JPWO2015146368A1 - 温室効果ガス排出削減策の内燃機関及び/又は機器 - Google Patents

温室効果ガス排出削減策の内燃機関及び/又は機器 Download PDF

Info

Publication number
JPWO2015146368A1
JPWO2015146368A1 JP2016510119A JP2016510119A JPWO2015146368A1 JP WO2015146368 A1 JPWO2015146368 A1 JP WO2015146368A1 JP 2016510119 A JP2016510119 A JP 2016510119A JP 2016510119 A JP2016510119 A JP 2016510119A JP WO2015146368 A1 JPWO2015146368 A1 JP WO2015146368A1
Authority
JP
Japan
Prior art keywords
gas
internal combustion
combustion engine
hydrogen
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016510119A
Other languages
English (en)
Other versions
JP6183981B2 (ja
Inventor
寛治 泉
寛治 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/JP2015/054216 external-priority patent/WO2015146368A1/ja
Publication of JPWO2015146368A1 publication Critical patent/JPWO2015146368A1/ja
Application granted granted Critical
Publication of JP6183981B2 publication Critical patent/JP6183981B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

最大の課題は地球温暖化に対処する温室効果ガス「CO2」の排出削減であり、その為の施策の1つの方法である内燃機関を発明して更にその内燃機関を発電設備とする事が課題であり、水と炭素とを内燃機関の排熱にて反応させて水素と一酸化炭素の混合気体を取り出す取り出し路と、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で当該内燃機関の燃料として、更に前記取り出し路を運搬機器に搭載し運搬機器の載内機関の燃料として、更に排ガスの二酸化炭素も水素と一酸化炭素の混合気体にして、更に前記取り出した水素と一酸化炭素の合成ガスを合成ガス改質路にて水素と二酸化炭素に改質して水素を当該内燃機関の燃料として二酸化炭素を合成ガスに改質する出発材料として解決した。

