JPWO2014192505A1 - 画像処理装置及びプログラム - Google Patents

画像処理装置及びプログラム Download PDF

Info

Publication number
JPWO2014192505A1
JPWO2014192505A1 JP2015519762A JP2015519762A JPWO2014192505A1 JP WO2014192505 A1 JPWO2014192505 A1 JP WO2014192505A1 JP 2015519762 A JP2015519762 A JP 2015519762A JP 2015519762 A JP2015519762 A JP 2015519762A JP WO2014192505 A1 JPWO2014192505 A1 JP WO2014192505A1
Authority
JP
Japan
Prior art keywords
analysis
image
value
statistical
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015519762A
Other languages
English (en)
Other versions
JP6323451B2 (ja
Inventor
藤原 浩一
浩一 藤原
遠山 修
修 遠山
宏 大和
宏 大和
謙太 嶋村
謙太 嶋村
慎太郎 村岡
慎太郎 村岡
翔 野地
翔 野地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2014192505A1 publication Critical patent/JPWO2014192505A1/ja
Application granted granted Critical
Publication of JP6323451B2 publication Critical patent/JP6323451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10124Digitally reconstructed radiograph [DRR]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本発明は、診断対象となる身体の動態画像における解析値と複数の身体から算出された統計値との差異を一見して把握することが可能な画像処理技術を提供することを目的とする。そして、本発明である画像処理装置(3)は、基準動態画像を構成する複数のフレーム画像(SI)に対して画像解析処理を行い、全体解析値(AN)を得る画像解析部(300)と、全体解析値(AN)を用いて診断領域(AR)に対して統計解析処理を行うことで、第1の解析値(ANs)を得る統計解析部(500)と、参照用統計値(SV)を出力する参照用統計値生成部(550)と、第1の解析値(ANs)と参照用統計値(SV)とを合わせて表示する表示部(34)とを備える。

