JPWO2014188711A1 - 直流電源回路 - Google Patents

直流電源回路 Download PDF

Info

Publication number
JPWO2014188711A1
JPWO2014188711A1 JP2015518075A JP2015518075A JPWO2014188711A1 JP WO2014188711 A1 JPWO2014188711 A1 JP WO2014188711A1 JP 2015518075 A JP2015518075 A JP 2015518075A JP 2015518075 A JP2015518075 A JP 2015518075A JP WO2014188711 A1 JPWO2014188711 A1 JP WO2014188711A1
Authority
JP
Japan
Prior art keywords
circuit
power supply
signal
voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015518075A
Other languages
English (en)
Other versions
JP6255577B2 (ja
Inventor
隆司 佐治
隆司 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014188711A1 publication Critical patent/JPWO2014188711A1/ja
Application granted granted Critical
Publication of JP6255577B2 publication Critical patent/JP6255577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

直流電源回路は、交流電源と、交流電源から直流電圧を生成する整流回路と、入力端子が整流回路に接続され、制御端子に入力される入力値に従って出力電圧を出力する充電スイッチと、出力端子に接続されたコンデンサおよび制御回路と、出力電圧が第1の基準電圧値以下でスイッチオン信号を、第1の基準電圧値より高い第2の基準電圧値以上でスイッチオフ信号を生成する充電スイッチ制御回路とを含み、整流回路と充電スイッチ制御回路の少なくとも一方を含む充電期間設定回路が、コンデンサに充電電流の流れる充電期間と流れない非充電期間とを設定し、充電スイッチは、充電期間にスイッチオン信号が生成された場合、直流電圧が出力電圧以上で充電電流が流れ、非充電期間にスイッチオン信号が生成された場合、直流電圧が出力電圧以上でも充電電流が流れない。

