JPWO2015049737A1 - 放熱システム - Google Patents
放熱システム Download PDFInfo
- Publication number
- JPWO2015049737A1 JPWO2015049737A1 JP2015540300A JP2015540300A JPWO2015049737A1 JP WO2015049737 A1 JPWO2015049737 A1 JP WO2015049737A1 JP 2015540300 A JP2015540300 A JP 2015540300A JP 2015540300 A JP2015540300 A JP 2015540300A JP WO2015049737 A1 JPWO2015049737 A1 JP WO2015049737A1
- Authority
- JP
- Japan
- Prior art keywords
- cooling fluid
- flow
- heat dissipation
- dissipation system
- vortex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/009—Influencing flow of fluids by means of vortex rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Fluid Mechanics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
基体22と冷却用流体との熱交換により放熱を行う放熱システムである。この放熱システムは、冷却用流体と接触する基体22の表面に、冷却用流体の流通方向αと交差する方向βに延出し且つ冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部22bから成る渦流れ生成部C1を有する冷却構造を備える。渦流れ生成部の凹部深さHと壁面近傍の層流低層厚さδbがH>δb=63.5/(Re7/8)×d(Reはレイノルズ数、dは代表長さ、レイノルズ数はRe=ud/νで、νは冷却用流体の動粘度、uは冷却用流体の流速、dは代表長さ)で表される関係を満足し、冷却用流体がu/ν≦206×d1/7(u、ν及びdは上記と同じもの)で表される流動条件を満足する範囲に制御して運転する。
Description
本発明は、半導体やモータ等の発熱体の冷却に適用される放熱システムに係り、更に詳細には、固体と流体との熱交換を利用した冷却構造を、伝熱を促進する適切な流動条件下で使用する高効率な放熱システムに関する。
この種の従来技術としては、「冷却装置」とした名称において特許文献1に開示されたものがある。
特許文献1に開示されている冷却装置は、電子部品に対し離反する方向に延長される複数の放熱部材を備え、この各放熱部材相互間を冷却用流体が通過することで、上記電子部品の冷却を行うものであり、これら複数の放熱部材の長さは、上記電子部品の発熱による熱伝導温度が低くなるに従って短くなるように形成されている。
特許文献1に開示されている冷却装置は、電子部品に対し離反する方向に延長される複数の放熱部材を備え、この各放熱部材相互間を冷却用流体が通過することで、上記電子部品の冷却を行うものであり、これら複数の放熱部材の長さは、上記電子部品の発熱による熱伝導温度が低くなるに従って短くなるように形成されている。
また、この冷却装置においては、上記複数の放熱部材の長さは、冷却用流体の流れ方向に沿って、電子部品の中央部から端部に向かって短くなるように形成されている。
しかしながら、このような従来の冷却装置は、複数の放熱部材を電子部品に対して離反する方向に延長し、且つ放熱部材と冷却用流体との接触面積を増加させて冷却を行うものであり、小型化が困難である。
本発明は、このような従来技術の有する課題に着目してなされたものであり、その目的とするところは、装置の小型化及び冷却用流体の圧損低減を図るとともに、更に伝熱性を促進して効率の良い放熱を実現し得る放熱システムを提供することにある。
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、所定の凹部から成る渦流れ生成部を有する冷却構造を、冷却用流体の一定の流動条件下に適用することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
即ち、本発明の放熱システムは、基体と冷却用流体との熱交換により放熱を行う放熱システムであって、
冷却用流体と接触する基体の表面に、この冷却用流体の流通方向と交差する方向に延出し且つ上記冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部から成る渦流れ生成部を有する冷却構造を備えたものである。
そして、この放熱システムでは、上記渦流れ生成部の凹部深さHと壁面近傍の層流低層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足し、且つ上記冷却用流体が、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御して運転される。
冷却用流体と接触する基体の表面に、この冷却用流体の流通方向と交差する方向に延出し且つ上記冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部から成る渦流れ生成部を有する冷却構造を備えたものである。