Description

本発明は、人体または動物の身体が撮影された動態画像の画像処理技術に関する。
医療現場では、X線等を用いて内臓や骨格等に含まれる患部を撮影することにより、各種検査や診断が行われている。そして、近年では、デジタル技術の適用により、X線等を用いて患部の動きを捉えた動態画像(複数のフレーム画像から構成される画像群)を比較的容易に取得することが可能となっている。
そこでは、FPD(flat panel detector)等の半導体イメージセンサを利用し、診断対象領域を含む被写体領域に対し動態画像を撮影できるため、従来のX線撮影による静止画撮影及び診断では実施できなかった診断対象領域などの動き解析に起因する病理解析や診断を実施する試みがなされている。例えば、X線胸部における動態解析では、肺野内の各位置に対する肺野内輝度変化を用いることで対象領域の機能状態を把握し、医師などのユーザの診断/治療を支援(X線動態画像用CAD)する検討も実施されている。
例えば、特許文献1が開示する技術では、複数の診断画像を並べて表示し、操作の同期をとることで、比較を容易にする画像処理装置が開示されている。
また、特許文献2が開示する技術では、産婦人科において胎児の各部位を計測し、胎児の成長度合いや正常または異常の有無を判断する際に、標準となる統計値を生成し、その統計値および計測値を超音波画像とともに表示する技術が開示されている。
特開2011−83619号公報 特開平6−142100号公報
しかしながら、上記特許文献1の技術では、あくまで診断対象者自身の現在と過去との比較しか行うことができず、診断対象者以外の比較、例えば、健常者のバラツキ度合いを考慮した比較等を行うことができない。
一方、上記特許文献2の技術においては、診断対象者以外の比較を、統計値を介して行うことができるが、超音波画像は静止画像として撮影されたものであり、動態画像を構成するフレーム画像に基づいて解析された解析値とそれに対応する統計値とを比較することはできない。
本発明は、このような事情に鑑みてなされたものであり、診断対象となる身体の動態画像における解析値と該身体とは異なる複数の身体から算出された統計値との差異を一見して把握することが可能な画像処理技術を提供することを目的とする。
上記課題を解決するために、この発明に係る請求項1記載の画像処理装置は、人体または動物の対象物の身体内部における対象領域の物理的状態が周期的に変化する動態周期の状態を時間方向に順次に撮影された基準動態画像を取得する基準動態画像取得手段と、前記基準動態画像を構成する複数のフレーム画像に対して画像解析処理を行うことで、前記対象領域全体における全体解析値を得る画像解析手段と、前記全体解析値を用いて前記対象領域の全体または一部の診断領域に対して統計解析処理を行うことで、前記診断領域を代表する第1の解析値を得る統計解析手段と、生成指示情報に基づき、過去の複数の対象物の参照動態画像を用いて算出された参照用統計値を出力する参照用統計値生成手段と、前記第1の解析値と、前記第1の解析値と比較すべき前記参照用統計値とを合わせて表示する表示手段とを備える。
また、請求項2の発明は、請求項1に記載の画像処理装置であって、前記対象領域から前記診断領域を設定する領域設定処理を行う領域設定手段、を更に備え、前記統計解析手段は、前記全体解析値のうち前記領域設定処理にて設定された前記診断領域に対して選択的に前記統計解析処理を行うことで、前記第1の解析値を得る。
また、請求項3の発明は、請求項1または請求項2に記載の画像処理装置であって、前記表示手段は、前記全体解析値に基づく全体解析画像を表示する処理、を更に行い、前記全体解析画像は、前記複数のフレーム画像に基づいて静止画像として構成される解析静止画像、を含む。
また、請求項4の発明は、請求項1または請求項2に記載の画像処理装置であって、前記表示手段は、前記全体解析値に基づく全体解析画像を表示する処理、を更に行い、前記全体解析画像は、前記複数のフレーム画像に基づいて動態画像として構成される解析動態画像、を含む。
また、請求項5の発明は、請求項4に記載の画像処理装置であって、前記第1の解析値は、前記複数のフレーム画像に基づいて算出される複数の第1の解析値を含み、前記表示手段は、前記複数の第1の解析値を前記複数のフレーム画像の撮影時間に対応して順次表示し、前記解析動態画像と前記複数の第1の解析値とを時間的に関連づけて表示する処理、を更に行う。
また、請求項6の発明は、請求項5に記載の画像処理装置であって、前記表示手段は、前記複数の第1の解析値を前記撮影時間方向にプロットしたグラフを表示する処理、を更に行い、前記グラフは、前記解析動態画像と時間的に関連づけられている。
また、請求項7の発明は、請求項1ないし請求項6のうち、いずれか1項記載の画像処理装置であって、前記参照用統計値は、前記複数の対象物の固有の情報を示す撮影対象パラメータ、前記複数の対象物の疾病の有無及び疾病の状態を示す疾病情報パラメータ、前記参照動態画像が撮影された撮影環境を示す撮影環境パラメータ、及び、前記参照動態画像が撮影された前記対象物の呼吸状態を示す呼吸状態パラメータのうち、少なくとも1つのパラメータを母数として分類された後の統計値を含む。
また、請求項8の発明は、請求項1ないし請求項7のうち、いずれか1項記載の画像処理装置であって、前記画像解析処理は、前記複数のフレーム画像間の対応画素における輝度変化値、前記複数のフレーム画像毎における前記対象領域のサイズを示す距離、前記複数のフレーム画像毎における前記対象領域内の特定の位置座標、前記複数のフレーム画像毎における前記対象領域の面積、及び、前記複数のフレーム画像間で対応する前記特定の位置の移動量のうち少なくとも何れか1つを算出する処理を含む。
また、請求項9の発明は、請求項1ないし請求項8のうち、いずれか1項記載の画像処理装置であって、前記参照用統計値は、前記過去の複数の対象物の参照動態画像に対して、前記画像解析処理及び前記統計解析処理と同様の処理を行って得られた複数の第2の解析値における、平均値、最大値、最小値、前記最大値と前記最小値との範囲、及び、バラツキ度合い、のうち少なくとも何れか1つの値を含む。
また、請求項10の発明は、請求項1ないし請求項9のうち、いずれか1項記載の画像処理装置であって、前記対象領域は肺野領域を含む。
また、請求項11の発明は、請求項1ないし請求項10のうち、いずれか1項記載の画像処理装置であって、前記生成指示情報は、診断領域、画像解析情報、統計解析情報、及びパラメータ情報の少なくともひとつである。
また、請求項12の発明は、画像処理装置に含まれるコンピュータによって実行されることにより、前記コンピュータを、請求項1ないし請求項11のうち、いずれか1項記載の画像処理装置として機能させるプログラムである。
請求項1ないし請求項11に記載の画像処理装置によれば、基準動態画像を構成する複数のフレーム画像に対して画像解析処理を行うことで得られる全体解析値に対して統計解析処理をすることで、第1の解析値を得、該第1の解析値と、該第1の解析値と比較すべき参照用統計値とを合わせて表示する。すなわち、現在診断対象とする対象物の身体の第1の解析値と、当該対象物以外の過去の複数の対象物の参照動態画像を用いて算出された参照用統計値と、を同時に表示することが可能となる。これにより、過去の複数の対象物から算出された参照用統計値との差異を一見して把握することができるため、医師等のユーザにとっての診断支援情報となり得る。このため、診断時間の短縮化が図れ、動態診断を適切かつ効率的に行うことが可能となる。
請求項2の発明によれば、対象領域から診断領域を設定する領域設定処理を行う。これにより、ユーザは所望の領域(例えば、異常のある領域等)を診断領域として設定することができる。
また、統計解析手段は、全体解析値のうち領域設定処理にて設定された診断領域に対して選択的に統計解析処理を行うことで、第1の解析値を得る。すなわち、診断領域の第1の解析値と診断領域の参照用統計値とを得ることが可能となる。例えば、画像解析処理を行った対象領域の一部の領域だけに異常がある場合、その異常のある領域を診断領域として設定することで、診断に有効な第1の解析値が得られると同時に、その異常のある領域に特化した参照用統計値が得られる。つまり、第1の解析値及び参照用統計値は設定される領域により変動する値であるため、診断領域を絞り込むことで、診断に適切且つ有意な情報を得ることが可能となる。
請求項3の発明によれば、表示手段は、全体解析値に基づく全体解析画像を表示する処理を更に行い、全体解析画像は、複数のフレーム画像に基づいて静止画像として構成される解析静止画像を含む。これにより、ユーザは解析静止画像を見ながら所望の領域(例えば、異常のある領域等)を診断領域として設定することができる。
また、解析静止画像と診断用画像とを同時に視認するようにすれば、第1の解析値と参照用統計値とを比較すると同時に、解析静止画像上でも異常等を確認することができる。
請求項4の発明によれば、表示手段は、全体解析値に基づく全体解析画像を表示する処理を更に行い、全体解析画像は、複数のフレーム画像に基づいて動態画像として構成される解析動態画像を含む。これにより、ユーザは解析動態画像を見ながら所望の領域(例えば、異常のある領域等)を診断領域として設定することができる。
また、解析動態画像と診断用画像とを同時に視認するようにすれば、複数の第1の解析値と参照用統計値とを比較すると同時に、解析動態画像上でも異常等を確認することができる。
請求項5の発明によれば、表示手段は、複数の第1の解析値を複数のフレーム画像の撮影時間に対応して順次表示し、解析動態画像と複数の第1の解析値とを時間的に関連づけて表示する処理を更に行う。すなわち、解析動態画像が時々刻々と変化することに同期して第1の解析値の表示も変化させて表示することが可能となる。これにより、どの時間帯で異常が発生しどの時間帯で異常が消失するのか(正常になるのか)等を、時間軸を入れて診断することが可能となる。
このため、フレーム画像上における2次元空間の時間変化を参照用統計値と比較しながら視覚的に捉えることが可能となる。
請求項6の発明によれば、表示手段は、複数の第1の解析値を撮影時間方向にプロットしたグラフを表示する処理を更に行い、当該グラフは、解析動態画像と時間的に関連づけられている。例えば、現在表示されている解析動態画像のフレーム画像がわかるような表示をグラフ上にするようにすれば、解析動態画像及び第1の解析値の表示が時々刻々と変化することに同期して、現在表示されているフレーム画像がグラフ上においてどの位置(時刻)に該当するのかを一見して把握することが可能となる。これにより、異常のある時刻を、グラフを通して確認することが可能となる。
請求項7の発明によれば、参照用統計値は、撮影対象パラメータ、疾病情報パラメータ、撮影環境パラメータ、及び、呼吸状態パラメータのうち、少なくとも1つのパラメータを母数として分類された後の統計値を含む。すなわち、上記4つのパラメータのうち何れか1つ、または、これらの組合せにより、母数を様々に変更して算出された複数パターンの統計値の中から、診断目的に応じて、適切な参照用統計値を選択して表示することができる。あるいは、診断目的に応じて、上記4つのパラメータのうち何れか1つ、または、これらの組合せにより、母数を変更して参照用統計値を算出して表示することができる。例えば、診断対象とする対象物が健常者である場合、参照用統計値は複数の対象物となる複数の健常者を母数として計算される統計値を採用する一方、診断対象とする対象物が特定の疾病の患者である場合、参照用統計値は複数の対象物となる複数の当該特定の疾病の患者を母数として計算される統計値を採用することが可能となる。このように、診断の目的に応じて参照用統計値の母数を変更することが可能となる。
請求項8の発明によれば、画像解析処理が、輝度変化値、対象領域のサイズを示す距離、特定の位置座標、対象領域の面積、及び、特定の位置の移動量のうち少なくとも何れか1つを算出する処理を含む。これにより、診断に応じて異なる第1の解析値を算出することや、複数種の第1の解析値を算出することで様々な角度から総合的に対象領域を診断することが可能となる。このように、ユーザにとって有効な診断支援情報を提供することが可能となる。
請求項9の発明によれば、参照用統計値は、過去の複数の対象物の参照動態画像に対して、画像解析処理及び統計解析処理と同様の処理を行って得られた複数の第2の解析値における、平均値、最大値、最小値、最大値と最小値との範囲、及び、バラツキ度合い、のうち少なくとも何れか1つの値であることにより、第1の値と比較する際、対象領域が正常か否かの判断を効率的に行うことが可能となる。これにより、ユーザにとって有効な診断支援情報を提供することが可能となる。
請求項10の発明によれば、対象領域は肺野領域であることにより、肺野領域において異常か否かといった診断を参照用統計値と比較しながら動態診断を行うことができる。これにより、肺野領域における異常のある領域を効率的に判断することができ、動態診断に要する時間の短縮化が図れ、適切且つ効率的に行うことが可能となる。
請求項11の発明によれば、生成指示情報である、診断領域、画像解析情報、統計解析情報、及びパラメータ情報の少なくともひとつの条件に見合った参照用統計値を得ることができる。
請求項12の発明によれば、請求項1から請求項10に記載の発明と同じ効果を得ることができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態に係る放射線動態画像撮影システム100の全体構成を示す図である。 第1実施形態に係る画像処理装置3の機能構成を示すブロック図である。 放射線動態画像撮影によって撮影した動態画像を例示する図である。 画像解析処理について説明する模式図である。 画像解析処理について説明する模式図である。 呼吸振動値の波形データを時系列で示した呼吸位相と撮影タイミングとを合わせて示した模式図である。 領域設定処理について説明する模式図である。 データベース51における階層化された参照用統計値の一例を示す概念図である。 表示画像生成処理によって生成された画像について説明する模式図である。 第1実施形態において実現される画像処理装置3の基本動作を説明するフローチャートである。 第2実施形態における表示画像生成処理について説明する模式図である。 第3実施形態に係る画像処理装置3Aの機能構成を示すブロック図である。 第3実施形態において実現される画像処理装置3Aの基本動作を説明するフローチャートである。 複数種の第1の解析値に対して切り替え可能とする表示方法の一例について説明する模式図である。
<1.第1実施形態>
本発明の第1実施形態に係る放射線動態画像撮影システムについて以下説明する。
<1−1.放射線動態画像撮影システムの全体構成>
第1実施形態に係る放射線動態画像撮影システムは、人体または動物の身体を被写体として、被写体の対象領域の物理的状態が周期的に時間変化する状況に対して放射線画像の撮影を行う。
図1は、第1実施形態に係る放射線動態画像撮影システムの全体構成を示す図である。図1に示すように、放射線動態画像撮影システム100は、撮影装置1と、撮影制御装置2(撮影用コンソール)と、画像処理装置3(診断用コンソール)とを備える。撮影装置1と、撮影制御装置2とが通信ケーブル等により接続され、撮影制御装置2と、画像処理装置3とがLAN(Local Area Network)等の通信ネットワークNTを介して接続されて構成されている。放射線動態画像撮影システム100を構成する各装置は、DICOM(Digital Image and Communications in Medicine)規格に準じており、各装置間の通信は、DICOM規格に則って行われる。
