて参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,1H),1.06−1.25(m,3H),1.57−1.63(m,2H),1.97−2.07(m,2H),2.16−2.24(m,1H),2.38(s,3H),2.54−2.69(m,4H),2.78−2.87(m,1H),7.13−7.30(m,7H),7.70(d,J=8.11Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 21.27(CH3),24.23(CH2),24.42(CH2),30.89(CH2),32.32(CH2),36.43(CH2),46.90(CH2),57.07(CH),60.11(CH),125.92(CH),126.97(CH),128.22(CH),128.39(CH),129.35(CH),137.09(C),139.68(C),142.89(C)
分析条件θ 保持時間:37.2分、40.6分
<触媒調製例>
本実施例で使用した触媒は、以下のようにして入手した。
脱脂大豆粉、ペクチン(柑橘類由来)、水溶性大豆多糖類、カボチャ、レンコン、ジャガイモ、ニンジン、小麦胚芽、ウコンは、粉末状に加工されたものを入手した。
キウイ、ブンタン、ナツミカン、花柚子、ニンニク、大豆、ネギ、ピスタチオ、カシューナッツ、茶(紅茶、緑茶)、赤インゲンマメ、エンドウマメなど加工していない植物片は、必要に応じて加温されたデシケーターで乾燥し、約5gを小型粉砕器“粉砕くん”(柴田化学器械工業社製、SCM−40A)にて30秒間粉砕した後、ヘキサン50mLを加えて分散させ、ヘキサンを除去した後、得られた粉末を減圧下乾燥した。
<実施例1〜27>
5mLの試験管に、表3に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、シクロプロピルアミン34mg、水17mgを加えた。密閉し、37℃の温浴で16時間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用した。また、ピスタチオは、脱脂した後に粉砕したものを使用した。
Figure 2015194508
Figure 2015194508
*:ペクチンとして、「ペクチン(柑橘類由来)」(関東化学製、Cat No.32536−32)を使用した。
結果を表3に示した。実施例1〜27では、立体選択的に化合物(3)が得られた。特に、実施例1,2,11および13は、変換率、立体選択性ともに優れていた。
実施例28〜47
5mLの試験管に、表4に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、イソプロピルアミン29mg、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用し、ピスタチオは、脱脂した後に粉砕したものを使用した。
Figure 2015194508
Figure 2015194508
結果を表4に示した。実施例28〜47では、立体選択的に化合物(3)が得られた。特に、実施例28〜31,33,39,43および46は、変換率、立体選択性ともに優れていた。
実施例48〜63
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表5に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure 2015194508
結果を表5に示した。実施例48〜63では、立体選択的に化合物(3)が収率よく得られた。
実施例64〜76
5mLの試験管に、ニンジン100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表6に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure 2015194508
結果を表6に示した。実施例64〜76では、立体選択的に化合物(3)が得られた。特に、実施例69および75は、変換率、立体選択性ともに優れていた。
実施例77〜88
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、6−オキサビシクロ[3.1.0]ヘキサン41mg、表7に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure 2015194508
結果を表7に示した。実施例77〜88は全て、立体選択性、収率ともに優れていた。
実施例89〜100
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、3,6−ジオキサビシクロ[3.1.0]ヘキサン42mg、表8に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure 2015194508
結果を表8に示した。実施例89〜100は全て、立体選択性、収率ともに優れていた。
実施例101〜108
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、8−オキサビシクロ[5.1.0]オクタン41mg、表9に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Figure 2015194508
結果を表9に示した。実施例101〜108は全て、立体選択的に化合物(3)を与えた。特に、実施例107は、変換率、立体選択性ともに優れていた。
実施例109
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)1.1gを量りとり、トルエン2.87mL、Cis−2,3−エポキシブタン41mg、シクロプロピルアミン1.2当量、水390mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率55%、選択率4%eeであった。
実施例110〜114
攪拌機、温度計を装着した1L四つ口フラスコに、大豆加工物70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で撹拌した。各実施例で使用した大豆加工物および反応時間を表1に示した。反応液を少量採取し、ガスクロマトグラフィーを用いて、所定の反応時間における変換率および選択率を算出した。
Figure 2015194508
結果を表10に示した。実施例110〜114は全て、立体選択的に化合物(3)を与えた。特に、実施例112〜114は、変換率、立体選択性ともに優れていた。
実施例115
