JPWO2015105046A1 - フェライト系ステンレス鋼およびその製造方法 - Google Patents

フェライト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
JPWO2015105046A1
JPWO2015105046A1 JP2015547587A JP2015547587A JPWO2015105046A1 JP WO2015105046 A1 JPWO2015105046 A1 JP WO2015105046A1 JP 2015547587 A JP2015547587 A JP 2015547587A JP 2015547587 A JP2015547587 A JP 2015547587A JP WO2015105046 A1 JPWO2015105046 A1 JP WO2015105046A1
Authority
JP
Japan
Prior art keywords
rolled sheet
annealing
cold
phase
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015547587A
Other languages
English (en)
Other versions
JP5987996B2 (ja
Inventor
正崇 吉野
正崇 吉野
太田 裕樹
裕樹 太田
彩子 田
彩子 田
松原 行宏
行宏 松原
映斗 水谷
映斗 水谷
光幸 藤澤
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53523876&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2015105046(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5987996B2 publication Critical patent/JP5987996B2/ja
Publication of JPWO2015105046A1 publication Critical patent/JPWO2015105046A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

十分な耐食性および優れた成形性を有するフェライト系ステンレス鋼およびその製造方法を提供する。本発明のフェライト系ステンレス鋼は、質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20である。

Description

本発明は、成形性に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。
フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430 (16〜18mass%Cr)は、安価で耐食性に優れているため、建材、輸送機器、家電製品、厨房器具、自動車部品などのさまざまな用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、耐食性だけでなく、所定の形状に加工できる十分な成形性(伸びが大きく(以下、伸びが大きいことを延性があると称することがある)、平均ランクフォード値(以下、平均r値と称することがある)が大きく、r値の面内異方性の絶対値(以下、|Δr|と称することがある)が小さい)が求められる。
上記に対して、特許文献1では、質量%で、C: 0.02〜0.06%、Si:1.0%以下、Mn:1.0%以下、P: 0.05%以下、S: 0.01%以下、Al: 0.005%以下、Ti: 0.005%以下、Cr: 11〜30%、Ni: 0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性および耐リジング特性に優れるフェライト系ステンレス鋼が開示されている。しかし、特許文献1では異方性については一切言及されていない。また、熱間圧延後にいわゆる箱焼鈍(例えば、860℃で8時間の焼鈍)を行う必要がある。このような箱焼鈍は加熱や冷却の過程を含めると一週間程度掛かり、生産性が低い。
一方、特許文献2では、質量%で、C: 0.01〜0.10%、Si: 0.05〜0.50%、Mn: 0.05〜1.00%、Ni: 0.01〜0.50%、Cr: 10〜20%、Mo: 0.005〜0.50%、Cu: 0.01〜0.50%、V: 0.001〜0.50%、Ti: 0.001〜0.50%、Al: 0.01〜0.20%、Nb: 0.001〜0.50%、N: 0.005〜0.050%およびB: 0.00010〜0.00500%を含有した鋼を熱間圧延後、箱型炉あるいはAPライン(annealing and pickling line)の連続炉を用いてフェライト単相温度域で熱延板焼鈍を行い、さらに冷間圧延および仕上げ焼鈍を行うことを特徴とした加工性と表面性状に優れたフェライト系ステンレス鋼が開示されている。しかし、箱型炉を用いた場合には上記の特許文献1と同様に生産性が低いという問題がある。また、伸びに関しては一切言及されていないが、熱延板焼鈍を連続焼鈍炉でフェライト単相温度域で行った場合、焼鈍温度が低いために再結晶が不十分となり、フェライト単相温度域で箱焼鈍を行った場合に比べて伸びが低下する。また、一般に特許文献2のようなフェライト系ステンレス鋼は、鋳造あるいは熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成し、|Δr|が大きくなる問題がある。