<1−1−1.撮影装置1の構成>
撮影装置1は、例えば、X線撮影装置等によって構成され、呼吸に伴う被写体Mの胸部の動態を撮影する装置である。動態撮影は、被写体Mの胸部に対し、X線等の放射線を繰り返して照射しつつ、時間順次に複数の画像を取得することにより行う。この連続撮影により得られた一連の画像を動態画像と呼ぶ。また、動態画像を構成する複数の画像のそれぞれをフレーム画像と呼ぶ。
図1に示すように、撮影装置1は、照射部(放射線源)11と、放射線照射制御装置12と、撮像部(放射線検出部)13と、読取制御装置14とを備えて構成されている。
照射部11は、放射線照射制御装置12の制御に従って、被写体Mに対し放射線(X線)を照射する。図示例は人体用のシステムであり、被写体Mは検査対象者に相当する。以下では被写体Mを「被検者」とも呼ぶ。
放射線照射制御装置12は、撮影制御装置2に接続されており、撮影制御装置2から入力された放射線照射条件に基づいて照射部11を制御して放射線撮影を行う。
撮像部13は、FPD等の半導体イメージセンサにより構成され、照射部11から照射されて被検者Mを透過した放射線を電気信号(画像情報)に変換する。
読取制御装置14は、撮影制御装置2に接続されている。読取制御装置14は、撮影制御装置2から入力された画像読取条件に基づいて撮像部13の各画素のスイッチング部を制御して、当該各画素に蓄積された電気信号の読み取りをスイッチングしていき、撮像部13に蓄積された電気信号を読み取ることにより、画像データを取得する。そして、読取制御装置14は、取得した画像データ(フレーム画像)を撮影制御装置2に出力する。画像読取条件は、例えば、フレームレート、フレーム間隔、画素サイズ、画像サイズ(マトリックスサイズ)等である。フレームレートは、1秒あたりに取得するフレーム画像数であり、パルスレートと一致している。フレーム間隔は、連続撮影において、1回のフレーム画像の取得動作開始から次のフレーム画像の取得動作開始までの時間であり、パルス間隔と一致している。
ここで、放射線照射制御装置12と読取制御装置14とは互いに接続され、互いに同期信号をやりとりして放射線照射動作と画像の読み取りの動作を同調させるようになっている。
<1−1−2.撮影制御装置2の構成>
撮影制御装置2は、放射線照射条件や画像読取条件を撮影装置1に出力して撮影装置1による放射線撮影及び放射線画像の読み取り動作を制御するとともに、撮影装置1により取得された動態画像を撮影技師によるポジショニングの確認や診断に適した画像であるか否かの確認用に表示する。
図1に示すように、撮影制御装置2は、制御部21と、記憶部22と、操作部23と、表示部24と、通信部25とを備えて構成され、各部はバス26により接続されている。
制御部21は、CPU(Central Processing Unit)やRAM(Random Access Memory)等により構成される。制御部21のCPUは、操作部23の操作に応じて、記憶部22に記憶されているシステムプログラムや各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って後述する撮影制御処理を始めとする各種処理を実行し、撮影制御装置2各部の動作や、撮影装置1の動作を集中制御する。
記憶部22は、不揮発性の半導体メモリやハードディスク等により構成される。記憶部22は、制御部21で実行される各種プログラムやプログラムにより処理の実行に必要なパラメータ、或いは処理結果等のデータを記憶する。
操作部23は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスとを備えて構成され、キーボードに対するキー操作、マウス操作、あるいは、タッチパネルを介して入力された指示信号を制御部21に出力する。
表示部24は、カラーLCD(Liquid Crystal Display)等のモニタにより構成され、制御部21から入力される表示信号の指示に従って、操作部23からの入力指示やデータ等を表示する。
通信部25は、LANアダプタやモデムやTA(Terminal Adapter)等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
<1−1−3.画像処理装置3の構成>
画像処理装置3は、撮像装置1から送信された動態画像を、撮影制御装置2を介して取得し、医師等が読影診断するための画像を表示する。
図1に示すように、画像処理装置3は、制御部31と、記憶部32と、操作部33と、表示部34と、通信部35と、解析部36とを備えて構成され、各部はバス37により接続されている。
制御部31は、CPU、RAM等により構成される。制御部31のCPUは、操作部33の操作に応じて、記憶部32に記憶されているシステムプログラムや、各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って各種処理を実行し、画像処理装置3各部の動作を集中制御する(詳細は後述する)。
記憶部32は、不揮発性の半導体メモリやハードディスク等により構成される。記憶部32は、制御部31で実行される各種プログラムやプログラムにより処理の実行に必要なパラメータ、或いは処理結果等のデータを記憶する。例えば、記憶部32は、後述する画像処理を実行するための画像処理プログラムを記憶している。これらの各種プログラムは、読取可能なプログラムコードの形態で格納され、制御部31は、当該プログラムコードに従った動作を逐次実行する。
操作部33は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードに対するキー操作やマウス操作、あるいは、タッチパネルを介して入力された指示信号を制御部31に出力する。
表示部34は、カラーLCD等のモニタにより構成され、制御部31から入力される表示信号の指示に従って、操作部33からの入力指示、データ、及び、後述する表示用画像を表示する。
通信部35は、LANアダプタやモデムやTA等を備え、通信ネットワークNTに接続された各装置との間のデータ送受信を制御する。
<1−2.情報蓄積装置5の構成>
図1に示すように、情報蓄積装置5は、例えばパーソナル・コンピュータまたはワークステーションを用いたデータベースサーバからなり、データベース(参照用統計値記憶部)51を備えて構成され、制御部31とはバス36を介してデータの送受信を行う。データベース51には、想定される撮影情報等を考慮した参照用統計値の集合体が予め記憶されている(詳細は後述する)。
以下では、第1実施形態における画像処理装置3の詳細について説明する。
<1−3.動態診断を行う際の課題>
この実施形態における画像処理装置3の詳細を説明する前提として、動態診断を行う際における問題点について説明しておく。
X線動態画像を用いた肺機能診断において、動態画像の輝度変動をもとに解析をした結果を診断する際、医者等のユーザからは「健常者においてもバラツキがあり、どれだけの輝度変動があれば正常なのかがわかりにくい」という意見が存在する。すなわち、動態診断で表示される画面には、診断対象となる患者の解析画像のみが表示されるため、他者との比較ができない。
そこで、本発明では、診断用途に見合った複数の被検者(例えば、複数人の健常者、特定の疾病の患者等)のX線動態画像から、予め解析結果の統計値を算出しておき、その統計値を診断対象となる被検者Mの解析結果と共に表示することを目的とする。
<1−4.画像処理装置3の具体的構成>
本発明の第1実施形態における放射線動態画像撮影システム100の画像処理装置3は、診断対象となる身体の解析値と該身体とは異なる複数の身体から算出された統計値との差異を表示することにより、動態診断の診断時間の短縮化を図ることが可能となる。
以下では、画像処理装置3で実現される機能的な構成について説明する。
<1−4−1.画像処理装置3の機能構成>
図2は、放射線動態画像撮影システム100における画像処理装置3において、CPU等が各種プログラムに従って動作することにより制御部31で実現される機能構成を他の構成とともに示す図である。なお、この実施形態の画像処理装置3は、主として心臓および両肺を含む胸部が撮影された動態画像を使用する。
制御部31では、主に、基準動態画像取得部200と、画像解析部300と、領域設定部400と、統計解析部500と、表示画像生成部600と、から構成される。また、制御部31はバス36を介して参照用統計値生成部550(上述した参照用統計値記憶部51を有する情報蓄積装置5に相当)とデータの送受信を行う。
以下では、図3で示されたような制御部31の機能的な構成が、あらかじめインストールされたプログラムの実行によって、実現されるものとして説明するが、専用のハードウエア構成で実現されても良い。
以降、基準動態画像取得部200、画像解析部300、領域設定部400、統計解析部500、情報蓄積装置5、及び、表示画像生成部600が行う各処理についての具体的内容を、図2を参照しながら順次説明する。
<1−4−1−1.基準動態画像取得部200>
基準動態画像取得部200では、撮像装置1の読取制御装置14によって撮影された被検者Mの身体内部における対象領域の物理的状態が周期的に変化する動態周期の状態を時間方向に順次に撮影された複数のフレーム画像から構成される基準動態画像を取得する。本実施形態における対象領域とは、肺野領域を想定する。すなわち、図2で示されるように、撮像装置1と画像処理装置3との間に、撮影制御装置2が介在し、撮影制御装置2の記憶部22に記憶された検出データ(複数のフレーム画像SI)が通信部25を介して、画像処理装置3の通信部35に出力される。
図3は、呼吸に伴う被検者Mの胸部の動態に対し、放射線動態画像撮影によって撮影した基準動態画像を例示する図である。図3で示されるように、基準動態画像取得部200により取得されたフレーム画像S1〜S10(SI)は、呼吸サイクルの1周期を一定の撮影タイミングで連続撮影されたものである。具体的には、時刻 t=t1, t2, t3, …, t10 の撮影タイミングにおいて撮影された画像が、フレーム画像S1,S2,S3,…,S10にそれぞれ対応している。
<1−4−1−2.画像解析部300>
画像解析部300では、基準動態画像を構成する複数のフレーム画像SIに対して画像解析処理を行うことで、肺野領域全体における全体解析値ANを得る。ここでいう画像解析処理とは、(i)複数のフレーム画像SI間の対応画素における輝度変化値、(ii)複数のフレーム画像SI毎における肺野領域のサイズを示す距離、(iii)複数のフレーム画像SI毎における肺野領域内の特定の位置座標、(iv)複数のフレーム画像SI毎における肺野領域の面積、及び、(v)複数のフレーム画像SI間で対応する特定の位置の移動量のうち、少なくとも何れか1つを算出する処理である。なお、(i)〜(v)を、以下では、「画像解析情報IF1」と称する。
以下では、画像解析処理が、(i)の輝度変化値、(ii)の肺野領域のサイズ、(iv)の肺野領域の面積を算出する場合を例にして説明する。図4及び図5は、画像解析処理について説明する模式図である。
まず、図4では画像解析処理が(i)の輝度変化値を算出し、肺野領域全体における全体解析値ANを得る場合について例示する。
図4(a)の左側の図では、図3のt=t1におけるフレーム画像S1とt=t2におけるフレーム画像S2との対応画素間の差分を採った差分画像S1’(SI’)を示し、図4(a)の中央の図では、図3のt=t2におけるフレーム画像S2とt=t3におけるフレーム画像S3との対応画素間の差分を採った差分画像S2’(SI’)を示し、図4(a)の右側の図では、図3のt=t3におけるフレーム画像S3とt=t4におけるフレーム画像S4との対応画素間の差分を採った差分画像S3’(SI’)を示す。ここでは、差分画像SI’は3枚のみ説明したが、画像解析処理は基準動態画像を構成する全てのフレーム画像SIに同様の差分処理を施すことになる。
なお、本実施形態では差分画像SI’とは、説明の便宜上表現しており、実際は画像として生成する必要はなく、各フレーム画像SI間の差分値のみが必要となる。そして、この差分値が輝度変化値に相当する。
図4(b)では、各差分画像SI’における対応画素間の輝度変化値の中で、最大値をとる輝度変化値を画素単位に抽出してプロットした画像であり、後述の表示画像生成処理が生成する全体解析画像(解析静止画像)IG1に相当する(詳細は後述する)。すなわち、画像解析部300では、画像解析処理が算出した対応画素間の輝度変化値のうち最大値を抽出する処理を肺野領域全体において行うことで、全体解析値ANとして得、後述の表示画像生成部600に出力する。
なお、図4(b)では、対応画素間の輝度変化値のうち最大値を抽出することにより全体解析値ANを説明したが、これに限られず、例えば、対応画素の輝度変化値の合計値、対応画素の輝度変化値の平均値、対応画素間の輝度変化値のうちの最小値、対応画素間の輝度変化値のうちの中央値等のいずれかの値であってもよい。
次に、図5(a)及び図5(b)では画像解析処理が(iv)の肺野領域の面積を算出する場合について例示する。図5(a)及び図5(b)で示されるように、肺野部の輪郭抽出を行い、輪郭に囲まれた領域の画素数を肺野部の面積として定義することが可能である。ここで、肺野部の抽出は、図5(a)で示すように、左右ごとに抽出しても、図5(b)で示すように、心臓や脊椎の領域を含んだ輪郭として抽出してもよい。本抽出方法としては、従来技術(例えば、“Image feature analysis and computer-aided diagnosis: Accurate determination of ribcage boundary in chest radiographs”, Xin-Wei Xu and Kunio Doi, Medical Physics, Volume 22(5), May 1995, pp.617-626.等参照)等を採用することができる。
図5(c)及び図5(d)では画像解析処理が(ii)の肺野領域のサイズを示す距離(肺野領域の特徴点間の距離)を算出する場合について例示する。図5(c)及び図5(d)で示されるように、画像解析処理は、複数のフレーム画像SI毎に、肺野領域の特徴点間の距離を算出する。すなわち、肺野部の抽出を上記方法と同様に実施し(図5(a)及び図5(b)参照)、抽出された領域から、特徴点2点を求め、その2点間の距離を求めることで肺野領域のサイズを示す距離として検出する。
図5(c)及び図5(d)は、図5(a)の肺野部の輪郭OLを採用した場合における肺野領域の特徴点の位置を例示した図である。肺領域の上端LTから下端LBまでの長さ(肺野長)の変化を算出する場合、図5(c)では、肺尖部を肺領域の上端LTとし、肺尖部から体軸方向におろした直線と横隔膜との交点を肺領域の下端LBとして抽出した例であり、図5(d)では、肺尖部を肺領域の上端LTとし、肋横角を肺領域の下端LBとして抽出した例である。
そして、図6は、画像解析処理により算出された肺野領域の面積値あるいは特徴点間距離といった特徴量を時系列で示した呼吸位相PHの模式図であり、撮影タイミングTM毎に時間方向にモニタリングした結果となる。図6で示されるように、呼吸の周期(呼吸サイクル)の1周期PCは、吸気と呼気とから構成され、1回の呼気と1回の吸気からなる。吸気では、横隔膜が下がって息が吸い込まれるに連れて胸郭中の肺野の領域が大きくなる。息を最大限に吸い込んだとき(吸気と呼気の変換点)が最大吸気時B1である。呼気では、横隔膜が上がって息が吐き出されるに連れて肺野の領域が小さくなるが、息を最大限に排出したとき(呼気と吸気の変換点)が最大呼気時B2となる。