そして、この放熱システムでは、上記渦流れ生成部の凹部深さHと壁面近傍の層流低層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足し、且つ上記冷却用流体が、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御して運転される。
本発明によれば、所定の凹部から成る渦流れ生成部を有する冷却構造を冷却用流体の一定の流動条件下に適用することとしたため、装置の小型化及び冷却用流体の圧損低減を図るとともに、更に伝熱性を促進して効率の良い放熱を実現し得る放熱システムが提供される。
以下、本発明の実施形態を図面を参照して説明する。
図1は本発明の放熱システムの一実施形態を示すシステム構成図、図2(A)はこの放熱システムの一部をなすインバータの構成を示す図1のI‐I線に沿った断面図、図2(B)は冷却体における冷却用流体との接触面を示す平面図である。また、図3は図2(A)のII‐II線に沿った断面図である。
図1は本発明の放熱システムの一実施形態を示すシステム構成図、図2(A)はこの放熱システムの一部をなすインバータの構成を示す図1のI‐I線に沿った断面図、図2(B)は冷却体における冷却用流体との接触面を示す平面図である。また、図3は図2(A)のII‐II線に沿った断面図である。
本発明の一実施形態に係る放冷システムAは、図1に示すように、ラジエータ10、水冷式のモータ11、DC‐DCコンバータ12、インバータ20、電動ポンプ13及びコントローラBを備えている。
水冷式のモータ11、DC‐DCコンバータ12、インバータ20及び電動ポンプ13は、コントローラBの出力側に接続されて、適宜制御されるようになっている。
コントローラBは、CPU(Central Processing Unit)やインターフェース回路等から成るものであり、所要のプログラムの実行により所望の機能を発揮するようになっている。
コントローラBは、CPU(Central Processing Unit)やインターフェース回路等から成るものであり、所要のプログラムの実行により所望の機能を発揮するようになっている。
インバータ20は、直流電力から交流電力を電気的に生成する電力変換装置であり、本実施形態においては、図2(A)に示すように、ウォータージャケット21、基体の一例である冷却体22、電気絶縁材23、銅等で形成されたバスバー24、半田層25、銅・モリブデン等で形成された熱緩衝プレート26、半田層27及び発熱体である半導体チップ30を順に積層した構成を有している。
ウォータージャケット21の冷却用流体流入側側壁21dには冷却用流体を流入させるための流入口21eが、冷却用流体流出側側壁21fには冷却用流体を流出させるための流出口21gが、それぞれ形成されている。
このウォータージャケット21には、上記流入口21eと流出口21gを介して、図1及び図2に符号「α」で示す方向に冷却用流体が流通している。
このウォータージャケット21には、上記流入口21eと流出口21gを介して、図1及び図2に符号「α」で示す方向に冷却用流体が流通している。
本実施形態において、冷却体22は板体として形成されており、上記ウォータージャケット21内に面した表面、即ち冷却用流体との接触面(流体接触面)22aには、以下に説明する冷却構造が設けられている。
この冷却構造は、発熱体である半導体チップ30を配置された冷却体22に冷却用流体(の流れ)を接触させて熱交換することにより、半導体チップ30を冷却する機能を有するものであり、冷却用流体の流通方向αと交差する方向βに延出し、且つ冷却用流体の流通速度に応じて渦流れを生じさせる渦流れ生成部C1を形成している。
この冷却構造は、発熱体である半導体チップ30を配置された冷却体22に冷却用流体(の流れ)を接触させて熱交換することにより、半導体チップ30を冷却する機能を有するものであり、冷却用流体の流通方向αと交差する方向βに延出し、且つ冷却用流体の流通速度に応じて渦流れを生じさせる渦流れ生成部C1を形成している。
本実施形態において、基体である冷却体22には、上述の絶縁材23、バスバー24、半田層25、緩衝プレート26及び半田層27を介して発熱体である半導体チップ30が載置されている。
なお、熱緩衝プレート26は、半導体チップ30との線膨張率の差を緩衝するためのものである。
なお、熱緩衝プレート26は、半導体チップ30との線膨張率の差を緩衝するためのものである。
渦流れ生成部C1は、冷却用流体の流通方向αと交差する方向に延出し、且つ冷却用流体の流通速度に応じて渦流れを生じさせる機能を有するものである。
本実施形態においては、複数の凹部としての断面半円形の溝22bを、冷却体22の流体接触面22a(図2参照)に所定の間隔をもって連続させて形成してある。
本実施形態においては、隣り合う二つの溝22b,22bどうしが、これらを区画する内壁どうしが交差する所定の間隔で形成したものであり、以下の条件を満たすようにしている。
本実施形態においては、複数の凹部としての断面半円形の溝22bを、冷却体22の流体接触面22a(図2参照)に所定の間隔をもって連続させて形成してある。
本実施形態においては、隣り合う二つの溝22b,22bどうしが、これらを区画する内壁どうしが交差する所定の間隔で形成したものであり、以下の条件を満たすようにしている。
「凹部を連続させて形成」するとは、隣り合う凹部の内壁どうしを交差させる形態にした配列の他、それら隣り合う凹部の内壁どうしを交差させない形態のものを含む。
凹部の内壁どうしを交差させない形態の場合、隣り合う凹部の内壁の終端どうしを曲面等で滑らかに連続させるとよい。このように、内壁の終端どうしを曲面等で滑らかに連続させると機械加工を行いやすい。