Description

温室効果ガス排出削減に寄与する内燃機関であって、特に植物を主とする炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とし、更に前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該合成ガス及び水素を当該内燃機関の燃料とするものである。
温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の対象である自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット、あるいは水素のみを燃料としたものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガスの削減に寄与する内燃機関の動力源とは言えない。又前記技術の動力源を電気をとして温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は1500mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に1500mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。
前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルギー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない。
特許5647364 特開平11−106770 特許4231735 特開2007−177684 特開昭57−150439 特許4609718 特願平10−543729
補助燃料によって燃焼されるロータリーエンジンと、該ロータリーエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり *本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。
ジメチルエーテルに水蒸気または二酸化炭素を加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、 *本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料に改質する事で燃費の向上を図り該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、 *本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を運搬機器の載内機関と言う限られたスペースに設置出来る構成構造にすると言う問題が残っている。
車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているC0吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、 *エンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であるが、本願はエンジンブロックから直接吸熱しており、該熱は水を水蒸気にする水蒸気生成手段に使用しておる点が異なるが、この技術は自動車の排気ガス中の二酸化炭素を分離する技術として本願にも採用できる。
炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。 *本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする技術にしている。
水素ロータリーエンジンの燃料噴射装置であって、水素ロータリーエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。 *本願の合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の合成ガスを燃料とする構造にはロータリーエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。
最大の課題は地球温暖化に対処する「CO」の排出削減・排出抑制であり、その為の施策の1つの方法を構成する機構を発明する事であり、
例えば炭素化合物のメタノール等燃料を内燃機関での燃焼のエンジンブロック下流の排ガスを熱源にして該内燃機関の排気管路にて改質して、1例として水蒸気改質をして該エンジンを連続運転するには該熱源で生成する燃料の量が消費する燃料の必要量に満たないので連続運転出来ない、前記改質熱源を何処から調達するかあるいは該排ガスの温度を高くする(例えば燃料をメタノールに比して高カロリーな物質に改質して排ガスの温度を高くする等)手段と、改質したそれぞれの複数種のガスを畜ガスする畜ガスタンクで必要なときに必要な量を出すことが出来て、かつ、車が大破する衝撃をうけても爆発しない構造で内容積を広く、低い圧縮圧で畜ガス出来る車載可能な構成構造の畜ガスタンクを発明することである。
最大の課題を解決する為の、第一の発明は、
水素か水素と一酸化炭素の合成ガスかの何れか一方か両方かを主燃料とした内燃機関であって、該内燃機関のエンジンブロック内に通水路を設けて水を導入する導入口から通水路に水か二酸化炭素かの何れか一方か両方かを導入しており、エンジンの燃焼による該内燃機関のエンジンブロックの熱を吸熱して該水は水蒸気となり該二酸化炭素は吸熱二酸化炭素にしており、一方燃料の燃焼で水素ガスは水蒸気と窒素を主成分とする高温の排ガスとなるかあるいは、水素ガスと一酸化炭素を燃料とした燃焼では水蒸気と二酸化炭素と窒素を主成分とする高温の排ガスとなり該エンジンブロックの排気口から排気管路に排出されており、排気管路に設けておる改質路か排気管路内に設けておる改質路かの何れか一方か両方かの改質路中(水蒸気又は/及び二酸化炭素の改質であるので名前を変更している)に触媒を対峙させており、該改質路上流に炭化水素化合物(例えばジメチルエーテル)を導入して該通水路で生成した水蒸気又は/及び吸熱二酸化炭素とともに触媒に接触させるか、新たに炭化水素化合物を導入し排ガス中の水蒸気とともに触媒に接触させるかのいずれかで、水素と一酸化炭素の合成ガスか水素と二酸化炭素かの何れかを生成して取り出し、該ガスを畜ガスする畜ガス手段を設けて畜ガスするかあるいは畜ガスタンク経由にするかの何れかにして当該内燃機関の燃料とすることを特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
上記発明のポイントは、
A.ラジエターを使って廃棄していたエンジンブロック内の熱を該エンジンブロック内で吸熱する吸熱手段として設けた事。
B.改質熱源を上記A.と排気ガス中の排熱上記B.との何れか一方か両方かにして排ガス管路自体を改質路とするかあるいは排ガス管路中に改質路を設けるかにしておる事。
C.生成したそれぞれのガスを畜ガスする畜ガス手段を設けた事。
D.炭化水素化合物(例えばジメチルエーテル)を特に水素と二酸化炭素に改質しておる事である。
第二の発明は、水(HO)と炭素(C)とを内燃機関の排熱にて反応させて水素(H)と一酸化炭素(CO)の混合気体を取り出す取り出し路(例えば吸熱反応流路に設けた吸熱反応設備)か該改質路中に触媒を対峙させて200℃〜300℃の熱で改質する合成ガス生成路かのいずれか一方か両方かを設け、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスタンク経由で当該内燃機関の燃料とするかあるいは第三の発明の合成ガス改質路(例えばプロトン導電セラミックス管改質路)で水素と二酸化炭素を取り出す出発材料の合成ガスにするかのいずれかにしておる事を特徴とする温室効果ガス排出削減策の内燃機関を提供する。
上記発明のポイントは、
A.改質熱源を上記A.と排気ガス中の排熱B.との何れか一方か両方かにして排ガス管路自体を改質路とするかあるいは排ガス管路中に改質路を設けるかにしておる事。
B.生成したそれぞれのガスを畜ガスする手段を設けた事。
C.200℃〜300℃の熱で改質する改質路を設けて、各改質路で吸熱後の排ガス熱の改質利用を可能にした。
第三の発明は、前記改質路か取り出し路か合成ガス生成路かの内何れか一方以上で取り出すかあるいは他所から取り入れた水素(H)と一酸化炭素(CO)の混合気体(合成ガス)かの何れかを改質する合成ガス改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、該合成ガス改質路に水素と一酸化炭素の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素と二酸化炭素(CO)を別々に取り出し、取り出した水素と二酸化炭素はそれぞれ畜ガスタンクを設けて、畜ガスしており、水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発原料の二酸化炭素としておる事を特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
上記発明のポイントは
A.改質熱源を上記A.と排気ガス中の排熱B。との何れか一方か両方かにして排ガス管路自体を改質路とするかあるいは排ガス管路中に改質路を設けるかにしておる事。
B.生成したそれぞれのガスを畜ガスする手段を設けた事。
C.前記改質路か取り出し路か合成ガス生成路で生成された合成ガスを水素と二酸化炭素とに別々に改質し、取り出しておる事。
第四の発明は、第一の発明乃至第三の発明に記載の改質路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、水素と一酸化炭素の取り出し路(例えば吸熱反応流路に設けた吸熱反応設備)か合成ガス生成路か合成ガス改質路(例えばプロトン導電セラミックス管改質路)かの内少なくともいずれか一方以上を設けた内燃機関を運搬機器に搭載し運搬機器の載内機関とすることを特徴とする、温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。
第五の発明は、第一の発明乃至第三の発明に記載の改質熱源をエンジンブロック内に設けた通水路にてエンジンブロック内で吸熱しておる事を特徴とする、温室効果ガス排出削減策の内燃機関。
第六の発明は、第一の発明乃至第四の発明に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
第七の発明は、第六の発明に記載の蓄電器の蓄電量が上限設定値になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス排出削減策の内燃機関関を提供する。
第八の発明は、第六の発明に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしたことを特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
第九の発明は、第六の発明の該内燃機関の走行形態の下り坂走行及び/または平胆路での惰力走行時での走行方法を制御する制御手段であり、前記下り坂走行ではエンジン0FFにして走行し(車輪の駆動以外の補助機器は例えば電気作動としてOFFしない)、スピードを制御するブレーキの制動力を発電動力にする手段を更に設けて該下り坂での走行動力の使用をOFFとするか及び/または更にブレーキの制動力を発電動力にする手段を設けるか及び/または更に、前記平胆路での惰力走行方法を自動制御する惰力走行制御手段を設けて燃費を向上させるかの内何れか1以上の手段にしておる事を特徴としたと温室効果ガス削減及び排出削減に寄与する内燃機関を提供する。
*前記下り坂走行方法であるが車輪の駆動力を電動モーターとしている場合はエンジンブレーキ状態走行時に該電動モーターを発電機とした提案でも良いが、エネルギーロスのある発電機で蓄電する方法か本願の駆動力を使用しない方法(制御手段)かの何れを使用しても燃費の向上と温室効果ガス削減排出削減策と成る。
*前記平胆路での惰力走行であるが、惰力走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(例えば2200回転)で1分程度走行をして仮に走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す走行方法であり、50年前には運送業では常識の走行方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。
第十の発明は、第一の発明乃至第四の発明に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素(H)と一酸化炭素(CO)の取り出し路(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて、該内燃機関の燃料(ガス)を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にして設けた事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器を提供する。
第十一の発明は、熱又は水蒸気又は二酸化炭素又は水素の内いずれか一種以上を廃棄している製造業又は設備例えば空調(Air Conditioner)の室外機に於いて、前記廃棄されている熱又は水蒸気のいずれか一方か両方を改質熱源とするかあるいは、水素は燃料として二酸化炭素は合成ガスに改質する出発材料にするかの何れかにして、水素(H)と一酸化炭素(CO)の取り出し路か、合成ガス生成路か、改質路か、合成ガス改質路かの内少なくともいずれかの一方以上を設けて該内燃機関の燃料(ガス)を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力とする事を特徴とする、第一の発明乃至第三の発明に記載の温室効果ガス排出削減策の内燃機関及び機器を提供する。
第十二の発明は、第一の発明乃至第四の発明に記載の畜ガス手段は、該畜ガスタンク{吸熱反応の合成ガスタンクか、あるいは水素ガスタンクか、二酸化炭素ガスタンクか、改質路から取り出した合成ガスタンクかの内少なくともいずれかの一方以上のタンク}を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する事を特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
第十三の発明は、第一の発明乃至第四の発明に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の載置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かのいずれかの手段を設けておる事を特徴とする、温室効果ガス排出削減策の内燃機関を提供する。
第十四の発明は、第一の発明乃至第四の発明に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質するかの何れかにして水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一種以上の物質を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物(例えば炭酸ナトリュウム、NaCO)を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかにする事を特徴とする温室効果ガス削減策の内燃機関及び/又は機器を提供する。
第十五の発明は、第一の発明乃至第四の発明に記載の内燃機関の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器を提供する。
第十六の発明は第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路Exと水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするか及び/又は上記第一の発明技術を上記排ガス管路の排出部に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、接触させて小規模炭化装置の燃料とする構成にするかのいずれかにして設けた事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器を提供する。
第十七の発明は、第十六の発明に記載の小規模炭素製造器の構成で炭化室CSと燃焼室FC間を通気出来る構成にして上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部にして設けて二酸化炭素を燃料に改質する構成にした暖房器(例えば化石燃料スト−ブ)として設けた事を特徴とする温室効果ガス削減及び排出削減に寄与する内燃機関及び/又は機器を提供する。 *上記小規模暖房器は寒冷地の多くでは化石燃料スト−ブを使用しており、化石燃料の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の改質流路(水蒸気又は/及び二酸化炭素の改質)の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO」の(排出)削減施策の1つと成る。
前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭等)であっても良く温室効果ガス削減及び排出削減策である。
最大の課題は地球温暖化に対処する「CO」の排出削減であり、燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に植物の炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる効果)を生んでおる、この事が最大の効果である。
この合成ガスを生成し、生成した合成ガスを燃料として使用しこの案件を実施する事は電力供給に大きな効果がある。
製造工程で廃棄されているもので、水素(H)と一酸化炭素(CO)の取り出し路か合成ガス生成路か改質路か合成ガス改質路かの改質路の出発材料と成る物かあるいは改質路の改質熱源となる物の内何れか1以上を利用する事で、上記内燃機関に供給していた補助燃料使用制御構造が不要となる構成も可能と成った。
上記植物の炭素を燃焼させ生成されるCOをも前記合成ガスに生成して更なる温室効果ガスCOの削減策としている事が前記植物の炭素使用の京都議定書のカーボンニゥートラルから更にCOを削減する事が出来、現存公知技術では実施出来なかった温室効果ガス削減策となる最大の効果を生んでおる、
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減する大きな効果がある。
温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。
第5の発明に記載したエンジンの負荷変動に関係ない「エンジンを一定した燃費の良い条件」(始動時は別条件)で運転して一定した吸熱反応条件で運転する事で、前記吸熱反応効率も上がり、かつ、燃費の良い条件にする事で燃費(Km/L)を向上させた事が大きな効果である、
排気ガス中の二酸化炭素を合成ガスに生成するサイクル(第一の発明)を設けた事で、第二の発明の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させた効果である。*水HOとCOを燃料に改質した手段を設けた事で前記効果を得る事が出来た。
内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。
現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来た。
化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。
上記第一の発明乃至第三の発明の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かあるいは熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを廃棄している製造業での上記改質技術を使用する形態かの内の何れかの実施形態である。
図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。
水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく巧みに組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
発明の詳細な説明
発明の具体的事例説明、第一の発明、
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入するかあるいは排気管路上流に炭化水素化合物(例えばジメチルエーテルCHOCH)と二酸化炭素を導入するかして、該内燃機関内の燃焼熱(前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路Kで水を水蒸気にした排熱)で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質路(二酸化炭素の改質であるので第一の発明の水蒸気改質と区別するため名前を変更している)の改質路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロム、マンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメチルエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに改質流路の触媒に改質剤の前記ガス{炭化水素化合物と水蒸気か吸熱気体の二酸化炭素とのいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とするかあるいは合成ガス改質の出発材料の合成ガスにするかのいずれかの構造構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している}上記内燃機関のエンジンブロック内の通水路Kで水を水蒸気にした排熱に替えて排気管路の排ガスからの吸熱した熱でも良い}。
前記CO改質で生成したガスは上記第一の発明の段落に記載しているが、一例として改質物質をジメチルエーテルとした場合は、ジメチルエーテルに水蒸気か二酸化炭素の何れか一方か両方かとともに触媒に接触させると、
A.CHOCH+HO(水蒸気)→2CO+4H→48.9 kal/mol
B.CHOCH++CO(二酸化炭素)→3CO+3H→58.8kal/mol
A+Bは概略1600kJ/moi
その反応温度は200〜500℃、好ましくは250〜450℃であり、その反応圧力は常圧〜10Kg/cm2が好ましいとしておる、
又改質触媒等の条件を変える事により下式の二酸化炭素と水素にもできる。
C.CHOCH+3HO→2CO+6H→29.3kal/mol
上記触媒には例えば銅系、コバルト系がありその改質温度は200℃から300℃が好ましいとしておる。
ジメチルエーテル1molを燃焼させた時の熱量は約1300kJ/moi
メタノールの水蒸気改質では.CHOH+HO→CO+3H→約12kcal/moi
炭化水素化合物をジメチルエーテルの他にメタンを用いた改質技術も多く公開されていて炭化水素化合物をメタンとする事も出来る。
公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001―213545,特開2007−177684,等に開示されており、前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、*この技術を本願に取り入れて、排ガス中の二酸化炭素を公知技術で「本願の内燃機関内発生熱で該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、更に該燃料生成による改質原料のカロリーをupさせておる事が本願の特徴点である。
前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出の削減は可能で、温室効果ガス排出削減策である。
前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに炭化水素化合物(例えばジメチルエーテル)を触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2、特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。