Description

本開示は、直流電源回路に関する。
家電製品や事務機器等の電子機器には、電力変換効率の向上等の目的から、スイッチング電源装置が広く用いられている。それらスイッチング電源装置は、半導体(トランジスタなどのスイッチング素子)によるスイッチング動作を利用して出力電圧を制御する半導体装置を有する。
近年、これらの電子機器の動作待機(スタンバイ)時における消費電力削減が注目されており、それを実現するスイッチング電源装置が強く要求されている。スタンバイ時における消費電力削減には、スイッチング電源装置の制御回路へ供給される電力の削減が有効である。
スイッチング電源装置の制御回路への電力供給には、商用電源の交流電圧から直流電圧を得るシリーズレギュレータ方式の直流電源回路が用いられる場合が多い。しかしながら、制御回路に必要なDC5V〜24Vなどの直流電圧に対して、商用電源はAC100V〜240Vといった非常に高い交流電圧であり、直流電源回路の電力損失が大きくなってしまう。
直流電源回路の電力損失を削減する方法として、商用電源の交流電圧をトランスによって降圧してから全波整流し、直流電圧へ変換する方法が提案されている(例えば特許文献1参照)。また、他の方法として、商用電源の交流電圧を整流した整流電圧が第1の電圧以下になったことを検出し、0Vから反転して第1の電圧を超えて第2の電圧以上に上昇するまでの期間に制御回路の電源端子に接続されているコンデンサに充電する方法が提案されている(例えば特許文献2参照)。
特開昭61−206016号公報 特開2011−244602号公報
しかしながら、特許文献1に開示されるような従来の直流電源回路では、商用電源の交流電圧を降圧するトランスを使用しているため、スイッチング電源装置の大型化やコストの増加を招いてしまう。
また、特許文献2の図2に開示されるような直流電源回路では、制御回路への電力供給をオフしている期間にも、整流電圧を監視するための消費電力が発生してしまう。この消費電力は、制御回路全体の回路消費電流が小さくなるほど無視できない。さらに、電力供給の期間を限定しているため、制御回路の消費電流増加などによって電源端子電圧が異常低下する場合にはコンデンサへの充電が即座に行われない。そのため、電源端子電圧が動作停止電圧よりも低下し、誤動作が起きてしまう可能性がある。一方、このような電源端子電圧の異常低下を考慮して直流電源回路を設計する場合には、第2の電圧を十分高く設定する、または、コンデンサの容量値を大きく設定する必要がある。しかしながら、電源端子の最大定格電圧による制限、または、コンデンサの大型化やコストの増加を招いてしまう。
本開示は、上記の問題を解決し、スイッチング電源装置などの制御回路へ供給される電力を削減できる直流電源回路を提供することを目的とする。
上記の課題を解決するために、本開示の直流電源回路は、交流電源と、交流電源の交流信号を整流し直流電圧を生成する整流回路と、第1の入力端子が前記整流回路に接続され、第1の制御端子に入力される第1の入力値に従って第1の出力端子に第1の出力電圧を出力する第1の充電スイッチと、第1の出力端子に接続された第1のコンデンサおよび第1の制御回路と、第1の制御端子に接続された第1の充電スイッチ制御回路とを備え、第1の充電スイッチ制御回路は、第1の出力電圧が、第1の基準電圧値以下の時に、第1の充電スイッチをオンするスイッチオン信号を生成し、第1の出力電圧が、第1の基準電圧値より高い第2の基準電圧値以上の時に、第1の充電スイッチをオフするスイッチオフ信号を生成し、整流回路と第1の充電スイッチ制御回路の少なくとも一方を含む充電期間設定回路が、交流信号に同期し、第1の充電スイッチを経由して第1のコンデンサへ充電電流を流すことが可能な充電期間と、該充電電流を流さない非充電期間とを設定し、第1の充電スイッチは、充電期間にスイッチオン信号が生成された場合は、直流電圧が第1の出力電圧以上になると充電電流が流れ、非充電期間に前記スイッチオン信号が生成された場合は、直流電圧が前記第1の出力電圧以上になっても充電電流が流れず、後続の充電期間に入り、かつ、直流電圧が第1の出力電圧以上になると充電電流が流れることを特徴とする。
本開示に係る直流電源回路によれば、スイッチング電源装置などの制御回路へ供給される電力を容易に削減できる。
また、充電期間設定回路は、半波整流回路で構成された整流回路を備え、交流信号の正値の期間と負値の期間の一方が充電期間に設定され、他方が非充電期間に設定されることを特徴としても良い。
本開示に係る直流電源回路によれば、直流電圧を監視することなく、スイッチング電源装置などの制御回路へ供給される電力を容易に削減できる。
また、充電期間設定回路は、全波整流回路で構成された整流回路と、交流電源に接続され、交流信号が正値の期間、あるいは、負値の期間のいずれかの期間に活性化し、スイッチオン信号が生成されないように制御する充電禁止信号を生成する充電禁止信号生成回路とを備え、充電禁止信号が活性状態の時が非充電期間に設定され、充電禁止信号が非活性状態の時が充電期間に設定されることを特徴としても良い。
本開示に係る直流電源回路によれば、直流電圧が全波整流電圧であっても、スイッチング電源装置などの制御回路へ供給される電力を容易に削減できる。
また、充電禁止信号が交流信号を半波整流して得られる信号から生成されることを特徴としても良い。
本開示に係る直流電源回路によれば、充電禁止信号を全波整流電圧から生成する場合に比べて、さらに、電力損失を削減することができる。
また、充電期間設定回路は、半波整流回路または全波整流回路で構成された整流回路と、第1の充電スイッチ制御回路と、交流電源に接続され、直流電圧が交流信号の電圧の絶対値の平均値以下の所定の電圧値以下になった時に交流電源の周期よりも短い所定の期間活性化するヒステリシス制御信号を生成するヒステリシス制御信号生成回路とを備え、ヒステリシス制御信号が活性状態の時が充電期間に設定され、第1の基準電圧値が第2の基準電圧値以下である第3の基準電圧値に切り替わり、ヒステリシス制御信号が非活性状態の時が非充電期間に設定され第1の出力電圧が第1の基準電圧値以下にならないことを特徴としても良い。
本開示に係る直流電源回路によれば、第1のコンデンサの容量値設定範囲が広くできる。
また、ヒステリシス制御信号が交流信号を半波整流して得られる信号から生成されることを特徴としても良い。
本開示に係る直流電源回路によれば、ヒステリシス制御信号生成回路を全波整流電圧から生成する場合に比べて、さらに、電力損失を削減することができる。
また、第1の制御回路は、モード切り替え信号に基づいて切り替わる標準電力モードと低電力モードの動作モードを有し、モード切り替え信号が低電力モードに該当する期間は、第1の基準電圧値が第2の基準電圧値以下である第4の基準電圧値に切り替わることを特徴としても良い。
本開示に係る直流電源回路によれば、モード切り替えによる回路電流の変化にも対応できるため、様々な仕様の制御回路などに容易に適用できる。
また、第2の入力端子が整流回路に接続され、第2の制御端子に入力される第2の入力値に従って、第2の出力端子に第2の出力電圧を出力する第2の充電スイッチと、第2の出力端子に接続された第2のコンデンサおよび第2の制御回路と、第2の制御端子に接続された第2の充電スイッチ制御回路とをさらに備え、第2の制御回路は、モード切り替え信号に基づいて切り替わる標準電力モードと低電力モードの動作モードを有し、前記モード切り替え信号が低電力モードに該当する期間は、第2の充電スイッチがオンさせないように制御されることを特徴としても良い。
本開示に係る直流電源回路によれば、2つの電源電圧端子を有する場合のモード切り替えによる回路電流の変化にも対応できるため、様々な仕様の制御回路などに容易に適用できる。
また、コストの増加や異常時の誤動作を招くことなく、スイッチング電源装置などの制御回路へ供給される電力を容易に削減できる。
図1は、実施の形態1に係る直流電源回路の概要を示すブロック図である。 図2は、実施の形態1に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図3は、実施の形態1に係る充電回路の一構成を示す回路図である。 図4は、実施の形態1にかかる直流電源回路において、充電間隔が交流電圧周期よりも短い場合の動作を説明するタイミングチャートである。 図5は、実施の形態1に係る直流電源回路において、充電間隔が交流電圧周期と同じになる場合の動作を説明するタイミングチャートである。 図6は、実施の形態1に係る直流電源回路において、充電間隔が交流電圧周期の2倍となる場合の動作を説明するタイミングチャートである。 図7は、実施の形態1に係る直流電源回路を組み込んだスイッチング電源装置の変形例を示す回路図である。 図8は、実施の形態2に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図9は、実施の形態2に係る充電回路の一構成を示す回路図である。 図10は、実施の形態2に係る入力電圧検出回路の一構成を示す回路図である。 図11は、実施の形態2に係る放電回路の一構成を示す回路図である。 図12は、実施の形態2に係る直流電源回路の動作を説明するタイミングチャートである。 図13は、実施の形態3に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図14は、実施の形態3に係る充電回路の一構成を示す回路図である。 図15は、実施の形態3に係る入力電圧検出回路の一構成を示す回路図である。 図16は、実施の形態3に係る直流電源回路の動作を説明するタイミングチャートである。 図17は、実施の形態4に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図18は、実施の形態4に係る充電回路の一構成を示す回路図である。 図19は、実施の形態4に係る直流電源回路の動作を説明するタイミングチャートである。 図20は、実施の形態5に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図21は、実施の形態5に係る充電回路の一構成を示す回路図である。 図22は、実施の形態5に係るオフモード制御回路の一構成を示す回路図である。 図23は、実施の形態5に係る直流電源回路の動作を説明するタイミングチャートである。 図24は、実施の形態6に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図25は、実施の形態6に係る充電回路の一構成を示す回路図である。 図26は、実施の形態6に係る直流電源回路の動作を説明するタイミングチャートである。 図27は、実施の形態7に係る直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。 図28は、実施の形態7に係る充電回路の一構成を示す回路図である。
以下、本開示の半導体装置について図面を参照しながら説明する。但し、詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、添付図面および以下の説明は当業者が本開示を十分に理解するためのものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1)
以下、実施の形態1に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図1〜6を参照しながら具体的に説明する。
図1は、本実施の形態1の直流電源回路の概要を示すブロック図である。
図1に示すように、商用電源901からの交流電圧が、整流回路902を経て、入力直流電圧として充電スイッチ911に印加される。充電スイッチ911は、充電スイッチ制御回路912によって制御され、充電スイッチ911がオンしている期間は平滑コンデンサ913およびスイッチング電源装置制御回路900に電力を供給する。また、充電スイッチ911がオフしている期間は、平滑コンデンサ913からスイッチング電源装置制御回路900に電力を供給する。
次に、本実施の形態1の直流電源回路を組み込んだスイッチング電源装置を説明する。
図2は、本実施の形態1の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。
図2において、商用電源1には交流電圧を整流するためのブリッジダイオード2が接続され、ブリッジダイオード2には、平滑コンデンサ3と電力変換用のトランス4の1次巻線4aが接続されている。
トランス4は1次巻線4aと2次巻線4bを有し、1次巻線4aと2次巻線4bの極性は逆になっている。このスイッチング電源装置はフライバック型である。1次巻線4aにはスイッチング素子5が接続されており、スイッチング制御回路100のOUT端子出力信号によりオン/オフのスイッチング制御がなされる。2次巻線4bには整流ダイオード7と平滑コンデンサ8が接続されており、スイッチング動作によって2次巻線4bに現れるフライバック電圧が、整流平滑されて出力電圧が生成され、負荷機器9へ電力を供給する。