凹部の内壁どうしを交差させない形態の場合、隣り合う凹部の内壁の終端どうしを曲面等で滑らかに連続させるとよい。このように、内壁の終端どうしを曲面等で滑らかに連続させると機械加工を行いやすい。
「内壁どうしが交差する」とは、凹部を断面半円形の溝とした場合、これらの直径寸法毎に一定の間隔にして配列したときのように、内周壁面どうしが流接面上で当接する態様の他、上記直径寸法以下の間隔で配列した態様を含む。この場合、隣り合う溝の内周壁面どうしが、流接面以下において交差するようになる。
凹部の断面形状は、上記した断面半円形のものに限らず、不規則なものであってもよく、さらにそれらを組み合わせて配列してもよいことは勿論である。
すなわち、冷却用流体の流通速度に応じて渦流れを生じさせる凹部であればよい。
凹部の断面形状は、上記した断面半円形のものに限らず、不規則なものであってもよく、さらにそれらを組み合わせて配列してもよいことは勿論である。
すなわち、冷却用流体の流通速度に応じて渦流れを生じさせる凹部であればよい。
「所定の間隔」は、一定の間隔にしたもの、複数の凹部の全部又はそれらの一部を不規則な間隔にしたものの双方を含んでいる。
隣り合う二つの溝22b,22bどうしを、これらを区画する内壁どうしが交差する所定の間隔で配列形成することにより、溝22bをより多く形成することができ、渦流れをより多く生成させることができる。
隣り合う二つの溝22b,22bどうしを、これらを区画する内壁どうしが交差する所定の間隔で配列形成することにより、溝22bをより多く形成することができ、渦流れをより多く生成させることができる。
本実施形態においては、溝(凹部)22bなどが以下の条件を満足するように構成しており、又はそのように構成することが好ましい。
(1)溝(凹部)22bの最大深さH(図2参照)を、流動条件であるレイノルズ数Reと代表長さdから計算される壁面近傍の層流低層厚さδb=63.5/(Re7/8)×dよりも大きくしている。
即ち、凹部22bの最大深さHと壁面近傍の層流低層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足するようにしている。
(1)溝(凹部)22bの最大深さH(図2参照)を、流動条件であるレイノルズ数Reと代表長さdから計算される壁面近傍の層流低層厚さδb=63.5/(Re7/8)×dよりも大きくしている。
即ち、凹部22bの最大深さHと壁面近傍の層流低層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足するようにしている。
そして、本実施形態の放熱システムでは、更に、冷却用流体を、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御し、システム運転を行う。
かかる流動条件の採用により、上記の層流低層厚さδbは代表的には0.7mm以下に制御される。
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御し、システム運転を行う。
かかる流動条件の採用により、上記の層流低層厚さδbは代表的には0.7mm以下に制御される。
また、本発明の放熱システムにおいては、冷却用流体の流動条件を次式(3)
u/ν≦455×d1/7…(3)
(式中のu、ν及びdは上記と同じものを示す)を満足する範囲になるように制御することが好ましい。
かかる流動条件の採用により、層流低層厚さδbは代表的には0.4mm以下に制御される。
u/ν≦455×d1/7…(3)
(式中のu、ν及びdは上記と同じものを示す)を満足する範囲になるように制御することが好ましい。
かかる流動条件の採用により、層流低層厚さδbは代表的には0.4mm以下に制御される。
(2)溝22bの開口幅Wをせん断応力τωと流体密度ρから計算されるせん断速度uτ=(τω/ρ)1/2及び冷却用流体の流速u,密度ρ,レイノルズ数Reから計算される管摩擦係数の実験式Cf=τω/(0.5ρu2)=0.73Re−0.25と冷却用流体の動粘度νを用いて無次元化した値W+=Wuτ/νを25〜300の範囲としている。
(3)溝22bの最大深さHが流体接触面から対向する流路面(底壁面21c)までの距離Xに対して小さくなるようにしている。
(4)冷却用流体の流通方向に直交する流路断面の最小流路断面積Aと最大ぬれぶち長さLから計算される代表長さd=4A/Lを大きくしている。
ここで、最小流路断面積Aは、図3に示す輪郭線分L1,L2,L3,L4により区画される断面積を意味する。
輪郭線分L1,L3は、底壁面21cと凸部22cの頂部との間隔に一致する長さになっており、また、輪郭線分L2,L4は、溝22bの長さになっている。
また、「ぬれぶち長さL」とは、図3に示すように、輪郭線分L5,L6,L7,L8で区画される流路断面における冷却用流体に接する輪郭線の長さのことを意味する。
輪郭線分L5,L7は、底壁面21cと凹部22bの底部間の間隔に一致する長さになっており、また、輪郭線分L6,L8は、凹部22bの長さになっている。
ここで、最小流路断面積Aは、図3に示す輪郭線分L1,L2,L3,L4により区画される断面積を意味する。
輪郭線分L1,L3は、底壁面21cと凸部22cの頂部との間隔に一致する長さになっており、また、輪郭線分L2,L4は、溝22bの長さになっている。
また、「ぬれぶち長さL」とは、図3に示すように、輪郭線分L5,L6,L7,L8で区画される流路断面における冷却用流体に接する輪郭線の長さのことを意味する。