第二の発明の水と炭素とを内燃機関の排熱にて反応させて水素と一酸化炭素の混合気体を取り出す取り出し路であるが、例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である}。 前記内燃機関の燃焼行程後の排気管路MS内に吸熱反応流路Sを設けており、前記吸熱反応流路に炭素(主として植物からの炭素C)を導入して、前記水蒸気か加熱水蒸気と、炭素を、吸熱反応流路にて反応させて、水素Hと一酸化炭素CO(合成ガス)を取り出す手段かあるいは前記吸熱反応流路に触媒(niが主流)を対峙させ200℃〜300℃の熱で、前記合成ガス取り出し路で取り出し改質する手段水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクMTを設けており、該取り出した水素と一酸化炭素の混合気体を畜ガスするかあるいは畜ガスタンク経由で該混合気体を生成しておる当該内燃機関の燃料とするかの何れかにしておる事を特徴としたものであり、*前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で{その他の大きな吸熱源としては、エヤコン(Air Conditioner)冷媒圧縮熱や前記各種の改質で吸熱された後の排ガスがある}、強調すべきはエンジンのオーバーヒ−ト防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
上記は第二の発明の水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、乾燥改質法や部分酸化方法や、オートサーマル改質方法等もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段の1例として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス若しくは水素)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。 最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
第二の発明の1例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素COは生成され続けており畜ガスタンクに充填し続けている、従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、*前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化と供給量の制御をしておる。
第三の発明の合成ガス改質路は、第一の発明乃至第二の発明で生成した改質路か取り出し路か合成ガス生成路かの内いずれか一方以上で取り出すかあるいは他所から取り入れた水素(H)と一酸化炭素(CO)の混合気体(合成ガス)かの何れかを改質する合成ガス改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、前記該水素と、一酸化炭素の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水路にて水を水蒸気にした排熱である}にて水蒸気にしたものとを、例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300°C〜800°C)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)にて反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発材料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成構造である。*前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素(空気)を導入して再加熱しても良い。
第一の発明に記載の炭化水素化合物(例えばジメチルエーテルCHOCH)改質(第一の発明)の改質温度は200〜500℃、好ましくは250〜450℃でありあるいは合成ガス生成路の改質温度は200℃〜300℃であり、水蒸気改質(第二の発明)の改質温度は700°C〜I000°Cで好ましくは800〜900°Cであり排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメチルエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°C・第三の発明)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態かのいずれかの形態を取るのが好ましい。
更に内燃機関のエンジンブロックからの燃焼排気管路に触媒(安価で高活性のNi系触媒が主流)を対峙させる吸熱部を設け200℃から300℃近傍で吸熱反応させ水HOと炭素Cを、水素Hと一酸化炭素COの混合気体(合成ガス)を生成する合成ガス生成改質路を上記第一の発明乃至第三の発明の何れか1以上のいずれかの改質路下流に該改質路で吸熱後の排ガス熱を改質熱源とする合成ガス生成路を設け合成ガスを生成する事が出来、このことは吸熱量を多くすればする程更なる燃料生成手段を取り入れられる事を示している。
水素(H)と一酸化炭素(CO)の取り出し路と改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又は合成ガス生成路又は二酸化炭素改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロック(又はロータリーハウジング)の内に設けている通水路Kを、エンジンブロック1内に複数本設ける構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばピストンの数と同じにするか、ピストンの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K´を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上にして、エンジン燃焼工程後の排気口下流の管路に4種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素と一酸化炭素の混合気体または水素ガスと二酸化炭素を別々に取り出す構成構造にしても良い。
プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に合成ガスを水素と二酸化炭素を別々に改質して取り出すのに有利である。
二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。
第四の発明は水素と一酸化炭素の取り出し路と改質流路と合成ガス改質路とのいずれか一種か複数種かを設けている内燃機関を運搬機器に搭載し運搬機器の載内機関とする形態を取っており、前記運搬機器には二輪車・軍需兵器の車両・軍需兵器の船舶等々を含んでいる。
第五の発明は、第一の発明第三の発明に記載の改質熱源をエンジンブロック内に設けた通水路にてエンジンブロック内で吸熱しておる事を特徴とする物で改質熱源の大きいエンジンブロックから吸熱する構造にして設けた事が数個の改質路を設けられることに繋がっておる。
第六の発明は、第五の発明に記載の上記内燃機関に既存の水素ロータリーエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願を「上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造」にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
*走行状態(例えば信号待ち・右折時対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力走行時・追い越し&追い抜き急加速走行時・下り坂走行時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で走行するので燃費(Km/L)を向上させる効果がある。
第七の発明の蓄電器の蓄電量が設定値以上になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が設定値以下になると内燃機関エンジンで駆動する構造にした事で、動力が不要な走行状態が続く場合その間はエンジンを一定の条件(燃費の良い条件)で連続運転しているので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、エンジンをOFFにして蓄電電力で走行し、燃費の向上を図る事が出来る。
第八の発明の前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ走行時・下り坂走行時・惰力走行時等)が発生して、その間の前記走行条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。
第九の発明の前記下り坂走行時ではエンジンを0FFにして走行し(車輪の駆動以外の補助機器は例えば電気とする)、スピードを制御するブレーキの制動力を発電動力にする手段を更に設けて該下り坂での走行動力の使用をOFFとするか及び/または更にブレーキの制動力を発電動力にする手段設ける事で更なる燃費の向上と温室効果ガス排出削減となる。
前記平胆路での惰力走行であるが、惰力走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(例えば2200回転)で1分程度走行して、仮に走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数、電気駆動の場合は「ゼロ」に近いスロー回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す走行方法であり、50年前には運送業では常識の走行方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。
前記惰力走行のエンジン回転駆動力接続のON,OFFサイクルの単位を短くするほどスピードは滑らかになる(例えば10秒程度)。
第十の発明の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料を畜ガスタンク経由で前記動力発電の燃料とする構成かの何れかの手段にするかにしても良い。
水素と一酸化炭素の混合気体又は二酸化炭素又は水素の内何れか1以上は他所の設備で製造した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置するものである。
第十一の発明、熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ製造・塵焼却場・石油精製・石油製品製造業・化学工場等)及び/又は設備(例えば空調Air Conditionerの室外機)かの何れか一方か両方かのいずれかに於いて、前記廃棄されている熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを、改質路か取り出し路か合成ガス改質路かの改質技術の内何れか1以上の改質技術で改質するかあるいは改質の出発材料にするかのいずれかにして、生成した燃料を当該内燃機関の燃料として内燃機関を運転して、更に前記内燃機関の排ガス中の「CO2」を改質路手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し、その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷冷却置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。 *この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
第十二の発明、&第十三の発明の前記畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。
第十四の発明、例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウムは取り出して製品として販売し、水素を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で改質路か取り出し路か合成ガス生成路か合成ガス改質路かの改質技術の内何れか1以上の改質技術で改質して燃料を取り出す物で有れば前記炭酸水素ナトリュウムは1例とした物で炭酸水素ナトリュウムに限定するものではない。
第十五の発明の本願内燃機関の燃焼排ガスは、水素ガスを燃焼させると水と窒素を主構成とする排気であり、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発材料の水として使用する物で、前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り水を回収する事を特徴とする、水回収手段、*上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが積載量を大きくすれば積載しておる水(重量)を運搬する為の燃料が必要と成るので水を回収して循環使用すれば積載量を少なく出来更に水タンク中の水は温水(吸熱手段)としておるので該水をエンジンブロックの水の導入口に導入した水の循環使用が出来る、このことは温室効果ガス削減及び排出削減に寄与する事になる。 *更に海水面を走行する船舶等の内燃機関の冷却水は海水であり、本願のエンジンブロック内に設けた前記通水路K&K´に加えてKを設けて該K´又はKの何れかの通水路にて海水を内燃機関の排熱で真水に分離するとともに水蒸気にして本願の改質手段の水蒸気として使用する海水から水蒸気を取りだす海水分離水蒸気生成手段として、残りの海水はミネラル成分を含んだ食塩に生成して取り出す食塩分離回収手段とする事も出来る。
第十六の発明は第一の発明乃至第四の発明に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするか、及び/又は上記第一の発明の改質手段技術を上記排ガス管路の排出部(例えば煙突)に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、触媒に接触させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器である。
第十七の発明は上記小規模炭素製造器の構成で炭化室CSと燃焼室FCの隔壁を通気出来る構成にして上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部を設け、更に上記第一の発明の改質手段技術を上記排ガス管路の排出部(例えば煙突)に設けた構成にする事で、石炭等の化石燃料を使用している暖房器(例えば石炭スト−ブ)を二酸化炭素の排出削減策の暖房器としており、*此のことは寒冷地の多くは石炭スト−ブを使用しており、石炭の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の第一の発明と第二の発明の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO」の排出削減となる施策の1つの手段である。
前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。
内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。
この問題を解決する本願の手段(第二の発明の手段)は、 *消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用して合成ガスを生成して畜ガスタンクに畜ガスした複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置場所と車が大破する様な事故時に対応出来る構成構造手段として設けた事)が、本願を「実施可能案」にした大きなポイントである。(図1,図2参照)
前記畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている。
公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明をしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめておる。
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい、加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
木材(古木・製材屑等含む)からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項2の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
エンジンブロック内で吸熱して水を水蒸気に→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、*この案の件案事項としては畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの載置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安の水素は水素5Kgで20MPaの圧力では容器内容積が375L必要となり、マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので、500Km走行するには約4倍の375Lの水素タンクが必要と成るが375L/35MPaの水素を74Lの容器で賄うには、約190MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)
2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレンを、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれば、本願第一の発明から第三の発明の改質技術に加えて第六の発明から第九の発明と第十五の発明を組み合わせれば補助燃料を使用しなくても、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。 従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。 従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と設定したい畜ガス圧と前記法律の範囲内で有れば自在に設計できる。
第一の発明乃至第三の発明に記載の内燃機関から生成した合成ガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。
図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、 *図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HO2を水蒸気Jにする通水路Kをもうけて、水HO(又は水と二酸化炭素)を供給口より供給して水蒸気生成手段(又は/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気0を供給する管路3を設けて空気0を吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管MSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成する構成Cで、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターE2に供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図であるが、
前述の構成に加えて排気管路を複数に分岐して該排気管路を改質部として触媒を対峙させており、該改質部の上流に炭化水素化合物と二酸化炭素を導入して排ガス中の水蒸気とともに該触媒に接触させる構成Caにする事も出来るし、又は上記排気管路内に該改質路を設けて二酸化炭素と炭化水素化合物(例えばジメチルエーテルCHOCH)を導入して改質流路の触媒に接触させ排ガス中の排熱にて反応させて、水素と一酸化炭素の合成ガスを生成する構成Cbであり、更に上記改質した合成ガスを下流に設けている合成ガス改質路に導入して再度排熱にて反応させ水素と二酸化炭素を取り出す構成Ccにも出来る事を示した概略構成図である。
上記エンジンブロック内に水HO2を水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としておる通水路Kに加えて、COを加熱する通気路K´とCO供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCOを改質する管路に供給しており、COを改質する管路の他のいずれかの管路を水蒸気改質する管路にするかあるいは合成ガス生成路の管路にするか第三の発明の合成ガス改質路にするかの何れかに設けて、水蒸気Jは全てか1以上かの管路に供給して必要に応じて前記管路K、K´の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。
図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成る)ので好ましい形態である。
上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。 前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。
図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec (一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。
上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
上記補足記載であるが、前記水蒸気改質(合成ガス取り出し路か、合成ガス生成路)で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
図3は図1Aの前後方向断面図で、ロータリーエンジンの水素対応構造部の説明は図6に記載しており後述する。ロータリーエンジンのロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、他方のロータリーエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス・水素等の内の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。 CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しても良い。
図5は特開2007−211608の水素ロータリーエンジンを示す概略図である。
図6は水素ロータリーエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。 更にローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
図7はレシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点栓の単筒での概略構成図であり既存のディーゼルエンジンのインテークマニホールドと水素の噴射弁等を変更すれば既存のディーゼルエンジをほぼそのまま使える事を現した図。
京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCO2は植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の 25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である)
太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100, 000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とすれば、温室効果ガスCOの排出削減は、より早期に達成出来ると言える。
燃料とする炭素Cの調達コスト削減の可否が、本願第二の発明の実用化の成否を握っている。炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、酸素が入らない環境で植物原料(木材等)を加熱して炭化させる炭化室CSに木材等を投入して、前記炭化室を加熱する加熱用燃料(木材等の植物原料又はその他の燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、炭化室の内壁に燃焼室FCの排ガス排出管路Exと水タンクから導入した水H2Oを水蒸気にする水蒸気生成手段の管路Jを設けており、前記炭化過程で発生するガスC4を水蒸気とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造であり、
上記第一の発明の段落に記載している構造の改質部(COの改質)を、上記排ガス管路の排出部(例えば煙突)に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かを、反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発材料に出来る。