スイッチング制御回路100は、スイッチング素子5の制御を行う半導体装置であり、外部入出力端子として、VIN端子、VDD端子、OUT端子、FB端子、IS端子、およびGND端子の6つの端子を有している。また、例えば接合型トランジスタ(JFET)101、充電回路110、パルス幅制御回路180、駆動回路190などから構成される。
VIN端子は、スイッチング制御回路100への電力供給用端子であり、入力直流電圧として、商用電源1から整流ダイオード12を介して半波整流電圧が印加される。すなわち、整流回路902は半波整流回路である。商用電源1の交流電圧は、例えば、AC100V〜240Vの高電圧であるため、例えば、最大定格電圧が500Vの接合型トランジスタ101が接続されている。接合型トランジスタ101は、例えば、50V以上の入力電圧が入力されると50Vにクランプした電圧を出力し、入力クランプ電圧信号VIN_CLPとして充電回路110へ入力される。
VDD端子は、スイッチング制御回路100の電源電圧端子であり、平滑コンデンサ13が接続され、VDD端子電圧が動作停止電圧まで低下することなくスイッチング制御回路100への安定した電力供給を可能とするための端子である。
OUT端子は、スイッチング素子5の制御端子(ゲート)に接続される端子であり、パルス幅制御回路180からの制御信号が駆動回路190を介してスイッチング素子5へ出力される。
FB端子は、出力電圧検出回路10から出力されるフィードバック信号がフォトカプラ11を介して入力され、スイッチング動作を制御するための端子である。
IS端子は、スイッチング素子5を流れる電流を監視するための端子であり、抵抗6によって電圧に変換された信号が入力される。
GND端子は、平滑コンデンサ3の低電位側に接続され、1次側の電圧基準となっている。
充電回路110は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路100およびVDD端子に接続された平滑コンデンサ13に電力を供給するための回路である。例えば、図3のように、N型MOSFET111、113と、抵抗112、116、117と、ヒステリシス付きコンパレータ114と、基準電圧源115から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
パルス幅制御回路180は、FB端子とIS端子からの信号に基づいて、駆動回路190へスイッチング素子5を制御するための信号を出力する回路である。
出力電圧検出回路10は、2次側の平滑コンデンサ8の両端に接続され、負荷機器9へ印加される出力電圧値に応じてフィードバック信号を生成する。
以上のように構成された、図2に示すスイッチング電源装置の動作を説明する。
商用電源1から交流電圧が入力されると、ブリッジダイオード2と平滑コンデンサ3とにより整流平滑された直流電圧が、トランス4の1次巻線4aとスイッチング素子5と抵抗6に印加される。一方、スイッチング制御回路100のVIN端子には、整流ダイオード12によって整流された半波整流電圧が印加され、接合型トランジスタ101および充電回路110を介して、VDD端子に接続された平滑コンデンサ13への充電が開始される。VDD端子電圧が上昇し、スイッチング制御回路100が動作可能な状態になると、スイッチング素子5のオン/オフ制御が開始される。なお、スイッチング制御回路100のVIN端子には、半波整流電圧が印加されているため、交流電圧の正値の期間と負値の期間の一方では、VIN端子電圧が0Vとなり、非充電期間となる。
起動時、2次側の平滑コンデンサ8に印加される出力電圧は低いため、出力電圧検出回路10からのフィードバック信号はスイッチング制御回路100には入力されない。スイッチング動作によってトランス4から電力が2次側へ供給され続け、出力電圧が出力電圧検出回路10で設定された規定電圧以上になると、出力電圧検出回路10は、フィードバック信号としてスイッチング制御回路100のFB端子から電流を流出させるようにフォトカプラ11を駆動する。このフィードバック信号と、IS端子からのスイッチング素子5を流れる電流値の情報によって、パルス幅制御回路180はスイッチング素子5のオンデューティを適切な状態に変化させ、出力電圧を規定電圧で維持する。
ここで、図3に示す充電回路110の動作について、詳しく説明する。
VDD端子電圧は抵抗116、117で抵抗分割され、ヒステリシス付きコンパレータ114に入力されており、基準電圧源115と比較されている。起動時、VDD端子電圧が上昇し、所定の電圧値を上回り、ヒステリシス付きコンパレータ114からハイレベルの比較出力信号VDD_DETが出力されるとN型MOSFET113がオンし、続いて、N型MOSFET111がオフする。よって、VIN端子からスイッチング制御回路100およびVDD端子に接続された平滑コンデンサ13への電力供給が遮断される。
VIN端子からの電力供給が遮断されている期間は、平滑コンデンサ13に蓄えられた電荷が、スイッチング制御回路100の回路電流によって消費される。VDD端子電圧が低下していき、ヒステリシス付きコンパレータ114からローレベルの比較出力信号VDD_DETが出力されると、N型MOSFET111がオンし、VIN端子からの電力供給が再開される。ただし、VIN端子には半波整流電圧が印加されているため、電力供給はVIN端子電圧がVDD端子電圧を上回っている期間のみ可能である。
ヒステリシス付きコンパレータ114は、VDD端子電圧が第1の基準電圧VDD_L(例えば、4.5V)以下でローレベルの比較出力信号VDD_DETを出力し、VDD端子電圧が第1の基準電圧よりも高い第2の基準電圧VDD_H(例えば、5V)以上でハイレベルの比較出力信号VDD_DETを出力する。
比較出力信号VDD_DETがハイレベルである充電不要期間TOFFは、VDD端子電圧のヒステリシス幅を△VDD、VDD端子に接続された平滑コンデンサ13の容量値をCVDD、スイッチング制御回路100の回路電流の平均値をIDDとすると、下記の式1で表すことができる。
TOFF=CVDD×△VDD/IDD ・・・式1
図4から図6のタイミングチャートを参照しながら、実施の形態1に係る直流電源回路の動作について説明する。
まず、VDD端子に接続された平滑コンデンサ13への充電間隔が交流電圧周期よりも短い場合について、図4を用いて説明する。上述の充電不要期間TOFFが商用電源1の周期Tの1/2よりも短い場合が該当する。例えば、CVDD=0.1μF、△VDD=0.5V、IDD=10μA、TOFF=5ms、T=20msの場合である。
図4において、VIN端子電流IINの実線は、VIN端子から充電回路110へ供給される充電電流を示し、VIN端子電流IINの破線は、仮に比較出力信号VDD_DETがローレベルになった直後にVDD端子に接続された平滑コンデンサ13へ電力供給された場合の充電電流を示す。また、回路消費電力は、VIN端子電圧とVIN端子電流IINの積を示したものである。
スイッチング制御回路100の回路電流によってVDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになると、N型MOSFET111がオンする。この時、VIN端子電圧がVDD端子電圧を上回っていれば即座に充電が開始され、VDD端子電圧は上昇する。
ここで、充電不要期間TOFFが商用電源1の周期Tの1/2よりも短いため、スイッチング制御回路100のVIN端子に半波整流電圧が印加されることによって設定された非充電期間に、比較出力信号VDD_DETがローレベルになるタイミングもある。その場合、即座に充電を開始できないため、VDD端子電圧は低下し続ける。後続の充電期間に入り、VIN端子電圧が上昇しVDD端子電圧を上回ると、充電が開始され、VDD端子電圧は上昇する。この時、比較出力信号VDD_DETがローレベルになってから即座に充電される場合と比較して、VIN端子電流IINは若干増加するが、VIN端子電圧が十分に低いため、回路消費電力は削減される。これは、充電時の接合型トランジスタ101での電力損失が低減されるためである。
次に、充電間隔が交流電圧周期と同じになる場合について、図5を用いて説明する。上記の充電不要期間TOFFが以下の式2を満たす場合が該当する。例えば、CVDD=0.33μF、△VDD=0.5V、IDD=10μA、TOFF=16.5ms、T=20msの場合である。
T/2<TOFF<T ・・・式2
図5において、VDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになるのは、VIN端子電圧が0Vの非充電期間となる。よって、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了するため回路消費電力が削減される。
次に、充電間隔が交流電圧周期の2倍になる場合について、図6を用いて説明する。上記の充電不要期間TOFFが以下の式3を満たす場合が該当する。例えば、CVDD=0.68μF、△VDD=0.5V、IDD=10μA、TOFF=34ms、T=20msの場合である。
3T/2<TOFF<2T ・・・式3
図6において、VDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになるのは、VIN端子電圧が0Vの非充電期間となる。よって、図5と同様に、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了するため回路消費電力が削減される。
なお、図5や図6の場合は、図4と比較して、回路消費電力削減効果が大きい。このように、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始されるようにするには、以下の式4を満たせば良い。
(2n−1)×T/2<TOFF<2n×T/2 (nは正の整数) ・・・式4
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、VIN端子電圧を監視する必要もなく、スイッチング制御回路100へ供給される電力を削減できる。また、スイッチング制御回路100の回路電流に応じて、ヒステリシス付きコンパレータ114のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけでよく、回路電流が異なる様々な仕様の制御回路などに容易に適用できる。
また、スイッチング制御回路100の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。
なお、起動時やスイッチング動作変化時など回路電流が変化する過渡的な領域においては、VIN端子電圧が0Vの非充電期間に、比較出力信号VDD_DETがローレベルになるタイミングがなく、消費電力の削減効果がなくても良い。
なお、ヒステリシス付きコンパレータ114のヒステリシスはコンパレータ回路の検出遅れ時間を利用し、比較出力信号VDD_DETがローレベルからハイレベルに変化する時間を遅らせることで生成されてもよい。
(実施の形態1の変形例)
以下、実施の形態1の直流電源回路を組み込んだスイッチング電源装置の変形例について、図7を参照しながら説明する。実施の形態1の変形例に係るスイッチング電源装置は、実施の形態1のスイッチング電源装置とほぼ同じであるが、実施の形態1と比較して、スイッチング電源制御方式が異なる。
実施の形態1では、フライバック型のスイッチング電源装置の構成について説明したが、図7に示す本変形例のスイッチング電源装置は、降圧チョッパー型である。商用電源1の交流電圧を整流平滑するブリッジダイオード2と平滑コンデンサ3にスイッチング素子15が接続される。また、スイッチング素子15には抵抗16を介して、スイッチング制御回路100のGND端子と、チョークコイル14と、整流ダイオード37が接続される。
フライバック型と降圧チョッパー型のスイッチング制御の違いについての説明は、ここでは省略する。
スイッチング制御方式は実施の形態1のスイッチング電源装置と異なるが、スイッチング制御回路100に電力を供給する直流電源回路は同じ構成であり、降圧チョッパー型など他のスイッチング制御方式であっても、直流電源回路の消費電力削減に関しては同等の効果が得られる。
(実施の形態2)
次に、実施の形態2に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図8〜12を参照しながら説明する。
実施の形態1では、VIN端子に半波整流の直流電圧が印加される直流電源回路およびそれを組み込んだスイッチング電源装置の構成について説明したが、実施の形態2では、VIN端子に全波整流の直流電圧が印加される直流電源回路およびそれを組み込んだスイッチング電源装置の構成について説明する。すなわち、本実施形態において整流回路902は全波整流回路である。
図8は、本実施の形態2の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態1の、直流電源回路を組み込んだスイッチング電源装置の一構成を示す図2と比較して、スイッチング制御回路200と、その周辺回路が異なる。以下、実施の形態1と重複する説明は省略する。