<1−4−1−3.領域設定部400>
領域設定部400では、肺野領域から診断領域ARを設定する領域設定処理を行う(図2参照)。領域設定処理の一例として、操作部33により入力された設定情報に基づき設定する方法がある。すなわち、操作部33により入力された設定情報とは、肺野領域の一部を診断領域ARとして指示する設定情報をいい、ユーザが後述の全体解析画像IG1を見ながら操作部33を介して操作入力する。ユーザによって指定する方法は、矩形指定、楕円指定、フリーハンドでの指定など、どのよう方法を採用しても良い。
また、ユーザが指定する以外の他の領域設定処理の例として、注目する診断領域ARに関して、肺野の構造などの情報から得られた領域として予め用意された領域を用いることもできる。その診断領域ARの候補としては、例えば、「肺野全体」、「右肺野または左肺野」、「上葉、中葉、下葉(右肺野の場合)」、「上葉、下葉(左肺野の場合)」、「肺野を重力方向に等分割した領域」、「肺門からの距離で算出された領域」等が挙げられるが、これらの候補はあくまで例示であり、これらに限られない。
以下では、注目する診断領域ARとして、「上葉、中葉、下葉(右肺野の場合)」、「肺野を重力方向に等分割した領域」及び「肺門からの距離で算出された領域」を例にして説明する。
図7は、領域設定処理について説明する模式図であり、診断領域ARの候補として、図7(a)では「上葉、中葉、下葉(右肺野の場合)」とした場合、図7(b)では「肺野を重力方向に等分割した領域」とした場合、及び、図7(c)では「肺門からの距離で算出された領域」とした場合についてそれぞれ説明する模式図である。
なお、図7(a)〜図7(c)では全体解析画像IG1を説明の便宜上示しているが、領域設定処理として予め用意された領域を用いる場合は、表示部34に全体解析画像IG1は表示されない。
図7(a)で示されるように、全体解析画像IG1の右肺領域を上葉AR1a、中葉AR2a、下葉AR3aに分類し、診断領域ARの設定をすることが可能となる。すなわち、これらの標準モデルを準備しておき、標準モデルを変形して照合させることで設定することが可能となる。
図7(b)で示されるように、全体解析画像IG1の右肺領域全体を重力方向に領域AR1b、領域AR2b、領域AR3bと3等分して分類し、診断領域の設定をすることが可能となる。すなわち、右肺領域全体の重力方向の距離を、肺尖部から横隔膜までの距離として、距離d1、距離d2、距離d3をそれぞれ等しくなるように(d1=d2=d3)設定している。このように、重力方向に沿って領域を分割する理由は、重力により肺胞の大きさが異なることに伴い、領域AR1b〜領域AR3b間で輝度値が変わることに起因する。なお、ここでは右肺領域全体の重力方向の距離を、肺尖部から横隔膜までの距離と定義したが、これに限られず、他の距離で定義しても良い。
図7(c)で示されるように、全体解析画像IG1の右肺領域の肺門をまず検出し、肺門からの距離を算出することで、その距離に応じて領域AR1c、領域AR2c、領域AR3cに分類し、診断領域ARの設定をすることが可能となる。肺門の検出としては、例えば、図7(a)と同様に、標準モデルを準備しておき、標準モデルを変形して照合させることで検出することが可能となる。この設定方法では、主に血流解析を想定する場合に効果的である。
領域設定処理は、上記のような、ユーザが指定する方法や予め用意した領域による領域設定方法以外に、被検者Mに対して過去に設定した診断領域を記憶部32に保持しておき、その診断領域ARを再度活用する方法を採用しても良い。
なお、診断領域ARを「領域」として扱ったが、これが領域ではなく「点」として扱うことも可能である。点である場合も、領域である領域と同様に、肺野の構造などの情報から得られた点(例えば、肺尖部から一定距離下部の点、横隔膜から一定距離上部の点など)として設定してもよいし、ユーザによって指定してもよい。
<1−4−1−4.統計解析部500>
統計解析部500では、全体解析値ANを用いて肺野領域の全体または一部の診断領域ARに対して統計解析処理を行うことで、診断領域ARを代表する第1の解析値ANsを得る。本実施形態では、領域設定部400が領域設定処理にて設定された診断領域ARを統計解析部500に出力するので、統計解析部500は、全体解析値ANのうち領域設定処理にて設定された診断領域ARに対して選択的に統計解析処理を行うことで、第1の解析値ANsを得る(図2参照)。
ここでいう統計解析処理とは、診断領域AR内における全体解析値ANの平均値、合計値、最大値、最小値、中央値等の何れかを算出する処理をいう。したがって、統計解析部500は、診断領域AR内における全体解析値ANの平均値、合計値、最大値、最小値、中央値等(以下では、これらを「統計解析情報IF2」と称する)の何れかを診断領域ARを代表する第1の解析値ANsとして得る。
そして、図2で示されるように、統計解析部500が、診断領域AR、画像解析情報IF1,統計解析情報IF2及び後述のパラメータ情報IF3を情報蓄積装置5に出力する(図2参照)。
<1−4−1−5.情報蓄積装置5>
情報蓄積装置5では、少なくとも診断情報を含む生成指示情報に基づき参照用統計値SVを出力する。また、生成指示情報IFとは、診断領域AR、画像解析情報IF1,統計解析情報IF2及び後述のパラメータ情報IF3を総称していう。
ここでいう参照用統計値SVとは、過去の複数の被検者の参照動態画像に対して、上記と同様の画像解析処理及び統計解析処理を行って得られる複数の第2の解析値に基づいて算出された、第1の解析値ANsの良否を判断することを主目的とした統計値である。例えば、第1の解析値ANsが対応画素の輝度変化値の平均値である場合、複数の第2の解析値は過去の複数の被験者における対応画素の複数の輝度変化値の平均値となる。なお、参照用統計値SVとの比較により第1の解析値ANsが不良(否)と判定された場合においても、参照用統計値SVと第1の解析値ANsとの差異の度合により、健常者の値からどの程度離れているかを認識することができる。
また、参照用統計値SVは、複数の第2の解析値を用いて得られる、平均値、最大値、最小値、該最大値と該最小値との範囲、及び、バラツキ度合い(標準偏差、分散値など)、のうち少なくとも何れか1つの統計値をいう。なお、参照動態画像における過去の「複数の被検者」とは、現在診断対象としている被検者M以外の第三者を指す。
そして、情報蓄積装置5は、統計解析部500から、生成指示情報IF(診断領域AR、画像解析情報IF1,統計解析情報IF2及び後述のパラメータ情報IF3)が入力されることで(図2参照)、これらの条件に見合った参照用統計値SVを生成する。すなわち、参照用統計値SVは、診断領域AR、画像解析情報IF1,統計解析情報IF2、及び、後述のパラメータ情報IF3の条件に応じて切り替えることが可能である。
以下では、生成指示情報IFのうち、パラメータ情報IF3について説明する。すなわち、パラメータ情報IF3に関していえば、複数の被検者の固有の情報を示す「撮影対象パラメータIO」、複数の被検者の疾病の有無及び疾病の状態を示す「疾病情報パラメータIS」、参照動態画像が撮影された撮影環境を示す「撮影環境パラメータIE」、及び、参照動態画像が撮影された被検者の呼吸状態を示す「呼吸状態パラメータIB」のうち、少なくとも1つのパラメータを母数として分類することを指示する情報である。なお、パラメータ毎には更に細かく次のような観点で分類される。
すなわち、「撮影対象パラメータIO」では、性別、年齢、体型・体厚等に分類され、「疾病情報パラメータIS」では、健常者、特定の疾病の患者(例えば、COPD患者等)、疾病の重症度等に分類され、「撮影環境パラメータIE」では、管電圧、管電流、撮影時間、線量、撮影距離、撮影向きP−A(後前像)またはA−P(前後像)、撮影時の体位(立位、臥位[仰臥位、側臥位、伏臥位])等に分類され、「呼吸状態パラメータIB」では、呼気、吸気、息止め等に分類される。ここで、呼気、吸気等の呼吸状態については、例えば、上述の図6のような方法で動態画像から取得することが可能である。
なお、母数の候補としては、上述したパラメータIO,IS,IE,IBに限られるものではなく、他のパラメータを設けても良い。また、これらのパラメータの組み合わせで、さまざまなパターンの母数で参照用統計値SVを生成することが可能となる。
このように、参照用統計値SVは、診断情報に応じて母数を変更して生成することが好ましい。どのパラメータを用いて参照用統計値SVを生成するかは、統計解析部500がパラメータ情報IF3を情報蓄積装置5に出力することで指定することができる(図2参照)。すなわち、パラメータ情報IF3とは、上述したパラメータIO,IS,IE,IBの何れか、または、これらの組合せでもって指定する。なお、パラメータ情報IF3の入力方法は、図2で示すように、操作部33を介してユーザが直接指定するようにしてもよいし、例えば、撮像制御装置2から自動的に出力されるような構成等を採用してもよい。
<1−4−1−5−1.参照用統計値記憶部(データベース)51>
続いて、参照用統計値記憶部(データベース)51について説明する。データベース51では、例えば、本実施形態に係る参照用統計値SVが診断領域AR、画像解析情報IF1,統計解析情報IF2、及び、パラメータ情報IF3に基づいてグループ分け可能な態様で格納されている。すなわち、データベース51は、統計解析部500から入力される生成指示情報IFで指示される属性に対応させて参照用統計値SVの集合体を格納しており、生成指示情報IFに合致した参照用統計値SVが出力可能である。すなわち、参照用統計値SVの集合体には、属性情報が予め付されて、例えば、グループ別にデータベース51にて格納されている。ここでいう属性情報とは、例えば、パラメータ情報IF3の撮影対象パラメータIOの場合であれば、性別、年齢、体重、身長、体型・体厚等に関係する情報をいう。
以下、データベース51の概念構造を説明するにあたって、生成指示情報IFのうち、診断領域AR、画像解析情報IF1及び統計解析情報IF2の情報は固定の下、パラメータ情報IF3の概念構造に特化して説明するが、診断領域AR、画像解析情報IF1,統計解析情報IF2についても同様の概念構造をとる。したがって、ここでのデータベース51の概念構造は、参照用統計値SVの集合体が撮影対象パラメータIO、疾病情報パラメータIS、撮影環境パラメータIE、呼吸状態パラメータIBに基づいて例えば、グループ分けされて格納されている。
また、撮影対象パラメータIOを「性別」、疾病情報パラメータISを「健常者または非健常者」、撮影環境パラメータIEを「撮影向きP−A(後前像)またはA−P(前後像)」、呼吸状態パラメータIBを「呼気または吸気」とした場合の最も簡略化された例を用いて説明する。
図8は、データベース51における階層化されたパラメータ情報の一例を示す概念図である。なお、図8では、生成指示情報IFとして、診断領域ARは右肺野とし、画像解析情報IF1は輝度変化値とし、統計解析情報IF2は平均値とする前提の下、パラメータ情報IF3の階層に特化して説明する。
図8で示されるように、撮影対象パラメータIOの「男性IO1または女性IO2」、疾病情報パラメータISの「健常者IS1または非健常者IS2」、撮影環境パラメータIEの「後前像IE1または前後像IE2」のうち、最も上位概念に位置するのは、撮影環境パラメータIEの「撮影の向き」であるため、まず、「後前像」及び「前後像」の2つのパラメータ情報IE1,IE2に大別され、各々参照用統計値SVがグループ化され格納(蓄積)されている。次に、撮影対象パラメータIOの「性別」は疾病情報パラメータISの「健常者または非健常者」より上位概念であるため、「男性」「女性」の2つのパラメータ情報IO1,IO2の参照用統計値SVがパラメータ情報IE1,IE2に各々格納される。そして、疾病情報パラメータISの「健常者または非健常者」は呼吸状態パラメータIBの「呼気または吸気」より上位概念であるため、「健常者」及び「非健常者」の2つのパラメータ情報IS1,IS2の参照用統計値SVがパラメータ情報IO1,IO2に各々格納される。さらに、「呼気」及び「吸気」の2つのパラメータ情報IB1,IB2の参照統計値SVがパラメータ情報IS1,IS2に各々格納される。
したがって、生成指示情報IFとして、診断領域ARは右肺野とし、画像解析情報IF1は輝度変化値とし、統計解析情報IF2は平均値とする前提の下、パラメータ情報IF3を、例えば、撮影対象パラメータIOが「男性IO1」、疾病情報パラメータISが「非健常者IS2」、撮影環境パラメータIEが「後前像IE1」、呼吸状態パラメータIBが「呼気IB1」とする場合のパラメータ情報は、図8で示されるパラメータ情報IF30に該当する。
なお、ここではパラメータ情報IF3における最も簡略化された概念構造の一例について説明したが、実際は撮影対象パラメータIO、疾病情報パラメータIS、撮影環境パラメータIE、呼吸状態パラメータIBがそれぞれ複数の属性情報から構成される。また、ここでは、最も上位概念を撮影環境パラメータIE、最も下位概念を呼吸状態パラメータIBとしたが、これに限られず、属性情報の組合せにより様々に変動することになる。
加えて、データベース51は、パラメータ情報IF3だけでなく、診断領域AR、画像解析情報IF1,統計解析情報IF2の属性情報の組合せもあるため、実際のデータベース51はかなり複雑な構造となる。
なお、上述したグループ化を行うことなく、データベース51において、生成指示情報IF(IF1〜IF3)で指示される各情報に属性を持たせた態様で参照用統計値SVの集合体を格納しておき、以下の統計処理機能を情報蓄積装置5に持たせる態様も考えられる。すなわち、情報蓄積装置5は、データベース51に格納された参照用統計値SVの集合体のうち、生成指示情報IFで指示される情報に合致した情報のみを統計処理の母数となる情報とし、統計処理を実行し、画像解析情報IF1及び統計解析情報IF2によって指示される、第1の解析値ANsの統計解析種別と比較すべき参照用統計値SVを出力するようにしても良い。
<1−4−1−6.表示画像生成部600、表示部34>
表示画像生成部600では、第1の解析値ANsと、第1の解析値ANsと比較すべき参照用統計値SVとを合わせて表示するように診断用画像IG2を生成する表示画像生成処理を行う。そして、表示部34では、診断用画像IG2を表示する処理を行う。すなわち、表示部34では、第1の解析値ANsと参照用統計値SVとが比較可能に合わせて表示される。
加えて、領域設定処理として、ユーザが全体解析画像IG1を見て診断領域ARを設定する場合は、表示画像生成処理は、全体解析値ANに基づく全体解析画像IG1を生成する処理を更に行い、表示部34は、統計解析処理を行う前に全体解析画像IG1を表示する処理を行う。
本実施形態における全体解析画像IG1は、図4(b)で示されるように、複数のフレーム画像SG(画像解析処理が輝度変化値の場合、詳しくは差分画像SG’)に基づいて静止画像として構成される解析静止画像である。