輪郭線分L5,L7は、底壁面21cと凹部22bの底部間の間隔に一致する長さになっており、また、輪郭線分L6,L8は、凹部22bの長さになっている。
(5)代表長さd=4A/Lを0.004以上とするのが好ましいが、代表長さd=4A/Lを0.007以上とすることが更に好ましい。
(6)溝22bの冷却用流体の流通方向αに直交する方向βの凹部の幅を無次元化した値W+を40〜150の範囲にすることが好ましい。
(7)凸側の先端に行くほど、冷却用流体の流通方向αに対する凸部の長さが小さくなり、流れ方向に対して凸部先端が平坦な領域が小さく、凹凸形状が冷却用流体の流れ方向に対して連続している。
以上のような構成を採用することにより、次の効果を得ることができる。
冷却用流体の流通方向と交差する方向に延出し、且つ冷却用流体の流通速度に応じて渦流れを生じさせる渦流れ生成部を形成しているので、この渦流れ生成部により生じさせた渦流れにより、発熱体又は発熱体が配置された基体近傍の冷却用流体を撹拌して伝熱促進を図ることができる。
冷却用流体の流通方向と交差する方向に延出し、且つ冷却用流体の流通速度に応じて渦流れを生じさせる渦流れ生成部を形成しているので、この渦流れ生成部により生じさせた渦流れにより、発熱体又は発熱体が配置された基体近傍の冷却用流体を撹拌して伝熱促進を図ることができる。
溝22b(凹部)の最大深さHを、流動条件であるレイノルズ数と代表長さdから計算される壁面近傍の層流低層厚さδb=63.5/(Re7/8)×dよりも大きくしているので、発熱体又は発熱体が配置された基体近傍の層流低層の厚さ以上で伝熱を促進させることができる。
溝22bの開口幅Wをせん断応力τωと流体密度ρから計算されるせん断速度uτ=(τω/ρ)1/2及び流速u,密度ρ,レイノルズ数Reから計算される管摩擦係数の実験式Cf=τω/(0.5ρu2)=0.73Re−0.25と動粘度νを用いて無次元化した値W+=Wuτ/νを25〜300の範囲としているので、熱伝達効率を向上させることができる。
冷却用流体の流通方向に直交する流路断面の最小流路断面積Aと最大ぬれぶち長さLから計算される代表長さd=4A/Lを0.004以上とすることにより、壁面せん断の影響を小さくし圧力損失の増加を抑えることができる。
凹部を冷却用流体の流通方向に交差する溝として形成することにより、流体接触面の上記流通方向と交差する方向全域において渦流れを形成することができ、これにより伝熱が促進される。
冷却用流体が流れる面に開口した溝の幅を所定の値とすることにより、さらに伝熱性能を向上させることができる。
冷却用流体の流通方向と直交する方向において連続した溝とすることにより、当該流通方向に対する渦の発生頻度を増加させ、伝熱を促進することができる。
溝を冷却体の流体接触面に凹設することにより、冷却構造を適用した発熱体や基体の更なる小型化を図ることができる。
冷却用流体の流通方向と直交する方向において連続した溝とすることにより、当該流通方向に対する渦の発生頻度を増加させ、伝熱を促進することができる。
溝を冷却体の流体接触面に凹設することにより、冷却構造を適用した発熱体や基体の更なる小型化を図ることができる。
次に、図4(A)〜(D)を参照して、渦流れ生成部の変形例について説明する。図4(A)は、第一の変形例に係る渦流れ生成部を示す説明図、(B)は、第二の変形例に係る渦流れ生成部を示す説明図、(C)は、第三の変形例に係る渦流れ生成部を示す説明図、(D)は、第四の変形例に係る渦流れ生成部を示す説明図である。
図4(A)に示す第一の変形例に係る渦流れ生成部C2は、直線的な溝40を冷却用流体の流通方向αに互いに一定の間隔にして斜行形成したものである。
同図(B)に示す第二の変形例に係る渦流れ生成部C3は、ジクザグな溝41を冷却用流体の流通方向αと互いに一定の間隔にして直交させたものである。
同図(B)に示す第二の変形例に係る渦流れ生成部C3は、ジクザグな溝41を冷却用流体の流通方向αと互いに一定の間隔にして直交させたものである。
同図(C)に示す第三の変形例に係る渦流れ生成部C4は、波形の溝42を冷却用流体の流通方向αと互いに一定の間隔にして直交させたものである。
同図(D)に示す第四の変形例に係る渦流れ生成部C5は、直線的かつ断続的な溝43を冷却用流体の流通方向αと互いに一定の間隔にして直交させたものである。
同図(D)に示す第四の変形例に係る渦流れ生成部C5は、直線的かつ断続的な溝43を冷却用流体の流通方向αと互いに一定の間隔にして直交させたものである。
以下、本発明を若干の実施例及び比較例により更に詳細に説明する。
(実施例1〜4)
渦流れ生成部として冷却用流体の流れ方向にほぼ直交する方向に延出した溝を採用した(図2(B)参照)。但し、図5(B)に示すように、溝の断面形状は楔形で、溝幅は0.8mm、凹部深さHは2mmとした。
上述のような渦流れ生成部を有する冷却構造に対し、発熱体としてのヒータを設置し(図2参照)、冷却用流体として水(実施例1)、ロングライフクーラント(LLC)PITWORK(日産純正)の30質量%水溶液(実施例2)、50質量%水溶液(実施例3)、70質量%水溶液(実施例4)を流通させ、熱通過係数を測定した。試験条件を以下に記載する。
渦流れ生成部として冷却用流体の流れ方向にほぼ直交する方向に延出した溝を採用した(図2(B)参照)。但し、図5(B)に示すように、溝の断面形状は楔形で、溝幅は0.8mm、凹部深さHは2mmとした。