実施の形態2のスイッチング電源装置は、商用電源1にアクロスザラインコンデンサ(Xコンデンサ)24が接続され、その両端から整流ダイオード22および23を介して、スイッチング制御回路200のVIN端子が接続される。
また、スイッチング制御回路200は、外部入力端子として、LS端子をさらに有し、接合型トランジスタ101、充電回路210、パルス幅制御回路180、駆動回路190、入力電圧検出回路250、放電回路260などから構成される。
LS端子は、商用電源1とスイッチング制御回路のGND端子との間の電圧を抵抗分割するための抵抗25および26が接続される。
充電回路210は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路200およびVDD端子に接続された平滑コンデンサ13に電力を供給するための回路である。例えば、図9のように、N型MOSFET211、213と、抵抗212、116、117と、ヒステリシス付きコンパレータ114と、基準電圧源115と、OR回路218から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
入力電圧検出回路250は、LS端子から入力される半波整流電圧信号に基づいて、VLS検出信号VLS_DETを充電回路210へ出力する。また、商用電源1が遮断されたことを検出して入力遮断検出信号AC_OFFとして放電回路260へ出力する回路である。例えば、図10のように、コンパレータ251と、基準電圧源252と、エッジ間隔測定回路253から構成される。
放電回路260は、入力遮断検出信号AC_OFFが入力され、商用電源1の遮断時に入力クランプ電圧信号ラインVIN_CLPから電流を流すための回路である。例えば、図11のように、抵抗261と、N型MOSFET262から構成される。
以上のように構成された、実施の形態2に係るスイッチング電源装置の動作について、実施の形態1と異なる点を中心に説明する。
スイッチング制御回路200のVIN端子には、整流ダイオード22および23によって整流された全波整流電圧が印加され、接合型トランジスタ101および充電回路210を介して、スイッチング制御回路200およびVDD端子に接続された平滑コンデンサ13へ電力が供給される。
ここで、充電回路210および入力電圧検出回路250の動作について、詳しく説明する。
商用電源1の交流電圧から半波整流された直流電圧が、抵抗25および26によって降圧されてLS端子から入力電圧検出回路250へ入力され、コンパレータ251によって基準電圧源252と比較されている。コンパレータ251は、LS端子電圧が第3の基準電圧VLS_L(例えば、1V)以上でハイレベルの信号をVLS検出信号VLS_DETとして出力する。VLS検出信号VLS_DETは、充電禁止信号として非充電期間の設定に使用される。
充電回路210のOR回路218には、VLS検出信号VLS_DETとヒステリシス付きコンパレータ114の比較出力信号VDD_DETが入力され、論理和をN型MOSFET213へ出力する。すなわち、VDD端子電圧が第2の基準電圧VDD_H以上、または、LS端子電圧が第3の基準電圧VLS_L以上の非充電期間は、N型MOSFET213がオンし、続いてN型MOSFET211はオフとなる。
図12は、実施の形態2に係る直流電源回路の動作について説明するためのタイミングチャートである。充電間隔が交流電圧周期と同じになる場合を示したものである。
図12において、VDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになるのは、VLS検出信号VLS_DETがハイレベルの非充電期間となる。この場合、即座に充電を開始できないため、VDD端子電圧は低下し続ける。LS端子電圧が第3の基準電圧VLS_L以下に低下してVLS検出信号VLS_DETがローレベルに反転すると充電期間となり、充電が開始され、VDD端子電圧は上昇する。この時、比較出力信号VDD_DETがローレベルになってから即座に充電される場合と比較して、VIN端子電流IINは若干増加するが、VIN端子電圧は第3の基準電圧VLS_Lに対応する十分低い電圧(例えば、20V)であるため、回路消費電力は削減される。
次に、アクロスザラインコンデンサ24の放電機能について簡単に説明する。
アクロスザラインコンデンサ24はノイズ除去のために商用電源1のライン間に接続されているが、感電防止のため、商用電源1が遮断された際には速やかに残留電荷を放電しなければならない。そこで、本実施の形態の直流電源回路はアクロスザラインコンデンサ24の放電機能を備える。
入力電圧検出回路250は、VLS検出信号VLS_DETがローレベルからハイレベル、または、ハイレベルからローレベルへ切り替わるエッジの間隔を測定するエッジ間隔測定回路253を備えており、商用電源1の遮断によって、エッジの間隔が商用電源1の周期以上の時間(例えば、30ms)となると、ハイレベルの入力遮断信号AC_OFFを出力する。
ハイレベルの入力遮断信号AC_OFFが放電回路260に入力されると、N型MOSFET262がオンし、抵抗261によって制限された電流が入力クランプ電圧信号ラインVIN_CLPから流れる。
その結果、商用電源1が遮断されると、アクロスザラインコンデンサ24の残留電荷は、整流ダイオード22または23、接合型トランジスタ101、放電回路260、ブリッジダイオード2を介して、放電される。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、アクロスザラインコンデンサ24の放電機能を実現するためにVIN端子に印加される電圧が全波整流電圧であっても、スイッチング制御回路200へ供給される電力を削減できる。また、LS端子には半波整流電圧信号の入力で良いため、VIN端子電圧などの全波整流電圧信号を利用する場合と比較して、商用電源1の電圧を監視するための電力損失を半減することができる。また、本実施の形態の直流電源回路は、スイッチング制御回路200の回路電流に応じて、ヒステリシス付きコンパレータ114のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけでよく、回路電流が異なる様々な仕様の制御回路などに容易に適用できる。
また、スイッチング制御回路200の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VLS検出信号VLS_DETがローレベルであれば充電が即座に開始される。
なお、入力電圧検出回路250のコンパレータ251は、LS端子電圧のノイズによる誤動作防止のためにヒステリシスを設けても良い。
なお、LS端子を設けることなく、VIN端子電圧の全波整流電圧信号から分周回路などにより商用電源1の周期に同期したVLS検出信号VLS_DETを生成しても良い。
(実施の形態3)
次に、実施の形態3に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図13〜16を参照しながら説明する。
実施の形態1では、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了することによって、回路消費電力が削減される直流電源回路について説明したが、実施の形態3では、VIN端子電圧が下降して十分に低くなった期間に充電を強制的に開始することによって、回路消費電力が削減される直流電源回路およびそれを組み込んだスイッチング電源装置の構成について説明する。
図13は、本実施の形態3の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態1の直流電源回路を組み込んだスイッチング電源装置の一構成を示す図2と比較して、スイッチング制御回路300が異なる。以下、実施の形態1と重複する説明は省略する。
実施の形態3のスイッチング電源装置のスイッチング制御回路300は、接合型トランジスタ101、充電回路310、パルス幅制御回路180、駆動回路190、入力電圧検出回路350などから構成される。
充電回路310は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路300およびVDD端子に接続された平滑コンデンサ13に電力を供給するための回路である。例えば、図14のように、N型MOSFET311、313と、抵抗312、116、117と、ヒステリシス付きコンパレータ314と、基準電圧源115と、エッジ検出回路330と、タイマー回路340から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
入力電圧検出回路350は、入力クランプ電圧信号VIN_CLPに基づいて、VIN端子電圧低下信号VIN_DETを充電回路310へ出力する。例えば、図15のように、コンパレータ351と、基準電圧源352と、抵抗354、355から構成される。
以上のように構成された、実施の形態3に係るスイッチング電源装置の動作について、実施の形態1と異なる点を中心に説明する。
スイッチング制御回路300のVIN端子には、整流ダイオード12によって整流された半波整流電圧が印加され、接合型トランジスタ101および充電回路310を介して、スイッチング制御回路300およびVDD端子に接続された平滑コンデンサ13へ電力が供給される。
入力電圧検出回路350では、入力クランプ電圧VIN_CLPが、抵抗354および355によって降圧されてコンパレータ351に入力され、基準電圧源352と比較されている。コンパレータ351は、VIN端子電圧が第4の基準電圧VIN_L(例えば、20V)以上でハイレベルの信号をVIN検出信号VIN_DETとして出力する。VIN検出信号VIN_DETは、充電期間を設定するためのヒステリシス制御信号HYS_CTRLの生成に使用される。
充電回路310にVIN検出信号VIN_DETが入力されると、エッジ検出回路330とタイマー回路340によって、VIN検出信号VIN_DETがハイレベルからローレベルへ切り替わるエッジから所定の期間、ヒステリシス制御信号HYS_CTRLがハイレベルとなる。ヒステリシス制御信号HYS_CTRLは、ヒステリシス付きコンパレータ314のヒステリシス幅を制御するための信号であり、ヒステリシス制御信号HYS_CTRLがハイレベルの期間は、ヒステリシス幅が小さくなるように第1の基準電圧VDD_Lを高く設定される(例えば、4.5Vから4.9Vに変更する)。すなわち、この期間は、第1の基準電圧VDD_LがVDD端子電圧よりも高くなり、充電期間が設定されることになる。
ここで、タイマー回路340により設定される充電期間は、VDD端子に接続された平滑コンデンサ13の充電時間よりも長く、VIN端子電圧が高くなりすぎないように、設定される(例えば、1ms)。
図16は、実施の形態3に係る直流電源回路の動作について説明するためのタイミングチャートである。
図16において、VIN端子電圧が下降しVIN検出信号VIN_DETがローレベルになると、ヒステリシス制御信号HYS_CTRLがハイレベルとなり、第1の基準電圧VDD_LがVDD端子電圧よりも高くなるため、比較出力信号VDD_DETがローレベルになる。すると、N型MOSFET311がオンし、即座に、スイッチング制御回路300およびVDD端子に接続された平滑コンデンサ13への電力供給が開始される。この時、VIN端子電圧は第4の基準電圧VIN_Lに対応する低い電圧(例えば、20V)であるため、回路消費電力は削減される。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、スイッチング制御回路300の回路電流に応じて、ヒステリシス付きコンパレータ314のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけで、回路電流が異なる様々な仕様の制御回路などに供給される電力を容易に削減できる。
また、VDD端子に接続される外付けの平滑コンデンサ13の容量値設定範囲が広く、VDD端子電圧を安定させやすい。
また、スイッチング制御回路300の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。
なお、起動時やスイッチング動作変化時など回路電流が変化する過渡的な領域においては、充電期間がVIN検出信号VIN_DETによって設定されず、消費電力の削減効果がなくても良い。
(実施の形態4)
次に、実施の形態4に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図17〜19を参照しながら説明する。
実施の形態3では、VIN端子に半波整流の直流電圧が印加される直流電源回路およびそれを組み込んだスイッチング電源装置の構成について説明したが、実施の形態4では、実施の形態2と同様に、VIN端子に全波整流の直流電圧が印加される直流電源回路およびそれを組み込んだスイッチング電源装置の構成について説明する。
図17は、本実施の形態4の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態2の直流電源回路を組み込んだスイッチング電源装置の一構成を示す図8と比較して、スイッチング制御回路400が異なる。以下、実施の形態2と重複する説明は省略する。