図9は、表示画像生成処理によって生成された全体解析画像IG1及び診断用画像IG2が表示部34に表示されたことを説明する模式図である。図9(a)では全体解析画像(解析静止画像)IG1を示し、図9(b)では参照用統計値SVと第1の解析値ANsとを数値として表示した診断用画像IG21(IG2)を示し、図9(c)では参照用統計値SVと現在及び過去の第1の解析値ANsとをグラフ化して表示した診断用画像IG22(IG2)である。また、ここでは、統計解析部500が、生成指示情報IFとして、診断領域ARを右肺野の上葉(図9(a)参照)、画像解析情報IF1を輝度変化値、統計解析情報IF2を平均値、及び、パラメータ情報IF3を撮影対象パラメータIOにおける「健常者」という条件を情報蓄積装置5に与え、情報蓄積装置5がこれらの条件に見合った参照用統計値SVを表示画像生成処理に返した場合を想定する。
図9(a)で示されるように、解析静止画像IG1に対して診断領域ARとして、右肺野の上葉を設定した結果である。設定された診断領域ARは、解析静止画像IG1の表示の邪魔をしないような形で画像上に表示される。
図9(b)で示されるように、診断用画像IG21における第1の解析値ANsに相当する「2.3」は、全体解析値AN(輝度変化値)のうち診断領域AR(図9(a)参照)の平均値である。一方、参照用統計値SVに相当する「3.5〜7.7(平均:5.6)」のうち「5.6」は、複数の健常者を対象として各々算出された診断領域ARの輝度変化値の平均値を用いて、それらの平均値の平均をとった数値であり、「3.5〜7.7」は、当該各々算出された輝度変化値の平均値の最大値と最小値との数値を示す。このように、複数の健常者を母数とする参照用統計値SVと現在診断対象とする被検者Mの第1の解析値ANsとあわせて表示することで、一目で健常者との比較ができ、被検者Mの状態を把握する診断支援情報となる。なお、このように、第1の解析値ANsを数値で表示した場合、第1の解析値ANsが健常者の参照用統計値SVの平均値の最大値〜平均値の最小値の間にあった場合は、青色表示、そうでなかった場合は赤色表示といった具合に、表示色を変えてもよい。
また、診断用画像IG2は、図9(b)で示されるように数値として表示された診断用画像IG21でも、図9(c)で示されるように、グラフとして表示された診断用画像IG22であってもよい。それに合わせて、今回解析された第1の解析値AVsの数値及び参照用統計値SVも表示され、健常者と比較してどういう値になっているかが一目でわかる状態になる。また、図9(c)で示されるように、過去の被検者Mの解析結果の保持機能を持たせることにより、第1の解析値ANsは、今回の結果だけでなく、その診断対象である被検者Mの前回の第1の解析値ANsP1、前々回の第1の解析値ANsP2というように過去の結果も参照用統計値SVとともにあわせて表示してもよい。図9(c)の場合では、前々回の第1の解析値ANsP2、前回の第1の解析値ANsP1、今回の第1の解析値ANsの順で、健常者の参照用統計値SVに近づいているため、回復に向かっている様子がみてとれる。このようにすることで、過去からの経過(良くなったのか、悪くなったのか)が一目で把握することが可能となる。
一方、パラメータ情報IF3を撮影対象パラメータIOにおける「COPD患者」のような特定の疾病の患者を母数として参照用統計値SVを生成した場合には、その参照用統計値SVと第1の解析値ANsとをあわせて表示することで、一目でその疾病患者との比較ができる状態になる。すなわち、第1の解析値ANsがCOPD患者の参照用統計値SVのCOPDを認定する範囲内に入っている場合は、被検者MはCOPDを患っている可能性が示唆されることになる。
前述したように、情報蓄積装置5は、生成指示情報IFで指示される情報に合致した情報のみを統計処理の母数とした参照用統計値SVを出力していている。ただし、パラメータ情報IF3や診断領域ARの条件に見合った属性情報がデータベース51に存在しないとき、存在する属性情報を用いて正規化を行うことで条件に見合った参照用統計値SVを生成することも可能である。
例えば、現在診断対象とする被検者Mの情報として体厚のみを有し、体厚を条件に参照用統計値SVを生成したいが、データベース51に撮影対象パラメータIOの属性情報として体重と身長とはあるが体厚がない場合には、上記で言う正規化を行う。すなわち、情報蓄積装置5が、撮影対象パラメータIOの属性情報である体重と身長とに基づいて体厚を新たに算出し、被検者Mの体厚とを照合することで、条件に見合った体重と身長をもつ参照用統計値SVをデータベース51に格納された参照用統計値SVの集合体から出力することが可能となる。
このように、該当する属性情報がデータベース51に存在しなくとも、何らかの算出処理(正規化)を施すことで、情報蓄積装置5が、該当する属性情報を導けるようにしてもよい。
<1−5.画像処理装置3の基本動作>
図10は、本実施形態に係る画像処理装置3において実現される基本動作を説明するフローチャートである。なお、既に各部の個別機能の説明は行ったため(図2参照)、ここでは全体の流れのみ説明する。
図10に示すように、まず、ステップS1において、制御部31の基準動態画像取得部200が、撮像装置1の読取制御装置14によって撮影された基準動態画像(複数のフレーム画像SI)を、撮影制御装置2を介して取得する(図3参照)。
ステップS2では、画像解析部300が、ステップS1において取得した複数のフレーム画像SIに対して画像解析処理を行い、全体解析値ANを得る(図4参照)。
ステップS3では、表示画像生成部600が、ステップS2で得た全体解析値ANに基づいて全体解析画像(解析静止画像)IG1を生成する。
ステップS4では、表示部34が、ステップS3で生成した解析静止画像IG1を表示する(図9(a)参照)。
ステップS5では、ステップS4で表示した解析静止画像IG1に対して、ユーザが操作部33を介して診断領域ARを指定することで(図9(a)参照)、領域設定部400が領域設定処理を行う。
ステップS6では、統計解析部500が、ステップS5で設定された診断領域ARに対して選択的に統計解析処理を行うことで、第1の解析値ANsを得るとともに、生成指示情報IF(診断領域AR、画像解析情報IF1、統計解析情報IF2及びパラメータ情報IF3)を情報蓄積装置5に出力する(図2参照)。
ステップS7では、情報蓄積装置5が、ステップS6で出力された生成指示情報IFを受けて、データベース51に格納された参照用統計値SVの集合体から生成指示情報IFの条件に見合った参照用統計値SVを生成する。
ステップS8では、表示画像生成部600が、ステップS6で得られた第1の解析値ANs及びステップ7で得られた参照用統計値SVを合わせて表示するように診断用画像IG2を生成する(図9(b)及び図9(c)参照)。
なお、診断用画像IG2は図9(b)で示されるように数値として生成されても、図9(c)で示されるようにグラフとして生成されてもよい。
最後に、ステップS9において、表示画像生成部600が、ステップS8にて生成した診断用画像IG2を表示部34にて出力し(図9(b)及び図9(c)参照)、本動作フローが終了される。
以上のように第1実施形態に係る画像処理装置3では、基準動態画像を構成する複数のフレーム画像SIに対して画像解析処理を行うことで得られる全体解析値ANに対して統計解析処理をすることで、第1の解析値ANsを得、該第1の解析値ANsと、該第1の解析値ANsと比較すべき参照用統計値SVとを合わせて表示する。すなわち、現在診断対象とする被検者M(対象物)の身体の第1の解析値ANsと、当該被検者M以外の過去の複数の被検者の参照動態画像を用いて算出された参照用統計値SVと、を同時に表示することが可能となる。これにより、過去の複数の被検者から算出された参照統計値SVとの差異を一見して把握することができるため、医師等のユーザにとっての診断支援情報となり得る。このため、診断時間の短縮化が図れ、動態診断を適切かつ効率的に行うことが可能となる。
また、肺野領域から診断領域ARを設定する領域設定処理を行う。これにより、ユーザは所望の領域(例えば、異常のある領域等)を診断領域ARとして設定することができる。また、統計解析部500は、全体解析値ANのうち領域設定処理にて設定された診断領域ARに対して選択的に統計解析処理を行うことで、第1の解析値ANsを得る。すなわち、診断領域ARの第1の解析値ANsと診断領域ARの参照用統計値SVとを得ることが可能となる。例えば、画像解析処理を行った肺野領域の一部の領域だけに異常がある場合、その異常のある領域を診断領域ARとして設定することで、診断に有効な第1の解析値ANsが得られると同時に、その異常のある領域に特化した参照用統計値SVが得られる。つまり、第1の解析値ANs及び参照用統計値SVは設定される領域により変動する値であるため、診断領域ARを絞り込むことで、診断に適切且つ有意な情報を得ることが可能となる。
また、表示部34は、全体解析値ANに基づく全体解析画像を表示する処理を更に行い、全体解析画像は、複数のフレーム画像SIに基づいて静止画像として構成される解析静止画像IG1である。これにより、ユーザは解析静止画像IG1を見ながら所望の領域(例えば、異常のある領域等)を診断領域ARとして設定することができる。また、解析静止画像IG1と診断用画像IG2とを同時に視認するようにすれば、第1の解析値ANsと参照用統計値SVとを比較すると同時に、解析静止画像IG1上でも異常等を確認することができる。
また、参照用統計値SVは、パラメータ情報IF3である、撮影対象パラメータIO、疾病情報パラメータIS、撮影環境パラメータIE、及び、呼吸状態パラメータIBのうち、少なくとも1つのパラメータを母数として分類された後の統計値を含む。すなわち、上記4つのパラメータのうち何れか1つ、または、これらの組合せにより、母数を様々に変更して算出された複数パターンの統計値の中から、診断目的に応じて、適切な参照用統計値SVを選択して表示することができる。例えば、診断対象とする対象物が健常者である場合、参照用統計値SVは複数の健常者を母数として計算される統計値を採用する一方、診断対象とする特定の疾病の患者である場合、参照用統計値SVは複数の当該特定の疾病の患者を母数として計算される統計値を採用することが可能となる。このように、診断の目的に応じて参照用統計値SVの母数を変更することが可能となる。
また、画像解析処理が、輝度変化値、対象領域のサイズを示す距離、特定の位置座標、対象領域の面積、及び、特定の位置の移動量のうち何れか1つの処理を行う。すなわち、第1の解析値ANsと同様に、第2の解析値及び参照用統計値SVにおいても上記の値として算出されることになる。これにより、診断に応じて異なる第1の解析値ANsを算出することが可能となる。このように、ユーザにとって有効な診断支援情報を提供することが可能となる。
また、参照用統計値SVは、過去の複数の被検者の参照動態画像に対して、画像解析処理及び統計解析処理と同様の処理を行って得られた複数の第2の解析値における、平均値、最大値、最小値、最大値と最小値との範囲、及び、バラツキ度合い、のうち少なくとも何れか1つの値であることにより、第1の値ANsと比較する際、肺野領域が正常か否かの判断を効率的に行うことが可能となる。これにより、ユーザにとって有効な診断支援情報を提供することが可能となる。
更に、対象領域は肺野領域であることにより、肺野領域において異常か否かといった診断を参照用統計値SVと比較しながら動態診断を行うことができる。これにより、肺野領域における異常のある領域を効率的に判断することができ、動態診断に要する時間の短縮化が図れ、適切且つ効率的に行うことが可能となる。
<2.第2実施形態>
本発明の第2実施形態における画像処理装置3’は、第1実施形態の画像処理装置3のうち、全体解析画像IG1が動態画像として構成されるため、領域設定部400’、統計解析部500’、参照用統計値生成部550’、表示画像生成部600’(不図示)に以下で説明するように変更される。なお、残余の構成は画像処理装置3と同様である。
図11は、表示画像生成部600’(表示画像生成処理)が生成した全体解析画像IG1’(図11(a))及び診断用画像IG21’〜IG23’(IG2’)(図11(b)及び図11(c))を示す模式図である。なお、図11では、全体解析値AN、第1の解析値ANs及び参照用統計値SVは輝度変化値の場合を想定し、図11(c)の診断用画像IG22’のグラフは第1の解析値ANsを示し、診断用画像IG23’のグラフは参照用統計値SVを示し、両者の縦軸は、輝度変化値を示す。そして診断用画像IG22’のグラフの横軸は撮影時刻を示す。
以下では、図11を参照して第1実施形態の各機能と異なる部分のみを説明する。
<2−1.領域設定部400’、表示画像生成部600’>
まず、画像解析部300と同様の画像解析処理を行うことで、肺野領域全体における全体解析値ANを得るが、表示画像生成部600’では、全体解析画像IG1’を、複数のフレーム画像SIに基づいて動態画像として構成される解析動態画像を生成する。すなわち、表示画像生成処理は、全体解析値ANに基づく解析動態画像IG1(全体解析画像)を生成する処理を行い、表示部34は、統計解析処理を行う前に解析動態画像IG1を表示する処理を行う。
また、領域設定部400’では、解析動態画像IG1’を構成するフレーム画像毎に領域設定処理が行われる。なお、解析動態画像IG1’を構成するフレーム画像とは、全体解析値ANが上記の(i)輝度変化値、及び、(v)特定の位置の移動量である場合は上記の差分画像SI’を指し(図4参照)、全体解析値ANが上記の(ii)肺野領域のサイズを示す距離、(iii)特定の位置座標、及び、(iv)肺野領域の面積である場合は上記のフレーム画像SIを指す(例えば、図5参照)。
ここで、ユーザが操作部33を介して診断領域ARを指定する場合は、解析動態画像IG1’を構成するフレーム画像SI(または差分画像SI’)毎に逐次指定してもよいが、例えば、解析動態画像IG1’を構成する最初のフレーム画像SI(または差分画像SI’)に対してのみユーザが指定し、残余のフレーム画像SI(または差分画像SI’)においては自動的に診断領域ARを設定する方法を採用すれば効率的である。
ただし、フレーム画像SI毎に肺野領域の形も変化する。それに応じて、全体解析画像IG1上の診断領域ARの表示も変化する。したがって、例えば、呼吸の状態変化や心拍の影響に応じて肺野領域の形が変化し、その診断領域ARの範囲に応じた第1の解析値ANsが得られることになる。このように、診断領域ARを正確に設定する必要がある。そこで、診断領域ARを設定するために、例えば、肺野領域の動きを各フレーム画像SI(または差分画像SI’)間で追跡して対応づけることで、診断領域ARを自動的に得ることができる。各フレーム画像SI(または差分画像SI’)間で追跡して対応づける方法として、例えば、既存の方法である対応点探索処理等を採用することができる。
<2−2.統計解析部500’、参照用統計値生成部550’>
また、統計解析部500’では、解析動態画像IG1’を構成するフレーム画像SI(または差分画像SI’)毎に設定された診断領域ARに対してそれぞれ統計解析処理が行われる。すなわち、第1の解析値ANsは、複数のフレーム画像SI(または差分画像SI’)に基づいて算出される複数の第1の解析値であり、フレーム画像SI(または差分画像SI’)毎に得られる。また、統計解析部500’が、生成指示情報IFを参照用統計値生成部550’に出力する。
複数の第1の解析値ANsとして、例えば、複数のフレーム画像それぞれの診断領域AR内における輝度変化値の平均値である、複数の輝度変化値等が考えられる。