前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロム、マンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。
炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガスで行うか直接天然ガスを燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場・石油精製工場等からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運搬機器での輸送よりはるかに輸送コストを下げる事が出来る。
アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。 更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。
圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリ―とか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。
本願発明の内燃機関は合成ガスを又は水素を燃料としているが、該合成ガス又は水素又は二酸化炭素は運搬機器内でのパイプ配管供給であり、該内燃機関で生成された合成ガス又は水素又は二酸化炭素を畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。
水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり水素あるいは合成ガスを前記パイプラインによる輸送とするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
マツダ(企業名)の水素ロータリーエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。
前述炭素の供給源には間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素にして麦藁を前記植物の炭素にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、更に建築廃材・製材残材・古木等もある。
本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。
この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。 何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。 A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。 A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。 エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。 レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。 特開2002-256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。 小型炭素生成器の1例図。
温室効果ガス排出削減に寄与する内燃機関であって、炭素Cと水HOを内燃機関内で合成ガス(H+CO)に生成し、生成した合成ガスを当該内燃機関の燃料とするかあるいは前記合成ガスの燃焼により排出される二酸化炭素をも分離し内燃機関内で合成ガスH+CO及び水素に改質し該水素を当該内燃機関の燃料とする物に関する技術である。
温室効果ガスが地球温暖化の大きな要因であり、「温室効果ガスを削減すべきである」と考えるのは世界共通の認識であるが、「具体的数値目標を・・」と言う段階に成ると、国際価格競争時代の今、温室効果ガス削減コストを掛ける事となるので話が進展していないのが現状である。
2014年現在の温室効果ガス排出削減策の対象である自動車(内燃機関)の動力源としては、電気自動車,水素とのハイブリット、あるいは水素のみを燃料としたものや「バイオエタノール」を燃料としたエンジンシステム特開2008−298030や「バイオエタノール」の燃料を水素と一酸化炭素とを含む燃料に改質して該改質ガスを燃料とする、温室効果ガスを排出削減する技術もあるが、しかし前記先行技術で製品化するにはそれぞれ解決しなければならない問題点が残っており、それぞれの問題は解決途上で決め手を欠いている部分を残しているのが現状と認識している。
又前記技術の内、電気を動力源とする技術では電気の製造は2011年の電気事業連合会の統計によると、日本の総発電量の約82%が火力発電であり該火力発電は石炭を始めとする化石燃料を使用しており「CO」を排出しているのでこの発電設備からの「CO」を排出しない策が実現しなければ、電気を動力源としても地球温暖化の温室効果ガスの削減に寄与する内燃機関の動力源とは言えない。又前記技術の動力源を電気として温室効果ガスを削減する「CO」を排出しない電力供給源には原子力発電がある、しかし「福島原発」の問題もあり、新たに新設するのは困難であり廃炉の方向に向かうとの見方が大勢を占めていると思っている。
前記「CO」を低減させる設備は既に存在している、その方法は排出された二酸化炭素を地底層深く(A)もしくは海底層に隔離(Sequestiern)(B)する提案である。2014年にアメリカで世界一の規模の石炭火力発電所が完成しているが、この発電で排出される「CO」の処理は1500mの地底層に封じ込める構造(前記A)であり、この発電所の建設費用は通常の2倍かかつており、更に1500mの地底層に封じ込めるためのエネルギー費用がかかり、その費用は電気料金に上乗せされ消費者負担と成ると言う問題がある。
前記「CO」を改質して合成ガスまたは水素ガスを得る技術は製鋼所の高炉ガス・転炉ガスの排ガスのエネルギー化技術として色々な技術が次々と提案されており現業部門ですでに実用化されておる技術も多くある、又火力発電所の発電工程で排出されるガスについても同様にエネルギーの効率UPに活用されておるが、その殆どが大規模装置産業の定地形態物であり、移動形態物に搭載可能な内燃機関内で該内燃機関から排出する「CO」を改質して該内燃機関の燃料としておる実現可能技術は提案されておらない。
特許5647364 特開平11−106770 特許4231735 特開2007−177684 特開昭57−150439 特許4609718 特願平10−543729
補助燃料によって燃焼されるロータリーエンジンと、該ロータリーエンジンのローターハウシングに水を導入管から供給する水供給手段と、供給された水が、ローターハウシングの熱で水蒸気化され、この水蒸気に炭素を供給するとともに、ロータリーエンジンの燃焼工程後の排熱を利用して、吸熱反応化させて、燃料を生成し、前記補助燃料使用中に生成し続けるガスを溜める畜ガス手段を備え、この畜ガス手段の畜ガスと前記補助燃料とを切り替えて、ロータリーエンジンに供給する、切換え手段を備えている構造を特徴とする技術(例えば特許文献1)があり *本願はこの技術をベース技術として、燃料の燃焼による排気ガス中の二酸化炭素(CO)も燃料に改質する技術を取り入れる事で、更なる温室効果ガス排出削減策と成る技術にしている。
ジメチルエーテルに水蒸気または二酸化炭素を加えて触媒反応させることによりジメチルエーテルを改質して合成ガスまたは水素ガスを得、このガスを原動機用燃料として使用することを特徴とする、ジメチルエーテル改質ガスを使用する発電方法、ジメチルエーテルの改質を200°Cから500℃の中低温廃熱を利用して行うことを特徴とする上記の発電方法(例えば特許文献2)があり、 *本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料に改質する事で燃費の向上を図り該内燃機関からの温室効果ガス(CO)の排出を「ゼロ」に近ずけ、更に植物の炭素同化作用による温室効果ガス削減策と成る技術にしている。
製鉄所で発生する副生ガスから化学吸収法にて二酸化炭素を分離回収する方法であって、当該ガスから化学吸収液で二酸化炭素を吸収後、化学吸収液を加熱し二酸化炭素を分離させるプロセスに製鉄所で発生する500℃以下の低品位排熱を利用または活用することを特徴とする二酸化炭素の分離回収方法。(例えば特許文献3)があり、 *本願の二酸化炭素を分離回収する技術とするには排ガスを数種の透過膜を透過させる膜型透過機器の設置や真空ポンプ等を運搬機器の載内機関と言う限られたスペースに設置出来る構成構造にすると言う問題が残っている。
車両二酸化炭素装置を自動車の排気系に於ける消音機と排気管との間に取り付けており、二酸化炭素を吸収材と三方性の電磁弁を介して接続されているCO吸収部を設けて、二酸化炭素を吸収したアルカノン化合物水溶液から電磁弁を介してエンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であり、分離した二酸化炭素は使用済みのアルカノールアミン化合物の再生に使用される技術(例えば特許文献4)がある。この技術は自動車の排気ガス中の二酸化炭素を分離する技術で分離した二酸化炭素の用途として二酸化炭素を吸収したアルカノン化合物水溶液の再生に使用している技術であるが、 *エンジンの冷却熱の吸熱により二酸化炭素を放出する構造構成であるが、本願はエンジンブロックから直接吸熱しており、該熱は水を水蒸気にする水蒸気生成手段に使用しておる点が異なるが、この技術は自動車の排気ガス中の二酸化炭素を分離する技術として本願にも採用できる。
炭化水素と水蒸気若しくは二酸化炭素又はそれらの混合物とを正味吸熱条件に於いて反応させて、炭素化合物及び水素を含む気体とする方法であってニッケル及びコバルトの化合物及びアルカリ金属酸化物と酸性若しくは両性酸化物または混合酸化物との不水溶性化合物からなる触媒を使用する事を特徴とする上記方法に関する技術(例えば特許文献5)がある。 *本願は上記特許文献1の技術に、この技術の1部を本願に取り込む事で特許文献1の技術で排出される二酸化炭素をも内燃機関の燃料とする技術にしている。
水素ロータリーエンジンの燃料噴射装置であって、水素ロータリーエンジンの作動室を形成するローターハウジングに取り付けられ、水素ロータリーエンジンの作動室に水素を直接噴射する水素インジェクタと、この水素インジェクタが作動室内に圧縮行程中の所定のタイミングで水素を噴射するように噴射タイミングを制御する水素噴射タイミング制御手段と、水素インジェクタからの水素が、水素ロータリーエンジンの低回転域では圧縮行程の作動室のリーディング領域に向かって流出し、高回転域では圧縮行程の作動室の中央領域に向かって流出するように、水素の噴射方向を設定する水素流出方向設定手段と、を有することを特徴としている技術(例えば特許文献6)がある。 *本願の合成ガスの水素ガスと一酸化炭素は、エネルギー的には殆ど 等価でありつまり(高位)発熱量はほぼ同じであるので、内燃機関の中で本願の水素を燃料とする構造にはロータリーエンジンで水素を燃料とする構造の説明する先行文献が最適であるので取り上げている。
含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法であって、該触媒として金属酸化物からなる担体にロジュウム、ルテニュウム、イリジウム、パラジウム、及び白金の中から選ばれる少なくとも一種の触媒金属を担持させた触媒を使用したものに関する技術(例えば特許文献7)がある。
最大の課題は地球温暖化に対処する「CO」の排出削減・排出抑制であり、その為の施策の1つの方法を構成する機構を発明する事であり、
例えば炭素化合物のメタノール等燃料を内燃機関での燃焼のエンジンブロック下流の排ガスを熱源にして該内燃機関の排気管路にて改質して、1例として水蒸気改質をして該エンジンを連続運転するには該熱源で生成する燃料の量が消費する燃料の必要量に満たないので連続運転出来ない、前記改質熱源を何処から調達するかあるいは該排ガスの温度を高くする(例えば燃料をメタノールに比して高カロリーな物質に改質して排ガスの温度を高くする等)手段と、改質したそれぞれの複数種のガスを畜ガスする畜ガスタンクで必要なときに必要な量を出すことが出来て、かつ、車が大破する衝撃をうけても爆発しない構造で内容積を広く、低い圧縮圧で畜ガス出来る車載可能な構成構造の畜ガスタンクを発明することである。
最大の課題を解決する為の、第一の発明は、
水素を燃料とした内燃機関であって、該内燃機関のエンジンブロック内に通水路を設けて水を導入する導入口から通水路に水と二酸化炭素を導入しており、エンジンの燃焼による該内燃機関のエンジンブロックの熱を吸熱 して該水は水蒸気となり該二酸化炭素は吸熱気体の二酸化炭素にしており、一方燃料の燃焼で水素ガスは水蒸気と窒素を主成分とする高温の排ガスとなり該エンジンブロックの排気口から排気管路に排出されており、排気管路に設けておる改質路(補足名称として二酸化炭素改質部としておる)に触媒を対峙させており、該改質路上流に炭化水素化合物(例えばジメチルエーテル)を導入して該通水路で生成した水蒸気と吸熱気体の二酸化炭素とともに触媒に接触させて、水素と一酸化炭素の合成ガスを生成して取り出す改質路か(補足名称として二酸化炭素改質部としておる)合成ガス生成路(補足名称として低温水蒸気改質部としておる)かの何れかの改質部で生成された水素と一酸化炭素の合成ガスを分離改質する合成ガス改質路(補足名称として水素分離改質部としておる)を設けており、該合成ガス改質路に水素と一酸化炭素の合成ガスを導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素と二酸化炭素を別々に取り出しており、上記水素と二酸化炭素と合成ガスと炭化水素化合物はそれぞれ別々の畜ガスタンクを設けて畜ガスしておる事を特徴とする温室効果ガス排出削減方法を提供する。
(畜ガスタンクに畜ガスしておる二酸化炭素は第一の発明に記載の水を導入する導入口から通水路に導入する二酸化炭素としておる)
第二の発明は、第一の発明に記載の改質熱源をエンジンブロック内の熱を該エンジンブロック内で吸熱した熱と、燃焼による排気ガスの熱と、改質路(補足名称として二酸化炭素改質部としておる)か合成ガス改質路(補足名称として水素分離改質部としておる)かの何れかの改質路で改質使用後の排気ガスの熱を改質熱源として合成ガス生成路(補足名称として低温水蒸気改質部としている)に使用していることを特徴とする、温室効果ガス排出削減方法を提供する。
・第一の発明の内燃機関を運搬機器に搭載し運搬機器の載内機関とする。
・本願発明の内燃機関の一実施例であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしている。
・本願発明の内燃機関の一実施例であって、蓄電器の蓄電量が上限設定値になると内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると内燃機関エンジンで駆動する構造にしている。
・本願発明の内燃機関の一実施例であって、該内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしている。
・本願発明の一実施例であって、該内燃機関の走行形態の下り坂走行及び/または平胆路での惰力走行時での走行方法を制御する制御手段であり、前記下り坂走行ではエンジンOFFにして走行し(車輪の駆動以外の補助機器は例えば電気作動としてOFFしない)、スピードを制御するブレーキの制動力を発電動力にする手段を設けるか及び/または更に、前記平胆路での惰力走行方法を自動制御する惰力走行制御手段を設けて燃費を向上させるかの内何れか1以上の手段にしておる。
*前記下り坂走行方法であるが車輪の駆動力を電動モーターとしている場合はエンジンブレーキ状態走行時に該電動モーターを発電機とした提案でも良いが、エネルギーロスのある発電機で蓄電する方法か本願の駆動力を使用しない方法(制御手段)かの何れを使用しても燃費の向上と温室効果ガス削減排出削減策と成る。
*前記平胆路での惰力走行であるが、惰力走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(例えば2200回転)で1分程度走行をして仮に走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す走行方法であり、50年前には運送業では常識の走行方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。
本願発明の一実施例であって内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素(H)と一酸化炭素(CO)の取り出し路(例えば吸熱反応流路に設けた吸熱反応設備)か、又は改質流路(炭化水素化合物と水蒸気と吸熱気体の二酸化炭素とを触媒接触させる改質路)か、合成ガス改質路(例えばプロトン導電セラミックス管改質路)か、の内少なくともいずれかの一方以上を設けて、該内燃機関の燃料(ガス)を生成する構成にして、現有の火力発電設備に併合する形態にする手段とするかの、何れかの手段にしておる。
・本願発明の内燃機関の一実施例であって、熱又は水蒸気又は二酸化炭素又は水素の内いずれか一種以上を廃棄している製造業又は設備例えば空調の室外機に於いて、前記廃棄されている熱又は水蒸気のいずれか一方か両方を改質熱源とするかあるいは、水素は燃料として二酸化炭素は合成ガスに改質する出発材料にするかの何れかにして、水素と一酸化炭素の取り出し路か、合成ガス生成路か、改質路か、合成ガス改質路かの内少なくともいずれかの一方以上を設けて該内燃機関の燃料(ガス)を生成する構成にして当該内燃機関の燃料として内燃機関を運転して,その回転力をそのまま動力発電機の発電動力としておる。
・請求項に記載の、該畜ガス手段は、該畜ガスタンク{吸熱反応の合成ガスタンクか、あるいは水素ガスタンクか、二酸化炭素ガスタンクか、改質路から取り出した合成ガスタンクかの内少なくともいずれかの一方以上のタンク}を車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載しておる。
・本願発明の一実施例であって、該畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の載置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かのいずれかの手段を設けておる。
・本願発明の内燃機関の一実施例であって、該内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物(例えば炭酸水素ナトリュウム、NaHCO)の一方かあるいは両方かの何れかを加工して熱分解若しくは改質するかの何れかにして水素Hか、炭素Cか、二酸化炭素化CO、の内少なくともいずれかの一種以上の物質を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物(例えば炭酸ナトリュウム、NaCO)を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とする出発原料とするかのいずれかに出来る。
・本願発明の一実施例であって、該内燃機関の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる。
・本願発明の内燃機関の一実施例で植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路Exと水HOを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするか及び/又は上記第一の発明技術を上記排ガス管路の排出部に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、接触させて小規模炭化装置の燃料とする構成にするかのいずれかにして設ける。
・上記記載の小規模炭素製造器の構成で炭化室CSと燃焼室FC間を通気出来る構成にして上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部にして設けて二酸化炭素を燃料に改質する構成にした暖房器(例えば化石燃料ストーブ)として設け
*上記小規模暖房器は寒冷地の多くでは化石燃料ストーブを使用しており、化石燃料の燃焼による二酸化炭素の排出も無視出来ないものであり、本願の改質流路(水蒸気又は/及び二酸化炭素の改質)の構成構造を適用する事で本願の最大の課題の地球温暖化に対処する「CO」の(排出)削減施策の1つと成る。
前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭等)であっても良く温室効果ガス削減及び排出削減策である。
最大の課題は地球温暖化に対処する「CO」の排出削減であり、燃料を主に植物の炭素Cを使用する事で、本願の課題である、温室効果ガス削減施策課題の1つを構成する温室効果ガス削減策の内燃機関とする事が出来た、更に前記主に炭素Cの燃焼により発生するCOをも燃料に改質しており、該COをも燃料に改質した事が、更なる温室効果ガス削減と燃費を驚愕するほど向上させる効果(例えば20Km/Lを25Km/Lにした程度ではなく2倍の40Km/L以上に向上させる効果)を生んでおる、この事が最大の効果である。
この合成ガスを生成し、生成した合成ガスを燃料として使用しこの案件を実施する事は電力供給に大きな効果がある。
更に本願の内燃機関の炭素を化石燃料の炭素使用としてもCOを100%排出カットは出来ないまでも少なくとも数十%は削減する大きな効果がある。
温室効果ガスCOの排出枠の買い取りビジネスが活性化する中、日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を数十%削減出来る。
排気ガス中の二酸化炭素を合成ガスに生成するサイクルを設けた事で、の内燃機関から排出された「CO」を燃料に改質しており、更なる「CO」の排出削減が出来るとともに、燃費を向上させた効果である。
*水HOとCOを燃料に改質した手段を設けた事で前記効果を得る事が出来た。
内燃機関のエンジンブロック冷却水路及び冷却水配管を含むラジエターが不要になる。
現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るので送電・受電設備を非常に少なくする事が出来た。
化石エネルギーの価格変動(及び為替レート変動)に日本の経済が影響される割合が少なくなる。
上記発明の内燃機関を自動車(2サイクル2輪車・4サイクル2輪車を含む)・船舶・鉄道のディーゼルエンジン車・建設機械・軍需兵器の車両・軍需兵器の船舶等々の運搬機器に搭載する形態での実施であり、前記動力発電機を火力発電設備の代替として使用する形態か、あるいは現存火力発電設備でタービンを回す役目を終えた水蒸気と、新たに投入する炭素を内燃機関の吸熱反応流路に導入して前記燃料不足分に充当する構成にして現有の火力発電設備に併合する形態かあるいは熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを廃棄している製造業での上記改質技術を使用する形態かの内の何れかの実施形態である。
図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いと ころは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。
水素と一酸化炭素はエネルギー的には殆ど等価であるつまり(高位)発熱量はほぼ同じである、従って本願の明細書に於ける詳細説明は水素を燃料とする公知技術を引用している部分が多々ある。さらに「CO」を合成ガスに改質する技術についても公知技術を引用している部分が多々ある。
本願の主構成は多種の公知技術(中には特許登録されており権利が生きている物も一部含んでいる)を引用しているが、個々の公知技術のみでは得ることが出来ない物を本願で効果を得るべく巧みに組み合わせた構成構造にしたことで、前記温室効果ガス排出削減と燃費の向上の面に於いて驚愕する様な効果を得る事が出来た。
発明の詳細な説明
発明の具体的事例説明、
内燃機関燃焼ガス中の二酸化炭素を、水に吸収させる二酸化炭素吸収手段(A)を設けるかあるいは、排気ガス中の二酸化炭素を分離する分離手段(B)を設けて、前記(A)、(B)をそれぞれ畜水手段&該畜ガス手段を設けてそれぞれ畜水,畜ガスして、前記(A)、(B)の何れか1方か両方かを、前記内燃機関のエンジンブロックに水を供給する導入口(1図B、HO入り口)に水とともに導入するかあるいは排気管路上流に炭化水素化合物(例えばジメチルエーテルCHOCH)と二酸化炭素を導入するかして、該内燃機関内の燃焼熱(前記内燃機関の燃焼熱は内燃機関のエンジンブロック内の通水路Kで水を水蒸気にした排熱)で水は水蒸気に、二酸化炭素は吸熱気体の二酸化炭素にしており、燃焼工程後の排ガス流路に設けた改質路(二酸化炭素の改質であるので第一の発明の水蒸気改質と区別するため名前を変更している)の改質路中に触媒(一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロム、マンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物)を対峙させており、該改質路上流に炭化水素化合物(例えばジメチルエーテルCHOCH)を導入して該水蒸気と吸熱気体の二酸化炭素とともに改質流路の触媒に改質剤の前記ガス{炭化水素化合物と水蒸気か吸熱気体の二酸化炭素とのいずれか一方か両方か}を接触させる事で、水素と一酸化炭素の合成ガスを生成して、畜ガスタンク経由で該エンジンの燃料とするかあるいは合成ガス改質の出発材料の合成ガスにするかのいずれかの構造構成にしたものであり、{本願の解説では(B)で解説しており、(A)の詳細解説は省略している}上記内燃機関のエンジンブロック内の通水路Kで水を水蒸気にした排熱に替えて排気管路の排ガスからの吸熱した熱でも良い}。