実施の形態4のスイッチング電源装置のスイッチング制御回路400は、接合型トランジスタ101、充電回路410、パルス幅制御回路180、駆動回路190、入力電圧検出回路250、放電回路260などから構成される。
充電回路410は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路400およびVDD端子に接続された平滑コンデンサ13に電力を供給するための回路である。例えば、図18のように、N型MOSFET411、413と、抵抗412、116、117と、ヒステリシス付きコンパレータ414と、基準電圧源115と、エッジ検出回路430と、タイマー回路440から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
以上のように構成された、実施の形態4に係るスイッチング電源装置の動作について、実施の形態2と異なる点を中心に説明する。
充電回路410に入力電圧検出回路250からVLS検出信号VLS_DETが入力されると、エッジ検出回路430とタイマー回路440によって、VLS検出信号VLS_DETがハイレベルからローレベルへ切り替わるエッジから一定期間(例えば、1ms)、ヒステリシス制御信号HYS_CTRLがハイレベルとなる。ヒステリシス制御信号HYS_CTRLは、ヒステリシス付きコンパレータ414のヒステリシス幅を制御するための信号であり、ヒステリシス制御信号HYS_CTRLがハイレベルの期間は、ヒステリシス幅が小さくなるように第1の基準電圧VDD_Lを高く設定される(例えば、4.5Vから4.9Vに変更する)。すなわち、この期間は、第1の基準電圧VDD_LがVDD端子電圧よりも高くなり、充電期間が設定されることになる。
ここで、タイマー回路440により設定される充電期間は、VDD端子に接続された平滑コンデンサ13の充電時間よりも長く、VIN端子電圧が高くなりすぎないように、設定される(例えば、1ms)。
図19は、実施の形態4に係る直流電源回路の動作について説明するためのタイミングチャートである。
図19において、VLS端子電圧が下降しVLS検出信号VLS_DETがローレベルになると、ヒステリシス制御信号HYS_CTRLがハイレベルとなり、第1の基準電圧VDD_LがVDD端子電圧よりも高くなるため、比較出力信号VDD_DETがローレベルになる。すると、N型MOSFET411がオンし、即座に、スイッチング制御回路400およびVDD端子に接続された平滑コンデンサ13への電力供給が開始される。この時、VIN端子電圧は第3の基準電圧VLS_Lに対応する十分に低い電圧(例えば、20V)であるため、回路消費電力は削減される。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、アクロスザラインコンデンサ24の放電機能を実現するためにVIN端子に印加される電圧が全波整流電圧であっても、スイッチング制御回路400の回路電流に応じて、ヒステリシス付きコンパレータ414のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけで、回路電流が異なる様々な仕様の制御回路などに供給される電力を容易に削減できる。
また、スイッチング制御回路400の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。
なお、起動時やスイッチング動作変化時など回路電流が変化する過渡的な領域においては、充電期間がVLS検出信号VLS_DETによって設定されず、消費電力の削減効果がなくても良い。
なお、LS端子を設けることなく、VIN端子電圧の全波整流電圧信号から分周回路などにより商用電源1の周期に同期したVLS検出信号VLS_DETを生成しても良い。
(実施の形態5)
次に、実施の形態5に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図20〜23を参照しながら説明する。
実施の形態1では、スイッチング制御回路の消費電流が大きく変化しないスイッチング電源装置について説明したが、実施の形態5では、標準電力モードと低電力モードを有し、モードが切り替わることによってスイッチング制御回路の消費電流が大きく変化するスイッチング電源装置の構成について説明する。
図20は、本実施の形態5の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態1の直流電源回路を組み込んだスイッチング電源装置の一構成を示す図2と比較して、負荷機器19からのモード切り替え信号によって標準電力モードと低電力モードを切り替える機能を有したスイッチング制御回路500と、その周辺回路が異なる。以下、実施の形態1と重複する説明は省略する。
実施の形態5のスイッチング電源装置のスイッチング制御回路500は、外部入力端子として、OFF端子をさらに有し、接合型トランジスタ101、充電回路510、パルス幅制御回路580、駆動回路190、低電力モード制御回路570などから構成される。
OFF端子は、VDD端子とGND端子の間に接続された抵抗17および18に接続され、負荷機器19からフォトカプラ20を介してモード切り替え信号が入力される。
充電回路510は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路500およびVDD端子に接続された平滑コンデンサ13に電力を供給するための回路である。例えば、図21のように、N型MOSFET511、513と、抵抗512、116、117と、ヒステリシス付きコンパレータ514と、基準電圧源115から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
パルス幅制御回路580は、FB端子とIS端子からの信号に基づいて、駆動回路190へスイッチング素子5を制御するための信号を出力する回路である。低電力モード時には、スイッチング素子5への信号出力を停止するなどによって回路消費電流を削減する機能を有する。
低電力モード制御回路570は、OFF端子から入力されるモード切り替え信号に基づいて、低電力モード検出信号OFF_DETを充電回路510およびパルス幅制御回路580へ出力する。例えば、図22のように、コンパレータ571と基準電圧源572から構成される。
以上のように構成された、実施の形態4に係るスイッチング電源装置の動作について、実施の形態1と異なる点を中心に説明する。
スイッチング制御回路500のVIN端子には、整流ダイオード12によって整流された半波整流電圧が印加され、接合型トランジスタ101および充電回路510を介して、スイッチング制御回路500およびVDD端子に接続された平滑コンデンサ13へ電力が供給される。
低電力モード制御回路570は、OFF端子電圧をコンパレータ571によって基準電圧源572と比較しており、OFF端子電圧が第5の基準電圧VOFF_H(例えば、1V)以上でハイレベルの信号を低電力モード検出信号OFF_DETとして出力する。
標準電力モード時には、負荷機器19がフォトカプラ20を駆動することによって、OFF端子電圧は第5の基準電圧VOFF_H以下になるため、低電力モード検出信号OFF_DETはローレベルであり、実施の形態1と同様の動作を行う。
低電力モード時には、負荷機器19によるフォトカプラ20の駆動が停止し、OFF端子電圧はVDD端子電圧を抵抗17および18で抵抗分割した電圧値(例えば、3V)まで上昇する。低電力モード検出信号OFF_DETがハイレベルとなり、パルス幅制御回路580は、スイッチング素子5への信号出力を停止するなどによってスイッチング制御回路500の回路電流IDDを削減する(例えば、10μAから2μAに削減する)。一方、充電回路510のヒステリシス付きコンパレータ514は、ヒステリシス幅が小さくなるように第1の基準電圧VDD_Lを高く設定する(例えば、4.5Vから4.9Vに変更する)。その結果、例えば、CVDD=0.33μF、商用電源1の周期Tが20msの場合、低電力モード時の充電不要時間TOFFは16.5msとなり、前述の式2を満たす。よって、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了するため回路消費電力が削減される。
図23は、実施の形態5に係る直流電源回路の動作について説明するためのタイミングチャートである。標準電力モードと低電力モードのいずれであっても充電間隔が交流電圧周期と同じになる場合を示したものである。
図23において、VDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになるのは、VIN端子電圧が0Vの非充電期間となる。よって、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了するため回路消費電力が削減される。
負荷機器19からのモード切り替え信号によって、OFF端子電圧が第5の基準電圧VOFF_Hよりも高くなると、スイッチング制御回路500の回路電流IDDが削減されると共に、ヒステリシス付きコンパレータ514のヒステリシス幅が小さく設定される。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、VIN端子電圧を監視する必要もなく、スイッチング制御回路500へ供給される電力を削減できる。また、スイッチング制御回路500の回路電流に応じて、ヒステリシス付きコンパレータ514のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけでよく、さらに、モード切り替えによる回路電流の変化にも対応できるため、様々な仕様の制御回路などに容易に適用できる。
また、スイッチング制御回路500の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。さらに、それぞれのモードに対してVDD端子電圧の異常低下に対するマージンの設定が可能となる。
なお、本実施の形態では、標準電力モード時も低電力モード時も、VIN端子電圧が0Vの非充電期間に、比較出力信号VDD_DETがローレベルになる場合を説明したが、標準電力モード時は、低電力モード時よりも充電周期が長くても短くても良いし、VIN端子電圧が0Vの非充電期間に、比較出力信号VDD_DETがローレベルになるタイミングがなく、消費電力の削減効果がなくても良い。
なお、低電力モード制御回路570のコンパレータ571は、OFF端子電圧のノイズによる誤動作防止のためにヒステリシスを設けても良い。
(実施の形態6)
次に、実施の形態6に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図24〜26を参照しながら説明する。
実施の形態5では、電源電圧端子がVDD端子のみであるスイッチング電源装置について説明したが、実施の形態6では、第1の電源電圧端子(VDD端子)と第2の電源電圧端子(VCC端子)を有し、2つの電源電圧端子を使用する標準電力モードと第1の電源電圧端子のみ使用する低電力モードのモード切り替え機能を備えたスイッチング電源装置の構成について説明する。
図24は、本実施の形態6の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態5の直流電源回路を組み込んだスイッチング電源装置の一構成を示す図20と比較して、負荷機器19からのモード切り替え信号によって標準電力モードと低電力モードを切り替える機能を有したスイッチング制御回路600と、その周辺回路が異なる。以下、実施の形態5と重複する説明は省略する。
実施の形態6のスイッチング電源装置のスイッチング制御回路600は、外部入出力端子として、VCC端子をさらに有し、接合型トランジスタ101、充電回路610、パルス幅制御回路680、駆動回路690、低電力モード制御回路570などから構成される。
VCC端子は、スイッチング制御回路600の第2の電源電圧端子であり、平滑コンデンサ21が接続され、VCC端子電圧が動作停止電圧まで低下することなく、パルス幅制御回路680および駆動回路690への安定した電力供給を可能とするための端子である。
充電回路610は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路600と、VDD端子に接続された平滑コンデンサ13と、VCC端子に接続された平滑コンデンサ21に電力を供給するための回路である。例えば、図25のように、N型MOSFET111、113、611、613と、抵抗112、116、117、612、616、617と、ヒステリシス付きコンパレータ114と、基準電圧源115、615と、コンパレータ614と、OR回路618から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
パルス幅制御回路680は、FB端子とIS端子からの信号に基づいて、駆動回路690へスイッチング素子5を制御するための信号を出力する回路である。パルス幅制御回路680と、駆動回路690は、VCC端子から電力が供給される。