そして、参照用統計値生成部550’では、統計解析部500’から、生成指示情報IFが入力されることで、これらの条件に見合った参照用統計値SVを生成する。ここで、参照用統計値SVに関しては、第1の実施形態と同様に、単一の統計値とする。すなわち、第2の解析値は、参照動態画像を構成する全てのフレーム画像を用いて得られる単一の値であり、第1の解析値ANsのように、フレーム画像毎に算出される複数の値ではない。
<2−3.表示画像生成部600’>
続いて、表示画像生成部600’が、該複数の第1の解析値ANsと、参照用統計値生成部550’から生成された参照用統計値SVとを合わせて表示するように診断用画像IG2’(IG21’〜IG23’)を生成する表示画像生成処理を行う。
そして、表示画像生成処理は、複数の第1の解析値ANsを複数のフレーム画像SIの撮影時間に対応して順次表示するようにし、解析動態画像IG1’(図11(a)参照)と複数の第1の解析値ANs(図11(b)参照)とを時間的に関連づけて表示するように診断用画像IG2’を生成する処理を行う。これは、画像解析部300’から出力される全体解析値ANと、統計解析部500’から出力される第1の解析値ANsとが、時間的に関連しあって(時間的情報を保持して)、表示画像生成部600’に出力されることにより実現可能となる。
また、表示画像生成処理は、複数の第1の解析値ANsを撮影時間方向にプロットしたグラフ(診断用画像IG22’)を生成する処理を更に行う(図11(c)参照)。すなわち、診断用画像IG22’とは、第1の解析値ANsの時間変化を示すグラフであり、該グラフは、解析動態画像IG1’と時間的に関連づけられる(図11(a)及び図11(c)参照)。なお、診断用画像IG22’のグラフ上には、現在表示されている解析動態画像の表示フレームと対応がわかるように点P1がプロットされる。これにより、その点P1と、診断用画像IG23’の健常者の参照用統計値SVとを比較することで、一目で健常者との比較が可能になっている。
最後に、表示画像生成部600’が、診断用画像IG2’(IG21’〜IG23’)を表示部34にて出力し、診断用画像IG2’を表示部34に表示する。
このようにすることで、図11(a)で示される解析動態画像IG1’の再生表示が時々刻々変化するとともに、図11(b)で示される診断用画像IG21’の第1の解析値ANs、及び、図11(c)で示される診断用画像IG22’のグラフ上の第1の解析値ANsがそれと同期して変化する表示となる。なお、参照用統計値SVに関しては、第1実施形態と同様に、単一の統計値であるため、診断用画像IG21,IG22上では不動となる(図11(b)及び図11(c)参照)。
以上のように第2実施形態に係る画像処理装置3’では、表示部34は、全体解析値ANに基づく全体解析画像を表示する処理を更に行い、全体解析画像は、複数のフレーム画像に基づいて動態画像として構成される解析動態画像IG1’である。これにより、ユーザは解析動態画像IG1’を見ながら所望の領域(例えば、異常のある領域等)を診断領域ARとして設定することができる。また、解析動態画像IG1’と診断用画像IG2’とを同時に視認するようにすれば、複数の第1の解析値ANsと参照用統計値SVとを比較すると同時に、解析動態画像IG1’上でも異常等を確認することができる。
また、表示部34は、複数の第1の解析値ANsを複数のフレーム画像の撮影時間に対応して順次表示し、解析動態画像IG1’と複数の第1の解析値ANsとを時間的に関連づけて表示する処理を更に行う。すなわち、解析動態画像IG1’が時々刻々と変化することに同期して第1の解析値ANsの表示も変化させて表示することが可能となる。これにより、どの時間帯で異常が発生しどの時間帯で異常が消失するのか(正常になるのか)等を、時間軸を入れて診断することが可能となる。このため、フレーム画像上における2次元空間の時間変化を参照用統計値SVと比較しながら視覚的に捉えることが可能となる。
更に、表示部34は、複数の第1の解析値ANsを撮影時間方向にプロットしたグラフを表示する処理を更に行い、当該グラフは、解析動態画像IG1’と時間的に関連づけられている。例えば、現在表示されている解析動態画像IG1’のフレーム画像がわかるような表示をグラフ上にするようにすれば(例えば、図11(c)の点P等)、解析動態画像IG1’及び第1の解析値ANsの表示が時々刻々と変化することに同期して、現在表示されているフレーム画像がグラフ上においてどの位置(時刻)に該当するのかを一見して把握することが可能となる。これにより、異常のある時刻を、グラフを通して確認することが可能となる。
<2−4.第2実施形態の変形例>
上記の第2実施形態では、参照用統計値SVを単一の統計値とし、診断用画像IG21’,IG23’上で不動としたが、時々刻々動くように表示してもよい。
ただし、第2実施形態の変形例の構成では、第1の解析値ANsと参照用統計値SVとが同期が取れる場合を想定するため、参照用統計値SVは、複数の第1の解析値ANsに対応する複数の参照用統計値SVとしてデータベース51に保持されていることが前提となる。
このような状況下で、統計解析部500’が、例えば、フレーム画像SI(または差分画像SI’)毎に、生成指示情報IFを参照用統計値生成部550に順次出力する。そして、参照用統計値生成部550’が、統計解析部500’から、生成指示情報IFが順次入力されることで、これらの条件に見合った複数の参照用統計値SVを順次生成し、表示画像生成部600’に出力する。そして、表示画像生成処理は、複数の参照用統計値SVを複数の第1の解析値ANsに対応させて順次表示するように診断用画像IG21’〜IG23’(IG2’)を生成する処理を行う。
このようにすることで、図11(a)で示される解析動態画像IG1’の再生表示が時々刻々変化するとともに、図11(b)で示される診断用画像IG21’の第1の解析値ANsと参照用統計値SV、及び、図11(c)で示される診断用画像IG22’のグラフ上の第1の解析値ANsと診断用画像IG23’の参照用統計値SVとがそれぞれ同期して変化する表示となる。
以上のように第2実施形態の変形例に係る画像処理装置では、表示画像生成処理は、複数の参照用統計値SVを複数の第1の解析値ANsに対応させて順次表示するように診断用画像IG2’を生成する処理を行う。すなわち、解析動態画像IG1’と第1の解析値ANsと参照用統計値SVとを時間的に関連付けて表示することが可能となる。したがって、解析動態画像IG1’が時々刻々と変化することに同期して第1の解析値ANsの表示のみならず、参照用統計値SVをも変化させて表示することが可能となる。これにより、撮影時刻毎に変化する参照用統計値SVとの比較を行うことができるため、より詳細な動態診断を行うことが可能となる。
<3.第3実施形態>
図12は、本発明の第3実施形態として構成された画像処理装置3Aで用いられる制御部31Aの機能構成を示す図である。この制御部31Aは、第1実施形態の画像処理装置3における制御部31(図2参照)の代替として使用される。第1実施形態と異なる点は、参照用統計値生成部550Aに変更されることに伴い、情報蓄積装置5Aが参照動態画像記憶部51Aを備え、制御部31Aが参照用統計値算出部560を更に備える点である。なお、残余の構成は画像処理装置3と同様である。
<3−1.参照用統計値生成部550A>
第3実施形態における参照用統計値生成部550Aは、参照動態画像記憶部51Aと参照用統計値算出部560とから構成される。
情報蓄積装置5Aでは、統計解析部500から、生成指示情報IFが入力されることで(図12参照)、パラメータ情報IF3に基づき、データベース51Aからパラメータ情報IF3に見合った複数の参照動態画像RIを参照用統計値算出部560に出力する。
そして、参照用統計値算出部560では、参照動態画像記憶部51Aから入力された複数の参照動態画像RIと、統計値解析部500から入力された診断領域AR,画像解析情報IF1及び統計解析情報IF2を用いて、第1の解析値ANsを得るためと同様の画像解析処理及び統計解析処理を行うことで、第1の解析値ANsと比較すべき参照用統計値SVを算出し生成する。
<3−2.画像処理装置3Aの基本動作>
続いて、図13は、第3実施形態に係る画像処理装置3Aの動作フローを例示した図である。なお、図13のうち、ステップSA1〜SA6,SA9,SA10は図10のステップS1〜S6,S8,S9と同様であるため、その説明は省略する。
この第3実施形態では、参照用統計値生成部550(情報蓄積装置5)が参照用統計値生成部550A(情報蓄積装置5Aと参照用統計値算出部560)に置換されたことで、参照動態画像記憶部51Aに変更されるとともに、第1実施形態では存在しなかった参照用統計値算出部560が付加されたことにより、下記の工程のみが変更される。
すなわち、第1実施形態と同様の工程として、ステップSA1〜SA6を経て、図13で示されるように、ステップSA7にて、参照動態画像記憶部51Aが、ステップSA6にて入力されたパラメータ情報IF3に基づき、パラメータ情報IF3に合致した参照動態画像RIを参照用統計値算出部550Aに出力するとともに、統計値解析部500から、診断領域ARと、画像解析情報IF1と、統計解析情報IF2が参照用統計値算出部560に入力される(図12参照)。
そして、ステップSA8では、参照用統計値算出部560が、ステップSA7にて入力された参照動態画像RI、診断領域AR、画像解析情報IF1、及び、統計解析情報IF2を用いて、第1の解析値ANsを得るためと同様の画像解析処理及び統計解析処理を行うことで、参照用統計値SVを算出し、表示画像生成部600に参照用統計値SVを出力する(図12参照)。そして、残余の工程は第1実施形態と同様となる。
以上のように第3実施形態に係る画像処理装置3Aでは、診断目的に応じて、参照用統計値SVは、パラメータ情報IF3に基づき参照動態画像RIの母数を変更して参照用統計値算出部560より参照用統計値SVを算出して表示させることができる。例えば、診断対象が健常者である場合、参照用統計値SVは複数の健常者の参照動態画像RIを母数として統計値を計算する一方、診断対象が特定の疾病の患者である場合、参照用統計値SVは複数の当該特定の疾病の患者を母数として統計値を計算することが可能となる。このように、診断の目的に応じて参照用統計値SVの算出用の参照用動態画像RIの母数を変更することが可能となる。
また、第3実施形態に係る画像処理装置3Aでは、全体解析画像が解析静止画像IG1から構成される場合の第1実施形態の構成をベースに変更した場合を説明したが、全体解析画像が解析動態画像IG1’から構成される場合の第2実施形態の構成をベースに変更してもよい。
<4.変形例>
以上、本発明の実施形態について説明してきたが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
※ 本実施形態では、画像処理装置3,3’,3Aを個別に実施されるように各実施形態に分けて記載したが、これらの個別機能は、互いに矛盾しない限り、相互に組み合わせてもよい。
※ 本実施形態に係る画像処理装置3,3’,3Aでは、1種類の第1の解析値ANs及び1種類の参照用統計値SVを算出する場合を想定して説明したが、複数種の第1の解析値ANs及び複数種の参照用統計値SVを算出するように構成されてもよい。
以下では、ユーザの用途に応じて、複数種第1の解析値ANsを算出し、各第1の解析値ANsの表示方法を切り替えることを可能にすることを説明する。
図14は、表示画像生成処理が生成した部分診断用画像IG22B(図14(a))及び部分診断用画像IG23B(図14(b))からなる診断用画像IG2Bを示す模式図である。なお、図14では参照用統計値SVは健常者を対象として得られた統計値であり、部分診断用画像IG23B内に示されており、図14(a)の部分診断用画像IG22Bのグラフの縦軸は上記(iv)の肺野領域の面積であり、横軸は撮影時刻を示す。また、図14(b)の部分診断用画像IG23Bのグラフの縦軸は上記(i)の輝度変化値を示す。
図14の例における画像解析処理では、上記(i)の輝度変化値及び(iv)の肺野領域の面積の2種類が行われ、画像解析処理は、肺野領域の面積の全体解析値AN1と輝度変化値の全体解析値AN2とを得ている。
また、統計解析処理では、全体解析値AN1,AN2のうち領域設定処理にて設定された診断領域ARに対して選択的に統計解析処理をそれぞれ行うことで、2種の第1の解析値ANs1,ANs2をそれぞれ得ている。ここでいう第1の解析値ANs1は肺野領域の面積に相当し、第1の解析値ANs2は輝度変化値に相当する。
そして、例えば、ユーザからの操作部33を介した指示の下、表示画像生成処理では、肺野領域の面積に相当する第1の解析値ANs1を部分診断用画像IG22Bのグラフとして表示するように処理し、輝度変化値に相当する第1の解析値ANs2を部分診断用画像IG23Bのプロットとして最終的に表示するように処理している。
このようにすることで、部分診断用画像IG22Bのグラフが、部分診断用画像IG23Bの健常者の参照用統計値SVと異なる場合(図14(a)では、部分診断用画像IG22Bのグラフが肺野の面積すなわち第1の解析値ANs1で、部分診断用画像IG23Bの健常者の参照用統計値SVが輝度変化値であり、当初は第1の解析値ANs2を省略したような場合)であっても、第1の解析値ANsを参照用統計値SVと比較可能な解析値(図14(b)では、第1の解析値ANs1の点P1を別途健常者の参照用統計値SVと比較可能な輝度変化値すなわち第1の解析値ANs2の点P2として部分診断用画像IG23Bに含ませる)として表示方法を切り替えることが可能になる。
以上のように、画像解析処理が、輝度変化値、対象領域のサイズを示す距離、特定の位置座標、対象領域の面積、及び、特定の位置の移動量のうち、複数種の処理を行うことで、複数種の第1の解析値ANsを算出することができる。これにより、様々な角度から総合的に肺野領域を診断することが可能となる。このように、ユーザにとって有効な診断支援情報を提供することが可能となる。
※ 本実施形態に係る画像処理装置3,3’,3Aでは、領域設定部400を備えて構成されたが、領域設定部400を備えない構成であってもよい。すなわち、統計解析部500は、全体解析値ANのうち領域設定処理にて設定された診断領域ARに対して選択的に統計解析処理を行い第1の解析値ANsを得たが、領域設定部400を備えない場合には、診断領域ARを解析した全領域(全体解析値AN)とすること等で統計解析処理を行い第1の解析値ANsを得ることが可能となる。
※ 被写体(対象物)Mは、人体だけでなく、動物の身体であってもよい。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
1 撮影装置
2 撮影制御装置
3,3’,3A 画像処理装置
31,31A 制御部
34 表示部
100 放射線動態画像撮影システム
200 動態画像取得部
300 画像解析部
400 領域設定部
500 統計解析部
550,550A 参照用統計値生成部
600 表示画像生成部
M 被写体(被検者)
SI フレーム画像
SI’ 差分画像
IF 生成指示情報
IF1 画像解析情報
IF2 統計解析情報
IF3 パラメータ情報
AR 診断領域
AN 全体解析値
ANs 第1の解析値
SV 参照用統計値
IG1 全体解析画像、解析静止画像、解析動態画像
IG2 診断用画像