特許第3584881号公報(再公表WO00/60134号) 特許第3581801号公報(特開2001−3134号)
本発明は、かかる課題を解決し、十分な耐食性および優れた成形性を有するフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。
なお、本発明において、十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験((塩水噴霧(35℃、5質量%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h))を1サイクルとする試験)を8サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100 [%])が25%以下であることを意味する。
また、優れた成形性とは、JIS Z2241に準拠した引張試験における破断伸び(El)が25%以上、JIS Z2241に準拠した引張試験において15%のひずみを付与した際の下記(1)式により算出される平均ランクフォード値(以下、平均r値と称す)が0.70以上、下記(2)式により算出されるr値の面内異方性(以下、Δrと称す)の絶対値(|Δr|)が0.20以下であることを意味する。
平均r値=(rL+2×rD+rC)/4 (1)
Δr=(rL−2×rD+rC)/2 (2)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
課題を解決するために検討した結果、適切な成分のフェライト系ステンレス鋼に対して熱間圧延後の鋼板を冷間圧延する前に、フェライト相とオーステナイト相の二相となる温度域で焼鈍を行うことにより、十分な耐食性を有し、成形性に優れたフェライト系ステンレス鋼が得られることを見出した。
本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
[2]質量%で、C: 0.01〜0.05%、Si: 0.02〜0.50%、Mn: 0.2〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
[3]質量%で、さらに、Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含む前記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]質量%で、さらに、V: 0.01〜0.25%、Ti: 0.001〜0.10%、Nb: 0.001〜0.10%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%のうちから選ばれる1種または2種以上を含む前記[1]〜[3]のいずれかにに記載のフェライト系ステンレス鋼。
[5]前記[1]〜[4]のいずれかに記載の組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1000℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
本発明によれば、十分な耐食性および優れた成形性を有するフェライト系ステンレス鋼が得られる。
以下、本発明を詳細に説明する。
本発明のフェライト系ステンレス鋼は、プレス加工で建材部品、家電製品の部品、厨房器具、自動車部品などのさまざまな用途に使用されることを目的としている。これらの用途に適用するためには、十分な成形性(伸びおよび平均r値が大きく、|Δr|が小さいこと)が求められる。
例えば、張出し成形される球形の換気口フードの場合、伸び特性が不足していると成形時にもっとも伸びが劣位な方向にネッキングや破断が生じて成形できない。また、成形後の張出し部の板厚が成形前の鋼板の方向によって大きく異なることに起因した製品外観の悪化が生じる場合がある。あるいは、絞り加工などにより製造される大型鍋は、平均r値が低い場合はネッキングや破断が生じ、所定の製品形状に成形することができない。鍋の胴部分の板厚が場所によって大きく異なり伝熱特性上の不具合が生じる場合がある。あるいは、絞り加工による成形を行う場合、|Δr|が大きいと成形後の耳が大きくなり、成形後のトリミング工程の追加による製造コストの増加および切り捨てる鋼板の量が大きくなることによる製品歩留まりの低下が生じる。このように、伸びおよび平均r値が大きく、|Δr|が小さいことが望まれている。しかし、通常は平均r値が大きくなると|Δr|も大きくなってしまう。そこで、発明者らは、建材、輸送機器、家電製品、厨房機器、自動車部品などのさまざまな用途に用いられるプレス成形加工品を鋭意調査し、El≧25%、平均r値≧0.70、さらに|Δr|≦0.20を同時に満足すれば、多くの加工品がプレス成形できることを見出した。
フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430LX(16mass%Cr-0.15mass%Tiあるいは16 mass%Cr-0.4 mass %Nb)、SUS436L(18mass%Cr-1.0mass%Mo-0.25mass%Ti)等は多量のTiやNbを含有し、伸び(El)および平均r値に優れた成形性を持ち、多くの用途に使用されている。しかし、これらの鋼種は多量のTiやNbを含有するために原料コストと製造コストが高く、価格が高い問題がある。一方、フェライト系ステンレス鋼の中でもっとも多く生産されているSUS430(16mass%)は、多量のTiやNbを含有していないので、SUS430LXやSUS436Lより安価であるが、成形性がSUS430LXやSUS436Lより劣る。そのため、成形性を向上させたSUS430が求められていた。