低電力モード制御回路570は、OFF端子から入力されるモード切り替え信号に基づいて、低電力モード検出信号OFF_DETを充電回路610へ出力する回路であり、VDD端子から電力が供給される。
以上のように構成された、実施の形態6に係るスイッチング電源装置の動作について、実施の形態5と異なる点を中心に説明する。
スイッチング制御回路600のVIN端子には、整流ダイオード12によって整流された半波整流電圧が印加され、接合型トランジスタ101および充電回路610を介して、スイッチング制御回路600と、VDD端子に接続された平滑コンデンサ13と、VCC端子に接続された平滑コンデンサ21へ電力が供給される。
VCC端子電圧は抵抗616、617で抵抗分割され、コンパレータ614に入力されており、基準電圧源615と比較されている。標準電力モード時には、低電力モード検出信号OFF_DETはローレベルであり、VCC端子電圧が第6の基準電圧VCC_H(例えば、15V)で維持されるように、N型MOSFET611および613がオン/オフ動作を行う。
低電力モード時には、OR回路618にハイレベルの低電力モード検出信号OFF_DETが入力され、N型MOSFET611が強制的にオフされる。VCC端子への電力供給が行われないため、VCC端子電圧は動作停止電圧(例えば、10V)以下まで低下し続け、パルス幅制御回路680は、スイッチング素子5のスイッチング動作を停止させる。パルス幅制御回路680や駆動回路690は、一般的に、スイッチング制御回路600の中でも回路電流が大きい回路であるため、低電力モード時には回路電流が大きく削減される。
図26は、実施の形態6に係る直流電源回路の動作について説明するためのタイミングチャートである。VDD端子電圧に関しては充電間隔が交流電圧周期と同じになる場合を示したものである。
図26において、VDD端子電圧が低下し、比較出力信号VDD_DETがローレベルになるのは、VIN端子電圧が0Vの非充電期間となる。よって、毎回の充電タイミングで、VIN端子電圧が上昇しVDD端子電圧を上回る期間で充電が開始され、VIN端子電圧が低い期間に充電が完了するため回路消費電力が削減される。
負荷機器19からのモード切り替え信号によって、OFF端子電圧が第5の基準電圧VOFF_Hよりも高くなると、低電力モードとなりVCC端子電圧が低下する。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、VIN端子電圧を監視する必要もなく、スイッチング制御回路600へ供給される電力を削減できる。また、スイッチング制御回路600のVDD端子を経由して消費される回路電流に応じて、ヒステリシス付きコンパレータ114のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけでよく、モード切り替えによる回路電流の変化にも容易に対応できるため、様々な仕様の制御回路などに容易に適用できる。
また、スイッチング制御回路600の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。
なお、本実施の形態では、標準電力モード時も低電力モード時も、VIN端子電圧が0Vの非充電期間に、比較出力信号VDD_DETがローレベルになる場合を説明したが、標準電力モード時は、低電力モード時よりも充電周期が長くても短くても良いし、VIN端子電圧が0Vの非充電期間に、比較出力信号VDD_DETがローレベルになるタイミングがなく、消費電力の削減効果がなくても良い。
なお、充電回路610のコンパレータ614は、VCC端子に接続された平滑コンデンサ21への充電を安定して制御するためにヒステリシスを設けても良い。
(実施の形態7)
次に、実施の形態7に係る直流電源回路およびそれを組み込んだスイッチング電源装置について、図27、28を参照しながら説明する。
実施の形態4では、電源電圧端子がVDD端子のみであるスイッチング電源装置について説明したが、実施の形態7では、第1の電源電圧端子(VDD端子)と第2の電源電圧端子(VCC端子)を有し、2つの電源電圧端子を使用する標準電力モードと第1の電源電圧端子のみ使用する低電力モードのモード切り替え機能を備えたスイッチング電源装置の構成について説明する。
図27は、本実施の形態7の直流電源回路を組み込んだスイッチング電源装置の一構成を示す回路図である。実施の形態4の直流電源回路を組み込んだスイッチング電源装置の一構成例を示す図17と比較して、負荷機器19からのモード切り替え信号によって標準電力モードと低電力モードを切り替える機能を有したスイッチング制御回路700と、その周辺回路が異なる。以下、実施の形態4と重複する説明は省略する。
図27において、トランス4は、1次巻線4aと2次巻線4bと、さらに補助巻線4cを有し、補助巻線4cと2次巻線4bの極性は同じである。
補助巻線4cは、整流ダイオード27と平滑コンデンサ21が接続されており、スイッチング制御回路700へ電力を供給する。
スイッチング電源装置のスイッチング制御回路700は、外部入出力端子として、VCC端子をさらに有し、接合型トランジスタ101、充電回路710、パルス幅制御回路780、駆動回路690、入力電圧検出回路250、放電回路260、低電力モード制御回路570などから構成される。
VCC端子は、スイッチング制御回路700の第2の電源電圧端子であり、平滑コンデンサ21が接続され、VCC端子電圧が動作停止電圧まで低下することなく、パルス幅制御回路780および駆動回路690への安定した電力供給を可能とするための端子である。スイッチング素子5がスイッチング動作する標準電力モード時には、トランス4の補助巻線4cから電力が供給される。
充電回路710は、入力クランプ電圧信号VIN_CLPが入力され、スイッチング制御回路700と、VDD端子に接続された平滑コンデンサ13と、VCC端子に接続された平滑コンデンサ21に電力を供給するための回路である。例えば、図28のように、N型MOSFET411、413、711、713と、抵抗412、116、117、712、716、717と、ヒステリシス付きコンパレータ414と、基準電圧源115、715と、エッジ検出回路430と、タイマー回路440と、コンパレータ714と、OR回路718から構成され、図1の充電スイッチ911と充電スイッチ制御回路912に相当する機能を有する。
パルス幅制御回路780は、FB端子とIS端子からの信号に基づいて、駆動回路690へスイッチング素子5を制御するための信号を出力する回路である。パルス幅制御回路780と、駆動回路690は、VCC端子から電力が供給される。
低電力モード制御回路570は、OFF端子から入力されるモード切り替え信号に基づいて、低電力モード検出信号OFF_DETを充電回路710へ出力する回路であり、VDD端子から電力が供給される。
以上のように構成された、実施の形態7に係るスイッチング電源装置の動作について、実施の形態4と異なる点を中心に説明する。
スイッチング制御回路700のVIN端子には、整流ダイオード22および23によって整流された全波整流電圧が印加され、接合型トランジスタ101および充電回路710を介して、スイッチング制御回路700と、VDD端子に接続された平滑コンデンサ13と、VCC端子に接続された平滑コンデンサ21へ電力が供給される。
VCC端子電圧は抵抗716、717で抵抗分割され、コンパレータ714に入力されており、基準電圧源715と比較されている。標準電力モード時には、低電力モード検出信号OFF_DETはローレベルであり、VCC端子電圧が第6の基準電圧VCC_H(例えば、20V)以上で維持されるように、N型MOSFET711および713がオン/オフ動作を行う。ただし、起動直後などを除いて、スイッチング素子5がスイッチング動作する標準電力モード時には、トランス4の補助巻線4cから電力が供給される。補助巻線4cに現れるフライバック電圧が整流平滑することで、低く安定した電圧(例えば、20V)をVCC端子に供給できるため、N型MOSFET711はオフを継続し、VIN端子からはVCCへ電力が供給されない。
低電力モード時には、パルス幅制御回路780は、ハイレベルの低電力モード検出信号OFF_DETが入力され、スイッチング素子5のスイッチング動作を停止させる。スイッチング動作停止によってトランス4の補助巻線4cからの電力供給も停止するため、VCC電圧が低下する。また、充電回路710のOR回路718にもハイレベルの低電力モード検出信号OFF_DETが入力され、N型MOSFET711が強制的にオフされる。その結果、VCC端子への電力供給が行われないため、VCC端子電圧は低下し続ける。パルス幅制御回路780や駆動回路690は、一般的に、スイッチング制御回路700の中でも回路電流が大きい回路であるため、低電力モード時には回路電流が大きく削減される。
以上より、本実施の形態の直流電源回路およびそれを組み込んだスイッチング電源装置は、アクロスザラインコンデンサ24の放電機能を実現するためにVIN端子に印加される電圧が全波整流電圧であっても、スイッチング制御回路700へ供給される電力を削減できる。また、スイッチング制御回路700のVDD端子を経由して消費される回路電流に応じて、ヒステリシス付きコンパレータ414のヒステリシス幅やVDD端子に接続される外付けの平滑コンデンサ13を調整するだけでよく、モード切り替えによる回路電流の変化にも容易に対応できるため、様々な仕様の制御回路などに容易に適用できる。
また、スイッチング制御回路700の消費電流増加などによってVDD端子電圧が異常低下する場合であっても、比較出力信号VDD_DETがローレベルとなり、VIN端子電圧がVDD端子電圧を上回っていれば充電が即座に開始される。
また、標準電力モード時には、トランス4の補助巻線4cから安定した電力が供給され、電力損失を削減できる。
なお、VCC端子とVDD端子の間に降圧レギュレータを追加し、標準電力モード時にはVCC端子からVDD端子へ電力を供給するようにしても良い。
なお、上記各実施形態および変形例において、直流電圧(VIN端子電圧)の0Vとは、実際上交流電圧やVDD端子電圧、全波・半波にも依存するため、多少の幅を有するものであり、厳密な値の0Vを指すわけではない。具体的には、0Vから5V程度までの範囲を含む場合もある。また、上記に示した電圧や期間などの値は、いずれも多少の誤差を含んでもよいものとする。また、それらは例示の値であるため、記載した数値に限られるものではなく、適宜設定することができる。
以上、本出願において開示する技術の例示として、実施の形態1〜7および各変形例を説明した。しかしながら、本開示における技術は、これらに限定されるものではなく、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、本開示における技術の趣旨を逸脱しない限り、当業者が思いつく各種変形を施したものや、複数の実施の形態における構成要素を組み合わせて構築される形態も、本開示における技術の範囲内に含まれる。
以上のように、本開示における技術の例示として、実施の形態および変形例を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
本開示の直流電源回路は、特にスタンバイ時のスイッチング電源装置の消費電力を容易に削減することができ、特に、各種電子機器に内蔵されたAC−DCコンバータやDC−DCコンバータ、外付けのACアダプタなどのスイッチング電源装置等に対して有用である。
1,901 商用電源
2 ブリッジダイオード
3,8,13,21,913 平滑コンデンサ
4 トランス
4a 1次巻線
4b 2次巻線
4c 補助巻線
5,15 スイッチング素子
6,16,17,18,25,26,112,116,117,212,261,312,354,355,412,512,612,616,617,712,716,717 抵抗
7,12,22,23,27,37 整流ダイオード
9,19 負荷機器
10 出力電圧検出回路
11,20 フォトカプラ
14 チョークコイル
24 アクロスザラインコンデンサ(Xコンデンサ)
100,200,300,400,500,600,700 スイッチング制御回路
101 接合型トランジスタ(JFET)
110,210,310,410,510,610,710 充電回路
111,113,211,213,262,311,313,411,413,511,513,611,613,711,713 N型MOSFET
114,314,414,514 ヒステリシス付きコンパレータ
115,252,352,572,615,715 基準電圧源
180,580,680,780 パルス幅制御回路
190,690 駆動回路
218,618,718 OR回路
250,350 入力電圧検出回路
251,351,571,614,714 コンパレータ
253 エッジ間隔測定回路
260 放電回路
330,430 エッジ検出回路
340,440 タイマー回路
570 低電力モード制御回路
900 スイッチング電源装置制御回路
902 整流回路
911 充電スイッチ
912 充電スイッチ制御回路