Claims (12)

  1. 人体または動物の対象物の身体内部における対象領域の物理的状態が周期的に変化する動態周期の状態を時間方向に順次に撮影された基準動態画像を取得する基準動態画像取得手段と、
    前記基準動態画像を構成する複数のフレーム画像に対して画像解析処理を行うことで、前記対象領域全体における全体解析値を得る画像解析手段と、
    前記全体解析値を用いて前記対象領域の全体または一部の診断領域に対して統計解析処理を行うことで、前記診断領域を代表する第1の解析値を得る統計解析手段と、
    生成指示情報に基づき、過去の複数の対象物の参照動態画像を用いて算出された参照用統計値を出力する参照用統計値生成手段と、
    前記第1の解析値と、前記第1の解析値と比較すべき前記参照用統計値とを合わせて表示する表示手段と、
    を備える、
    画像処理装置。
  2. 請求項1に記載の画像処理装置であって、
    前記対象領域から前記診断領域を設定する領域設定処理を行う領域設定手段、
    を更に備え、
    前記統計解析手段は、
    前記全体解析値のうち前記領域設定処理にて設定された前記診断領域に対して選択的に前記統計解析処理を行うことで、前記第1の解析値を得る、
    画像処理装置。
  3. 請求項1または請求項2に記載の画像処理装置であって、
    前記表示手段は、
    前記全体解析値に基づく全体解析画像を表示する処理、
    を更に行い、
    前記全体解析画像は、
    前記複数のフレーム画像に基づいて静止画像として構成される解析静止画像、
    を含む、
    画像処理装置。
  4. 請求項1または請求項2に記載の画像処理装置であって、
    前記表示手段は、
    前記全体解析値に基づく全体解析画像を表示する処理、
    を更に行い、
    前記全体解析画像は、
    前記複数のフレーム画像に基づいて動態画像として構成される解析動態画像、
    を含む、
    画像処理装置。
  5. 請求項4に記載の画像処理装置であって、
    前記第1の解析値は、前記複数のフレーム画像に基づいて算出される複数の第1の解析値を含み、
    前記表示手段は、
    前記複数の第1の解析値を前記複数のフレーム画像の撮影時間に対応して順次表示し、前記解析動態画像と前記複数の第1の解析値とを時間的に関連づけて表示する処理、
    を更に行う、
    画像処理装置。
  6. 請求項5に記載の画像処理装置であって、
    前記表示手段は、
    前記複数の第1の解析値を前記撮影時間方向にプロットしたグラフを表示する処理、
    を更に行い、
    前記グラフは、前記解析動態画像と時間的に関連づけられている、
    画像処理装置。
  7. 請求項1ないし請求項6のうち、いずれか1項記載の画像処理装置であって、
    前記参照用統計値は、
    前記複数の対象物の固有の情報を示す撮影対象パラメータ、
    前記複数の対象物の疾病の有無及び疾病の状態を示す疾病情報パラメータ、
    前記参照動態画像が撮影された撮影環境を示す撮影環境パラメータ、及び、
    前記参照動態画像が撮影された前記対象物の呼吸状態を示す呼吸状態パラメータ
    のうち、少なくとも1つのパラメータを母数として分類された後の統計値を含む、
    画像処理装置。
  8. 請求項1ないし請求項7のうち、いずれか1項記載の画像処理装置であって、
    前記画像解析処理は、
    前記複数のフレーム画像間の対応画素における輝度変化値、
    前記複数のフレーム画像毎における前記対象領域のサイズを示す距離、
    前記複数のフレーム画像毎における前記対象領域内の特定の位置座標、
    前記複数のフレーム画像毎における前記対象領域の面積、及び、
    前記複数のフレーム画像間で対応する前記特定の位置の移動量
    のうち少なくとも何れか1つを算出する処理を含む、
    画像処理装置。
  9. 請求項1ないし請求項8のうち、いずれか1項記載の画像処理装置であって、
    前記参照用統計値は、
    前記過去の複数の対象物の参照動態画像に対して、前記画像解析処理及び前記統計解析処理と同様の処理を行って得られた複数の第2の解析値における、
    平均値、最大値、最小値、前記最大値と前記最小値との範囲、及び、バラツキ度合い、のうち少なくとも何れか1つの値を含む、
    画像処理装置。
  10. 請求項1ないし請求項9のうち、いずれか1項記載の画像処理装置であって、
    前記対象領域は肺野領域を含む、
    画像処理装置。
  11. 請求項1ないし請求項10のうち、いずれか1項記載の画像処理装置であって、
    前記生成指示情報は、診断領域、画像解析情報、統計解析情報、及びパラメータ情報の少なくともひとつである、
    画像処理装置。
  12. 画像処理装置に含まれるコンピュータによって実行されることにより、前記コンピュータを、請求項1ないし請求項11のうち、いずれか1項記載の画像処理装置として機能させるプログラム。
JP2015519762A 2013-05-28 2014-05-02 画像処理装置及びプログラム Active JP6323451B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013112055 2013-05-28
JP2013112055 2013-05-28
PCT/JP2014/062131 WO2014192505A1 (ja) 2013-05-28 2014-05-02 画像処理装置及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2014192505A1 true JPWO2014192505A1 (ja) 2017-02-23
JP6323451B2 JP6323451B2 (ja) 2018-05-16

Family

ID=51988543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519762A Active JP6323451B2 (ja) 2013-05-28 2014-05-02 画像処理装置及びプログラム

Country Status (4)

Country Link
US (1) US9972088B2 (ja)
JP (1) JP6323451B2 (ja)
CN (1) CN105246407A (ja)
WO (1) WO2014192505A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318739B2 (ja) * 2014-03-17 2018-05-09 コニカミノルタ株式会社 画像処理装置、およびプログラム
US9526468B2 (en) * 2014-09-09 2016-12-27 General Electric Company Multiple frame acquisition for exposure control in X-ray medical imagers
JP6563214B2 (ja) * 2015-02-26 2019-08-21 キヤノンメディカルシステムズ株式会社 医用画像処理装置および医用画像処理方法
JP2017173252A (ja) * 2016-03-25 2017-09-28 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP6825229B2 (ja) * 2016-05-17 2021-02-03 コニカミノルタ株式会社 動態解析システム
JP6930638B2 (ja) * 2016-05-17 2021-09-01 コニカミノルタ株式会社 動態解析装置、動態解析プログラム、動態解析方法及び制御装置
US10223790B2 (en) * 2016-06-29 2019-03-05 Konica Minolta, Inc. Dynamic analysis system
JP6812685B2 (ja) * 2016-07-13 2021-01-13 コニカミノルタ株式会社 動態解析装置
CA3031175C (en) * 2016-07-19 2021-11-09 Radwisp Pte.Ltd. Diagnosis support program
JP2018064848A (ja) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 動態解析システム
JP2018110637A (ja) * 2017-01-10 2018-07-19 コニカミノルタ株式会社 動態画像処理装置
JP6805918B2 (ja) * 2017-03-23 2020-12-23 コニカミノルタ株式会社 放射線画像処理装置及び放射線画像撮影システム
JP6771443B2 (ja) * 2017-09-21 2020-10-21 株式会社東芝 演算処理装置およびその方法
JP6950483B2 (ja) * 2017-11-20 2021-10-13 コニカミノルタ株式会社 動態撮影システム
JP6897656B2 (ja) * 2018-11-22 2021-07-07 コニカミノルタ株式会社 画像表示制御システム、画像表示システム、画像解析装置、画像表示制御プログラム及び画像表示制御方法
JP7143747B2 (ja) * 2018-12-07 2022-09-29 コニカミノルタ株式会社 画像表示装置、画像表示方法及び画像表示プログラム
JP7092218B1 (ja) * 2021-01-18 2022-06-28 コニカミノルタ株式会社 医療情報管理装置及び医療情報管理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312434A (ja) * 2003-04-08 2004-11-04 Canon Inc 画像処理装置及び方法及びシステム
US20120059252A1 (en) * 2009-05-13 2012-03-08 The Regents Of The University Of California Computer tomography sorting based on internal anatomy of patients
US20140184608A1 (en) * 2011-05-05 2014-07-03 Richard A. Robb Systems and methods for analyzing in vivo tissue volumes using medical imaging data
US20140219416A1 (en) * 2011-10-14 2014-08-07 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus, medical image processing apparatus, and medical image processing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142100A (ja) 1992-11-10 1994-05-24 Matsushita Electric Ind Co Ltd 超音波診断装置
US7158610B2 (en) * 2003-09-05 2007-01-02 Varian Medical Systems Technologies, Inc. Systems and methods for processing x-ray images
US8866845B2 (en) * 2010-03-10 2014-10-21 Empire Technology Development Llc Robust object recognition by dynamic modeling in augmented reality
US10219787B2 (en) * 2010-09-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Respiratory mode (“R-Mode”)—acquisition and display of cardiovascular images to show respiratory effects
JP5575620B2 (ja) 2010-11-30 2014-08-20 株式会社東芝 画像処理装置
US9254112B2 (en) * 2011-03-23 2016-02-09 Siemens Corporation Respiratory interval-based correlation and processing of dynamic imaging data
JP5672147B2 (ja) 2011-05-24 2015-02-18 コニカミノルタ株式会社 胸部診断支援情報生成システム
JP5844187B2 (ja) * 2012-03-23 2016-01-13 富士フイルム株式会社 画像解析装置および方法並びにプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312434A (ja) * 2003-04-08 2004-11-04 Canon Inc 画像処理装置及び方法及びシステム
US20120059252A1 (en) * 2009-05-13 2012-03-08 The Regents Of The University Of California Computer tomography sorting based on internal anatomy of patients
US20140184608A1 (en) * 2011-05-05 2014-07-03 Richard A. Robb Systems and methods for analyzing in vivo tissue volumes using medical imaging data
US20140219416A1 (en) * 2011-10-14 2014-08-07 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus, medical image processing apparatus, and medical image processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
川嶋広貴: "胸部X線動態撮影の再現性の検証 ピクセル値の呼吸性変化", 日本放射線技術学会雑誌, vol. 65, no. 6, JPN6017038708, 14 July 2009 (2009-07-14), pages 738 - 744, ISSN: 0003659440 *

Also Published As

Publication number Publication date
CN105246407A (zh) 2016-01-13
US9972088B2 (en) 2018-05-15
US20160104283A1 (en) 2016-04-14
JP6323451B2 (ja) 2018-05-16
WO2014192505A1 (ja) 2014-12-04

Similar Documents

Publication Publication Date Title
JP6323451B2 (ja) 画像処理装置及びプログラム
JP6512338B2 (ja) 画像処理装置及びプログラム
AU2022291619B2 (en) System and method for lung-volume-gated x-ray imaging
US9901317B2 (en) Image processing apparatus for acquiring a dynamic image and storage medium
JP5408399B1 (ja) 画像生成装置
JP5408400B1 (ja) 画像生成装置及びプログラム
JP6772908B2 (ja) 動態解析システム及びプログラム
JP5919717B2 (ja) 動態医用画像生成システム
US11950940B2 (en) System and method for determining radiation parameters
JP2009028362A (ja) 医用画像処理装置及び医用画像診断装置
JP2014079312A (ja) 画像処理装置及びプログラム
US20190298290A1 (en) Imaging support apparatus and radiographic imaging system
WO2014104357A1 (ja) 動作情報処理システム、動作情報処理装置及び医用画像診断装置
JP2021178111A (ja) 動態画像解析装置、動態画像解析方法及びプログラム
JP6073558B2 (ja) 医用画像診断装置
JP2021083960A (ja) 医用画像処理装置、医用画像処理方法、および医用画像処理プログラム
JP2020203191A (ja) 動態解析システム及びプログラム
JP2020141841A (ja) 動態解析装置及びプログラム
JP2020142018A (ja) 動態画像解析システム及び動態画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150