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン100mg、2−プロパンチオール109mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率7%、選択率72%eeであった。
実施例116
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−トシル−7−アザビシクロ[4.1.0]ヘプタン100mg、2−フェニルエチルアミン58mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、ろ液を濃縮し、trans−N−トシル(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)の粗体120mgを得た。粗収率81%、選択率4%eeであった。
実施例117 (1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で26時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン140mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール58.4g(含量51.0g、64%ee、収率92%)を得た。ここで、含量は、粗生成物のH−NMRスペクトルを測定し、2−(シクロプロピルアミノ)シクロヘキサノールとトルエンとのプロトンの積分比を用いて、粗生成物の質量を基に算出した値である。
攪拌機、温度計を装着した5L四つ口フラスコに、得られた粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール317.5g(含量272.4g、64%ee)とイソプロパノール2724mLを加え、40℃に昇温した後、フマル酸61.1gと種晶A10mg、活性炭(精製白鷺(日本エンバイロケミカルズ社、商品名))27.2gを加え、30分間静置した。このとき、種晶Aには、ラセミ体の2−シクロプロピルアミノシクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体の2−(シクロプロピルアミノ)シクロヘキサノールフマル酸塩の結晶および活性炭を、ヌッチェを用いてろ別し、イソプロパノール272mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールにトルエン1498mL、水34.5mLおよび水酸化カリウム40.3gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水68mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、固形物154.1g(含量135.6g)を得た。攪拌機、温度計を装着した1L四つ口フラスコに、当該固形物154.1g(含量135.6g)とヘプタン407mLを加え、内温25℃に調整し、種晶B135mgを加え、30分間かけて静置した。このとき、種晶Bには、(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールを用いた。さらに、内温10〜15℃で60分間、0℃で60分間静置した後、析出した結晶をろ取した。得られた結晶を0℃のヘプタン68mLで洗浄し、室温で減圧乾燥し、白色の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの一次晶103.0g(100%ee)を得た。ろ液はロータリーエバポレーターで減圧下にて濃縮し、一次晶を得た時と同様の操作で二次晶11.0g(100%ee)を得た。粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールから、一次晶および二次晶を合わせた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの結晶を得る工程の収率は42%であった。
実施例118 光学活性trans−2−(イソプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN14.4g、ヘプタン36mL、水4.3mL、7−オキサビシクロ[4.1.0]ヘプタン12gおよびイソプロピルアミン8.7gを加え、窒素雰囲気下にて、40℃で49時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、ヘプタン50mLで洗浄した。得られたろ液を減圧下にて濃縮し、再び36mLのヘプタンに溶解し、生じた結晶をろ過した。結晶を5mLのヘプタンで洗浄し、母液を濃縮して、光学活性trans−2−(イソプロピルアミノ)シクロヘキサノール11g(保持時間の長い異性体 82%ee)を得た。
実施例119 光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した50mL四つ口フラスコに、ソヤファイブS−DN1.2g、ヘプタン3mL、水0.36mL、7−オキサビシクロ[4.1.0]ヘプタン0.858gおよびプロパルギルアミン0.407gを加え、窒素雰囲気下にて、40℃で6日間撹拌した。トルエン3mLを加え攪拌し、ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン3mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee、収率91%)を得た。
攪拌機、温度計を装着した50mL四つ口フラスコに、得られた粗生成物の光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee)とエタノール12mLを加え、40℃に昇温した後、フマル酸0.595gと種晶10mgを加え、30分間静置した。このとき、種晶には、ラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩の結晶を、ヌッチェを用いてろ別し、エタノール1mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールにトルエン10mL、水1mLおよび水酸化カリウム0.480gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水1mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール0.440g(90%ee)を得た。この時の通算収率は31%であった。