前記CO改質で生成したガスは上記第一の発明の段落に記載しているが、一例として改質物質をジメチルエーテルとした場合は、ジメチルエーテルに水蒸気か二酸化炭素の何れか一方か両方かとともに触媒に接触させると、
A.CHOCH+HO(水蒸気)→2CO+4H→48.9kal/mol
B.CHOCH++CO(二酸化炭素)→3CO+3H→58.8kal/mol
A+Bは概略1600kJ/moi
その反応温度は200〜500℃、好ましくは250〜450℃であり、その反応圧力は常圧〜10Kg/cmが好ましいとしておる、
又改質触媒等の条件を変える事により下式の二酸化炭素と水素にもできる。
C.CHOCH+3HO→2CO+6H→29.3kal/mol
上記触媒には例えば銅系、コバルト系がありその改質温度は200℃から300℃が好ましいとしておる。
ジメチルエーテル1molを燃焼させた時の熱量は約1300kJ/moiメタノールの水蒸気改質では.CHOH+HO→CO+3H→約12kcal/moi
炭化水素化合物をジメチルエーテルの他にメタンを用いた改質技術も多く公開されていて炭化水素化合物をメタンとする事も出来る。
公知技術の二酸化炭素を吸収材に吸収させる二酸化炭素吸収手段(A)及び二酸化炭素分離取り出し手段(B)であるが、前記(A)には、特表2010−526759,特許3345782,特開2009−77457,特開2001−213545,特開2007−177684,等に開示されており、前記(B)には特願2001−48591(カルマン渦),特開2007−177684,等に開示されており、二酸化炭素改質反応による水素及び一酸化炭素の製造法の先行技術には特開平08−231204や特表2010−526759合成ガスの製造方法(CO2の改質を含む)特許文献2の特開平11−106770等々数多く有る、*この技術を本願に取り入れて、排ガス中の二酸化炭素を公知技術で「本願の内燃機関内発生熱で該内燃関の燃料に改質しておる事」が大きな温室効果ガス排出削減策であり、さらに前記廃棄されていたエネルギー(概略70%で、改質に使用出来るのは概略60%)で燃料を生成しており、更に該燃料生成による改質原料のカロリーをupさせておる事が本願の特徴点である。
前記本願発明の内で、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは、化石燃料使用の炭素Cであっても良く前記二酸化炭素を合成ガスに改質しておるので少なくとも数十%のCO排出の削減は可能で、温室効果ガス排出削減策である。
前記二酸化炭素改質は、二酸化炭素と水蒸気の改質材とともに炭化水素化合物(例えばジメチルエーテル)を触媒と接触させて水素(H)と一酸化炭素(CO)の混合気体を取り出す技術(特許先行文献2、特開平11−106770)を本願に組み込んで二酸化炭素をも該内燃機関の燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。
例えば内燃機関のエンジンブロック1内に通水路Kを設けて、水HOを水蒸気Jにするかあるいは水蒸気を加熱水蒸気にするかのいずれかを水蒸気生成手段として設けており、{この時の加圧圧力は概略5Kg/cm程度である}。前記内燃機関の排熱は主として内燃機関のエンジンブロック内の通水路で吸熱し水を水蒸気にするために使用した排熱と、排ガス管路にて排ガス中の熱を吸熱反応させた排熱とであり、前記エンジンブロック内の排熱と排ガス管路にて排ガス中の熱を吸熱反応させた排熱の主として2か所からの排熱であることを特徴とする物で{その他の大きな吸熱源としては、エヤコン(Air Conditioner)冷媒圧縮熱や前記各種の改質で吸熱された後の排ガスがある}、強調すべきはエンジンのオーバーヒート防止のためにラジエターで冷却していた(動力を使って捨てていた)熱を水蒸気生成手段として活用しておることである。
上記は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、乾燥改質法や部分酸化方法や、オートサーマル改質方法等もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
内燃機関のエネルギー効率{ロータリーエンジンの場合およそ30%強で、合成ガス反応に利用可能な廃(排)熱は60%程度}から見て、必要量の100%の燃料を生産するに足りない場合は補助的に他所から補足する補足手段を設けており、前記補足手段の1例として本願は補助タンクSTを設けており、該補助タンクの燃料(主に植物の炭素を原料としたバイオエタノールもしくは合成ガス若しくは水素)を必要量の100%の燃料を生産するに足りない場合の補足燃料としている。 最終的には前記炭素は稙物からの炭素100%使用に近づける事で温室効果ガス排出削減策とている。
本願発明の1実施例としてサブタンク燃料と前記内燃機関で生成した混合気体とを切換えて使用する複合燃料方式をとっている、しかし前記サブタンク燃料を使用している間に主燃料である水素Hと一酸化炭素CO(合成ガス)を生成していると、生成した生成ガスを畜ガスする所が無く畜ガスする畜ガス手段を設ける必要があり、本願は畜ガス手段の畜ガスタンクを設けており、サブタンク燃料を使用している間でも主燃料である水素Hと一酸化炭素COは生成され続けており畜ガスタンクに充填し続けている、従って畜ガスタンクの設定上限まで充填されると燃料切換えバルブで合成ガスを畜ガスタンク経由での使用に切り替え該畜ガスタンクの設定下限に成るとサブタンク燃料を使用する燃料切換え手段を設けたエンジン構造としている、*前記内燃機関で生成した混合気体を畜ガスタンク経由での使用にしているのは、混合気体も原材料や生成場所の温度によって生成されたガス成分構成が変わるので一端畜ガスタンクに取り込む事で生成ガスの均一化と供給量の制御をしておる。
合成ガス改質路は、第一の発明乃至第二の発明で生成した水素(H)と一酸化炭素(CO)の混合気体(合成ガス)を改質する合成ガス改質路(例えばプロトン導電セラミックス管改質路)を排ガス流路に設けて、前記該水素と、一酸化炭素の混合気体と、内燃機関の排熱{前記内燃機関の排熱は内燃機関のエンジンブロック内の通水路にて水を水蒸気にした排熱である}にて水蒸気にしたものとを例えばプロトン導電セラミックス管内で再度内燃機関の排熱(300℃〜800℃)(前記内燃機関の排熱は排ガス管路にて排ガス中の熱を吸熱させた排熱である)で反応させて水素(H)と二酸化炭素(CO)を別々に取り出し、前記水素と二酸化炭素を別々に畜ガスする水素畜ガスタンクと二酸化炭素畜ガスタンクを設けて、それぞれに畜ガスして、二酸化炭素は、前記水素を取り出す出発材料として、前記取り出した水素は水素畜ガスタンク経由で当該内燃機関の燃料とする構成である。*前記排気管路内の排ガス温度が不足する場合には前記合成ガス改質路の上流に排ガス燃焼部を設けて、排ガス中の未燃焼燃料ガス又は未燃焼炭素粒に不足温度を補う程度分の畜ガスしている燃料と酸素を導入して再加熱しても良い。
第一の発明に記載の炭化水素化合物(例えばジメチルエーテルCHOCH)改質の改質温度は200〜500℃、好ましくは250〜450℃でありあるいは合成ガス生成路の改質温度は200℃〜300℃であり、水蒸気改質の改質温度は700°C〜1000°Cで好ましくは800〜900°Cであり排気管路上流に水蒸気改質部を設け、その下流に炭化水素化合物(例えばジメチルエーテルCHOCH)の改質部を設けるか、あるいは前記水蒸気改質の下流に合成ガス改質路(改質温度は300°C〜800°C)を設けるかあるいは、水蒸気改質の下流に前記合成ガス改質路を設け更に下流に炭化水素化合物(例えばジメジエーテルCHOCH)の改質部を設ける形態かのいずれかの形態を取るのが好ましい。
更に内燃機関のエンジンブロックからの燃焼排気管路に触媒を対峙させる吸熱部を設け200℃から300℃近傍で吸熱反応させ水HOと炭素Cを、水素Hと一酸化炭素COの混合気体(合成ガス)を生成する合成ガス生成改質路を上記第一の発明の改質路下流に該改質路で吸熱後の排ガス熱を改質熱源とする合成ガス生成路を設け合成ガスを生成する事が出来、このことは吸熱量を多くすればする程更なる燃料生成手段を取り入れられる事を示している.
水素(H)と一酸化炭素(CO)の改質流路と合成ガス改質路に於いて、更に反応時間を長く取りたい場合か、もしくは同時進行で水蒸気改質又は合成ガス生成路又は二酸化炭素改質又は合成ガス改質のうち少なくとも何れか1方以上を取りたい場合、前記エンジンのエンジンブロックの内に設けている通水路Kを、エンジンブロック1内に複数本設ける構造にするかあるいは、エンジンブロックからの排気管路を複数設けるか(例えばピストンの数と同じにするか、ピストンの数の半分にするか、あるいはローターの数と同数の管路にするか、あるいはエンジンブロックから1本乃至複数本出た排気管路を更に複数に分岐させて順次切り替えて排気を送る等の構造にすることでも良い)あるいは前記通水路K´を更に設けて二酸化炭素を加熱する管路にする2系統の管路にするかの内少なくとも何れか一方以上にして、エンジン燃焼工程後の排気口下流の管路に4種の改質路の内少なくとも何れか1種以上を設ける構成にして、水素と一酸化炭素の混合気体または水素ガスと二酸化炭素を別々に取り出す構成構造にしても良い。
プロトン導電セラミックは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミック等の、プロトン導電セラミックは水素、酸素を活性化させる作用を有する点で、特に合成ガスを水素と二酸化炭素を別々に改質して取り出すのに有利である。
二酸化炭素又は炭素を原材料として使用する、製造業等の設備産業における再生可能エネルギー源としての使用は公知技術である。
本願の改質熱源をエンジンブロック内に設けた通水路にてエンジンブロック内で吸熱しておる事を特徴とする物で改質熱源の大きいエンジンブロックから吸熱する構造にして設けた事が数個の改質路を設けられることに繋がっておる。
上記内燃機関に既存の水素ロータリーエンジン車が採用している「エンジンを燃費の良い条件(一定の条件)で運転しその回転力で発電して蓄電器に蓄電しており、その電気を動力源として自動車を走行させている、」の形態を、該内燃機関に適用する事で安定した燃焼熱が得られ、更に吸熱反応条件も安定するので、本願を「上記エンジンを燃費の良い条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として運転させる構造」にした事で、更なる燃費の向上と温室効果ガス排出削減をすると言う大きな効果を生んでいる。
*走行状態(例えば信号待ち・右折時対向車通過待ち・交差点右左折時横断歩行者通過待ち・渋態状態時のチョコチョコ駆動・平胆路での惰力走行時・追い越し&追い抜き急加速走行時・下り坂走行時等々)の変化に追従させて内燃機関エンジンの出力の制御機構や制御構造がシンプルで良くなる。
更に一定の条件(燃費の良い条件)で走行するので燃費(Km/L)を向上させる効果がある。
前記内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段としており、その電気を動力源として車を走行させる構成構造にする事で必要動力を全て電池で賄う為に高価な電池を多数設けなくて済み、前記内燃機関の蓄電設備容量を数十%大きくする程度で充電設備を有する場所で受電充電出来、畜電器の設置費用及び燃費向上が図れ、温室効果ガス排出削減策となる。
動力が不要な走行状態(信号待ち・右折時対向車通過待ち・右左折時横断歩行者通過待ち・渋滞時のチョコチョコ走行時・下り坂走行時・惰力走行時等)が発生して、その間の前記走行条件ではエンジンを一定の条件(燃費の良い条件)で連続運転するので走行状態によっては、車の駆動に必要な発電電気は過剰充電となり該内燃機関で発電した電気を廃棄する事に成るので、該畜電気の蓄電容量が上限設定値になると該エンジンをOFFにして蓄電電力で走行し、蓄電器の蓄電容量が下限設定値になると該エンジンをONにして該エンジンで走行して燃費の向上を図る事が出来る。
前記下り坂走行時ではエンジンをOFFにして走行し(車輪の駆動以外の補助機器は例えば電気とする)、スピードを制御するブレーキの制動力を発電動力にする手段を更に設けて該下り坂での走行動力の使用をOFFとするか及び/または更にブレーキの制動力を発電動力にする手段設ける事で更なる燃費の向上と温室効果ガス排出削減となる。
前記平胆路での惰力走行であるが、惰力走行とはドライバーの走行したいスピードより10%程度UPしたアクセル操作(例えば2200回転)で1分程度走行して、仮に走行したいスピードが60Km/Hであれば70Km/Hに成るとエンジンの回転駆動力接続をOFFにする(該略1000回転となる・アイドリング時の回転数、電気駆動の場合は「ゼロ」に近いスロー回転数)スピードを10%程度UPした時間の3/4程度は該略1000回転で走行できる、スピードが60Km/Hに成るとエンジンの回転駆動力接続をONにする操作を繰り返す走行方法であり、50年前には運送業では常識の走行方法であるがこの走行形態を自動制御にする事でも更なる燃費の向上と温室効果ガス排出削減となる。
前記惰力走行のエンジン回転駆動力接続のON,OFFサイクルの単位を短くするほどスピードは滑らかになる(例えば10秒程度)。
本願内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気と新たに投入する主として植物の炭素を、前記内燃機関の吸熱反応流路に導入して吸熱反応化させて、生成した燃料(ガス)を補助燃料の代替とする構成にして、現有の火力発電設備に併合する形態にする手段とするか、あるいは前記火力発電設備のボイラーの排ガス管路に吸熱反応設備を設けて吸熱反応化させて、生成した燃料を畜ガスタンク経由で前記動力発電の燃料とする構成かの何れかの手段にするかにしても良い。
水素と一酸化炭素の混合気体又は二酸化炭素又は水素の内何れか1以上は他所の設備で製造した物を使用(又はパイピングで圧縮ガスの状態で輸送)することでも対応出来るし、発電の場合及び船及び大型自動車は内燃機関に近接して、水素(H)と一酸化炭素(CO)の混合気体の製造設備を設置するものである。
熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを廃棄している製造業(例えば製鋼・鉄の鍛造・鉄の鋳造・アルミ製造・塵焼却場・石油精製・石油製品製造業・化学工場等)及び/又は設備(例えば空調Air Conditionerの室外機)かの何れか一方か両方かのいずれかに於いて、前記廃棄されている熱又は水蒸気又は二酸化炭素又は水素の内何れか1以上の何れかを、改質路か取り出し路か合成ガス改質路かの改質技術の内何れか1以上の改質技術で改質するかあるいは改質の出発材料にするかのいずれかにして、生成した燃料を当該内燃機関の燃料として内燃機関を運転して、更に前記内燃機関の排ガス中の「CO2」を改質路手段で水素と一酸化炭素の合成ガスに生成して該内燃機関の燃料として運転し、その回転力をそのまま動力発電機の発電動力とする内燃機関である。
例えば製鋼所の圧延工程では脱炭された真赤な鋼隗を多数の圧延機を通過させて10mm前後の鋼板ロールにするのであるが、最終圧延後に多量の水を掛けて赤色の圧延板を黒っぽい板に冷却しており、このときの掛ける多量の水は水蒸気となり一部は廃棄されており、更に最終圧延された鋼板ロールは鋼板ロール自然放冷冷却置き場にて天井クレンが吊り降ろし作業するために必要なクランプ具作動幅を持たせて敷設してある複数列のローラーコンベアーに順送りで並べられている。 *この時の鋼板ロールの温度は700°〜900°であり、このローラーコンベアー間に吸熱反応部を設けて吸熱反応化させて生成した燃料(ガス)を当該内燃機関の燃料として動力発電機の発電動力とすることが電力の削減策であり、温室効果ガス排出削減策となる。
本願発明の畜ガスタンク{前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該内燃機関で生成されたガスで少なくとも10分程度運転するのに必要な燃料を畜ガス出来るタンクであれば当該内燃機関を運転(切り替えロスを無視すれば)することは出来る}のタンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材HPEを固着して車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着した物であり、タンク分離手段は前記固定具MT5に衝撃が掛かるとV字状の切り欠け部MT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(タンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備 (例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。
・例えば炭酸水素ナトリュウム(NaHCO)を内燃機関の排熱で加工して熱分解して水素(H)と炭酸ナトリュウム(NaCO)を作り、炭酸ナトリュウムは取り出して製品として販売し、水素を畜ガスタンク経由で内燃機関の燃料とする構成にしているもので有るが、内燃機関の排熱で改質路か取り出し路か合成ガス生成路か合成ガス改質路かの改質技術の内何れか1以上の改質技術で改質して燃料を取り出す物で有れば前記炭酸水素ナトリュウムは1例とした物で炭酸水素ナトリュウムに限定するものではない。
・本願内燃機関の燃焼排ガスは、水素ガスを燃焼させると水と窒素を主構成とする排気であり、水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、排気中の二酸化炭素を改質した水素と一酸化炭素を燃焼させると水と二酸化炭素と窒素を主構成とする排気であり、
いずれの燃料を使用しても水が水蒸気の形で排出されておる、この水蒸気から更なる吸熱手段で改質出発原料の水を温める構造構成にするとともに排ガス中の水蒸気から水を取り出しろ過するろ過手段経由で改質出発材料の水として使用する物で、前記水蒸気からの吸熱手段は例えば排気管路の下流部に水貯水タンクを設けて該貯水タンクの水の中に排気管路を通す事で水タンクの水が吸熱して水タンクの水は温水となり排気管路内の水蒸気は水と成り水を回収する事を特徴とする、水回収手段、*上記各種の改質手段は水を燃料に改質しておるので相当量の水が必要と成るが積載量を大きくすれば積載しておる水(重量)を運搬する為の燃料が必要と成るので水を回収して循環使用すれば積載量を少なく出来更に水タンク中の水は温水(吸熱手段)としておるので該水をエンジンブロックの水の導入口に導入した水の循環使用が出来る、このことは温室効果ガス削減及び排出削減に寄与する事になる。 *更に海水面を走行する船舶等の内燃機関の冷却水は海水であり、本願のエンジンブロック内に設けた前記通水路K&K´に加えてKを設けて該K´又はKの何れかの通水路にて海水を内燃機関の排熱で真水に分離して本願の改質手段の水蒸気として使用する海水から水蒸気を取りだす水蒸気生成手段とする事も出来る。
図9は植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等(植物原料)を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水HOを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするか、及び/又は上記第一の発明の改質手段技術を上記排ガス管路の排出部(例えば煙突)に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを、触媒に接触させ小規模炭化装置の燃料とする構成にするかのいずれかにして設けた小規模炭素製造器である。
・上記小規模炭素製造器の構成で炭化室CSと燃焼室FCの隔壁を通気出来る構成にして上記炭化室CS部を水蒸気Jの生成部と排気ガスからの二酸化炭素を分離する分離部を設け、更に上記第一の発明の改質手段技術を上記排ガス管路の排出部(例えば煙突)に設けた構成にする事で、石炭等の化石燃料を使用している暖房器(例えば石炭ストーブ)を二酸化炭素の排出削減策の暖房器としており、*此のことは寒冷地の多くは石炭ストーブを使用しており、石炭の燃焼による二酸化炭素の排出も、本願の構成を適用すれば「CO」の排出削減となる。
前記本願発明の内の組み合わせで、二酸化炭素を改質する改質手段を使用する場合の合成ガス生成材の炭素Cは化石燃料使用(例えば石炭)であっても良く温室効果ガス排出削減策である。
内燃機関のエンジンブロックに吸熱反応流路を設け、水HOと炭素Cとを内燃機関の排廃熱にて反応させて水素Hと一酸化炭素COの混合気体を取り出し、それらの水素と一酸化炭素の混合気体を燃料とする内燃機関であるが、合成ガスをガソリンあるいは軽油、重油の代替燃料に・・・と考えたことは、どのメーカーでもあると思っている、しかし水素も一酸化炭素も非常に危険(爆発、毒性を有している)従って、液化しての運搬手段(可搬性)安全規格をクリアーする液化ガスの容器の重量に対する内容量の割合が悪い、更に車が大破する様な事故による爆発の問題があり、手がだせなかったと推測する。
この問題を解決する本願の手段の1実施形態は、 *消費燃料をタンクに満タンにして走行に必要な燃料全部を賄うのではなく、燃料生成過程でのエネルギーロス分の補充にサブタンクを設けて、前記サブタンクの燃料を石油液化ガス(天然ガス含む)、ガソリン、含む炭化水素系化石燃料バイオエタノール等、あるいは合成ガスかの何れかを、エネルギーロス分の補充用サブ燃料として使用して合成ガスを生成して畜ガスタンクに畜ガスした複合燃料補給構造を採用している事(この蓄ガス圧力を考慮した畜ガスタンクの設置場所と車が大破する様な事故時に対応出来る構成構造手段として設けた事)が、本願を「実施可能案」にした大きなポイントである。(図1,図2参照)
前記畜ガスタンクに生成された合成ガスを(圧縮ガスの状態で)一定量ためる、一定量ためる間は、ブタンガス、ガソリン、(含む炭化水素系化石燃料)メタンガス、バイオエタノール等、あるいは、水素、合成ガス、植物からの改質ガス、植物からのメタンガス、のバイオエタノール等かの何れかを補助燃料タンクの貯ガスを使用し、生成された合成ガスの貯ガス量が一定量に成ると合成ガスに切り替えて、合成ガスを生成しながら畜ガスタンクの合成ガスを使用し、前記タンク容量が「0」に近くなると、補助燃料タンク使用に切り替える、複合燃料方式をとり合成ガスの車載量(タンク重量も含む)を少なくしている手段を設けている。
公知技術であるが二酸化炭素を触媒存在下で、水素、一酸化炭素等に転換する技術には1例をあげると本願特許文献2、特開平11−106770の記載では、含炭素有機化合物を触媒の存在下でスチーム及び/又は二酸化炭素と反応させて合成ガスを製造する方法とその方法に適した触媒の発明をしており、この技術を本願の二酸化炭素をも燃料に改質する技術として使用している。
また特許文献4の特開2007−177684、車両用二酸化炭素回収装置及びそれを備えた車両の記載では二酸化炭素吸収材に二酸化炭素を吸収させて二酸化炭素を回収している
温室効果ガス排出の主役は内燃機関からの排出と、日本の発電量の約82%(2012年電気事業連合会統計)を占める火力発電のボイラーからの排出であり、世界の内燃機関からの排出と火力発電のボイラーからの排出で世界の排出量の1/4をしめておる。
1ガロンのガソリンを燃やしたときのCOの放出量は車のエンジンからの排出とガソリン生成工程での放出を合わせて約9Kgである。
従って化石燃料の炭素Cの消費を、植物の炭素Cにシフトしていき、温室効果ガスCO排出の25%削減を早期に達成するには、本願の温室効果ガス排出削減策の内燃機関を実現する事及び、燃料と成る植物を主とする炭素Cの調達コストを化石燃料からの調達コストと同じくらいにする施策が必要である。
燃料とする炭素Cの製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい、加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
木材(古木・製材屑等含む)からの固体炭素C(植物原料のC)をナノ粒子化する技術はすでにテレビ等で放映されているので新技術とは言えないがナノ粒子迄細粒化しなくてもミクロ細粒化(100ミクロン程度)でも本願発明の請求項2の炭素Cとして対応可能である。
固体炭素Cは粉砕して微粒状にすれば、反応が起きる表面積を増やすことになるので、細粒化するほど合成ガス生成の効率はよくなる。
前記炭素Cに水を加えてエマルジョン燃料化あるいはゲル状化する事でも対応出来る。
更に酸素が入らない環境で前記木材等(植物原料)を加熱→炭化工程の中で炭素Cガスを得る事も出来る。