そこで、発明者らは多量のTiやNbを含有しないSUS430(16mass%)系の成分でEl≧25%、平均r値≧0.70、|Δr|≦0.20を満足するフェライト系ステンレス鋼を得る方法を鋭意検討した。また、熱間圧延後のフェライト系ステンレス鋼板を冷間圧延する前に焼鈍(以下、熱延板焼鈍と称する)する方法には、箱焼鈍(バッチ焼鈍)と連続焼鈍があるが、長時間を要して生産性の低い箱焼鈍ではなく、生産性の高い連続焼鈍により所定の成形性を得ること検討した。
連続焼鈍炉を用いた従来技術においての課題は、熱延板焼鈍をフェライト単相温度域で行っているために十分な再結晶が生じず、十分な伸びが得られないとともに、コロニーが冷延板焼鈍後にまで残存するために|Δr|が大きいことであった。そこで発明者らは、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った後に、常法で冷間圧延ならびに冷延板焼鈍を行い、最終的に再度フェライト単相組織とすることを考案した。すなわち、熱延板焼鈍をフェライト単相温度域よりも高温のフェライト相とオーステナイトの二相域で行うことにより、フェライト相の再結晶が促進されるために、熱間圧延によって加工ひずみが導入されたフェライト結晶粒が冷延板焼鈍後にまで残存することが回避され、冷延板焼鈍後の伸びが向上する。また、熱延板焼鈍でフェライト相からオーステナイト相が生成する際に、オーステナイト相が焼鈍前のフェライト相とは異なった結晶方位を有して生成するために、フェライト相のコロニーが効果的に破壊される。そのため、冷間圧延および冷延板焼鈍を行った後の冷延焼鈍板の金属組織では、r値を向上させるγ−ファイバー集合組織が発達する。また、コロニーが分断されて、金属組織の異方性が緩和され、|Δr|が小さくなるという優れた特性が得られる。
また、マルテンサイト相を含んだ熱延焼鈍板を冷間圧延すると、マルテンサイト相がフェライト相に比べて硬質なために、マルテンサイト相近傍のフェライト相が優先的に変形して圧延ひずみが集中し、冷延板焼鈍時の再結晶サイトが一層増加する。これにより、冷延板焼鈍時の再結晶がより促進され、冷延板焼鈍後の金属組織の異方性が一層緩和される。
さらに、各種成分について二相域熱延板焼鈍の効果を詳細に検討した結果、多量のTiやNbを含有させなくても、適切な成分より、伸び(El)が25%以上、平均r値が0.70以上、|Δr|が0.20以下の優れた成形性が得られることを見出した。
次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。
以下、特に断らない限り%は質量%を意味する。
C: 0.005〜0.05%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。しかし、C量が0.05%を超えると鋼板が硬質化して延性が低下する。そのため、C量は0.005〜0.05%の範囲とする。下限は、好ましくは0.01%、さらに好ましくは0.015%である。上限は、好ましくは0.035%、さらに好ましくは0.03%、より一層好ましくは0.025%である。
Si: 0.02〜0.50%
Siは鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上の含有が必要である。しかし、Si量が0.50%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大する。また、冷延板焼鈍後の延性が低下する。そのため、Si量は0.02〜0.50%の範囲とする。好ましくは0.10〜0.50%の範囲である。さらに好ましくは0.25〜0.35%の範囲である。
Mn: 0.05〜1.0%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.05%以上の含有が必要である。しかし、Mn量が1.0%を超えるとMnSの生成量が増加して耐食性が低下する。そのため、Mn量は0.05〜1.0%の範囲とする。下限は、好ましくは0.1%、さらに好ましくは0.2%である。上限は、好ましくは0.8%、さらに好ましくは0.35%である、より一層好ましくは0.3%である。
P: 0.04%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。さらに好ましくは0.01%以下である。
S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素である。特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
Cr: 15.5〜18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を15.5%以上とする必要がある。しかし、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られない。そのため、Cr量は15.5〜18.0%の範囲とする。好ましくは16.0〜18.0%の範囲である。さらに好ましくは16.0〜17.25%の範囲である。
Al: 0.001〜0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001〜0.10%の範囲とする。好ましくは0.001〜0.05%の範囲である。さらに好ましくは0.001〜0.03%の範囲である。
N: 0.01〜0.06%
Nは、C、Mnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.01%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。そのため、N量は0.01〜0.06%の範囲とする。好ましくは0.01〜0.05%の範囲である。さらに好ましくは0.02〜0.04%の範囲である。
残部はFeおよび不可避的不純物である。
以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。
Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上
CuおよびNiはいずれも耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。また、CuおよびNiにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は各々0.1%以上の含有で顕著となる。しかし、Cu含有量が1.0%を超えると熱間加工性が低下する場合があり好ましくない。そのためCuを含有する場合は0.1〜1.0%とする。好ましくは0.2〜0.8%の範囲である。さらに好ましくは0.3〜0.5%の範囲である。Ni含有量が1.0%を超えると加工性が低下するため好ましくない。そのためNiを含有する場合は0.1〜1.0%とする。好ましくは0.1〜0.6%の範囲である。さらに好ましくは0.1〜0.3%の範囲である。
Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなり好ましくない。そのため、Moを含有する場合は0.1〜0.5%とする。好ましくは0.1〜0.3%の範囲である。
Coは靭性を向上させる元素である.この効果は0.01%以上の含有によって得られる。一方、含有量が0.5%を超えると製造性を低下させる.そのため、Coを含有する場合の含有量は0.01〜0.5%の範囲とする。
V: 0.01〜0.25%、Ti: 0.001〜0.10%、Nb: 0.001〜0.10%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上
V: 0.01〜0.25%
Vは鋼中のCおよびNと化合して、固溶C、Nを低減する。これにより、平均r値を向上させる。さらに、熱延板での炭窒化物析出挙動を制御して熱延・焼鈍起因の線状疵の発生を抑制して表面性状を改善する。これらの効果を得るためにはV量を0.01%以上含有する必要がある。しかし、V量が0.25%を超えると加工性が低下するとともに、製造コストの上昇を招く。そのため、Vを含有する場合は0.01〜0.25%の範囲とする。好ましくは0.03〜0.20%の範囲である。さらに好ましくは0.05〜0.15%の範囲である。
Ti: 0.001〜0.10%、Nb:0.001〜0.10%、
TiおよびNbはVと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶C、Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。これらの効果を得るためには、0.001%以上のTi、0.001%以上のNbを含有する必要がある。しかし、Ti量が0.10%あるいはNb量が0.10%を超えると、過剰なTiNおよびNbCの析出により良好な表面性状を得ることができない。そのため、Tiを含有する場合は0.001〜0.10%の範囲、Nbを含有する場合は0.001〜0.10%の範囲とする。Ti量は好ましくは0.001〜0.015%の範囲である。さらに好ましくは0.003〜0.010%の範囲である。Nb量は好ましくは0.001〜0.025%の範囲である。さらに好ましくは0.005〜0.020%の範囲である。
Mg: 0.0002〜0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する。そのため、Mgを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
B: 0.0002〜0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する。そのため、Bを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
REM: 0.01〜0.10%
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の含有が必要である。しかし、0.10%を超えて含有すると冷延板焼鈍時の酸洗性などの製造性を低下させる。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01〜0.10%の範囲とする。
Ca: 0.0002〜0.0020%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Ca量が0.0020%を超えるとCaSが生成して耐食性が低下する。そのため、Caを含有する場合は0.0002〜0.0020%の範囲とする。好ましくは0.0005〜0.0015%の範囲である。さらに好ましくは0.0005〜0.0010%の範囲である。
次に本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は上記成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1000℃の温度範囲で5秒〜15分間保持する熱延板焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うことで得られる。
まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。このスラブを、1100〜1250℃で1〜24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。
次いで、熱間圧延を行う。巻取りでは、巻取り温度を500℃以上850℃以下とすることが好ましい。500℃未満では巻取り後の再結晶が不十分となって冷延板焼鈍後の延性が低下する場合があるため好ましくない。850℃超で巻き取ると粒径が大きくなり、プレス加工時に肌荒れが発生してしまう場合がある。したがって、巻取り温度は500〜850℃の範囲が好ましい。
その後、フェライト相とオーステナイト相の二相域温度となる900〜1000℃の温度で5秒〜15分間保持する熱延板焼鈍を行う。
次いで、必要に応じて酸洗を施し、冷間圧延および冷延板焼鈍を行う。さらに、必要に応じて酸洗を施して製品とする。
冷間圧延は伸び性、曲げ性、プレス成形性および形状矯正の観点から、50%以上の圧下率で行うことが好ましい。また、本発明では、冷延−焼鈍を2回以上繰り返しても良い。
冷延板の焼鈍は、良好な成形性を得るために800〜950℃の温度で5秒〜5分間保持する。また、より光沢を求めるためにBA焼鈍(光輝焼鈍)を行っても良い。
なお、さらに表面性状を向上させるために、研削や研磨等を施してもよい。
製造条件の好適な限定理由について、以下に説明する。
900〜1000℃の温度で5秒〜15分間保持する熱延板焼鈍
熱延板焼鈍は本発明が優れた成形性を得るために極めて重要な工程である。熱延板焼鈍温度が900℃未満では十分な再結晶が生じないうえ、フェライト単相域となるため、二相域焼鈍によって発現する本発明の効果が得られない。しかし、熱延板焼鈍温度が1000℃を超えると、オーステナイト相の生成量が低下する。そのため、熱延板焼鈍後に生成するマルテンサイト相の量が減少し、フェライト相とマルテンサイト相を含む金属組織を冷間圧延することによる、マルテンサイト相近傍のフェライト相への圧延ひずみの集中による金属組織の異方性緩和効果を十分に得ることができず、所定の|Δr|を得ることができない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもオーステナイト相の生成とフェライト相の再結晶が十分に生じないため、所望の成形性が得られない。一方、焼鈍時間が15分を超えるとCr炭窒化物の一部が固溶してオーステナイト相中へのC濃化が助長され、熱延板焼鈍後にオーステナイト相が変態して生成するマルテンサイト相への過度なC濃化が生じる。このマルテンサイト相は冷延板焼鈍時に炭化物とフェライト相へと分解し、多量の炭化物を含むフェライト相へと変化する。これにより冷延板焼鈍後の金属組織は、熱延板焼鈍時にフェライト相であったため粒内および粒界上の炭化物が少ないフェライト粒と、熱延板焼鈍時にオーステナイト相であったため粒内および粒界上の炭化物が過度に多いフェライト粒の混粒組織となる。このような金属組織となった場合、炭化物が少ない粒と多い粒の間の硬度差に起因して、成形時に両者の粒の界面に変形ひずみが集中し、粒界上の炭化物を起点としたボイドの生成が助長され、延性が低下する。そのため、熱延板焼鈍は900〜1000℃の温度で、5秒〜15分間保持する。好ましくは、910〜960℃の温度で15秒〜3分間保持である。
800〜950℃の温度で5秒〜5分間保持する冷延板焼鈍
冷延板焼鈍は熱延板焼鈍で形成したフェライト相とマルテンサイト相の二相組織をフェライト単相組織とするために重要な工程である。冷延板焼鈍温度が800℃未満では再結晶が十分に生じず所定の延性および平均r値を得ることができない。一方、冷延板焼鈍温度が950℃を超えた場合、当該温度がフェライト相とオーステナイト相の二相温度域となる鋼成分では冷延板焼鈍後にマルテンサイト相が生成するために鋼板が硬質化し、所定の延性を得ることができない。また、当該温度がフェライト単相温度域となる鋼成分であったとしても、結晶粒の著しい粗大化により、鋼板の光沢度が低下するため表面品質の観点で好ましくない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもフェライト相の再結晶が十分に生じないため、所定の延性および平均r値を得ることができない。焼鈍時間が5分を超えると、結晶粒が著しく粗大化し、鋼板の光沢度が低下するため表面品質の観点で好ましくない。そのため、冷延板焼鈍は800〜950℃の範囲で5秒〜5分間保持とする。好ましくは、850℃〜900℃で15秒〜3分間保持である。
以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1150℃で1h加熱後、熱間圧延を施して3.5mm厚の熱延板とした。次いで、これらの熱延板に表2に記載の条件で熱延板焼鈍を施した後、表面にショットブラスト処理と酸洗による脱スケールを行った。さらに、板厚0.7mmまで冷間圧延した後、表2に記載の条件で冷延板焼鈍を行った後、酸洗による脱スケール処理を行い、冷延酸洗焼鈍板を得た。
かくして得られた冷延酸洗焼鈍板について以下の評価を行った。
(1)延性の評価
冷延酸洗焼鈍板から、L方向(圧延方向と平行)、D方向(圧延方向と45°)およびC方向(圧延方向と直角)にJIS 13B号引張試験片を採取し、引張試験をJIS Z2241に準拠して行い、破断伸びを測定し、各方向の破断伸びが25%以上の場合を合格(○)、一方向でも25%未満のものがある場合を不合格(×)とした。
(2)平均r値および|Δr|の評価
冷延酸洗焼鈍板から、圧延方向に対して平行(L方向)、45°(D方向)およびに直角(C方向)となる方向にJIS 13B号引張試験片を採取し、JIS Z2241に準拠した引張試験をひずみ15%まで行って中断し、各方向のr値を測定し平均r値(=(r+2r+r)/4)およびr値の面内異方性(Δr=(r−2r+r)/2)の絶対値(|Δr|)を算出した。ここで、r、r、rはそれぞれL方向、D方向およびC方向のr値である。平均r値は0.70以上を合格(○)、0.70未満を不合格(×)とした。|Δr|は0.20以下を合格(○)、0.20超を不合格(×)とした。
(3)耐食性の評価
冷延酸洗焼鈍板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2h)→乾燥(60℃、4h、相対湿度40%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとして、8サイクル行った。
塩水噴霧サイクル試験を8サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆面積率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆面積率が10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした
評価結果を熱延板焼鈍条件および冷延板焼鈍条件と併せて表2に示す。
Figure 2015105046
Figure 2015105046
鋼成分ならびに製造方法のいずれもが本発明の範囲を満たすNo.1〜14、20〜30および40〜52では、破断伸び25%以上、平均r値で0.70以上、|Δr|が0.20以下と優れた成形性が確認された。さらに耐食性に関しても塩水噴霧サイクル試験を8サイクル実施後の試験片表面の発錆面積率がいずれも25%以下と良好な特性が得られている。
特にNiを0.4%含有した鋼DおよびAC、Cuを0.3%含有した鋼F 、Cuを0.4%含有した鋼AR、Moを0.3%含有した鋼Gおよび鋼AIに対応するNo.4、No.22、No.6、No.50、No.7および No.41では、塩水噴霧サイクル試験後の発錆面積率が10%以下となっており、耐食性が一層向上した。
一方、Cr含有量が本発明の範囲を下回るNo.15では、所定の延性、平均r値および|Δr|は得られたものの、Cr含有量が不足したために所定の耐食性が得られなかった。
Cr含有量が本発明の範囲を上回るNo.16では、十分な耐食性は得られたが、過剰にCrを含有したために熱延板焼鈍時にオーステナイト相が生成せず、所定の平均r値および|Δrを得ることができなかった。
C量が本発明の範囲を上回るNo.17では、所定の平均r値ならびに|Δr|は得られたが、固溶C量が増加したために鋼板強度が著しく上昇し、所定の延性が得られなかった。
一方、C量が本発明の範囲を下回るNo.18では、Cによるオーステナイト相の安定化が不十分であったために、熱延板焼鈍中に十分な量のオーステナイト相が生成せず、所定の平均r値および|Δr|を得ることができなかった。
熱延板焼鈍温度がそれぞれ875℃あるいは871℃と低いNo.19あるいはNo.35では、熱延板焼鈍温度がフェライト単相温度となりオーステナイト相となったために、熱延板焼鈍後にマルテンサイト相が生成せず、マルテンサイトを含む鋼板を冷間圧延することによって得られる所定の金属組織の異方性緩和効果が得られず、所定の|Δr|が得られなかった。熱延板焼鈍温度がそれぞれ1014℃あるいは1011℃と高いNo.31あるいはNo.36では、焼鈍温度において生成するオーステナイト相の量が減少し、熱延板焼鈍後に生成するマルテンサイト相の量が減少したために、その後の冷間圧延による所定の金属組織の異方性緩和効果を得ることができず、所定の|Δr|が得られなかった。熱延板焼鈍時間が1秒と短いNo.32およびNo.37では、オーステナイト相の生成と十分な再結晶が生じなかったために、所定の延性、平均r値および|Δr|が得られなかった。冷延板焼鈍温度が780℃と低いNo.33およびNo.38では、再結晶が十分に生じず、冷間圧延による加工組織が残存した結果、所定の延性および平均r値が得られなかった。冷延板焼鈍温度が960℃と高いNo.34およびNo.39では、冷延板焼鈍時に再度オーステナイト相が生成し、冷延板焼鈍後にオーステナイト相がマルテンサイト相へと変態した結果、鋼板が著しく硬質化し所定の延性が得られなかった。また、冷延板焼鈍後の組織がマルテンサイト相を含んでいたためにr値が低下し、所定の平均r値を得ることができなかった。
以上のことから、本発明が提供する所定の成形性を得るためには、鋼成分および製造方法の双方が本発明の範囲を満たすことが必要であることが示された。
本発明で得られるフェライト系ステンレス鋼は、絞りを主体としたプレス成形品や高い耐食性を要求される用途、例えば建材、輸送機器、自動車部品への適用に特に好適である。

Claims (5)

  1. 質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
  2. 質量%で、C: 0.01〜0.05%、Si: 0.02〜0.50%、Mn: 0.2〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
  3. 質量%で、さらに、Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含む請求項1または2に記載のフェライト系ステンレス鋼。
  4. 質量%で、さらに、V: 0.01〜0.25%、Ti: 0.001〜0.10%、Nb: 0.001〜0.10%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上を含む請求項1〜3のいずれか一項に記載のフェライト系ステンレス鋼。
  5. 請求項1〜4のいずれか一項に記載の成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1000℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。
JP2015547587A 2014-01-08 2015-01-07 フェライト系ステンレス鋼およびその製造方法 Active JP5987996B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014001363 2014-01-08
JP2014001363 2014-01-08
JP2014228502 2014-11-11
JP2014228502 2014-11-11
PCT/JP2015/000033 WO2015105046A1 (ja) 2014-01-08 2015-01-07 フェライト系ステンレス鋼およびその製造方法

Publications (2)

Publication Number Publication Date
JP5987996B2 JP5987996B2 (ja) 2016-09-07
JPWO2015105046A1 true JPWO2015105046A1 (ja) 2017-03-23

Family

ID=53523876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015547587A Active JP5987996B2 (ja) 2014-01-08 2015-01-07 フェライト系ステンレス鋼およびその製造方法

Country Status (5)

Country Link
JP (1) JP5987996B2 (ja)
KR (2) KR20180114240A (ja)
CN (1) CN105874092A (ja)
TW (1) TWI530571B (ja)
WO (1) WO2015105046A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3231882B1 (en) * 2014-12-11 2020-01-15 JFE Steel Corporation Stainless steel and production method therefor
WO2017013850A1 (ja) * 2015-07-17 2017-01-26 Jfeスチール株式会社 フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法
CA3056054C (en) * 2017-03-30 2022-08-30 Nippon Steel Stainless Steel Corporation Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure
JP2019044255A (ja) * 2017-09-07 2019-03-22 Jfeスチール株式会社 フェライト系ステンレス鋼板
JP2019081916A (ja) * 2017-10-27 2019-05-30 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
CN113767181B (zh) * 2019-05-29 2023-05-09 杰富意钢铁株式会社 铁素体系不锈钢板及其制造方法
CN111593266B (zh) * 2020-05-15 2021-09-14 山西太钢不锈钢股份有限公司 中铬型铁素体不锈钢
CN112974562B (zh) * 2021-03-31 2023-04-07 甘肃酒钢集团宏兴钢铁股份有限公司 一种焊带用不锈钢热轧卷的生产方法
CN113388780A (zh) * 2021-05-25 2021-09-14 宁波宝新不锈钢有限公司 一种厨具面板用430铁素体不锈钢及其制备方法
CN115341147B (zh) * 2022-08-19 2023-09-26 山西太钢不锈钢股份有限公司 电梯面板用中铬铁素体不锈钢及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158233A (ja) * 1992-11-25 1994-06-07 Nippon Steel Corp 靱性の優れたフェライト系ステンレス鋼薄肉鋳片及びこの薄肉鋳片によるフェライト系ステンレス鋼帯の製造方法
JPH08170154A (ja) * 1994-12-15 1996-07-02 Nippon Steel Corp 溶接性に優れたフェライト系ステンレス鋼
EP1099773B1 (en) * 1999-03-30 2006-01-25 JFE Steel Corporation Ferritic stainless steel plate
FR2792561B1 (fr) * 1999-04-22 2001-06-22 Usinor Procede de coulee continue entre cylindres de bandes d'acier inoxydable ferritique exemptes de microcriques
JP3581801B2 (ja) 1999-06-22 2004-10-27 新日本製鐵株式会社 加工性と表面性状に優れたフェライト系ステンレス鋼板およびその製造方法
JP2001089815A (ja) * 1999-09-22 2001-04-03 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系ステンレス鋼板の製造方法
JP2001181798A (ja) * 1999-12-20 2001-07-03 Kawasaki Steel Corp 曲げ加工性に優れたフェライト系ステンレス熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法
JP4374701B2 (ja) * 2000-03-16 2009-12-02 Jfeスチール株式会社 深絞り性に優れた自動車排気系用フェライト系ステンレス鋼板の製造方法
KR100547536B1 (ko) * 2002-03-27 2006-01-31 신닛뽄세이테쯔 카부시키카이샤 페라이트계 스테인레스 강의 주조 부재 및 강판과 그 제조방법
WO2003106725A1 (ja) * 2002-06-01 2003-12-24 Jfeスチール株式会社 Ti添加フェライト系ステンレス鋼板およびその製造方法
JP2006274436A (ja) * 2005-03-30 2006-10-12 Jfe Steel Kk 部品用の断面形状をもつ曲管用のフェライト系ステンレス鋼板および鋼管
JP2009030078A (ja) * 2007-07-24 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp 耐リジング性に優れた高加工性フェライト系ステンレス鋼板およびその製造方法
JP5262029B2 (ja) * 2007-09-11 2013-08-14 Jfeスチール株式会社 伸びフランジ加工性に優れたフェライト系ステンレス鋼板
KR100963109B1 (ko) * 2007-11-22 2010-06-14 주식회사 포스코 고크롬 페라이트계 스테인리스강
EP2722411B1 (en) * 2011-06-16 2020-04-08 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
CN102839328A (zh) * 2011-06-24 2012-12-26 宝山钢铁股份有限公司 高深冲性低各向异性的铁素体不锈钢板及其制造方法
US20150023832A1 (en) * 2012-03-13 2015-01-22 Jfe Steel Corporation Ferritic stainless steel

Also Published As

Publication number Publication date
CN105874092A (zh) 2016-08-17
WO2015105046A1 (ja) 2015-07-16
KR20180114240A (ko) 2018-10-17
KR20160105869A (ko) 2016-09-07
TW201529866A (zh) 2015-08-01
TWI530571B (zh) 2016-04-21
JP5987996B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5987996B2 (ja) フェライト系ステンレス鋼およびその製造方法
JP5884211B1 (ja) フェライト系ステンレス鋼板およびその製造方法
JP5888476B2 (ja) ステンレス冷延鋼板用素材およびその製造方法
KR101705135B1 (ko) 페라이트계 스테인리스 강판
JP5862846B2 (ja) フェライト系ステンレス鋼およびその製造方法
KR101949629B1 (ko) 스테인리스강 및 그 제조 방법
JP5904310B1 (ja) フェライト系ステンレス鋼およびその製造方法
JP6411881B2 (ja) フェライト系ステンレス鋼およびその製造方法
JP2019081916A (ja) フェライト系ステンレス鋼板およびその製造方法
JP2001207244A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP5900717B1 (ja) ステンレス鋼板およびその製造方法
JPWO2016092714A1 (ja) フェライト系ステンレス鋼およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250