Claims (9)

  1. 式(1):
    Figure 2015194508
    (式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、または、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよい)
    Figure 2015194508
    (式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す)
    で表される化合物と、
    式(2):
    Figure 2015194508
    (式中、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、または、RおよびRが互いに結合して式(2a)で表される化合物であってもよく、ただし、式(2)で表される化合物は水または硫化水素ではない)
    Figure 2015194508
    (式中、Rは、RおよびRが互いに結合して形成される基を示す)
    で表される化合物と、を植物加工物の存在下反応させ、
    式(3):
    Figure 2015194508
    (式中、X、Y、R、R、R、RおよびRは、前記定義と同一である)
    で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。
  2. 式(1)で表される化合物が、式(1c)で表される化合物である、請求項1に記載の製造方法。
    Figure 2015194508
    (式中、XおよびRは、前記定義と同一である)
  3. 式(1)で表される化合物が、式(1a)で表される化合物である、請求項1に記載の製造方法。
    Figure 2015194508
    (式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す)
  4. Yが−NR−である、請求項1〜3のいずれか一項に記載の製造方法。
  5. Yが−O−である、請求項1〜3のいずれか一項に記載の製造方法。
  6. Yが−S−である、請求項1〜3のいずれか一項に記載の製造方法。
  7. 前記植物加工物が、マメ科、ウリ科、ナス科、ウルシ科、ショウガ科、ミカン科、ヒガンバナ科、セリ科、アブラナ科、ハス科、マタタビ科、バラ科、ユリ科、イネ科、モクセイ科、バショウ科、ツバキ科およびネギ科の植物から選択される植物を粉砕して調製される、請求項1〜6のいずれか一項に記載の製造方法。
  8. 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程を含む、(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールの製造方法。
  9. (1) 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程と、
    (2a) (1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとを反応させ、または、
    (2b) 保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを反応させ、
    保護された6−(3−アミノプロポキシ)−2(1H)−キノリノンを用いた場合は、さらに脱保護を行うことによって、
    (−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを得る工程と、
    を含む、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンの製造方法。
JP2016529335A 2014-06-17 2015-06-15 光学活性体の製造方法 Active JP6630667B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014124316 2014-06-17
JP2014124316 2014-06-17
PCT/JP2015/067195 WO2015194508A1 (ja) 2014-06-17 2015-06-15 光学活性体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2015194508A1 true JPWO2015194508A1 (ja) 2017-04-20
JP6630667B2 JP6630667B2 (ja) 2020-01-15

Family

ID=54935494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529335A Active JP6630667B2 (ja) 2014-06-17 2015-06-15 光学活性体の製造方法

Country Status (2)