Claims (8)

  1. 交流電源と、
    前記交流電源の交流信号を整流し直流電圧を生成する整流回路と、
    第1の入力端子が前記整流回路に接続され、第1の制御端子に入力される第1の入力値に従って第1の出力端子に第1の出力電圧を出力する第1の充電スイッチと、
    前記第1の出力端子に接続された第1のコンデンサおよび第1の制御回路と、
    前記第1の制御端子に接続された第1の充電スイッチ制御回路とを備え、
    前記第1の充電スイッチ制御回路は、
    前記第1の出力電圧が、第1の基準電圧値以下の時に、前記第1の充電スイッチをオンするスイッチオン信号を生成し、前記第1の出力電圧が、前記第1の基準電圧値より高い第2の基準電圧値以上の時に、前記第1の充電スイッチをオフするスイッチオフ信号を生成し、
    前記整流回路と前記第1の充電スイッチ制御回路の少なくとも一方を含む充電期間設定回路が、前記交流信号に同期し、前記第1の充電スイッチを経由して前記第1のコンデンサに充電電流の流れる充電期間と、該充電電流の流れない非充電期間とを設定し、
    前記第1の充電スイッチは、
    前記充電期間に前記スイッチオン信号が生成された場合は、前記直流電圧が前記第1の出力電圧以上になると前記充電電流が流れ、前記非充電期間に前記スイッチオン信号が生成された場合は、前記直流電圧が前記第1の出力電圧以上になっても前記充電電流が流れず、後続の前記充電期間に入り、かつ、前記直流電圧が前記第1の出力電圧以上になると前記充電電流が流れることを特徴とする、直流電源回路。
  2. 前記充電期間設定回路は、
    半波整流回路で構成された前記整流回路を備え、
    前記交流信号の正値の期間と負値の期間の一方が前記充電期間に設定され、他方が前記非充電期間に設定されることを特徴とする、請求項1に記載の直流電源回路。
  3. 前記充電期間設定回路は、
    全波整流回路で構成された前記整流回路と、
    前記交流電源に接続され、前記交流信号が正値の期間、あるいは、負値の期間のいずれかの期間に活性化し、前記スイッチオン信号が生成されないように制御する充電禁止信号を生成する充電禁止信号生成回路とを備え、
    前記充電禁止信号が活性状態の時に前記非充電期間に設定され、
    前記充電禁止信号が非活性状態の時に前記充電期間に設定されることを特徴とする、請求項1に記載の直流電源回路。
  4. 前記充電禁止信号が前記交流信号を半波整流して得られる信号から生成されることを特徴とする、請求項3に記載の直流電源回路。
  5. 前記充電期間設定回路は、
    半波整流回路または全波整流回路で構成された前記整流回路と、
    前記第1の充電スイッチ制御回路と、
    前記交流電源に接続され、前記直流電圧が前記交流信号の電圧の絶対値の平均値以下の所定の電圧値以下になった時に前記交流電源の周期よりも短い所定の期間活性化するヒステリシス制御信号を生成するヒステリシス制御信号生成回路とを備え、
    前記ヒステリシス制御信号が活性状態の時が前記充電期間に設定され、前記第1の基準電圧値が前記第2の基準電圧値以下である第3の基準電圧値に切り替わり、
    前記ヒステリシス制御信号が非活性状態の時が前記非充電期間に設定され前記第1の出力電圧が前記第1の基準電圧値以下にならないことを特徴とする、請求項1に記載の直流電源回路。
  6. 前記ヒステリシス制御信号が前記交流信号を半波整流して得られる信号から生成されることを特徴とする、請求項5に記載の直流電源回路。
  7. 前記第1の制御回路は、
    モード切り替え信号に基づいて切り替わる標準電力モードと低電力モードの動作モードを有し、
    前記モード切り替え信号が前記低電力モードに該当する期間は、前記第1の基準電圧値が前記第2の基準電圧値以下である第4の基準電圧値に切り替わることを特徴とする、請求項1から6のいずれかに記載の直流電源回路。
  8. 第2の入力端子が整流回路に接続され、第2の制御端子に入力される第2の入力値に従って、第2の出力端子に第2の出力電圧を出力する第2の充電スイッチと、
    前記第2の出力端子に接続された第2のコンデンサおよび第2の制御回路と、
    前記第2の制御端子に接続された第2の充電スイッチ制御回路とをさらに備え、
    前記第2の制御回路は、
    モード切り替え信号に基づいて切り替わる標準電力モードと低電力モードの動作モードを有し、
    前記モード切り替え信号が前記低電力モードに該当する期間は、前記第2の充電スイッチがオンさせないように制御されることを特徴とする、請求項1から6のいずれかに記載の直流電源回路。
JP2015518075A 2013-05-20 2014-05-20 直流電源回路 Active JP6255577B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013105804 2013-05-20
JP2013105804 2013-05-20
PCT/JP2014/002644 WO2014188711A1 (ja) 2013-05-20 2014-05-20 直流電源回路

Publications (2)

Publication Number Publication Date
JPWO2014188711A1 true JPWO2014188711A1 (ja) 2017-02-23
JP6255577B2 JP6255577B2 (ja) 2018-01-10

Family

ID=51933278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518075A Active JP6255577B2 (ja) 2013-05-20 2014-05-20 直流電源回路

Country Status (4)

Country Link
US (1) US9893546B2 (ja)
JP (1) JP6255577B2 (ja)
CN (1) CN105247772B (ja)
WO (1) WO2014188711A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345348B2 (en) 2014-11-04 2019-07-09 Stmicroelectronics S.R.L. Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method
JP6578128B2 (ja) * 2015-05-14 2019-09-18 ローム株式会社 電力供給装置、acアダプタ、acチャージャ、電子機器および電力供給システム
JP6611530B2 (ja) * 2015-09-11 2019-11-27 キヤノン株式会社 電力供給装置及び画像形成装置
CN106904083B (zh) * 2015-12-18 2019-09-13 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891746B (zh) * 2015-12-18 2019-11-08 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891743B (zh) * 2015-12-18 2019-11-08 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891749B (zh) * 2015-12-18 2019-09-13 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
JP6635301B2 (ja) * 2016-03-25 2020-01-22 パナソニックIpマネジメント株式会社 電子スイッチ装置及び電子スイッチシステム
US10673254B2 (en) * 2016-07-22 2020-06-02 Renesas Electronics America Inc. Simple battery and charger system
CN108880292B (zh) * 2017-05-09 2020-10-27 黄国洪 电源转换电路
JP7108173B2 (ja) * 2018-01-22 2022-07-28 ミツミ電機株式会社 スイッチング電源装置および直流電源装置
WO2020090199A1 (ja) * 2018-10-31 2020-05-07 富士電機株式会社 集積回路、電源回路
US11437842B2 (en) * 2019-03-22 2022-09-06 Seiko Epson Corporation Power supply control device, switching power supply, and electronic apparatus
CN110289762B (zh) * 2019-07-02 2021-01-01 温州大学 一种大电流电源及其恒流控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093922A (ja) * 2008-10-07 2010-04-22 Panasonic Corp スイッチング電源装置
JP2012023832A (ja) * 2010-07-13 2012-02-02 Sanken Electric Co Ltd 起動回路
JP2012105505A (ja) * 2010-11-12 2012-05-31 Shindengen Electric Mfg Co Ltd 制御回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501519A1 (de) * 1985-01-18 1986-08-28 BIOTEC Biotechnische-Apparatebau-Gesellschaft mbH, 4040 Neuss Elektronische einrichtung zur reduktion der verlustleistung bei der erzeugung einer stabilisierten gleichspannung oder eines stabilisierten gleichstromes aus einer wechselspannungsquelle
JPS61206016A (ja) 1985-03-08 1986-09-12 Sharp Corp 安定化電源装置
US4641233A (en) * 1985-05-03 1987-02-03 Eaton Corporation AC to DC converter with voltage regulation
US5587895A (en) * 1994-09-07 1996-12-24 Harkins; Michael T. Electrical power supply with single output from range of input voltages
US6353546B1 (en) * 2001-01-04 2002-03-05 Miracle Technology Co., Ltd. Coilless AC/DC power supply device
TWI289369B (en) * 2004-09-03 2007-11-01 Mobiletron Electronics Co Ltd Battery charging and/or DC power supply circuitry
CN100541970C (zh) * 2007-06-07 2009-09-16 建德市正达电器有限公司 一种正负脉冲的充电方法
US8110945B2 (en) * 2008-07-29 2012-02-07 Honeywell International Inc. Power stealing circuitry for a control device
JP5217808B2 (ja) * 2008-09-08 2013-06-19 富士電機株式会社 スイッチング電源装置
US8634218B2 (en) * 2009-10-06 2014-01-21 Power Integrations, Inc. Monolithic AC/DC converter for generating DC supply voltage
US8193775B2 (en) * 2010-03-31 2012-06-05 Kookmin University Industry Academy Cooperation Foundation Hysteresis switch and electricity charging module using the same
JP5648316B2 (ja) 2010-05-18 2015-01-07 サンケン電気株式会社 スイッチング電源装置
JP5757785B2 (ja) * 2011-05-19 2015-07-29 ローム株式会社 電源装置およびそれを用いた電子機器
JP5641140B2 (ja) * 2011-07-12 2014-12-17 富士電機株式会社 スイッチング電源装置の制御回路およびスイッチング電源
US20130176009A1 (en) * 2012-01-10 2013-07-11 Monolithic Power Systems, Inc. Smart low drop-out voltage regulator and associated method
CN104428984B (zh) * 2012-07-06 2017-03-29 松下知识产权经营株式会社 开关电源装置及半导体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093922A (ja) * 2008-10-07 2010-04-22 Panasonic Corp スイッチング電源装置
JP2012023832A (ja) * 2010-07-13 2012-02-02 Sanken Electric Co Ltd 起動回路
JP2012105505A (ja) * 2010-11-12 2012-05-31 Shindengen Electric Mfg Co Ltd 制御回路

Also Published As

Publication number Publication date
WO2014188711A1 (ja) 2014-11-27
CN105247772A (zh) 2016-01-13
CN105247772B (zh) 2018-07-24
US9893546B2 (en) 2018-02-13
JP6255577B2 (ja) 2018-01-10
US20160036249A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6255577B2 (ja) 直流電源回路
US9866108B2 (en) PFC shutdown circuit for light load
US9762113B2 (en) Control circuit, control method and flyback converter
US20180367029A1 (en) Switching power supply device
JP6338867B2 (ja) 同期フライバック変換器における使用のための二次コントローラ、電力変換器、および同期フライバック変換器を制御する方法
JP5217808B2 (ja) スイッチング電源装置
JP5799537B2 (ja) スイッチング電源装置の制御回路及びスイッチング電源装置
TWI539732B (zh) DC / DC converter and the use of its power supply devices and electronic equipment
US9960690B2 (en) Semiconductor device for controlling power supply
WO2017072940A1 (ja) 出力電圧の設定を切り替えるスイッチング電源装置及びスイッチング電源装置用集積回路
JP2014087134A (ja) Dc/dcコンバータ
JP2006340538A (ja) スイッチング電源装置
EP2672620B1 (en) Power factor improvement circuit
WO2018042937A1 (ja) スイッチング電源装置および半導体装置
US9318961B2 (en) Switching power-supply device
US20190190398A1 (en) Switching power supply device and semiconductor device
JP2012125090A (ja) スイッチング電源およびそれを搭載した表示装置
US8467202B2 (en) Flyback power supply system
JP2011125102A (ja) 電動機駆動用インバータ装置
US20170093289A1 (en) High Efficiency Primary and Secondary Bias Flyback Converter with Dual Outputs
US10056831B2 (en) Filter and method for direct rectification grid-powered power supplies
JP2012039736A (ja) 電源装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP6682930B2 (ja) 電源装置
JP2013110776A (ja) 半導体集積回路装置および電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6255577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350