エンジンブロック内で吸熱して水を水蒸気に→排気管路で吸熱反応→一酸化炭素と水素の合成ガスまたは水素を生成し当該エンジンの燃料として使用するサイクルであるが、*この案の件案事項としては畜ガスタンク内容積を広く、蓄圧を低く、出来るタンクにして、車載場所を何処にして、どの様な構造にすれば、車が大破する事故でも畜ガスタンクが破裂しない構造にする事が出来るかであった。
*前記件案事項を下記の構造構成にして解決した。
1、合成ガスタンクの載置場所を車の車体上部に設けるか車のシャーシー部に設けている事であり、車体上部に設ける事は車が崖から転落しても、また乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故でも畜ガスタンクは爆発しない構造のタンクが要求されるが車載可能なボンベで業者が目標としている500Km走行できる目安の水素は水素5Kgで20MPaの圧力では容器内容積が375L必要となり、マツダ(企業名)プレマシイハイドロジェンREハイブリッド車で搭載の水素74L/35MPaでは満タン充填で計算上123Kmしか走行出来ないので、500Km走行するには約4倍の375Lの水素タンクが必要と成るが375L/35MPaの水素を74Lの容器で賄うには、約190MPa圧縮で充填出来る容器が必要となり現在の技術では困難である。
そこで載内燃機関で合成ガスを生成することを立案したが載内構造の加圧ポンプでは圧縮圧を上げれば多くの動力を加圧ポンプのために消費する事になるので。スタート時点では油圧機器のアキュウムレーターに相当する機器で畜ガスする事であったが、その畜ガス器を何処に設置すれば良いか、又高速道路の事故で、前記車が崖から転落して上下が逆転するか、乗用車が大型トラックと大型トラックの間にサンドイッチ状には挟まれ潰される様な事故をテレビで見て、この様な事故が発生した時爆発を回避出来る構造構成でないと車載は無理とあきらめていた。
合成樹脂を使った他の案件の立案のために先行文献検索やインターネットで前記合成樹脂関係を調べていたら下記発砲ポリエチレン、(前記部材は対弾丸性があり軍事兵器に使用されているもので、一例としては軍隊の水面移動用ゴムホートの外面に発砲ポリエチレンを固着しており、ライフル銃等で狙撃された場合、弾丸は前記ゴムホートに穴を空けられない程の対弾丸性を有している)を、見つける事が出来これを使えば前記事故があっても爆発しない所まで解決出来た。しかし最後に残されたタンクの設置場所の問題で頓挫していた。
昨年出願のエコドライブ方法の実験を繰り返す中で車の軽量化するのに何処を樹脂化すれば良いかと考えていた時に乗用車のルーフの考察時、頓挫していた本願の畜ガスタンクを乗用車のルーフに搭載して前記事故時には離れ飛ぶ構成を思いつき、何とか実施可能案となり出願するに至ったので、この畜ガスタンクの構造構成が本願のキーポイントである。(図1A,図2参照)2,上記畜ガスタンクの外面を図2に記載しているように、ポロン繊維強化プラスチック若しくは発砲ポリエチレンを、前記タンク部を覆う形に固着成形するとか、あるいは、塗布、あるいは、他の合成樹脂材と、多層コーティングして、車が転落、大破する衝撃が掛った時に、車の車体から分離するタンク分離手段を設け、跳ね飛んでも爆発しない構造にしている。(遠くに飛び過ぎない係止構造を設けるのが好ましい。)
3.前記タンクの出し入れ管の車ボディとの分離構造の一例として、電磁バルブの接点構成で通電時はON.非通電時はOFFと成る電磁バルブシーケンス回路を使用し、合成ガスタンクが車のボディから飛ぶ衝撃力が掛かると前記タンクのガス出し入れ管が抜けて(あるいは破損して)も、電磁バルブの作動によりタンクからのガス管路は閉じる構造にしている。(図2.H参照)
4.畜ガスの圧縮圧の問題も補助燃料使用と内燃機関は発電のみにしているマツダ(企業名)プレマシイハイドロジェンREハイブリッド車の構成を使用すれば、合成ガスのみ又は水素のみあるいは合成ガスと水素との切換え使用でも良い実施例と成リ蓄ガス圧も次段落で説明しておる様に低い圧縮圧で対応出来る。
ガソリンで500Km走行に必要な燃料を水素(合成ガス)で賄うには、水素5Kgで(水素56,000Lに相当)、(10g/Km=水素11.2Lで)ある。 従って10Km走行程度に必要な燃料(水素・合成ガス・二酸化炭素)の畜ガスタンクの容量は燃料切換えロスを無視すれば11.2L*10=112L(常圧)のガスを畜ガス出来る畜ガスタンクであれば良いことに成る。 従ってタンク製造コストと設置スペースの関係と設定したい切換え周期と設定したい畜ガス圧と前記法律の範囲内で有れば自在に設計できる。
第一の発明に記載の内燃機関から生成した合成ガスの貯ガスタンクを車の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。
図1を説明すると、1図に記載の車は商用車フロントエンジンタイプ商用車に本願の構造を設置した概略構成図であり、フロントエンジンルームに設置した水素ロータリーエンジン(内燃機関)から排気管部に設けた吸熱反応合成ガス生成部でガスを生成して、取り出した合成ガスを上部に設けた貯ガスタンクMTに貯ガスして当該水素ロータリーエンジンの燃料として使用し、ガス生成過程のエネルギーロス分をサブタンクSTの燃料に切り替えて使用している、概略構成図で、 *図1Bはレシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成フロー図であって、4気筒のレシプロエンジンのエンジンブロック内に水HOを水蒸気Jにする通水路Kをもうけて、水HO(又は水と二酸化炭素)を供給口より供給して水蒸気生成手段(又は/及び二酸化炭素の吸熱手段)としおり、吸気口Aへ空気Oを供給する管路3を設けて空気Oを吸気口Aへ供給しており、排気口Eから管路4にて合成ガス生成部の排気管に連結しており、前記排気管MS内には排気管内に合成ガス生成吸熱反応部の吸熱反応管をコイル状にして設けており、前記コイル状にしている吸熱反応管内に前記レシプロエンジンのエンジンブロック内で生成された水蒸気Jを導入するとともに炭素を新たに投入しており、合成ガス生成部の排気管MSを流れる、エンジン燃焼行程で発生する排気ガスEの排熱でCO+Hの合成ガスを生成する構成Cで、生成された合成ガスは合成ガス貯蔵タンク(畜ガスタンク)MTに畜ガスしており、前記生成燃料の不足分を補う為にサブタンクSTを設けてサブ燃料を貯油しており、サブタンク燃料と畜ガスタンクに畜ガスしておる合成ガスを切換え弁CBで切り替えて燃料供給管路5でインジエクターEに供給しており、更に強制着火のプラグPをもうけた構成にしておる内燃機関の概略構成図であるが、
前述の構成に加えて排気管路を複数に分岐して該排気管路を改質部として触媒を対峙させており、該改質部の上流に炭化水素化合物と二酸化炭素を導入して排ガス中の水蒸気とともに該触媒に接触させる構成にする事も出来るし、又は上記排気管路内に該改質路を設けて二酸化炭素と炭化水素化合物(例えばジメチルエーテルCHOCH)を導入して改質流路の触媒に接触させ排ガス中の排熱にて反応させて、水素と一酸化炭素の合成ガスを生成する構成であり、更に上記改質した合成ガスを下流に設けている合成ガス改質路に導入して再度排熱にて反応させ水素と二酸化炭素を取り出す構成にも出来る事を示した概略構成図である。
上記エンジンブロック内に水HOを水蒸気Jにする通水路Kを設けて、水HOを供給口より供給して水蒸気生成手段としておる通水路Kに加えて、COを加熱する通気路K´とCO供給口を設けて、複数設けた排気管路の内少なくとも何れかの一方以上のCOを改質する管路に供給しており、COを改質する管路の他のいずれかの管路を水蒸気改質にして、水蒸気Jは全てか1以上かの管路に供給して必要に応じて前記管路K、K´の両方からの供給をいずれかに切り替える供給路にする構成を付加して設けた構成にも出来る。
図2A.は図1のA−A断面図であり、本図は一例として合成ガスタンクを円筒形状の物MTB4本を、発泡ポリエチレン、ボロン繊維強化プラスチック、等HPEの衝撃緩衝材で1個の包括体にして車上部に固定保持しており、前記固定保持の固定保持具MT1で車上部に固着固定している固定具MT5に固着している状態図で、前記固定具MT5は車が大破する様な衝撃が掛かると前記V字状の切り掛けMT6が集中応力により破断し、前記衝撃緩衝材の包括体MT3(一例としてタンク支持体MT2を一体としている)が前記固定具MT5から外れる(完全に外れ飛ぶのでは無く糸体等で前記固定具MT5等に係止する構造を取ることが、前記衝撃緩衝材の包括体MT3が完全に外れ飛ぶ2次被害を回避する策と成る)ので好ましい形態である。
上記衝突及び転落時の力が上記タンクに掛った時、1例として、事故時の保持構造を設けて、車から外れ飛ぶ構造(一部は車と繋がっているのが望ましい)を設けており、車から外れ飛んだタンクは、前記タンク外面にコートあるいは全面に固着して設けている、発泡ポリエチレン・ボロン繊維強化プラスチック・衝撃緩衝材等(HTP)であり、衝撃力を吸収あるいは拡散されるので爆発しない構造である。 前記コーティングあるいは全面に固着する、発泡ポリエチレン、ボロン繊維強化プラスチック、衝撃緩衝材等は現時点では高価かも判らないが、2000万台/年・(日本自動車メーカー全体で)近く生産されているので、量産効果によりコストは低くなる。
図2Bは.リヤーエンジン車に上記衝撃緩衝材の包括体MT3を進行方行に対して直交する形にタンクを搭載した例図であり、D.E.図は搭載タンクの数及び形状には拘らない事を図示したもの、E,は車のルーフ部に前記タンクを前後方向の凹部に格納搭載しており、横面からの美観を良くした物、F.はキャビンの下にエンジンを搭載するタイプにE.と同様にタンクを設置している図、であり、搭載するガスタンクMTB及びタンク包括体MT3の形状設置方向は、設置するタンク容量とガス圧力の関係での設計上の問題である。
図2Hは.上記ガスタンクMTB1個のみの場合のガス出入り口部の構造の部分断面図であり合成ガス生成部Sから取り出されたガスはタンク開閉バルブGTbsec(一例として電磁バルブを通電時ON・非通電時OFFとなる接点回路としている)を経由してタンクに貯ガスされ、更にエンジンの燃料切換えバルブCbに導入する構造にしている概略図であり、この非通電時OFFとなる構造にすれば上記衝突及び転落時の力が上記タンクに掛り貯ガスタンクが外れ飛ぶ事態になれば電気配線もはずれ飛ぶので電磁バルブはOFFとなりタンク内のガスは漏れ出ない構造である。
図2,Iは.車上部に固着固定している固定具MT5の両端部に弾性性状を有する逆J状の係止固定構造KRsecを設け、(下部図)車か大破する様な衝撃が掛かると、前記逆J状の係止固定構造KRsecの逆J状の係止機能部が伸びてHPE体が上部に離脱する構造(上部図)にした1例図であり、前記車か大破する様な衝撃力が掛かるとHPE体が上部に離脱する機能を有する構造であれば、金属・合成樹脂・その他・材質および形状にはこだわらない。上記畜ガスタンクの構造で二酸化炭素畜ガスタンク・水素畜ガスタンクを設ける事が好ましい。
上記補足記載であるが、前記水蒸気改質(合成ガス取り出し路か、合成ガス生成路)で生成した合成ガスはCOとHの概略物質量1:1の混合物である。気体体積は物質量に比例するので、一酸化炭素量=水素量で気体は標準状態で22.4L/molの体積である。(液体水素:高圧水素=6:1の運搬効率)水素は1Lあたり39g(700気圧のタンク内重量)である。
*水素の性質・拡散が早く漏れやすい・高い反応性・特に鉄鋼を含む金属を脆くする。
図3は図1Aの前後方向断面図で、ロータリーエンジンの水素対応構造部の説明は図6に記載しており後述する。ロータリーエンジンのロータリーハウジングの内壁と外壁間に少なくとも1/2周する通水路Kを設けており、1方の水の導入管からは水を前記ロータリーハウジングの内壁と外壁間の通水路Kに送り込み、前記水が燃料の燃焼熱で吸気→圧縮→爆発→排気工程部に当接する通水路を通る過程で水蒸気Jとなり吸熱反応流路部Sへ送り込まれ、炭素C挿入管より炭素が挿入される、他方のロータリーエンジン内に空気Oが送り込まれ、次に燃料の合成ガスMTCかサブタンクST燃料(ブタン・バイオ燃料・合成ガス・水素等の内の何れか)がエンジン内に送り込まれ、→圧縮→爆発→排気Eとなり、吸熱反応流路部Sへ送り込まれる、3図の記載では前記排気Eは吸熱反応流路部Sの管中央部を流れ、水蒸気Jと挿入された炭素は熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管を流れ、前記管中央部を流れる排気Eの熱で合成ガスに生成されて取り出し管から取り出され貯ガスタンクMTへ移送される構造の1例概略図である。 CO2改質、合成ガス改質に対応するロータリーハウジングの通水路・通気路の構成は図1B・図3、の説明構成を適用する。
図4は図3の熱反応流路管MSの管内壁面に接してコイル状に設けられた合成ガス生成管路をストレートの細い管にして設け、前記細い管と細い管の間を排気Eが流れる構成にしたものであり、又吸熱反応流路の設計は排気ガス処理システムで触媒を対峙させて排気を無害化させるシステムで多種実用化されているので、その構造構想を適用しでも良い。
図5は特開2007−211608の水素ロータリーエンジンを示す概略図である。
図6は水素ロータリーエンジンの電子制御噴射構造部の主構成を示した図であり前記電子制御噴射弁は、例えば100KWの出力を得る為には2300NL/minの大容量を噴射する必要がある、上図の2個の噴射弁40,42を設けて大容量を噴射している。 更にローターハウジング側面に大容量の吸気ポート16と排気ポート18を設け、更に爆発室を爆発寸前時に2分する構造にしており2個の点火プラグ14,15を設けている図。
図7はレシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点栓の単筒での概略構成図であり既存のディーゼルエンジンのインテークマニホールドと水素の噴射弁等を変更すれば既存のディーゼルエンジをほぼそのまま使える事を現した図。
京都議定書によれば、植物の炭素Cの燃焼等により生成される炭酸ガスCOは植物の炭素同化作用で消費される為 プラス マイナス ゼロでありCO排出量としてカウントされない約束に成っている、従って化石燃料の炭素の消費を、植物の炭素にシフトしていき、温室効果ガスCO排出の25%削減を早期に達成するには、上記合成ガス生成サイクルの案を実現するのが最良と思う。(環境省2010年資料によると、温室効果ガスCOは全世界で303億tを排出しており日本はその3.8%である)
太陽光発電(ソーラー発電パネル使用システム・太陽光集光し、熱で蒸気発生→発電)が今後の発電の主流になる日はそう遠くない。しかしながら太陽光発電は夜・雨・曇りと24Hフルタイム発電出来ないのと、大規模に設置する場所となると電力使用地からかなり遠隔地になるので変電・送電設備を新たに設置する事に成るのが欠点で、太陽光発電のみで賄うには大容量の蓄電設備が必要で、又日照率の良い場所(例えば年間降雨量の少ない砂漠が筆頭候補)となると厖大な送電・受電設備が必要である(前記大容量の蓄電設備・厖大な送電・受電設備には、日本が発明した超伝導があり、すでに実験プラントが試稼動中であり、2008年に1,100,000Vの国際規格も国際承認を得たところであるが、想定コストとの格差が問題とされている)。
そこで本願発明の燃料製造機構を併用し、太陽光発電可能時間以外は短時間稼動可能な本願発明の内燃機関発電とするのが良い。
炭素製造は炭化有機物質を空気や酸素の流通を遮断して加熱すると、黒色の炭素に富んだ物質に変化するが、このプロセスを炭化といい、木炭はこの炭化作用の生成物の好例であり、生成したものは無定形酸素などを主成分とする集合体で多くは多孔質であり、きわめて表面積が大きい。加熱によって脱水、脱水素反応がおこり、縮合多環の芳香族化合物が生じ、更に網目状の構造を形成してゆくこれを炭化と言っている。
図10は前述の小規模炭化装置の想定概略図であり、炭素生成室CSに本願の炭素材に適した炭化植物を入れ釜戸の役割をする燃焼室FCに本願の炭素材の概略半分の炭化材植物を燃焼させ、出来た炭素Cの形で集積場に集積する方式にすれば、枝付木材での運搬よりはるかに運搬コストを下げる事が出来る物であり、酸素が入らない環境で植物原料を加熱して炭化させる炭化室CSに木材等を投入して、前記炭化室を加熱する加熱用燃料(木材等燃焼材)を燃焼させる燃焼室FCに投入して燃焼させ、炭化室の内壁に燃焼室FCの排ガス排出管路Exと水タンクから導入した水HOを水蒸気にする水蒸気生成手段の管路Jを設けており、前記炭化過程で発生するガスC4を水蒸気とともに導入管C4で燃焼室に導入して炭化室を加熱する燃料とする構成構造であり、
上記COの改質を、上記排ガス管路の排出部(例えば煙突)に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かを、反応させ小規模炭化装置の燃料とする構成にすると、更に炭化に消費する燃料の節減となり、温室効果ガスの排出削減となる。
更に改質部(COの改質)の使用により、石炭等の化石燃料を使用する事が出来、燃料としていた木材等を植物原料のCに改質する出発材料に出来る。前記触媒は一例として鉄系金属及び/または化合物の他に他の金属あるいは化合物を合わせて用いる事が出来る、他の金属あるいは化合物の例としては亜鉛、ニッケル、クロム、マンガン、スズ、セリュウム、ランタン及びこれらの化合物、他の金属あるいは化合物である。
前記記載の合成ガスは水素と一酸化炭素のみとは限らない、前記合成ガスは主構成を表し、例えば、未燃焼炭素、二酸化炭素、水分、その他大気中に存在する気体及び不純物等を含有している場合も含む。
炭素(植物原料のC)の調達コストが現在では天然ガス(メタン・ブタン等)、石炭、石油の化石燃料に比べ高く、前記炭素の調達コストが、同等に成るか、行政の補助金等が得られるか、若しくは温室効果ガスCOの排出規制の強化の法律を作るか、する迄は炭素の調達は天然ガスで行うか直接天然ガスを燃料とし、社会全体の欲求が高くなり炭素の調達コストがペイ出来る時点で切り替える方法もある、しかしながら化学技術の進歩の速度は「ニーズ」に比例する形で進歩していると私は思っている、従って本願の主原料となる再生可能な炭素Cの調達ニーズが高く成れば、前記調達技術は加速度を付けた状態で進化すると確信している。本願の内燃機関サイクルに使用する炭素は当面「石炭」を粉末にして使用するのが一番安価であるので、再生可能な炭素Cの調達システムが完備するまでは、前記化石燃料を使用して順次再生可能な炭素Cの調達システムに移行する形態をとることになる。
温室効果ガスCOの排出枠の日本の買い取り金額は約1兆数千億円と試算されているが、この買い取り金額を前記炭素の調達コストの一部として使用すれば、本願発明の実現時期は早くなる。
*、化学工場・製鉄工場・アルミ工場・塵焼却場・石油精製工場等からパイプラインで水素と一酸化炭素の混合気体・二酸化炭素・水素等の輸送手段とすれば運搬機器での輸送よりはるかに輸送コストを下げる事が出来る。
アメリカや欧州各国ではそれぞれ数千Kmの水素輸送パイプラインを敷設しており、世界を競争相手として勝ち残るためにも政府の後押しで早期に実現するべきである。
本願の内燃機関を動力とした動力発電設備は、比較的小規模の動力発電設備(前記動力発電機は1000KW/Hの出力機を仮に1単位/台とするならば、1単位から数百単位の設置台数)にする事が出来るので、離島や山間部の僻地、工業団地と言った単位毎の塊での自給体制とする分散型発電設備とすることが出来るので、海底送電ケーブルや電力需要の変化に対応する、送電設備や変電・受電設備を大幅に削減することが出来る。 更に現火力、原子力発電所は水源に隣接する必要があるが、本願動力発電設備の立地条件は水源に隣接する必要はなく可能な限り電力需要地に近接設置出来るメリットがある。
メタノールを内燃機関の燃料とする場合、もともとメタノールは化学平衡から有利な高圧にして水素と一酸化炭素から合成されたものである。従って水素に転換して使用するよりは、水素と一酸化炭素の合成ガスの形で使用するのがエネルギー的には最も効率が高い。
圧縮水素と液体水素の輸送であるが、水素の陸上輸送では、水素ガスの体積貯蔵密度が小さい問題を補うために、14.7〜19.6MPaに加圧し圧縮水素として輸送するが、Cr−Mo鋼の水素容器は重量が重く、一例をあげれば100Kgの水素を輸送するトレイラー車は水素容器の重量だけで7tになる、圧縮水素の輸送コスト低減には、アルミ合金ライナーや高密度ポリエチレンライナーにガラス繊維や炭素繊維で強化したタンクにする必要がある、
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準}
一方液体水素は体積貯蔵密度が水素ガスの800倍強でタンクローリーとか断熱コンテナーが使用されているが、液体水素は液化にエネルギーを必要とすることや、沸点が−253°Cで蒸発ロスが発生する欠点がある。
本願発明の内燃機関は合成ガスを又は水素を燃料としているが、該合成ガス又は水素又は二酸化炭素は運搬機器内でのパイプ配管供給であり、該内燃機関で生成された合成ガス又は水素又は二酸化炭素を畜ガスする畜ガスタンクの蓄圧は前述現存の水素エンジン車に搭載されている圧縮ガスの35MPaの畜ガスタンクにする必要は無く1/40程度の蓄圧であっても良く、その蓄圧を低く出来る分加圧ポンプに使用するエネルギーを使わなくて済むし、蓄ガスタンク構造も現行法規内での多くて数MPa程度の構造にする事も出来る。
水素の定常的大量輸送にはパイプラインによる輸送が最適であり欧州と米国各地ではおのおの千数百Km布設されている、本願の合成ガスも性状は水素と類似性状であり水素あるいは合成ガスを前記パイプラインによる輸送とするのが最適手段である。
前記水素パイプラインのパイプ材としては、現在の先端技術では、通常のラインパイプ鋼材に比し、バナジュウムを減らしニッケルやクロムを少量加えた耐サワー材であれば、通常の輸送環境下での使用材と出来るとしており、それによるコストUP分も10%以下とされておる。
水素を燃料としたロータリーエンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素(又はガソリン)ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、この車の特徴は燃費の良い条件でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としておる所であり、短所としては高圧水素燃料タンク満タンでの走行距離が100Kmと短く、又水素の運搬手段も(車での運搬を想定)タンク重量に対する水素積載重量比が悪く、水素ステーション等のインフラ整備が進まない点や水素製造&輸送コストが高い点等である。
マツダ(企業名)の水素ロータリーエンジンでは、水素Hを燃料として発電し、その電気でモーターを回転させているのでその発電構成部分を動力発電機として使用出来、その動力発電機としておる発電構成部分を、本願内燃機関に適用している。
前述炭素の供給源には間伐及び松枯れ等害虫に蝕まれた枯れ木、更に日本の、稲作で発生する籾殻・藁等は廃棄されている、この再利用されていない木材と籾殻・藁だけでもかなりの割合で混合気体製造の植物の炭素(C)に成り得る、更に休耕地等の空き地にケナフ(Hibiscuscannabinus L)を栽培し(種には20%の油がある)前記植物の炭素にすることも、更に休耕地等の空き地にトウモロコシ、サトウキビ等の栽培をすれば、植物のバイオ燃料にも出来る、述べるまでもないと思うが、「田んぼ」の多くは農業用水路が確保されており、かつ、長年肥料を施した物であるので、例えば里芋とか、麦を栽培して実は食用として廃棄部分を前記植物のバイオ燃料か植物の炭素にして麦藁を前記植物の炭素にする等、それらから得られる収入と稲作で得られる収入の差額を補填する政策にすると言う方法もある、更に建築廃材・製材残材・古木等もある。
本願明細書に記載及び特許請求の範囲に記載されている事象から容易に想到出来る種々の実施形態も、前記特許請求の範囲を逸脱しない範囲であれば本願発明に含まれる。
この案件は1部未開発の部分もあるが、本願の内燃機関は実施可能であり、これらの方法、構成機器の製造に携わる人々が、次にそれらの方法、内燃機関を利用する人々が、更らにそれらに関連する業種の人々に波及する、それらの産業に利用できる。 何より自国の資源を最大限活用するサイクルを作ることが、日本の100年の計を作る土作りとなり、それらの産業の育成につながる。
A.内燃機関(ロータリーピストンエンジン)で水と炭素を前記エンジン内にてHとCOの合成ガスとする概略構造図。B.レシプロエンジンの水蒸気生成部のエンジンブロックと合成ガス生成吸熱反応流路部と燃料供給・噴射系統と点火栓の概略構成図。 A〜F 図1A.の貯ガスタンク設置要領の数種の貯ガスタンク設置例図。 H.貯ガスタンクの1単位のボンベの部分断面・及び当該ボンベのガス出し入れ管路部分図と部分断面図。i.タンク包括体保持・離脱要領図。 A.図1AのEAsecのロータリーエンジンから吸熱反応流路部に至る概略断面図。 エンジン排気管部に設けた吸熱反応流路部とガス生成管の構造を複数の細管で構成した概略構造例図。 特開2007−211608水素エンジンの制御装置のロータリーエンジンを示す概略図。 特開2007−064169の水素ロータリーピストンエンジンの燃料噴射装置の、A,同上ローターの電子制御、水素噴射構造概略横断面図。 B,A,図の縦方向断面図。 レシプロ(ディーゼルエンジン)の燃料供給の電子制御の水素噴射系統と吸気・排気口部と点火栓の概略構成図。 特開2002−256849のカルマン渦を発生させて排気ガスのCOを水に吸集させる、排気管路に設けている排気ガス処理器の概略構造図。 小型炭素生成器の1例図。

Claims (17)

  1. 水素か水素と一酸化炭素の合成ガスかの何れか一方か両方かを主燃料とした内燃機関であって、該内燃機関のエンジンブロック内に通水路を設けて水を導入する導入口から通水路に水か二酸化炭素かの何れか一方か両方かを導入しており、エンジンの燃焼による該内燃機関のエンジンブロックの熱を吸熱して該水は水蒸気となり該二酸化炭素は吸熱二酸化炭素にしており、一方燃料の燃焼で水素ガスは水蒸気と窒素を主成分とする高温の排ガスとなるかあるいは、水素ガスと一酸化炭素を燃料とした燃焼では水蒸気と二酸化炭素と窒素を主成分とする高温の排ガスとなり該エンジンブロックの排気口から排気管路に排出されており、排気管路に設けておる改質路か排気管路内に設けておる改質路かの何れか一方か両方かの改質路中に触媒を対峙させており、該改質路上流に炭化水素化合物を導入して該通水路で生成した水蒸気又は/及び吸熱二酸化炭素とともに触媒に接触させるか、新たに炭化水素化合物と二酸化炭素を導入し排ガス中の水蒸気とともに触媒に接触させる事かのいずれかで、水素と一酸化炭素の合成ガスか水素か二酸化炭素かの何れかを生成して取り出し、該ガスを畜ガスする畜ガス手段を設けて畜ガスするかあるいは畜ガスタンク経由にするかの何れかにして当該内燃機関の燃料とすることを特徴とする、温室効果ガス排出削減策の内燃機関。
  2. 前記エンジンブロック排気口下流の排気ガス管路に水と炭素とを内燃機関の排熱にて反応させて水素と一酸化炭素の混合気体を取り出す取り出し路か該取り出し路中に触媒を対峙させて排熱で改質する合成ガス生成路かのいずれか一方か両方かを設け、取り出した水素と一酸化炭素の混合気体を畜ガスする畜ガスタンクとを設けており、該取り出した水素と一酸化炭素の混合気体をそれぞれの畜ガスタンク経由で当該内燃機関の燃料とするかあるいは合成ガス改質路で水素と二酸化炭素を取り出す出発材料の合成ガスにするかのいずれかにしておる事を特徴とする温室効果ガス排出削減策の内燃機関を提供する。
  3. 前記改質路か取り出し路か合成ガス生成路かの内いずれか一方以上で取り出した水素と一酸化炭素の混合気体かあるいは新たに取り入れた水素と一酸化炭素の混合気体かの何れかを改質する合成ガス改質路を排ガス流路に設けて、該合成ガス改質路に水素と一酸化炭素の混合気体を導入して合成ガス改質路内で再度内燃機関の排熱に反応させて水素と二酸化炭素を別々に取り出し、取り出した水素と二酸化炭素はそれぞれ畜ガスタンクを設けて畜ガスしており、該水素は該内燃機関の燃料としており、該二酸化炭素は上記改質路で改質する出発材料の二酸化炭素としておる事を特徴とする、温室効果ガス排出削減策の内燃機関。
  4. 請求項1乃至請求項3に記載の改質路か、水素と一酸化炭素の取り出し路か、合成ガス生成路か合成ガス改質路かの内少なくともいずれか一方以上を設けた内燃機関を運搬機器に搭載し運搬機器の載内機関とすることを特徴とする、温室効果ガス排出削減策の内燃機関。
  5. 請求項1乃至請求項3に記載の改質熱源をエンジンブロック内に設けた通水路にてエンジンブロック内で吸熱した熱源である事を特徴とする、温室効果ガス排出削減策の内燃機関。
  6. 請求項1乃至請求項4に記載の内燃機関であって、該内燃機関を一定の条件で運転しその回転力で発電して蓄電器に蓄電して、その電気を動力源として自動車を走行させる構成構造にしていることを特徴とする、温室効果ガス排出削減策の内燃機関。
  7. 請求項6に記載の蓄電器の蓄電量が上限設定値になると該内燃機関エンジンの駆動を停止して電力で走行し、蓄電量が下限設定値になると該内燃機関エンジンで駆動する構造にした事を特徴とする、温室効果ガス排出削減策の内燃機関。
  8. 請求項6に記載の内燃機関に充電受電プラグを設け、畜電器に蓄電する充電手段として、その電気を動力源として自動車を走行させる構成構造にしたことを特徴とする、温室効果ガス排出削減策の内燃機関。
  9. 請求項6に記載の該内燃機関の走行形態の下り坂走行及び/または惰力走行時での走行を制御する制御手段であり、前記下り坂走行制御手段はエンジン0FFにして走行し、スピードを制御するブレーキの制動力を発電動力にする手段を設けるか及び/または惰力走行を自動制御する惰力走行自動制御手段を設けた事を特徴としたと温室効果ガス排出削減策の内燃機関。
  10. 請求項1乃至請求項4に記載の内燃機関の回転力をそのまま動力発電機の発電動力とする手段か、あるいは火力発電のタービンを回す役目を終えた水蒸気を改質熱源として、水素と一酸化炭素の取り出し路か、合成ガス生成路か、又は改質路か、合成ガス改質路か、の内いずれかの一方以上を設けて、該内燃機関の燃料を生成する構成にして、現有の火力発電設備に併合する手段とするかの、何れかの手段にして設けた事を特徴とする、温室効果ガス排出削減策の内燃機関。
  11. 熱又は水蒸気又は二酸化炭素又は水素の内いずれか一種以上を廃棄している製造業か設備かの何れか一方か両方かのいずれかに於いて、前記廃棄されている熱又は水蒸気のいずれか一種以上を改質熱源とするかあるいは水素はそのまま燃料として二酸化炭素は合成ガスに改質する出発材料にするかの何れかにして、水素と一酸化炭素の取り出し路か、合成ガス生成路か、改質路か、合成ガス改質路か、の内いずれかの一方以上を設けて該内燃機関の燃料を生成する構成にして当該内燃機関の燃料として内燃機関を運転して、その回転力をそのまま動力発電機の発電動力とする事を特徴とする請求項1乃至請求項4に記載の温室効果ガス排出削減策の内燃機関及び/又は機器。
  12. 請求項1乃至請求項4に記載の畜ガス手段は、該畜ガスタンクを車の車体上部に搭載するか、あるいは車のシャーシー部に車載するか、のいずれかに車載する畜ガス手段としている事を特徴とする、温室効果ガス排出削減策の内燃機関。
  13. 請求項1乃至請求項4に記載の畜ガス手段に、タンク損傷を防止する損傷防止手段か、衝突時に車の設置部からタンクを分離する、タンク分離手段かの、いずれか一方か両方かの、いずれかの手段を設けておる事を特徴とする、温室効果ガス排出削減策の内燃機関。
  14. 請求項1乃至請求項4に記載の内燃機関の排熱を改質熱源として含炭素化合物か含水素化合物の一方かあるいは両方かの何れかを加工して熱分解若しくは改質して水素か、炭素か、二酸化炭素か、の内少なくともいずれかの一種以上の物質を取り出し、前記畜ガスタンクに畜ガスして、前記ガスを取り出された化合物を、製品として販売し、取り出した該ガスを、該内燃機関の燃料とするか、あるいは改質して燃料とするか、あるいは改質出発原料とするかの内いずれかの一方以上にしておる事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器。
  15. 請求項1乃至請求項4に記載の内燃機関の燃料を燃焼させた排ガスから熱を水に吸熱させる水吸熱手段を貯水タンクに設けており、前記水吸熱手段により貯水タンクの水を温水にして、前記吸熱された排ガス中の水蒸気は液体の水となり水回収手段で水を分離回収しておる事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器。
  16. 請求項1乃至請求項4に記載の植物の炭素を製造する小規模炭素製造器であって、酸素が入らない環境で木材等の植物原料を加熱して炭化させる炭化室CSと、前記炭化室を加熱する木材等の植物原料を燃焼させる燃焼室FCと、燃焼室FCの排ガスの通気路と水H2Oを水蒸気Jにする水蒸気生成手段の管路Jを炭化室の内壁に沿って設けており、水蒸気生成手段の水蒸気と前記炭化室での炭化過程で発生するガスC4を燃焼室に導入して炭化室を加熱する燃料とする構成構造にするか、あるいは上記炭化水素化合物改質技術を上記排ガス管路の排出部に設けて、一例として改質物質をジメチルエーテルとして、触媒を対峙させておる該改質部に、ジメチルエーテルに水蒸気か二酸化炭素の一方か両方かの何れかを該触媒に接触させ該小規模炭化装置の燃料とする構成にするかの何れかにして設けた事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器。
  17. 請求項16に記載の小規模炭素製造器の構成で炭化室と燃焼室間を通気出来る構成にして上記炭化室を水蒸気の生成部と排気ガスからの二酸化炭素を分離する分離部と該二酸化炭素を燃料に改質する改質部を設けた暖房器にした事を特徴とする温室効果ガス排出削減策の内燃機関及び/又は機器。
JP2016510119A 2014-03-24 2015-02-17 温室効果ガス排出削減方法 Expired - Fee Related JP6183981B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014060965 2014-03-24
JP2015006271A JP6132317B2 (ja) 2014-03-24 2015-01-15 温室効果ガス排出削減方法。
PCT/JP2015/054216 WO2015146368A1 (ja) 2014-03-24 2015-02-17 温室効果ガス排出削減策の内燃機関及び/又は機器