Country Link
JP (1) JP6630667B2 (ja)
WO (1) WO2015194508A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678442B2 (ja) * 2015-12-09 2020-04-08 協和ファーマケミカル株式会社 触媒活性の向上方法
WO2021100852A1 (ja) 2019-11-21 2021-05-27 キリンホールディングス株式会社 結晶スポンジ法による構造解析のための結晶構造解析用試料の調製方法
WO2023191088A1 (ja) * 2022-03-31 2023-10-05 協和ファーマケミカル株式会社 植物由来有機分子触媒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157258A (ja) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd カルボスチリル誘導体
JP2003206266A (ja) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp 光学活性trans−2−アミノ−1−シクロアルカノール化合物の製造方法
JP2005508619A (ja) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション エポキシドヒドロラーゼ、それらをコードした核酸及びそれらの作製法と利用法
JP2006160609A (ja) * 2004-12-02 2006-06-22 Nagase & Co Ltd 光学活性な化合物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103289A (ja) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc 植物細胞による立体選択的なα−アルキル−β−ヒドロキシカルボン酸エステルの製造方法
WO1999034010A1 (fr) * 1997-12-29 1999-07-08 Sanyo Shokuhin Co., Ltd. Procede pour produire des alcools optiquement actifs
WO2010134642A1 (ja) * 2009-05-22 2010-11-25 サンヨー食品株式会社 不斉酸化反応を有する蛋白質複合体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157258A (ja) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd カルボスチリル誘導体
JP2005508619A (ja) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション エポキシドヒドロラーゼ、それらをコードした核酸及びそれらの作製法と利用法
JP2003206266A (ja) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp 光学活性trans−2−アミノ−1−シクロアルカノール化合物の製造方法
JP2006160609A (ja) * 2004-12-02 2006-06-22 Nagase & Co Ltd 光学活性な化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IAIN D. GL WATSON, ET AL: "Ring-Opening Reactions of Nonactivated Aziridines Catalyzed by Tris(pentafluorophenyl)borane", J. ORG. CHEM., vol. Vol.68, JPN6015036715, 2003, pages 5160 - 5167, XP055244918, DOI: doi:10.1021/jo0343578 *
XUE-LONG HOU, ET AL: "Desymmetric ring-opening of meso-epoxides with anilines: a simple way to chiral β-amino alcohols", TETRAHEDRON: ASYMMETRY, vol. Vol.9, JPN6015036714, 1998, pages 1747 - 1752, XP004131434, DOI: doi:10.1016/S0957-4166(98)00153-0 *

Also Published As

Publication number Publication date
WO2015194508A1 (ja) 2015-12-23
JP6630667B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
JP2632863B2 (ja) アリールオキシカルボン酸誘導体及びその製造法
CN1193983C (zh) 酰基乙腈化合物,其制备方法及包含该化合物的杀螨剂
ES2653613T3 (es) Procedimiento para la preparación de derivados de carbamato de fenilo
JP6630667B2 (ja) 光学活性体の製造方法
HUE033642T2 (en) A new method for the destruction of prostaglandin amides
FR2540490A1 (fr) Procede de resolution d'isomeres optiques, les isomeres ainsi produits et leur application pharmaceutique
JP6797380B2 (ja) カケロマイシンおよびその誘導体の製造方法
CN1032785A (zh) L-二羟基苯丙氨酸衍生物或其酸加成盐、其生产方法及其用途
Kudo et al. Isolation and absolute stereochemistry of optically active sydonic acid from Glonium sp.(Hysteriales, Ascomycota)
US10040775B2 (en) Synthesis of chirally enriched 2,4-disubstituted tetrahydropyran-4-ol and its derivatives
CN103509012B (zh) 菲并吲哚里西啶生物碱c14位胺化衍生物及其制备和抗植物病毒活性
US9598346B2 (en) Enantioselective process for the preparation of enantiomers of sex pheromones
JP6678442B2 (ja) 触媒活性の向上方法
JP2011068587A (ja) 新規アミノアルコール誘導体塩、アミノアルコール誘導体塩構造を有する不斉有機分子触媒及び該不斉有機分子触媒を用いた光学活性化合物の製造方法
CA3191072A1 (en) Phenyl alkyl carbamate compounds for use in preventing or treating neurodegenerative disease
US11905250B2 (en) Methods for preparation of jasmonate compounds
EP0496369B1 (de) Verfahren zur Herstellung der racemischen und optisch aktiven 1,2,3,4-Tetrahydroisochinolin-3-carbonsäure sowie deren Vorprodukte
US8871962B2 (en) Method for producing sanshool
EP2307373A1 (en) A process for preparing atovaquone and associate intermediates
JP4696588B2 (ja) カプシノイドの製造方法及び安定化法、並びにカプシノイド組成物
US20210300858A1 (en) Method for producing carbonic esters
WO2014128724A1 (en) Antitubercular compounds and process for the preparation thereof
JPH05213842A (ja) アシル化アミノフエノール誘導体
EP2385034B1 (en) Process for the preparation of 1-nitro-4-oxobutanylamides
EP0122279A1 (en) A process for preparing a cycloaddition compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250