上述のような渦流れ生成部を有する冷却構造に対し、発熱体としてのヒータを設置し(図2参照)、冷却用流体として水(実施例1)、ロングライフクーラント(LLC)PITWORK(日産純正)の30質量%水溶液(実施例2)、50質量%水溶液(実施例3)、70質量%水溶液(実施例4)を流通させ、熱通過係数を測定した。試験条件を以下に記載する。
(試験条件)
冷却用流体の通路幅 33(mm)
冷却用流体の通路高さ 7(mm)
冷却用流体の温度 25(℃)
冷却用流体の流量 4〜24(L/min)
熱伝達領域面積 33(mm)×100(mm)
ヒーター出力 100W
冷却用流体の通路幅 33(mm)
冷却用流体の通路高さ 7(mm)
冷却用流体の温度 25(℃)
冷却用流体の流量 4〜24(L/min)
熱伝達領域面積 33(mm)×100(mm)
ヒーター出力 100W
得られた結果を図5(A)に示す。なお、図(A)において、層流低層δb≦0.7mmはu/ν≦206×d1/7(νは冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)に相当し、層流低層δb≦0.4mmはu/ν≦455×d1/7に相当する。
(比較例1〜4)
渦流れ生成部を設けずに熱通過係数を測定した。即ち、上述のような溝を設けない平滑平板を用いた以外は実施例1〜4と同様の操作を繰り返し、得られた結果を図5(A)に示した。
渦流れ生成部を設けずに熱通過係数を測定した。即ち、上述のような溝を設けない平滑平板を用いた以外は実施例1〜4と同様の操作を繰り返し、得られた結果を図5(A)に示した。
(実施例5〜8)
図6(B)に示すように、断面形状が曲率半径1mmの半円状で、凹部深さが1mmの溝を有する渦流れ生成部を形成した。これ以外は実施例1〜4と同様の操作を繰り返し、得られた結果を図6(A)に示した。
図6(B)に示すように、断面形状が曲率半径1mmの半円状で、凹部深さが1mmの溝を有する渦流れ生成部を形成した。これ以外は実施例1〜4と同様の操作を繰り返し、得られた結果を図6(A)に示した。
(比較例5〜8)
上述のような溝を設けない平滑平板を用いた以外は実施例5〜8と同様の操作を繰り返し、得られた結果を図6(A)に示した。
上述のような溝を設けない平滑平板を用いた以外は実施例5〜8と同様の操作を繰り返し、得られた結果を図6(A)に示した。
以上、本発明を若干の実施形態及び実施例により説明したが、本発明はこれらに限定されるものではなく、例えば、次のような変形実施が可能である。
上述した実施形態においては、発熱体が配置された基体に冷却用流体を流通させることにより、その発熱体を冷却する冷却構造の例として、冷却構造をインバータに適用した例について説明したが、発熱体としてのモータ等に直接適用してもよいことは勿論である。
上述した実施形態においては、発熱体が配置された基体に冷却用流体を流通させることにより、その発熱体を冷却する冷却構造の例として、冷却構造をインバータに適用した例について説明したが、発熱体としてのモータ等に直接適用してもよいことは勿論である。
22 基体(冷却体)
22b 溝
30 発熱体
60c,60c´,60c″ 凸部
C1〜C5 渦流れ生成部
22b 溝
30 発熱体
60c,60c´,60c″ 凸部
C1〜C5 渦流れ生成部
即ち、本発明の放熱システムは、基体と冷却用流体との熱交換により放熱を行う放熱システムであって、
冷却用流体と接触する基体の表面に、この冷却用流体の流通方向と交差する方向に延出し且つ上記冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部から成る渦流れ生成部を有する冷却構造を備えたものである。
そして、この放熱システムでは、上記渦流れ生成部の凹部深さHと壁面近傍の層流底層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足し、且つ上記冷却用流体が、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御して運転される。
冷却用流体と接触する基体の表面に、この冷却用流体の流通方向と交差する方向に延出し且つ上記冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部から成る渦流れ生成部を有する冷却構造を備えたものである。
そして、この放熱システムでは、上記渦流れ生成部の凹部深さHと壁面近傍の層流底層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足し、且つ上記冷却用流体が、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御して運転される。
本実施形態においては、溝(凹部)22bなどが以下の条件を満足するように構成しており、又はそのように構成することが好ましい。
(1)溝(凹部)22bの最大深さH(図2参照)を、流動条件であるレイノルズ数Reと代表長さdから計算される壁面近傍の層流底層厚さδb=63.5/(Re7/8)×dよりも大きくしている。
即ち、凹部22bの最大深さHと壁面近傍の層流底層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足するようにしている。
(1)溝(凹部)22bの最大深さH(図2参照)を、流動条件であるレイノルズ数Reと代表長さdから計算される壁面近傍の層流底層厚さδb=63.5/(Re7/8)×dよりも大きくしている。
即ち、凹部22bの最大深さHと壁面近傍の層流底層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足するようにしている。
そして、本実施形態の放熱システムでは、更に、冷却用流体を、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御し、システム運転を行う。
かかる流動条件の採用により、上記の層流底層厚さδbは代表的には0.7mm以下に制御される。
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御し、システム運転を行う。
かかる流動条件の採用により、上記の層流底層厚さδbは代表的には0.7mm以下に制御される。
また、本発明の放熱システムにおいては、冷却用流体の流動条件を次式(3)
u/ν≦455×d1/7…(3)
(式中のu、ν及びdは上記と同じものを示す)を満足する範囲になるように制御することが好ましい。
かかる流動条件の採用により、層流底層厚さδbは代表的には0.4mm以下に制御される。
u/ν≦455×d1/7…(3)
(式中のu、ν及びdは上記と同じものを示す)を満足する範囲になるように制御することが好ましい。
かかる流動条件の採用により、層流底層厚さδbは代表的には0.4mm以下に制御される。
溝22b(凹部)の最大深さHを、流動条件であるレイノルズ数と代表長さdから計算される壁面近傍の層流底層厚さδb=63.5/(Re7/8)×dよりも大きくしているので、発熱体又は発熱体が配置された基体近傍の層流底層の厚さ以上で伝熱を促進させることができる。
得られた結果を図5(A)に示す。なお、図(A)において、層流底層δb≦0.7mmはu/ν≦206×d1/7(νは冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)に相当し、層流底層δb≦0.4mmはu/ν≦455×d1/7に相当する。
Claims (5)
- 基体と冷却用流体との熱交換により放熱を行う放熱システムにおいて、
冷却用流体と接触する基体の表面に、この冷却用流体の流通方向と交差する方向に延出し且つ上記冷却用流体の流動条件に応じて渦流れを生じさせる複数の凹部から成る渦流れ生成部を有する冷却構造を備え、
上記渦流れ生成部の凹部深さHと壁面近傍の層流低層厚さδbが、次式(1)
H>δb=63.5/(Re7/8)×d…(1)
(式中のReはレイノルズ数、dは代表長さを示し、レイノルズ数はRe=ud/νで規定され、νは上記冷却用流体の動粘度、uは上記冷却用流体の流速、dは代表長さを示す)で表される関係を満足し、
上記冷却用流体が、次式(2)
u/ν≦206×d1/7…(2)
(式中のu、ν及びdは上記と同じものを示す)で表される流動条件を満足する範囲に制御して運転することを特徴とする放熱システム。 - 上記冷却用流体の流動条件を次式(3)
u/ν≦455×d1/7…(3)
(式中のu、ν及びdは上記と同じものを示す)を満足する範囲とすることを特徴とする請求項1に記載の放熱システム。 - 上記渦流れ生成部における凹部の開口幅Wに対して、放熱が必要となる場合の動粘度、流速が、せん断応力τωと流体密度ρから計算されるせん断速度uτ=(τω/ρ)1/2及び流速u、密度r、レイノルズ数Reから計算される管摩擦係数の実験式Cf=τω/(0.5pu2)=0.73Re−0.25と動粘度νを用いて無次元化した値W+=Wuτ/νが25〜300の範囲となるようにすることを特徴とする請求項1又は2に記載の放熱システム。
- 上記凹部の最大深さHを、その開口面から対向する流路面までの距離Xに対して小さくしていることを特徴とする請求項1〜3のいずれか1つの項に記載の放熱システム。
- 上記冷却用流体の流通方向に直交する流路断面の最小流路断面積Aと最大ぬれぶち長さLから計算される代表長さd=4ALを0.004以上とすることを特徴とする請求項4に記載の放熱システム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/076825 WO2015049737A1 (ja) | 2013-10-02 | 2013-10-02 | 放熱システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015049737A1 true JPWO2015049737A1 (ja) | 2017-03-09 |
JP6108135B2 JP6108135B2 (ja) | 2017-04-05 |
Family
ID=52778350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015540300A Active JP6108135B2 (ja) | 2013-10-02 | 2013-10-02 | 放熱システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9964366B2 (ja) |
EP (1) | EP3054479B1 (ja) |
JP (1) | JP6108135B2 (ja) |
CN (1) | CN105593988B (ja) |
WO (1) | WO2015049737A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3054479B1 (en) * | 2013-10-02 | 2023-12-27 | Nissan Motor Co., Ltd. | Heat-radiating system |