Publications (2)

Publication Number Publication Date
JPWO2015146368A1 true JPWO2015146368A1 (ja) 2017-04-13
JP6183981B2 JP6183981B2 (ja) 2017-08-30

Family

ID=54433385

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015006271A Expired - Fee Related JP6132317B2 (ja) 2014-03-24 2015-01-15 温室効果ガス排出削減方法。
JP2016510119A Expired - Fee Related JP6183981B2 (ja) 2014-03-24 2015-02-17 温室効果ガス排出削減方法
JP2015051972A Pending JP2015194153A (ja) 2014-03-24 2015-03-16 温室効果ガス排出削減策の内燃機関。

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015006271A Expired - Fee Related JP6132317B2 (ja) 2014-03-24 2015-01-15 温室効果ガス排出削減方法。

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015051972A Pending JP2015194153A (ja) 2014-03-24 2015-03-16 温室効果ガス排出削減策の内燃機関。

Country Status (1)

Country Link
JP (3) JP6132317B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293814B (zh) * 2022-01-10 2022-11-04 湖南大学 一种稳定干磨的自适应式重混凝土墙壁拆除装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016578A (ja) * 1996-06-28 1998-01-20 Suzuki Motor Corp ガス状燃料車両のシャシ構造
JPH11106811A (ja) * 1997-10-07 1999-04-20 Nkk Corp 還元鉄の製造方法および装置
JPH11106770A (ja) * 1997-10-07 1999-04-20 Nkk Corp ジメチルエーテル改質ガスを使用する発電方法および装置
JPH11311136A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド自動車およびその駆動装置
JP2000320407A (ja) * 1999-05-13 2000-11-21 Nkk Corp ジメチルエーテルの車上改質方法および装置
JP2001169408A (ja) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2003097355A (ja) * 2001-09-19 2003-04-03 Nissan Motor Co Ltd 改質ガスエンジン
JP2004149038A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd 燃料タンクモジュールの取付構造
JP2006050887A (ja) * 2004-07-02 2006-02-16 Jfe Holdings Inc エネルギー供給方法及びシステム
JP2006046319A (ja) * 2004-06-30 2006-02-16 Jfe Holdings Inc 廃熱回収装置、廃熱回収システム及び廃熱回収方法
JP2007290645A (ja) * 2006-04-27 2007-11-08 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2008202494A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 内燃機関の排気リフォーマシステム
JP2008202497A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 内燃機関の制御装置
JP2008298030A (ja) * 2007-06-04 2008-12-11 Mitsui Eng & Shipbuild Co Ltd バイオマス燃料対応型のエンジンシステム
JP2013103645A (ja) * 2011-11-15 2013-05-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP5647364B1 (ja) * 2014-03-31 2014-12-24 寛治 泉 ロータリーピストンエンジン車のエンジン機構。

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238973A (ja) * 2001-09-28 2003-08-27 Ebara Corp 可燃ガス改質方法、可燃ガス改質装置及びガス化装置
JP4278136B2 (ja) * 2003-06-04 2009-06-10 本田技研工業株式会社 内燃機関の排気ガス中の窒素酸化物nox処理システムおよび装置
AU2007239819B2 (en) * 2006-03-30 2010-12-02 Nippon Steel Engineering Co., Ltd. Liquid fuel synthesis system
JP5009829B2 (ja) * 2008-02-14 2012-08-22 Jfeスチール株式会社 高炉ガスの改質方法及び利用方法
JP2015024698A (ja) * 2013-07-25 2015-02-05 スズキ株式会社 車両用空調装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016578A (ja) * 1996-06-28 1998-01-20 Suzuki Motor Corp ガス状燃料車両のシャシ構造
JPH11106811A (ja) * 1997-10-07 1999-04-20 Nkk Corp 還元鉄の製造方法および装置
JPH11106770A (ja) * 1997-10-07 1999-04-20 Nkk Corp ジメチルエーテル改質ガスを使用する発電方法および装置
JPH11311136A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド自動車およびその駆動装置
JP2000320407A (ja) * 1999-05-13 2000-11-21 Nkk Corp ジメチルエーテルの車上改質方法および装置
JP2001169408A (ja) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2003097355A (ja) * 2001-09-19 2003-04-03 Nissan Motor Co Ltd 改質ガスエンジン
JP2004149038A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd 燃料タンクモジュールの取付構造
JP2006046319A (ja) * 2004-06-30 2006-02-16 Jfe Holdings Inc 廃熱回収装置、廃熱回収システム及び廃熱回収方法
JP2006050887A (ja) * 2004-07-02 2006-02-16 Jfe Holdings Inc エネルギー供給方法及びシステム
JP2007290645A (ja) * 2006-04-27 2007-11-08 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2008202494A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 内燃機関の排気リフォーマシステム
JP2008202497A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 内燃機関の制御装置
JP2008298030A (ja) * 2007-06-04 2008-12-11 Mitsui Eng & Shipbuild Co Ltd バイオマス燃料対応型のエンジンシステム
JP2013103645A (ja) * 2011-11-15 2013-05-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP5647364B1 (ja) * 2014-03-31 2014-12-24 寛治 泉 ロータリーピストンエンジン車のエンジン機構。

Also Published As

Publication number Publication date
JP2015194153A (ja) 2015-11-05
JP6183981B2 (ja) 2017-08-30
JP2016205133A (ja) 2016-12-08
JP6132317B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
Karim Dual-fuel diesel engines
Salvi et al. Sustainable development of road transportation sector using hydrogen energy system
Dincer et al. A review of novel energy options for clean rail applications
WO2015146368A1 (ja) 温室効果ガス排出削減策の内燃機関及び/又は機器
CN202250480U (zh) 具有储氢合金瓶的内燃机引擎省油装置
CN102007271B (zh) 内燃机
CA2654823C (en) Methods and apparatus for using ammonia as sustainable fuel, refrigerant and nox reduction agent
US20030121481A1 (en) Fuel system
US20040049982A1 (en) Hydrogen supply system and mobile hydrogen production system
JP5967682B1 (ja) 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。
US9175199B2 (en) Method for providing and using an alcohol and use of the alcohol for increasing the efficiency and performance of an internal combustion engine
Halder et al. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles
US20070289882A1 (en) Apparatus for refueling on-board metal hydride hydrogen storage tank
Milojević Reconstruction of existing city buses on diesel fuel for drive on Hydrogen
Bassi Liquefied natural gas (LNG) as fuel for road heavy duty vehicles technologies and standardization
CN107191289A (zh) 纯氧富氧燃烧原动机装置及使用该装置的交通工具和系统
CN102039814A (zh) 醇裂解制氢氢汽车
JP5647364B1 (ja) ロータリーピストンエンジン車のエンジン機構。
CN104937082A (zh) 用于利用醇类燃料的系统和方法
JP6183981B2 (ja) 温室効果ガス排出削減方法
JP2016151179A (ja) 温室効果ガス排出削減方法。
US20240003305A1 (en) Method of operating an internal combustion engine of a truck or omnibus
US20170166503A1 (en) Ecological and economic method and apparatus for providing hydrogen-based methanol
GB2584531A (en) Apparatus, system and method for high efficiency internal combustion engines and hybrid vehicles
CN103738919A (zh) 富氢机及其制备富氢的方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170721

R150 Certificate of patent or registration of utility model

Ref document number: 6183981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 6183981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees