JPWO2015194243A1 - 発光素子及びその製造方法 - Google Patents

発光素子及びその製造方法 Download PDF

Info

Publication number
JPWO2015194243A1
JPWO2015194243A1 JP2016529130A JP2016529130A JPWO2015194243A1 JP WO2015194243 A1 JPWO2015194243 A1 JP WO2015194243A1 JP 2016529130 A JP2016529130 A JP 2016529130A JP 2016529130 A JP2016529130 A JP 2016529130A JP WO2015194243 A1 JPWO2015194243 A1 JP WO2015194243A1
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
gan substrate
light
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016529130A
Other languages
English (en)
Other versions
JP6555260B2 (ja
Inventor
統之 風田川
統之 風田川
達史 濱口
達史 濱口
将一郎 泉
将一郎 泉
大 倉本
大 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2015194243A1 publication Critical patent/JPWO2015194243A1/ja
Application granted granted Critical
Publication of JP6555260B2 publication Critical patent/JP6555260B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

発光素子は、GaN基板11、GaN基板11上に形成された、選択成長用マスク層44として機能する第1光反射層41、第1光反射層上に形成された第1化合物半導体層21、活性層23及び第2化合物半導体層22、第2化合物半導体層22上に形成された第2電極32及び第2光反射層42を少なくとも備えており、GaN基板11表面の面方位のオフ角は0.4度以内であり、GaN基板11の面積をS0としたとき、第1光反射層41の面積は0.8S0以下であり、第1光反射層の最下層41Aとして熱膨張緩和膜44がGaN基板11上に形成されている。

Description

本開示は、発光素子(具体的には、垂直共振器レーザ、VCSELとも呼ばれる面発光レーザ素子)及びその製造方法に関する。
面発光レーザ素子においては、一般に、2つの光反射層(Distributed Bragg Reflector 層、DBR層)の間で光を共振させることによりレーザ発振が生じる。従って、DBR層を形成するための半導体表面をサブ・ナノメートルオーダーで平滑にする必要がある。適切な平滑度が得られないと各DBR層の光反射率が低下し、特性(発振閾値等)のバラツキが大きくなり、しいては、レーザ発振を得ることすら困難となる。
選択成長法を用いた窒化物面発光レーザを製造する方法が、特開平10−308558から周知である。即ち、この特許公開公報に開示された窒化物半導体レーザ素子の製造方法は、
基板表面に誘電体から成る多層膜を選択的に形成する工程と、
多層膜上部に窒化物半導体層を成長させる工程と、
多層膜上部に形成された窒化物半導体層上部に活性層を含む窒化物半導体層を成長させる工程と、
多層膜を活性層の発光の少なくとも一方の反射鏡とする工程、
とを含む。
特開平10−308558
ところで、上記の特許公開公報に開示された窒化物半導体レーザ素子の製造方法にあっては、窒化物半導体と異なる基板を用いる。しかしながら、このような基板を用いると、具体的には、例えばサファイア基板を用いると、GaN系化合物半導体層とサファイア基板の格子不整合に起因する転位が多数発生し、発光素子の信頼性に大きな悪影響を及ぼす。また、サファイア基板は通常の半導体基板に比べ熱伝導性が悪く、発光素子の熱抵抗が非常に大きくなってしまい、発振閾値電流の増加、光出力の低下、素子寿命の悪化等の要因となる。加えて、サファイア基板は電気伝導性を有していないため、n側電極を基板裏面に設けることができず、p側電極と同じ側にn側電極を設ける必要があるため、素子面積が増大し、生産性に乏しいといった問題もある。更には、基板の線熱膨張係数と多層膜(選択成長用マスク層)の線熱膨張係数の差に起因した基板からの多層膜(選択成長用マスク層)の剥がれといった問題、活性層を含む窒化物半導体層を成長させたときの窒化物半導体層の表面の粗さに起因した特性バラツキ(例えば、光反射率のバラツキ)といった問題は、上記の特許公開公報には、何ら言及されていない。
従って、本開示の目的は、特性バラツキが生じ難く、高い信頼性を有し、基板の線熱膨張係数と選択成長用マスク層の線熱膨張係数の差に起因した基板からの選択成長用マスク層の剥がれといった問題の発生を回避することができる発光素子及びその製造方法を提供することにある。
上記の目的を達成するための本開示の第1の態様あるいは第2の態様に係る発光素子の製造方法は、
GaN基板上に選択成長用マスク層を形成した後、
選択成長用マスク層で覆われていないGaN基板表面から、第1化合物半導体層を選択成長させて、GaN基板及び選択成長用マスク層を第1化合物半導体層で被覆し、次いで、
第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成する、
各工程を少なくとも有する発光素子の製造方法であって、
選択成長用マスク層は、第1光反射層として機能し、
GaN基板表面の面方位のオフ角は0.4度以内であり、
GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下である。尚、第1化合物半導体層で、選択成長用マスク層を全て被覆してもよいし、選択成長用マスク層の一部を被覆してもよい。また、選択成長用マスク層を被覆した第1化合物半導体層の頂面は、平坦であってもよいし、一部に凹部を有していてもよい。
そして、本開示の第1の態様に係る発光素子の製造方法にあっては、選択成長用マスク層の最下層として、GaN基板上に熱膨張緩和膜を形成する。また、本開示の第2の態様に係る発光素子の製造方法にあっては、GaN基板と接する選択成長用マスク層の最下層の線熱膨張係数CTEは、
1×10-6/K≦CTE≦1×10-5/K
好ましくは、
1×10-6/K<CTE≦1×10-5/K
を満足する。
上記の目的を達成するための本開示の第1の態様あるいは第2の態様に係る発光素子は、
GaN基板、
GaN基板上に形成された、選択成長用マスク層として機能する第1光反射層、
第1光反射層上に形成された第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体、並びに、
第2化合物半導体層上に形成された第2電極及び第2光反射層、
を少なくとも備えた発光素子であって、
GaN基板表面の面方位のオフ角は0.4度以内であり、
GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下である。
そして、本開示の第1の態様に係る発光素子にあっては、第1光反射層の最下層として熱膨張緩和膜がGaN基板上に形成されている。また、本開示の第2の態様に係る発光素子にあっては、GaN基板と接する第1光反射層の最下層の線熱膨張係数CTEは、
1×10-6/K≦CTE≦1×10-5/K
好ましくは、
1×10-6/K<CTE≦1×10-5/K
を満足する。
本開示の第1の態様〜第2の態様に係る発光素子及びその製造方法にあっては、GaN基板表面の面方位のオフ角、及び、選択成長用マスク層(第1光反射層)の面積割合が規定されているので、第2化合物半導体層の表面粗さを小さくすることができる。即ち、優れた表面モホロジーを有する第2化合物半導体層を形成することができる。それ故、平滑性に優れた第2光反射層を得ることができ、即ち、所望の光反射率を得ることができ、特性バラツキが生じ難い。しかも、熱膨張緩和膜が形成され、あるいは又、CTEの値が規定されているので、GaN基板の線熱膨張係数と選択成長用マスク層の線熱膨張係数の差に起因してGaN基板から選択成長用マスク層が剥がれるといった問題の発生を回避することができ、高い信頼性を有する発光素子を提供することができる。更には、GaN基板を用いるので、化合物半導体層に転位が発生し難いし、発光素子の熱抵抗が大きくなるといった問題を回避することができ、高い信頼性を発光素子に付与することができるし、GaN基板を基準としてp側電極と異なる側にn側電極を設けることができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1A及び図1Bは、実施例1の発光素子及び変形例の模式的な一部断面図である。 図2A及び図2Bは、実施例1の発光素子の別の変形例の模式的な一部断面図である。 図3は、実施例1の発光素子の更に別の変形例の模式的な一部断面図である。 図4A、図4B及び図4Cは、実施例1の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図5は、実施例2の発光素子の模式的な一部断面図である。 図6A及び図6Bは、実施例3の発光素子及び変形例の模式的な一部断面図である。 図7A及び図7Bは、実施例3の発光素子の製造方法を説明するための積層構造体等の模式的な一部端面図である。 図8A及び図8Bは、実施例1の発光素子の更に別の変形例の模式的な一部断面図である。 図9は、選択成長用マスク層の模式的な平面図である。
以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の第1の態様〜第2の態様に係る発光素子、及び、本開示の第1の態様〜第2の態様に係る発光素子の製造方法、全般に関する説明
2.実施例1(本開示の第1の態様〜第2の態様に係る発光素子、及び、本開示の第1の態様〜第2の態様に係る発光素子の製造方法)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)、その他
[本開示の第1の態様〜第2の態様に係る発光素子、及び、本開示の第1の態様〜第2の態様に係る発光素子の製造方法、全般に関する説明]
本開示の第1の態様に係る発光素子、あるいは、本開示の第1の態様に係る発光素子の製造方法によって得られる発光素子を、以下、総称して、『本開示の第1の態様に係る発光素子等』と呼ぶ場合がある。また、本開示の第2の態様に係る発光素子、あるいは、本開示の第2の態様に係る発光素子の製造方法によって得られる発光素子を、以下、総称して、『本開示の第2の態様に係る発光素子等』と呼ぶ場合がある。活性層と対向する第1化合物半導体層の面を第1化合物半導体層の第2面と呼び、第1化合物半導体層の第2面と対向する第1化合物半導体層の面を第1化合物半導体層の第1面と呼ぶ場合がある。活性層と対向する第2化合物半導体層の面を第2化合物半導体層の第1面と呼び、第2化合物半導体層の第1面と対向する第2化合物半導体層の面を第2化合物半導体層の第2面と呼ぶ場合がある。
GaN基板表面の面方位のオフ角とは、GaN基板表面の結晶面の面方位と、巨視的に見たGaN基板表面の法線との成す角度を指す。また、本開示の第1の態様〜第2の態様に係る発光素子の製造方法において、GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下であると規定され、本開示の第1の態様〜第2の態様に係る発光素子において、GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下であると規定されているが、「GaN基板の面積S0」とは、最終的に発光素子が得られたときに残されたGaN基板の面積を指す。選択成長用マスク層の最下層あるいは第1光反射層の最下層は、光反射層としての機能は有していない。
本開示の第1の態様に係る発光素子等において、熱膨張緩和膜は、窒化ケイ素(SiNX)、酸化アルミニウム(AlOX)、酸化ニオブ(NbOX)、酸化タンタル(TaOX)、酸化チタン(TiOX)、酸化マグネシウム(MgOX)、酸化ジルコニウム(ZrOX)及び窒化アルミニウム(AlNX)から成る群から選択された少なくとも1種類の材料から成る形態とすることができる。尚、各物質の化学式に付した添え字「X」あるいは後述する添え字「Y」、添え字「Z」の値は、各物質における化学量論に基づく値だけでなく、化学量論に基づく値から外れた値も包含する。以下においても同様である。そして、このような好ましい形態を含む本開示の第1の態様に係る発光素子等において、熱膨張緩和膜の厚さをt1、発光素子の発光波長をλ0、熱膨張緩和膜の屈折率をn1としたとき、
1=λ0/(4n1
好ましくは、
1=λ0/(2n1
を満足することが望ましい。但し、熱膨張緩和膜の厚さt1の値は本質的に任意とすることができ、例えば、1×10-7m以下とすることができる。
本開示の第2の態様に係る発光素子等において、選択成長用マスク層(第1光反射層)の最下層は、窒化ケイ素(SiNX)、酸化アルミニウム(AlOX)、酸化ニオブ(NbOX)、酸化タンタル(TaOX)、酸化チタン(TiOX)、酸化マグネシウム(MgOX)、酸化ジルコニウム(ZrOX)及び窒化アルミニウム(AlNX)から成る群から選択された少なくとも1種類の材料から成る形態とすることができる。そして、このような好ましい形態を含む本開示の第2の態様に係る発光素子等において、選択成長用マスク層(第1光反射層)の最下層の厚さをt1、発光素子の発光波長をλ0、選択成長用マスク層(第1光反射層)の最下層の屈折率をn1としたとき、
1=λ0/(4n1
好ましくは、
1=λ0/(2n1
を満足することが望ましい。但し、選択成長用マスク層(第1光反射層)の最下層の厚さt1の値は本質的に任意とすることができ、例えば、1×10-7m以下とすることができる。
以上に説明した各種の好ましい形態を含む本開示の第1の態様〜第2の態様に係る発光素子の製造方法においては、GaN基板を残したままとしてもよいし、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成した後、第1光反射層をストッパ層として、GaN基板を除去してもよい。具体的には、第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成し、次いで、第2光反射層を支持基板に固定した後、第1光反射層をストッパ層としてGaN基板を除去して、第1化合物半導体層(第1化合物半導体層の第1面)及び第1光反射層を露出させればよい。更には、第1化合物半導体層(第1化合物半導体層の第1面)の上に第1電極を形成すればよい。
GaN基板の除去は、化学的/機械的研磨法(CMP法)に基づき行う形態とすることができる。尚、先ず、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ水溶液、アンモニア溶液+過酸化水素水、硫酸溶液+過酸化水素水、塩酸溶液+過酸化水素水、リン酸溶液+過酸化水素水等を用いたウェットエッチング法や、ドライエッチング法、レーザを用いたリフトオフ法、機械研磨法等によって、あるいは、これらの組合せによって、GaN基板の一部の除去を行い、あるいは、GaN基板の厚さを薄くし、次いで、化学的/機械的研磨法を実行することで、第1化合物半導体層(第1化合物半導体層の第1面)及び第1光反射層を露出させればよい。
更には、以上に説明した各種の好ましい形態を含む本開示の第1の態様〜第2の態様に係る発光素子等において、第2化合物半導体層(第2化合物半導体層の第2面)の表面粗さRaは、1.0nm以下であることが好ましい。表面粗さRaは、JIS B−610:2001に規定されており、具体的には、AFMや断面TEMに基づく観察に基づき測定することができる。
更には、以上に説明した各種の好ましい形態を含む本開示の第1の態様〜第2の態様に係る発光素子等において、選択成長用マスク層(あるいは第1光反射層)の平面形状は、正六角形を含む各種の多角形、円形、楕円形、格子状(矩形)、島状形状又はストライプ状である形態とすることができる。選択成長用マスク層(あるいは第1光反射層)の断面形状は、矩形とすることもできるが、台形であることが、即ち、選択成長用マスク層(あるいは第1光反射層)の側面は順テーパー状であることが、より好ましい。選択成長用マスク層の形成方法として、スパッタリング法等の物理的気相成長法(PVD法)や化学的気相成長法(CVD法)、塗布法と、リソグラフィ技術やエッチング技術との組合せを挙げることができる。
第1光反射層の最上層(第1化合物半導体層と接する層)の厚さをt2、第1光反射層の最上層の屈折率をn2としたとき、
2=λ0/(4n2
を満足することが好ましく、更には、
2=λ0/(2n2
を満足することで、第1光反射層の最上層は、波長λ0の光に対して不在層となる。第1光反射層の最上層(第1化合物半導体層と接する層)を窒化シリコン膜から構成する形態とすることができる。
以上に説明した各種の好ましい形態を含む本開示の第1の態様若しくは第2の態様に係る発光素子等において、第1光反射層から第2光反射層まで距離は、0.15μm以上、50μm以下であることが好ましい。
更には、以上に説明した各種の好ましい形態を含む本開示の第1の態様若しくは第2の態様に係る発光素子等にあっては、第1光反射層の面積重心点を通る第1光反射層に対する法線上に、第2光反射層の面積重心点は存在しない形態とすることができる。
更には、以上に説明した各種の好ましい形態を含む本開示の第1の態様若しくは第2の態様に係る発光素子等にあっては、第1光反射層の面積重心点を通る第1光反射層に対する法線上に、活性層の面積重心点は存在しない形態とすることができる。
選択成長用マスク層が形成されたGaN基板上に、第1化合物半導体層を、ELO(Epitaxial Lateral Overgrowth)法等の横方向にエピタキシャル成長させる方法を用いて、横方向成長により形成したとき、選択成長用マスク層の縁部から選択成長用マスク層の中心部に向かってエピタキシャル成長する第1化合物半導体層が会合すると、会合部分に結晶欠陥が多く発生する場合がある。この結晶欠陥が多く存在する会合部分が素子領域(後述する)の中心部に位置すると、発光素子の特性に悪影響が生じる虞がある。上記のとおり、第1光反射層の面積重心点を通る第1光反射層に対する法線上に第2光反射層の面積重心点が存在しない形態、第1光反射層の面積重心点を通る第1光反射層に対する法線上に活性層の面積重心点が存在しない形態とすることで、発光素子の特性への悪影響の発生を確実に抑制することができる。
以上に説明した各種の好ましい形態を含む本開示の第1の態様若しくは第2の態様に係る発光素子等にあっては、活性層において生成した光は、第2光反射層を介して外部に出射される形態(以下、便宜上、『第2光反射層出射タイプの発光素子』と呼ぶ)とすることができるし、第1光反射層を介して外部に出射される形態(以下、便宜上、『第1光反射層出射タイプの発光素子』と呼ぶ)とすることもできる。尚、第1光反射層出射タイプの発光素子にあっては、場合によっては、前述したとおり、GaN基板を除去してもよい。
そして、第1化合物半導体層の第1面と接する第1光反射層の部分(第2光反射層と対向する第1光反射層の部分)の面積をS1、第2化合物半導体層の第2面に対向する第2光反射層の部分(第1光反射層と対向する第2光反射層の部分)の面積をS2としたとき、第1光反射層出射タイプの発光素子の場合、
1>S2
を満足することが望ましいし、第2光反射層出射タイプの発光素子の場合、
1<S2
を満足することが望ましいが、これに限定するものではない。
また、第1光反射層の面積重心点を通る第1光反射層に対する法線上に第2光反射層の面積重心点が存在しない形態、第1光反射層の面積重心点を通る第1光反射層に対する法線上に活性層の面積重心点が存在しない形態において、第1化合物半導体層の第1面と接する第1光反射層の部分(第2光反射層と対向する第1光反射層の部分)であって、素子領域(後述する)を構成する部分の面積をS3、第2化合物半導体層の第2面に対向する第2光反射層の部分(第1光反射層と対向する第2光反射層の部分)であって、素子領域を構成する部分の面積をS4としたとき、第1光反射層出射タイプの発光素子の場合、
3>S4
を満足することが望ましいし、第2光反射層出射タイプの発光素子の場合、
3<S4
を満足することが望ましいが、これに限定するものではない。
第1光反射層出射タイプの発光素子において、GaN基板を除去する場合、第2光反射層は支持基板に固定されている形態とすることができる。第1光反射層出射タイプの発光素子において、GaN基板を除去する場合、第1化合物半導体層の第1面における第1光反射層と第1電極の配置状態として、第1光反射層と第1電極とが接している状態を挙げることができるし、あるいは又、第1光反射層と第1電極とが離間している状態を挙げることができるし、場合によっては、第1光反射層の縁部の上にまで第1電極が形成されている状態、第1電極の縁部の上にまで第1光反射層が形成されている状態を挙げることもできる。ここで、第1電極の縁部の上にまで第1光反射層が形成されている状態とする場合、第1電極は、レーザ発振の基本モード光を出来る限り吸収しないように、或る程度の大きさの開口部を有する必要がある。開口部の大きさは、基本モードの波長や横方向(第1化合物半導体層の面内方向)の光閉じ込め構造によって変化するので、限定するものではないが、おおよそ発光波長λ0の数倍のオーダーであることが好ましい。あるいは又、第1光反射層と第1電極とは離間しており、即ち、オフセットを有しており、離間距離は1mm以内である構成とすることができる。
更には、以上に説明した各種の好ましい形態を含む本開示の第1の態様若しくは第2の態様に係る発光素子等において、第1電極は金属又は合金から成る形態とすることができるし、第2電極は透明導電性材料から成る形態とすることができる。第2電極を透明導電性材料から構成することで、電流を横方向(第2化合物半導体層の面内方向)に広げることができ、効率良く、素子領域(次に述べる)に電流を供給することができる。
「素子領域」とは、狭窄された電流が注入される領域、あるいは又、屈折率差等により光が閉じ込められる領域、あるいは又、第1光反射層と第2光反射層で挟まれた領域の内、レーザ発振が生じる領域、あるいは又、第1光反射層と第2光反射層で挟まれた領域の内、実際にレーザ発振に寄与する領域を指す。
発光素子は、上述したとおり、第1化合物半導体層の頂面から第1光反射層を介して光を出射する面発光レーザ素子(垂直共振器レーザ、VCSEL)から成る構成とすることができるし、あるいは又、第2化合物半導体層の頂面から第2光反射層を介して光を出射する面発光レーザ素子から成る構成とすることもできる。
以上に説明した各種の好ましい形態を含む本開示の第1の態様〜第2の態様に係る発光素子等において、第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体は、具体的には、GaN系化合物半導体から成る構成とすることができる。ここで、GaN系化合物半導体として、より具体的には、GaN、AlGaN、InGaN、AlInGaNを挙げることができる。更には、これらの化合物半導体に、所望に応じて、ホウ素(B)原子やタリウム(Tl)原子、ヒ素(As)原子、リン(P)原子、アンチモン(Sb)原子が含まれていてもよい。活性層は、量子井戸構造を有することが望ましい。具体的には、単一量子井戸構造(QW構造)を有していてもよいし、多重量子井戸構造(MQW構造)を有していてもよい。量子井戸構造を有する活性層は、井戸層及び障壁層が、少なくとも1層、積層された構造を有するが、(井戸層を構成する化合物半導体,障壁層を構成する化合物半導体)の組合せとして、(InyGa(1-y)N,GaN)、(InyGa(1-y)N,InzGa(1-z)N)[但し、y>z]、(InyGa(1-y)N,AlGaN)を例示することができる。第1化合物半導体層を第1導電型(例えば、n型)の化合物半導体から構成し、第2化合物半導体層を第1導電型とは異なる第2導電型(例えば、p型)の化合物半導体から構成することができる。第1化合物半導体層、第2化合物半導体層は、第1クラッド層、第2クラッド層とも呼ばれる。第2電極と第2化合物半導体層との間に、電流狭窄構造が形成されていることが好ましい。第1化合物半導体層、第2化合物半導体層は、単一構造の層であってもよいし、多層構造の層であってもよいし、超格子構造の層であってもよい。更には、組成傾斜層、濃度傾斜層を備えた層とすることもできる。
電流狭窄構造を得るためには、第2電極と第2化合物半導体層との間に絶縁材料(例えば、SiOXやSiNX、AlOX)から成る電流狭窄層を形成してもよいし、あるいは又、第2化合物半導体層をRIE法等によりエッチングしてメサ構造を形成してもよいし、あるいは又、積層された第2化合物半導体層の一部の層を横方向から部分的に酸化して電流狭窄領域を形成してもよいし、第2化合物半導体層に不純物をイオン注入して導電性が低下した領域を形成してもよいし、あるいは、これらを、適宜、組み合わせてもよい。但し、第2電極は、電流狭窄により電流が流れる第2化合物半導体層の部分と電気的に接続されている必要がある。
GaN基板は成長面によって、極性/無極性/半極性と特性が変わることが知られているが、GaN基板のいずれの主面も化合物半導体層の形成に使用することができる。また、GaN基板の主面に関して、結晶構造(例えば、立方晶型や六方晶型等)によっては、所謂A面、B面、C面、R面、M面、N面、S面等の名称で呼ばれる結晶面の面方位を特定方向にオフさせた面(オフ角が0度の場合を含む)を用いる。発光素子を構成する各種の化合物半導体層の形成方法として、有機金属化学的気相成長法(MOCVD法,MOVPE法)や分子線エピタキシー法(MBE法)、ハロゲンが輸送あるいは反応に寄与するハイドライド気相成長法等を挙げることができる。
ここで、MOCVD法における有機ガリウム源として、トリメチルガリウム(TMG)やトリエチルガリウム(TEG)を挙げることができるし、窒素源ガスとして、アンモニアガスやヒドラジンを挙げることができる。n型の導電型を有するGaN系化合物半導体層の形成においては、例えば、n型不純物(n型ドーパント)としてケイ素(Si)を添加すればよいし、p型の導電型を有するGaN系化合物半導体層の形成においては、例えば、p型不純物(p型ドーパント)としてマグネシウム(Mg)を添加すればよい。GaN系化合物半導体層の構成原子としてアルミニウム(Al)あるいはインジウム(In)が含まれる場合、Al源としてトリメチルアルミニウム(TMA)を用いればよいし、In源としてトリメチルインジウム(TMI)を用いればよい。更には、Si源としてモノシランガス(SiH4ガス)を用いればよいし、Mg源としてビスシクロペンタジエニルマグネシウムやメチルシクロペンタジエニルマグネシウム、ビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いればよい。尚、n型不純物(n型ドーパント)として、Si以外に、Ge、Se、Sn、C、Te、S、O、Pd、Poを挙げることができるし、p型不純物(p型ドーパント)として、Mg以外に、Zn、Cd、Be、Ca、Ba、C、Hg、Srを挙げることができる。
支持基板は、例えば、GaN基板、サファイア基板、GaAs基板、SiC基板、アルミナ基板、ZnS基板、ZnO基板、LiMgO基板、LiGaO2基板、MgAl24基板、InP基板といった各種の基板から構成すればよいし、あるいは又、AlN等から成る絶縁性基板、Si、SiC、Ge等から成る半導体基板、金属製基板や合金製基板から構成することもできるが、導電性を有する基板を用いることが好ましく、あるいは又、機械的特性、弾性変形、塑性変形性、放熱性等の観点から金属製基板や合金製基板を用いることが好ましい。支持基板の厚さとして、例えば、0.05mm乃至0.5mmを例示することができる。第2光反射層の支持基板への固定方法として、半田接合法、常温接合法、粘着テープを用いた接合法、ワックス接合を用いた接合法等、既知の方法を用いることができるが、導電性の確保という観点からは半田接合法あるいは常温接合法を採用することが望ましい。例えば導電性基板であるシリコン半導体基板を支持基板として使用する場合、熱膨張係数の違いによる反りを抑制するために、400゜C以下の低温で接合可能な方法を採用することが望ましい。支持基板としてGaN基板を使用する場合、接合温度が400゜C以上であってもよい。
第1電極は、例えば、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、Ti(チタン)、バナジウム(V)、タングステン(W)、クロム(Cr)、Al(アルミニウム)、Cu(銅)、Zn(亜鉛)、錫(Sn)及びインジウム(In)から成る群から選択された少なくとも1種類の金属(合金を含む)を含む、単層構成又は多層構成を有することが望ましく、具体的には、例えば、Ti/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pdを例示することができる。尚、多層構成における「/」の前の層ほど、より活性層側に位置する。以下の説明においても同様である。第1電極は、例えば、真空蒸着法やスパッタリング法等のPVD法にて成膜することができる。
第2電極を構成する透明導電性材料として、インジウム−錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITO及びアモルファスITOを含む)、インジウム−亜鉛酸化物(IZO,Indium Zinc Oxide)、IFO(FドープのIn23)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(ZnO、AlドープのZnOやBドープのZnOを含む)を例示することができる。あるいは又、第2電極として、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明導電膜を挙げることができる。但し、第2電極を構成する材料として、第2光反射層と第2電極との配置状態に依存するが、透明導電性材料に限定するものではなく、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、金(Au)、コバルト(Co)、ロジウム(Rh)等の金属を用いることもできる。第2電極は、これらの材料の少なくとも1種類から構成すればよい。第2電極は、例えば、真空蒸着法やスパッタリング法等のPVD法にて成膜することができる。
第1電極や第2電極上に、外部の電極あるいは回路と電気的に接続するために、パッド電極を設けてもよい。パッド電極は、Ti(チタン)、アルミニウム(Al)、Pt(白金)、Au(金)、Ni(ニッケル)、Pd(パラジウム)から成る群から選択された少なくとも1種類の金属を含む、単層構成又は多層構成を有することが望ましい。あるいは又、パッド電極を、Ti/Pt/Auの多層構成、Ti/Auの多層構成、Ti/Pd/Auの多層構成、Ti/Pd/Auの多層構成、Ti/Ni/Auの多層構成、Ti/Ni/Au/Cr/Auの多層構成に例示される多層構成とすることもできる。第1電極をAg層あるいはAg/Pd層から構成する場合、第1電極の表面に、例えば、Ni/TiW/Pd/TiW/Niから成るカバーメタル層を形成し、カバーメタル層の上に、例えば、Ti/Ni/Auの多層構成あるいはTi/Ni/Au/Cr/Auの多層構成から成るパッド電極を形成することが好ましい。
光反射層(分布ブラッグ反射鏡層、Distributed Bragg Reflector 層、DBR層)は、例えば、半導体多層膜や誘電体多層膜から構成される。誘電体材料としては、例えば、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(例えば、SiNX、AlNX、AlGaN、GaNX、BNX等)、又は、フッ化物等を挙げることができる。具体的には、SiOX、TiOX、NbOX、ZrOX、TaOX、ZnOX、AlOX、HfOX、SiNX、AlNX等を例示することができる。そして、これらの誘電体材料の内、屈折率が異なる誘電体材料から成る2種類以上の誘電体膜を交互に積層することにより、光反射層を得ることができる。例えば、SiOX/SiNY、SiOX/NbOY、SiOX/ZrOY、SiOX/AlNY等の多層膜が好ましい。所望の光反射率を得るために、各誘電体膜を構成する材料、膜厚、積層数等を、適宜、選択すればよい。各誘電体膜の厚さは、用いる材料等により、適宜、調整することができ、発光波長λ0、用いる材料の発光波長λ0での屈折率nによって決定される。具体的には、λ0/(4n)の奇数倍とすることが好ましい。例えば、発光波長λ0が410nmの発光素子において、光反射層をSiOX/NbOYから構成する場合、40nm乃至70nm程度を例示することができる。積層数は、2以上、好ましくは5乃至20程度を例示することができる。光反射層全体の厚さとして、例えば、0.6μm乃至1.7μm程度を例示することができる。
あるいは又、第1光反射層は、少なくともN(窒素)原子を含んだ誘電体膜を備えていることが望ましく、更には、このN原子を含んだ誘電体膜は、誘電体多層膜の最上層であることが一層望ましい。あるいは又、第1光反射層は、少なくともN(窒素)原子を含んだ誘電体材料層によって被覆されていることが望ましい。あるいは又、第1光反射層の表面に対して窒化処理を施すことで、第1光反射層の表面を、少なくともN(窒素)原子を含んだ層(以下、便宜上、『表面層』と呼ぶ)とすることが望ましい。少なくともN原子を含んだ誘電体膜あるいは誘電体材料層、表面層の厚さは、λ0/(4n)の奇数倍とすることが好ましい。少なくともN原子を含んだ誘電体膜あるいは誘電体材料層を構成する材料として、具体的には、SiNX、SiOXZを挙げることができる。このように、少なくともN原子を含んだ誘電体膜あるいは誘電体材料層、表面層を形成することで、第1光反射層を覆う化合物半導体層を形成したとき、第1光反射層を覆う化合物半導体層の結晶軸とGaN基板の結晶軸のずれを改善することが可能となり、共振器となる積層構造体の品質を高めることが可能となる。
光反射層は、周知の方法に基づき形成することができ、具体的には、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、ECRプラズマスパッタリング法、マグネトロンスパッタリング法、イオンビームアシスト蒸着法、イオンプレーティング法、レーザアブレーション法等のPVD法;各種CVD法;スプレー法、スピンコート法、ディップ法等の塗布法;これらの方法の2種以上を組み合わせる方法;これらの方法と、全体又は部分的な前処理、不活性ガス(Ar、He、Xe等)又はプラズマの照射、酸素ガスやオゾンガス、プラズマの照射、酸化処理(熱処理)、露光処理のいずれか1種以上とを組み合わせる方法等を挙げることができる。
また、積層構造体の側面や露出面を絶縁膜で被覆してもよい。絶縁膜の形成は、周知の方法に基づき行うことができる。絶縁膜を構成する材料の屈折率は、積層構造体を構成する材料の屈折率よりも小さいことが好ましい。絶縁膜を構成する材料として、SiO2を含むSiOX系材料、SiNX系材料、SiOXZ系材料、TaOX、ZrOX、AlNX、AlOX、GaOXを例示することができるし、あるいは又、ポリイミド樹脂等の有機材料を挙げることもできる。絶縁膜の形成方法として、例えば真空蒸着法やスパッタリング法といったPVD法、あるいは、CVD法を挙げることができるし、塗布法に基づき形成することもできる。
実施例1は、本開示の第1の態様及び第2の態様に係る発光素子及びその製造方法に関する。
模式的な一部端面図を図1Aに示すように、実施例1あるいは後述する実施例2〜実施例3の発光素子は、具体的には、面発光レーザ素子(垂直共振器レーザ、VCSEL)であり、
GaN基板11、
GaN基板11の上に形成された、選択成長用マスク層43として機能する第1光反射層41、
第1光反射層41上に形成された第1化合物半導体層21、活性層23及び第2化合物半導体層22から成る積層構造体20、並びに、
第2化合物半導体層22上に形成された第2電極32及び第2光反射層42、
を少なくとも備えている。
そして、実施例1あるいは後述する実施例2〜実施例3の発光素子において、あるいは、発光素子の製造方法にあっては、GaN基板11の表面11aの結晶面の面方位のオフ角は0.4度以内、好ましくは0.40度以内であり、GaN基板11の面積をS0としたとき、第1光反射層41の面積は0.8S0以下である。尚、限定するものではないが、第1光反射層41の面積の下限値として0.004×S0を例示することができる。ここで、GaN基板11の表面11aの結晶面の面方位を[0001]とした。即ち、GaN基板11の(0001)面(C面)上に、第1光反射層41や積層構造体20を形成する。尚、第1光反射層41の最下層41Aとして熱膨張緩和膜44がGaN基板11の上に形成されているし、GaN基板11と接する第1光反射層41の最下層41A(熱膨張緩和膜44が該当する)の線熱膨張係数CTEは、
1×10-6/K≦CTE≦1×10-5/K
好ましくは、
1×10-6/K<CTE≦1×10-5/K
を満足する。
具体的には、熱膨張緩和膜44(選択成長用マスク層43の最下層)は、例えば、
1=λ0/(2n1
を満足する窒化ケイ素(SiNX)から成る。尚、このような膜厚を有する熱膨張緩和膜44(選択成長用マスク層43の最下層)は、波長λ0の光に対して透明であり、光反射層としての機能は有していない。また、選択成長用マスク層43(あるいは第1光反射層41)の平面形状は、正六角形である。正六角形は、化合物半導体層が[11−20]方向若しくはこれと結晶学的に等価な方向に横方向にエピタキシャル成長するように、配置あるいは配列されている。窒化ケイ素(SiNX)及びGaN基板11のCTEの値は以下の表1のとおりである。CTEの値は25゜Cにおける値である。
[表1]
GaN基板 :5.59×10-6/K
窒化ケイ素(SiNX):2.6〜3.5×10-6/K
尚、積層構造体20は、第1化合物半導体層21、活性層23及び第2化合物半導体層22から成るが、より具体的には、
GaN系化合物半導体から成り、第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
GaN系化合物半導体から成り、第1化合物半導体層21の第2面21bと接する活性層(発光層)23、及び、
GaN系化合物半導体から成り、第1面22a、及び、第1面22aと対向する第2面22bを有し、第1面22aが活性層23と接する第2化合物半導体層22、
が積層されて成る。そして、第2化合物半導体層22の第2面22b上には、第2電極32及び多層膜から成る第2光反射層42が形成されており、積層構造体20が形成されたGaN基板11の表面11aと対向するGaN基板11の他方の面11bに第1電極31が形成されている。多層膜から成る第1光反射層41は、GaN基板11の表面11aに形成されているし、第1化合物半導体層21の第1面21aと接して形成されている。
ここで、実施例1にあっては、第2化合物半導体層22の第2面22bから第2光反射層42を介して光を出射する、第2光反射層出射タイプの発光素子である。GaN基板11は残されたままである。
実施例1あるいは後述する実施例2〜実施例3の発光素子においては、第2電極32と第2化合物半導体層22との間に、SiOX、SiNX、AlOXといった絶縁材料から成る電流狭窄層24が形成されている。電流狭窄層24には開口24Aが形成されており、この開口24Aの底部に第2化合物半導体層22が露出している。第2電極32は、第2化合物半導体層22の第2面22b上から電流狭窄層24上に亙り形成されており、第2光反射層42は第2電極32上に形成されている。更には、第2電極32の縁部の上には、外部の電極あるいは回路と電気的に接続するためのパッド電極33が接続されている。実施例1あるいは後述する実施例2〜実施例3の発光素子において、素子領域の平面形状は正六角形であり、第1光反射層41、第2光反射層42、電流狭窄層24に設けられた開口24Aの平面形状は円形である。尚、第1光反射層41及び第2光反射層42は多層構造を有するが、図面の簡素化のため、1層で表している。尚、電流狭窄層24の形成は、必須ではない。
そして、実施例1の発光素子において、第1光反射層41から第2光反射層42まで距離は、0.15μm以上、50μm以下であり、具体的には、例えば、10μmである。
第1化合物半導体層21は厚さ5μmのn型GaN層から成り、総厚さ180nmの活性層23はIn0.04Ga0.96N層(障壁層)とIn0.16Ga0.84N層(井戸層)とが積層された5重の多重量子井戸構造から成り、第2化合物半導体層22は、p型AlGaN電子障壁層(厚さ10nm)及びp型GaN層の2層構成を有する。尚、電子障壁層が活性層側に位置する。第1電極31はTi/Pt/Auから成り、第2電極32は、透明導電性材料、具体的には、ITOから成り、パッド電極33はTi/Pd/Au又はTi/Pt/Auから成り、第1光反射層41及び第2光反射層42は、SiNX層とSiOY層の積層構造(誘電体膜の積層総数:20層)から成る。各層の厚さは、λ0/(4n)である。
以下、積層構造体等の模式的な一部端面図である図4A、図4B、図4Cを参照して、実施例1の発光素子の製造方法を説明する。
[工程−100]
先ず、GaN基板11上に選択成長用マスク層43を形成する。具体的には、GaN基板11上に、選択成長用マスク層43の最下層を構成する熱膨張緩和膜44を形成し、更に、熱膨張緩和膜44上に、多層膜から成る選択成長用マスク層43の残部(第1光反射層41として機能する)を形成する。そして、選択成長用マスク層43をパターニングする。こうして、図4Aに示す構造を得ることができる。図9に模式的な平面図を示すように、熱膨張緩和膜44を含む選択成長用マスク層43の形状は正六角形である。但し、選択成長用マスク層43の形状はこれに限定するものではなく、例えば、円形、格子状又はストライプ状とすることもできる。尚、図9において、選択成長用マスク層43を明確に表示するために、選択成長用マスク層43に斜線を付した。選択成長用マスク層43と選択成長用マスク層43との間には、GaN基板11が露出している。
[工程−110]
次に、選択成長用マスク層43で覆われていないGaN基板11の表面から、第1化合物半導体層21を選択成長させて、GaN基板11及び選択成長用マスク層43を第1化合物半導体層21で被覆する。具体的には、MOCVD装置を用いて、アンモニアガスを供給しながらGaN基板11を1000゜Cまで加熱し、次いで、TMGガス及びSiH4ガスを用いたMOCVD法に基づくELO法等の横方向にエピタキシャル成長させる方法を用いて、第1化合物半導体層21を横方向に成長させる。
[工程−120]
引き続き、GaN基板11の温度を800゜Cとして、第1化合物半導体層21上に活性層23、第2化合物半導体層22、第2電極32、第2光反射層42を順次形成する。具体的には、エピタキシャル成長法に基づき、第1化合物半導体層21の上に、TMGガス及びTMIガスを用いて活性層23を形成した後、GaN基板11の温度を950゜Cとして、TMGガス、TMAガス、Cp2Mgガスを用いて電子障壁層を形成し、TMGガス、Cp2Mgガスを用いてp型GaN層を形成することで、第2化合物半導体層22を得る。以上の工程によって積層構造体20を得ることができる。即ち、選択成長用マスク層43を含むGaN基板11上に、
GaN系化合物半導体から成り、第1面21a、及び、第1面21aと対向する第2面21bを有する第1化合物半導体層21、
GaN系化合物半導体から成り、第1化合物半導体層21の第2面21bと接する活性層23、及び、
GaN系化合物半導体から成り、第1面22a、及び、第1面22aと対向する第2面22bを有し、第1面22aが活性層23と接する第2化合物半導体層22、
が積層されて成る積層構造体20をエピタキシャル成長させる。次いで、第2化合物半導体層22の第2面22b上に、周知の方法に基づき、厚さ0.2μmの絶縁材料から成り、開口24Aを有する電流狭窄層24を形成する。こうして、図4Bに示す構造を得ることができる。
その後、第2化合物半導体層22の第2面22b上に第2電極32及び多層膜から成る第2光反射層42を形成する。具体的には、例えば、リフトオフ法に基づき、第2化合物半導体層22の第2面22bの上から電流狭窄層24の上に亙り、厚さ50nmのITOから成る第2電極32を形成し、更に、第2電極32の上から電流狭窄層24の上に亙り、周知の方法に基づきパッド電極33を形成する。こうして、図4Cに示す構造を得ることができる。その後、第2電極32の上からパッド電極33の上に亙り、周知の方法に基づき第2光反射層42を形成する。一方、GaN基板11の他方の面11bに、周知の方法に基づき第1電極31を形成する。こうして、図1Aに示す構造を得ることができる。
[工程−130]
その後、所謂素子分離を行うことで発光素子を分離し、積層構造体の側面や露出面を、例えば、SiOXから成る絶縁膜で被覆する。そして、第1電極31やパッド電極33を外部の回路等に接続するために端子等を周知の方法に基づき形成し、パッケージや封止することで、実施例1の発光素子を完成させる。
実施例1において、オフ角と第2化合物半導体層22の表面粗さRaとの関係を調べた。その結果を、以下の表2に示す。表2から、オフ角が0.4度を超えると、第2化合物半導体層22の表面粗さRaの値が大きくなることが判る。即ち、オフ角を0.4度以下、好ましくは0.40度以内とすることで、化合物半導体層の成長中のステップバンチングを抑制することができ、第2化合物半導体層22の表面粗さRaの値を小さくすることができる結果、平滑性に優れた第2光反射層42を得ることができ、光反射率等の特性バラツキが生じ難い。
[表2]
オフ角(度) 表面粗さRa(nm)
0.35 0.87
0.38 0.95
0.43 1.32
0.45 1.55
0.50 2.30
また、GaN基板11の面積S0と、第1光反射層41の面積と、第2化合物半導体層22の表面粗さRaとの関係を調べた。その結果を、以下の表3に示す。表3から、第1光反射層41の面積を0.8S0以下にすることで、第2化合物半導体層22の表面粗さRaの値を小さくすることができることが判った。
[表3]
第1光反射層41の面積割合 表面粗さRa(nm)
0.88S0 1.12
0.83S0 1.05
0.75S0 0.97
0.69S0 0.91
0.63S0 0.85
以上の結果から、第2化合物半導体層22(第2化合物半導体層22の第2面)の表面粗さRaは、1.0nm以下であることが好ましいことが判る。
更には、熱膨張緩和膜44を形成せずに、選択成長用マスク層43の最下層をSiOX(CTE:0.51〜0.58×10-6/K)から構成し、その他は、実施例1と同様の構成、構造を有する発光素子を製造したところ、積層構造体の成膜中に選択成長用マスク層43がGaN基板11から剥離してしまった。一方、実施例1にあっては、積層構造体の成膜中に選択成長用マスク層43がGaN基板11から剥離することがなかった。
以上のとおり、実施例1の発光素子及びその製造方法にあっては、GaN基板表面の結晶面の面方位のオフ角、及び、選択成長用マスク層(第1光反射層)の面積割合が規定されているので、第2化合物半導体層の表面粗さを小さくすることができる。即ち、優れた表面モホロジーを有する第2化合物半導体層を形成することができる。その結果、平滑性に優れた第2光反射層を得ることができるので、所望の光反射率を得ることができ、発光素子の特性にバラツキが生じ難い。しかも、熱膨張緩和膜が形成され、あるいは又、CTEの値が規定されているので、GaN基板の線熱膨張係数と選択成長用マスク層の線熱膨張係数の差に起因してGaN基板から選択成長用マスク層が剥がれるといった問題の発生を回避することができ、高い信頼性を有する発光素子を提供することができる。更には、GaN基板を用いるので、化合物半導体層に転位が発生し難いし、発光素子の熱抵抗が大きくなるといった問題を回避することができるので、高い信頼性を発光素子に付与することができるし、GaN基板を基準としてp側電極と異なる側にn側電極を設けることができる。
図1Aに示した例においては、選択成長用マスク層43(あるいは第1光反射層41)の断面形状を矩形としたが、これに限定するものではなく、図1Bに示すように、台形とすることもできる。また、図1Aに示した例では、選択成長用マスク層43(あるいは第1光反射層41)を第1化合物半導体層21で完全に覆ったが、選択成長用マスク層43(あるいは第1光反射層41)の一部が露出した状態としてもよいし(図2A参照)、選択成長用マスク層43(あるいは第1光反射層41)上の第1化合物半導体層21が完全に平坦になっていない状態としてもよい(図2B参照)。尚、図2A及び図2Bにおいては、電流狭窄層24、第2電極32、パッド電極33、第2光反射層42、第1電極31の図示を省略している。発光素子を、選択成長用マスク層43(あるいは第1光反射層41)の露出した領域や、第1化合物半導体層21が完全に平坦になっていない領域を外して作製すればよい。具体的には、次に述べる実施例2を適用することが好ましい。更には、図3に示すように、第1光反射層41の最上層(第1化合物半導体層21と接する層)41Bを窒化シリコン膜から構成してもよい。そして、この場合、第1光反射層41の最上層41Bの厚さをt2、第1光反射層41の最上層41Bの屈折率をn2としたとき、
2=λ0/(4n2
を満足することが好ましく、更には、
2=λ0/(2n2
を満足すれば、第1光反射層41の最上層41Bは、波長λ0の光に対して不在層となる。
前述したとおり、選択成長用マスク層43(あるいは第1光反射層41)が形成されたGaN基板11の上に、第1化合物半導体層21を、ELO法等の横方向にエピタキシャル成長させる方法を用いて、横方向成長により形成したとき、選択成長用マスク層43の縁部から選択成長用マスク層43の中心部に向かってエピタキシャル成長する第1化合物半導体層21が会合すると、会合部分に結晶欠陥が多く発生する場合がある。
実施例2の発光素子にあっては、また、実施例2の発光素子の製造方法にあっては、図1Aに示した実施例1の発光素子の変形例を図5に示すように、第1光反射層41の面積重心点を通る第1光反射層41に対する法線LN1上に、第2光反射層42の面積重心点は存在しない。あるいは又、第1光反射層41の面積重心点を通る第1光反射層41に対する法線LN1上に、活性層23の面積重心点は存在しない。第2光反射層42の面積重心点を通る第2光反射層42に対する法線と、活性層23の面積重心点を通る活性層23に対する法線とは一致しており、この法線を「LN2」で示す。尚、図1B、図2A、図2B、図3に示した発光素子に対して、実施例2の発光素子の構成、構造を適用することができることは云うまでもない。以上の点を除き、実施例2の発光素子の構成、構造は、実施例1の発光素子の構成、構造と同様とすることができるので、詳細な説明は省略する。
実施例2にあっては、結晶欠陥が多く存在する会合部分(具体的には、法線LN1上あるいはその近傍に位置する)が素子領域の中心部に位置することが無くなり、発光素子の特性に悪影響が生じることが無くなり、あるいは又、発光素子の特性への悪影響が少なくなる。
実施例3は、実施例1〜実施例2の変形である。模式的な一部断面図を図6Aに示すように、実施例3の発光素子にあっては、具体的には、活性層23において生成した光は、第1化合物半導体層21の頂面から第1光反射層41を介して外部に出射される。即ち、面発光レーザ素子(垂直共振器レーザ、VCSEL)から成る実施例3の発光素子は、第1光反射層出射タイプの発光素子である。そして、実施例3の発光素子において、第2光反射層42は、金(Au)層あるいは錫(Sn)を含む半田層から成る接合層25を介して、シリコン半導体基板から構成された支持基板26に半田接合法に基づき固定されている。
実施例3にあっては、第1化合物半導体層21上に活性層23、第2化合物半導体層22、第2電極32、第2光反射層42を順次形成した後、第1光反射層41をストッパ層として、GaN基板11を除去する。具体的には、第1化合物半導体層21上に活性層23、第2化合物半導体層22、第2電極32、第2光反射層42を順次形成し、次いで、第2光反射層42を支持基板26に固定した後、第1光反射層41をストッパ層としてGaN基板11を除去して、第1化合物半導体層21(第1化合物半導体層21の第1面)及び第1光反射層41を露出させる。そして、第1化合物半導体層21(第1化合物半導体層21の第1面)の上に第1電極31を形成する。
第1光反射層41から第2光反射層42まで距離は、0.15μm以上、50μm以下であり、具体的には、例えば、10μmである。実施例3の発光素子にあっては、第1光反射層41と第1電極31とは離間しており、即ち、オフセットを有しており、離間距離は1mm以内、具体的には、例えば、平均0.05mmである。
以下、積層構造体等の模式的な一部端面図である図7A及び図7Bを参照して、実施例3の発光素子の製造方法を説明する。
[工程−300]
先ず、実施例1の[工程−100]〜[工程−120]と同様の工程を実行することで、図1Aに示した構造を得る。但し、第1電極31は形成しない。
[工程−310]
その後、第2光反射層42を、接合層25を介して支持基板26に固定する。こうして、図7Aに示す構造を得ることができる。
[工程−320]
次いで、GaN基板11を除去して、第1化合物半導体層21の第1面21a及び第1光反射層41を露出させる。具体的には、先ず、機械研磨法に基づき、GaN基板11の厚さを薄くし、次いで、CMP法に基づき、GaN基板11の残部を除去する。こうして、第1化合物半導体層21の第1面21a及び第1光反射層41を露出させ、図7Bに示す構造を得ることができる。
[工程−330]
その後、第1化合物半導体層21の第1面21a上に、周知の方法に基づき第1電極31を形成する。こうして、図6Aに示す構造を有する実施例3の発光素子を得ることができる。
[工程−340]
その後、所謂素子分離を行うことで発光素子を分離し、積層構造体の側面や露出面を、例えば、SiOXから成る絶縁膜で被覆する。そして、第1電極31やパッド電極33を外部の回路等に接続するために端子等を周知の方法に基づき形成し、パッケージや封止することで、実施例3の発光素子を完成させる。
実施例3の発光素子の製造方法にあっては、第1光反射層が形成されている状態でGaN基板を除去する。それ故、第1光反射層が、GaN基板の除去時に一種のストッパーとして機能する結果、GaN基板面内におけるGaN基板の除去バラツキ、更には、第1化合物半導体層の厚さバラツキの発生を抑制することができ、共振器の長さの均一化を図ることができる結果、得られる発光素子の特性の安定化を達成することができる。しかも、第1光反射層と第1化合物半導体層との界面における第1化合物半導体層の面(平坦面)は平坦であるが故に、平坦面での光の散乱を最小限に抑えることができる。
図6Aに示した発光素子の例では、第1電極31の端部は第1光反射層41から離間している。一方、図6Bに示す発光素子の例では、第1電極31の端部は第1光反射層41の外縁まで延在している。あるいは又、第1電極の端部が第1光反射層と接するように、第1電極を形成してもよい。
以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した発光素子の構成、構造は例示であり、適宜、変更することができるし、実施例の発光素子の製造方法も、適宜、変更することができる。図8Aに実施例1の発光素子の変形例の模式的な一部断面図を示すように、選択成長用マスク層の最下層あるいは第1光反射層の最下層は、最下層よりも上の層よりも大きな平面形状を有していてもよい。また、実施例においては、1つの発光素子に1つの選択成長用マスク層43(第1光反射層41)を設ける例を説明したが、このような構成に限定するものではなく、図8Bに実施例1の発光素子の変形例の模式的な一部断面図を示すように、1つの発光素子に複数の選択成長用マスク層43を設け、その内の1つを第1光反射層41として機能させる構成とすることもできる。
尚、本開示は、以下のような構成を取ることもできる。
[A01]《発光素子の製造方法:第1の態様》
GaN基板上に選択成長用マスク層を形成した後、
選択成長用マスク層で覆われていないGaN基板表面から、第1化合物半導体層を選択成長させて、GaN基板及び選択成長用マスク層を第1化合物半導体層で被覆し、次いで、
第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成する、
各工程を少なくとも有する発光素子の製造方法であって、
選択成長用マスク層は、第1光反射層として機能し、
GaN基板表面の面方位のオフ角は0.4度以内、好ましくは0.40度以内であり、
GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下であり、
選択成長用マスク層の最下層として、GaN基板上に熱膨張緩和膜を形成する発光素子の製造方法。
[A02]熱膨張緩和膜は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る[A01]に記載の発光素子の製造方法。
[A03]熱膨張緩和膜の厚さをt1、発光素子の発光波長をλ0、熱膨張緩和膜の屈折率をn1としたとき、
1=λ0/(2n1
を満足する[A01]又は[A02]に記載の発光素子の製造方法。
[A04]《発光素子の製造方法:第2の態様》
GaN基板上に選択成長用マスク層を形成した後、
選択成長用マスク層で覆われていないGaN基板表面から、第1化合物半導体層を選択成長させて、GaN基板及び選択成長用マスク層を第1化合物半導体層で被覆し、次いで、
第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成する、
各工程を少なくとも有する発光素子の製造方法であって、
選択成長用マスク層は、第1光反射層として機能し、
GaN基板表面の面方位のオフ角は0.4度以内、好ましくは0.40度以内であり、
GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下であり、
GaN基板と接する選択成長用マスク層の最下層の線熱膨張係数CTEは、
1×10-6/K≦CTE≦1×10-5/K
好ましくは、
1×10-6/K<CTE≦1×10-5/K
を満足する発光素子の製造方法。
[A05]選択成長用マスク層の最下層は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る[A04]に記載の発光素子の製造方法。
[A06]選択成長用マスク層の最下層の厚さをt1、発光素子の発光波長をλ0、選択成長用マスク層の最下層の屈折率をn1としたとき、
1=λ0/(2n1
を満足する[A04]又は[A05]に記載の発光素子の製造方法。
[A07]第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成した後、第1光反射層をストッパ層として、GaN基板を除去する[A01]乃至[A06]のいずれか1項に記載の発光素子の製造方法。
[A08]第2化合物半導体層の表面粗さRaは、1.0nm以下である[A01]乃至[A07]のいずれか1項に記載の発光素子の製造方法。
[A09]選択成長用マスク層の平面形状は、正六角形、円形、格子状又はストライプ状である[A01]乃至[A08]のいずれか1項に記載の発光素子の製造方法。
[B01]《発光素子:第1の態様》
GaN基板、
GaN基板上に形成された、選択成長用マスク層として機能する第1光反射層、
第1光反射層上に形成された第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体、並びに、
第2化合物半導体層上に形成された第2電極及び第2光反射層、
を少なくとも備えた発光素子であって、
GaN基板表面の面方位のオフ角は0.4度以内、好ましくは0.40度以内であり、
GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下であり、
第1光反射層の最下層として熱膨張緩和膜がGaN基板上に形成されている発光素子。
[B02]熱膨張緩和膜は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る[B01]に記載の発光素子。
[B03]熱膨張緩和膜の厚さをt1、発光素子の発光波長をλ0、熱膨張緩和膜の屈折率をn1としたとき、
1=λ0/(2n1
を満足する[B01]又は[B02]に記載の発光素子。
[B04]《発光素子:第2の態様》
GaN基板、
GaN基板上に形成された、選択成長用マスク層として機能する第1光反射層、
第1光反射層上に形成された第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体、並びに、
第2化合物半導体層上に形成された第2電極及び第2光反射層、
を少なくとも備えた発光素子であって、
GaN基板表面の面方位のオフ角は0.4度以内、好ましくは0.40度以内であり、
GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下であり、
GaN基板と接する第1光反射層の最下層の線熱膨張係数CTEは、
1×10-6/K≦CTE≦1×10-5/K
好ましくは、
1×10-6/K<CTE≦1×10-5/K
を満足する発光素子。
[B05]第1光反射層の最下層は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る[B04]に記載の発光素子。
[B06]第1光反射層の最下層の厚さをt1、発光素子の発光波長をλ0、第1光反射層の最下層の屈折率をn1としたとき、
1=λ0/(2n1
を満足する[B04]又は[B05]に記載の発光素子。
[B07]第2化合物半導体層の表面粗さRaは、1.0nm以下である[B01]乃至[B06]のいずれか1項に記載の発光素子。
[B08]第1光反射層の平面形状は、正六角形、円形、格子状又はストライプ状である[B01]乃至[B07]のいずれか1項に記載の発光素子の製造方法。
11・・・GaN基板、20・・・積層構造体、21・・・第1化合物半導体層、21a・・・第1化合物半導体層の第1面、21b・・・第1化合物半導体層の第2面、22・・・第2化合物半導体層、22a・・・第2化合物半導体層の第1面、22b・・・第2化合物半導体層の第2面、23・・・活性層(発光層)、24・・・電流狭窄層、24A・・・電流狭窄層に設けられた開口、25・・・接合層、26・・・支持基板、31・・・第1電極、32・・・第2電極、33・・・パッド電極、41・・・第1光反射層、41A・・・第1光反射層の最下層、42・・・第2光反射層、43・・・選択成長用マスク層、44・・・熱膨張緩和膜

Claims (11)

  1. GaN基板上に選択成長用マスク層を形成した後、
    選択成長用マスク層で覆われていないGaN基板表面から、第1化合物半導体層を選択成長させて、GaN基板及び選択成長用マスク層を第1化合物半導体層で被覆し、次いで、
    第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成する、
    各工程を少なくとも有する発光素子の製造方法であって、
    選択成長用マスク層は、第1光反射層として機能し、
    GaN基板表面の面方位のオフ角は0.4度以内であり、
    GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下であり、
    選択成長用マスク層の最下層として、GaN基板上に熱膨張緩和膜を形成する発光素子の製造方法。
  2. 熱膨張緩和膜は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る請求項1に記載の発光素子の製造方法。
  3. 熱膨張緩和膜の厚さをt1、発光素子の発光波長をλ0、熱膨張緩和膜の屈折率をn1としたとき、
    1=λ0/(2n1
    を満足する請求項1に記載の発光素子の製造方法。
  4. GaN基板上に選択成長用マスク層を形成した後、
    選択成長用マスク層で覆われていないGaN基板表面から、第1化合物半導体層を選択成長させて、GaN基板及び選択成長用マスク層を第1化合物半導体層で被覆し、次いで、
    第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成する、
    各工程を少なくとも有する発光素子の製造方法であって、
    選択成長用マスク層は、第1光反射層として機能し、
    GaN基板表面の面方位のオフ角は0.4度以内であり、
    GaN基板の面積をS0としたとき、選択成長用マスク層の面積は0.8S0以下であり、
    GaN基板と接する選択成長用マスク層の最下層の線熱膨張係数CTEは、
    1×10-6/K≦CTE≦1×10-5/K
    を満足する発光素子の製造方法。
  5. 選択成長用マスク層の最下層は、窒化ケイ素、酸化アルミニウム、酸化ニオブ、酸化タンタル、酸化チタン、酸化マグネシウム、酸化ジルコニウム及び窒化アルミニウムから成る群から選択された少なくとも1種類の材料から成る請求項4に記載の発光素子の製造方法。
  6. 選択成長用マスク層の最下層の厚さをt1、発光素子の発光波長をλ0、選択成長用マスク層の最下層の屈折率をn1としたとき、
    1=λ0/(2n1
    を満足する請求項4に記載の発光素子の製造方法。
  7. 第1化合物半導体層上に活性層、第2化合物半導体層、第2電極、第2光反射層を順次形成した後、第1光反射層をストッパ層として、GaN基板を除去する請求項1又は請求項4に記載の発光素子の製造方法。
  8. 第2化合物半導体層の表面粗さRaは、1.0bnm以下である請求項1又は請求項4に記載の発光素子の製造方法。
  9. 選択成長用マスク層の平面形状は、正六角形、円形、格子状又はストライプ状である請求項1又は請求項4に記載の発光素子の製造方法。
  10. GaN基板、
    GaN基板上に形成された、選択成長用マスク層として機能する第1光反射層、
    第1光反射層上に形成された第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体、並びに、
    第2化合物半導体層上に形成された第2電極及び第2光反射層、
    を少なくとも備えた発光素子であって、
    GaN基板表面の面方位のオフ角は0.4度以内であり、
    GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下であり、
    第1光反射層の最下層として熱膨張緩和膜がGaN基板上に形成されている発光素子。
  11. GaN基板、
    GaN基板上に形成された、選択成長用マスク層として機能する第1光反射層、
    第1光反射層上に形成された第1化合物半導体層、活性層及び第2化合物半導体層から成る積層構造体、並びに、
    第2化合物半導体層上に形成された第2電極及び第2光反射層、
    を少なくとも備えた発光素子であって、
    GaN基板表面の面方位のオフ角は0.4度以内であり、
    GaN基板の面積をS0としたとき、第1光反射層の面積は0.8S0以下であり、
    GaN基板と接する第1光反射層の最下層の線熱 膨張係数CTEは、
    1×10-6/K≦CTE≦1×10-5/K
    を満足する発光素子。
JP2016529130A 2014-06-17 2015-04-16 発光素子及びその製造方法 Active JP6555260B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014124602 2014-06-17
JP2014124602 2014-06-17
PCT/JP2015/061698 WO2015194243A1 (ja) 2014-06-17 2015-04-16 発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2015194243A1 true JPWO2015194243A1 (ja) 2017-04-20
JP6555260B2 JP6555260B2 (ja) 2019-08-07

Family

ID=54935240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529130A Active JP6555260B2 (ja) 2014-06-17 2015-04-16 発光素子及びその製造方法

Country Status (5)

Country Link
US (1) US10141721B2 (ja)
EP (1) EP3159983B1 (ja)
JP (1) JP6555260B2 (ja)
CN (1) CN106663919B (ja)
WO (1) WO2015194243A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436531B2 (ja) * 2015-01-30 2018-12-12 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
US11150140B2 (en) * 2016-02-02 2021-10-19 Kla Corporation Instrumented substrate apparatus for acquiring measurement parameters in high temperature process applications
JPWO2018037679A1 (ja) * 2016-08-24 2019-06-20 ソニー株式会社 発光素子
WO2018116596A1 (ja) * 2016-12-20 2018-06-28 ソニー株式会社 発光素子
US11309686B2 (en) 2017-06-20 2022-04-19 Sony Corporation Surface emitting laser and method of manufacturing the same
CN110785901B (zh) * 2017-06-28 2021-12-17 索尼公司 发光元件及其制造方法
JP7248441B2 (ja) * 2018-03-02 2023-03-29 シャープ株式会社 画像表示素子
TWI677150B (zh) * 2018-04-30 2019-11-11 聯勝光電股份有限公司 面射型雷射發光二極體結構
CN108598867B (zh) * 2018-06-26 2020-06-12 扬州乾照光电有限公司 Dbr结构芯片及其制备方法
CN112234434A (zh) * 2019-07-15 2021-01-15 太平洋(聊城)光电科技股份有限公司 微透镜芯片
JP7388908B2 (ja) * 2019-12-17 2023-11-29 シャープ福山レーザー株式会社 表示装置
JPWO2022255252A1 (ja) 2021-05-31 2022-12-08
EP4358324A1 (en) 2021-06-16 2024-04-24 Kyocera Corporation Semiconductor device, method and apparatus for producing semiconductor device, and electronic instrument
TWI832622B (zh) * 2022-12-20 2024-02-11 台亞半導體股份有限公司 半導體雷射元件
CN115693391A (zh) * 2022-12-29 2023-02-03 华芯半导体研究院(北京)有限公司 应用于芯片的n电极及制备方法和vcsel芯片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022282A (ja) * 1998-07-02 2000-01-21 Fuji Xerox Co Ltd 面発光型発光素子及びその製造方法
JP2000164989A (ja) * 1998-11-26 2000-06-16 Sony Corp 窒化物系iii−v族化合物半導体の成長方法および半導体装置
JP2001148544A (ja) * 1999-09-10 2001-05-29 Sharp Corp 半導体発光素子
JP2003078214A (ja) * 2002-08-26 2003-03-14 Nec Corp 窒化物半導体発光素子
JP2003168846A (ja) * 2001-09-21 2003-06-13 Ricoh Co Ltd 半導体発光素子およびその製造方法および光伝送モジュールおよび光交換装置および光伝送システム
JP2003324251A (ja) * 2002-04-30 2003-11-14 Ricoh Co Ltd 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
JP2004063957A (ja) * 2002-07-31 2004-02-26 Hitachi Ltd 半導体量子ドットを有する半導体部材の製造方法、半導体レーザ及びそれを用いた光モジュール
JP2005159047A (ja) * 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体膜を形成する方法、および半導体基板生産物
JP2006270124A (ja) * 2000-10-04 2006-10-05 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2008306126A (ja) * 2007-06-11 2008-12-18 Nec Corp 面発光レーザ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220977B2 (ja) 1997-05-07 2001-10-22 日亜化学工業株式会社 窒化物半導体レーザ素子及び窒化物半導体レーザ素子の製造方法。
US6233267B1 (en) * 1998-01-21 2001-05-15 Brown University Research Foundation Blue/ultraviolet/green vertical cavity surface emitting laser employing lateral edge overgrowth (LEO) technique
US6320206B1 (en) * 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
JP2001313440A (ja) * 2000-04-27 2001-11-09 Sony Corp 窒化物半導体発光素子
WO2002065556A1 (fr) * 2001-02-15 2002-08-22 Sharp Kabushiki Kaisha Element de source lumineuse a semi-conducteur a base de nitrure et son procede de realisation
EP2105977B1 (en) * 2002-01-28 2014-06-25 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
JP4140606B2 (ja) * 2005-01-11 2008-08-27 ソニー株式会社 GaN系半導体発光素子の製造方法
CN100573940C (zh) * 2005-09-06 2009-12-23 昭和电工株式会社 氮化镓基化合物半导体发光器件及其制造方法
JP4042775B2 (ja) * 2005-09-09 2008-02-06 ソニー株式会社 半導体薄膜および半導体素子の製造方法
JP2008285364A (ja) * 2007-05-17 2008-11-27 Sumitomo Electric Ind Ltd GaN基板、それを用いたエピタキシャル基板及び半導体発光素子
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022282A (ja) * 1998-07-02 2000-01-21 Fuji Xerox Co Ltd 面発光型発光素子及びその製造方法
JP2000164989A (ja) * 1998-11-26 2000-06-16 Sony Corp 窒化物系iii−v族化合物半導体の成長方法および半導体装置
JP2001148544A (ja) * 1999-09-10 2001-05-29 Sharp Corp 半導体発光素子
JP2006270124A (ja) * 2000-10-04 2006-10-05 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体の形成方法
JP2003168846A (ja) * 2001-09-21 2003-06-13 Ricoh Co Ltd 半導体発光素子およびその製造方法および光伝送モジュールおよび光交換装置および光伝送システム
JP2003324251A (ja) * 2002-04-30 2003-11-14 Ricoh Co Ltd 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
JP2004063957A (ja) * 2002-07-31 2004-02-26 Hitachi Ltd 半導体量子ドットを有する半導体部材の製造方法、半導体レーザ及びそれを用いた光モジュール
JP2003078214A (ja) * 2002-08-26 2003-03-14 Nec Corp 窒化物半導体発光素子
JP2005159047A (ja) * 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体膜を形成する方法、および半導体基板生産物
JP2008306126A (ja) * 2007-06-11 2008-12-18 Nec Corp 面発光レーザ

Also Published As

Publication number Publication date
WO2015194243A1 (ja) 2015-12-23
CN106663919A (zh) 2017-05-10
JP6555260B2 (ja) 2019-08-07
EP3159983A4 (en) 2018-02-14
US20170201073A1 (en) 2017-07-13
CN106663919B (zh) 2020-03-10
EP3159983B1 (en) 2023-08-02
US10141721B2 (en) 2018-11-27
EP3159983A1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6555260B2 (ja) 発光素子及びその製造方法
EP2835885B1 (en) Light emitting element and method of producing same
JP6566034B2 (ja) 発光素子
US11404849B2 (en) Light emitting element to control an oscillation wavelength
US10541513B2 (en) Light emitting element and method of manufacturing the same
US9515455B2 (en) Method of manufacturing light emitting element
CN106463909B (zh) 发光元件
JP6699561B2 (ja) 光半導体デバイス
JP6780505B2 (ja) 発光素子及びその製造方法
US20220045476A1 (en) Light emitting element
JP6555261B2 (ja) 発光素子及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151