EP3276658A1 (en) * | 2016-07-27 | 2018-01-31 | Infineon Technologies AG | Cooler, power semiconductor module arrangement with a cooler and methods for producing the same |
DE102016222376B3 (de) * | 2016-11-15 | 2018-02-15 | Zf Friedrichshafen Ag | Elektronikmodul und Verfahren zum Herstellen desselben |
US20240121913A1 (en) * | 2022-10-11 | 2024-04-11 | Amulaire Thermal Technology, Inc. | Vehicle water-cooling heat sink plate having fin sets with different surface areas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261555A (ja) * | 2005-03-18 | 2006-09-28 | Mitsubishi Electric Corp | 冷却構造体、ヒートシンクおよび発熱体の冷却方法 |
JP2009520178A (ja) * | 2005-12-19 | 2009-05-21 | ハネウェル・インターナショナル・インコーポレーテッド | 多流体冷媒システム |
JP2012064732A (ja) * | 2010-09-16 | 2012-03-29 | Meidensha Corp | 水冷ヒートシンク |
JP2012109495A (ja) * | 2010-11-19 | 2012-06-07 | Toshiba Teli Corp | 水冷式冷却器 |
JP2013161993A (ja) * | 2012-02-07 | 2013-08-19 | Nissan Motor Co Ltd | 半導体モジュールの冷却構造 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237200A (en) * | 1989-07-28 | 1993-08-17 | Hitachi, Ltd. | Semiconductor bipolar transistor with concentric regions |
DE19643717A1 (de) * | 1996-10-23 | 1998-04-30 | Asea Brown Boveri | Flüssigkeits-Kühlvorrichtung für ein Hochleistungshalbleitermodul |
JP3518434B2 (ja) * | 1999-08-11 | 2004-04-12 | 株式会社日立製作所 | マルチチップモジュールの冷却装置 |
JP2003008264A (ja) | 2001-06-26 | 2003-01-10 | Nissan Motor Co Ltd | 電子部品の冷却装置 |
US6867973B2 (en) * | 2003-03-05 | 2005-03-15 | Shyy-Woei Chang | Heat dissipation device with liquid coolant |
US7190580B2 (en) * | 2004-07-01 | 2007-03-13 | International Business Machines Corporation | Apparatus and methods for microchannel cooling of semiconductor integrated circuit packages |
US7578337B2 (en) * | 2005-04-14 | 2009-08-25 | United States Thermoelectric Consortium | Heat dissipating device |
JP5129942B2 (ja) * | 2006-10-03 | 2013-01-30 | トヨタ自動車株式会社 | 半導体装置 |
JP4789813B2 (ja) * | 2007-01-11 | 2011-10-12 | トヨタ自動車株式会社 | 半導体素子の冷却構造 |
CN101252821B (zh) * | 2007-10-12 | 2010-09-08 | 张文 | 一种散热方法、散热系统及散热装置 |
FR2938637B1 (fr) * | 2008-11-18 | 2013-01-04 | Cie Mediterraneenne Des Cafes | Conduit de circulation d'un fluide |
US8496048B2 (en) * | 2010-01-25 | 2013-07-30 | Qualitics, Inc. | Vortical boiling phenomenon based water cooling block |
TW201217737A (en) * | 2010-10-26 | 2012-05-01 | Inventec Corp | A heat exchange chamber for liquid state cooling fluid |
US20120175094A1 (en) * | 2011-01-10 | 2012-07-12 | Asetek A/S | Liquid Cooling System Cold Plate Assembly |
EP2838329B1 (en) * | 2012-04-10 | 2018-05-23 | Nissan Motor Co., Ltd | Cooling structure, vortex-flow forming plate molding apparatus, and method for molding vortex-flow generating portion |
EP3054479B1 (en) * | 2013-10-02 | 2023-12-27 | Nissan Motor Co., Ltd. | Heat-radiating system |
-
2013
- 2013-10-02 EP EP13894966.4A patent/EP3054479B1/en active Active
- 2013-10-02 JP JP2015540300A patent/JP6108135B2/ja active Active
- 2013-10-02 CN CN201380080033.5A patent/CN105593988B/zh active Active
- 2013-10-02 US US15/026,055 patent/US9964366B2/en active Active
- 2013-10-02 WO PCT/JP2013/076825 patent/WO2015049737A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261555A (ja) * | 2005-03-18 | 2006-09-28 | Mitsubishi Electric Corp | 冷却構造体、ヒートシンクおよび発熱体の冷却方法 |
JP2009520178A (ja) * | 2005-12-19 | 2009-05-21 | ハネウェル・インターナショナル・インコーポレーテッド | 多流体冷媒システム |
JP2012064732A (ja) * | 2010-09-16 | 2012-03-29 | Meidensha Corp | 水冷ヒートシンク |
JP2012109495A (ja) * | 2010-11-19 | 2012-06-07 | Toshiba Teli Corp | 水冷式冷却器 |
JP2013161993A (ja) * | 2012-02-07 | 2013-08-19 | Nissan Motor Co Ltd | 半導体モジュールの冷却構造 |
Also Published As
Publication number | Publication date |
---|---|
WO2015049737A1 (ja) | 2015-04-09 |
CN105593988A (zh) | 2016-05-18 |
EP3054479A4 (en) | 2016-10-26 |
US20160231069A1 (en) | 2016-08-11 |
JP6108135B2 (ja) | 2017-04-05 |
US9964366B2 (en) | 2018-05-08 |
EP3054479A1 (en) | 2016-08-10 |
CN105593988B (zh) | 2019-02-22 |
EP3054479B1 (en) | 2023-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid | |
JP5692368B2 (ja) | 半導体モジュール用冷却器及び半導体モジュール | |
JP5900506B2 (ja) | 半導体モジュール用冷却器及び半導体モジュール | |
JP6108135B2 (ja) | 放熱システム | |
JP5565459B2 (ja) | 半導体モジュール及び冷却器 | |
JP6093186B2 (ja) | 半導体モジュール用冷却器 | |
WO2016047335A1 (ja) | 電子部品の冷却器 | |
JP2013165298A (ja) | 液冷式冷却装置 | |
JP2006303306A (ja) | パワーモジュール | |
JP6102424B2 (ja) | 冷却構造 | |
JP5871197B2 (ja) | 冷却構造、渦流れ形成板成型装置及び渦流れ生成部の成型方法 | |
JP2007221153A (ja) | ヒートシンク冷却装置 | |
JP2006278735A (ja) | 冷却装置 | |
Ali et al. | Enhanced thermal performance of vortex generating liquid heat sink for the application of cooling high voltage direct current devices | |
JP5839386B2 (ja) | ヒートシンク | |
JP2016086018A (ja) | ヒートシンク | |
JP7130527B2 (ja) | フィン付きベース | |
JP2014173512A (ja) | 伝熱システムとこれを用いたパワートレイン冷却システム | |
JP2023094129A (ja) | 冷却装置 | |
CN105318621A (zh) | 用于增强传热效率的流体流动通道 | |
JP2013062443A (ja) | 平板状冷却器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6108135 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |