JPWO2014155496A1 - リチウムイオン電池、およびリチウムイオン電池用電極 - Google Patents

リチウムイオン電池、およびリチウムイオン電池用電極 Download PDF

Info

Publication number
JPWO2014155496A1
JPWO2014155496A1 JP2015507721A JP2015507721A JPWO2014155496A1 JP WO2014155496 A1 JPWO2014155496 A1 JP WO2014155496A1 JP 2015507721 A JP2015507721 A JP 2015507721A JP 2015507721 A JP2015507721 A JP 2015507721A JP WO2014155496 A1 JPWO2014155496 A1 JP WO2014155496A1
Authority
JP
Japan
Prior art keywords
mixture layer
negative
heat generation
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015507721A
Other languages
English (en)
Inventor
光宏 松澤
光宏 松澤
富樫 盛典
盛典 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2014155496A1 publication Critical patent/JPWO2014155496A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウムイオン電池は、リチウムイオンを吸蔵および放出可能な活物質を含む正極合剤層を正極集電箔に形成した正極と、リチウムイオンを吸蔵および放出可能な活物質を含む負極合剤層を負極集電箔に形成した負極と、正極と負極との間に配置されたセパレータと、電解液と、を備え、正極合剤層および負極合剤層の少なくとも一方は複数種類の活物質を含む。複数種類の活物質を含む合剤層は、充電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広くなっている。または、放電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広くなっている。

Description

本発明は、リチウムイオン電池、およびリチウムイオン電池用電極に関する。
近年、化石燃料の資源的節約や地球温暖化などを背景に、省エネルギーの推進が求められており、二次電池の中でも大容量で小型のリチウムイオン電池は省エネルギー社会の実現に重要な蓄電デバイスとして期待されている。そのため、携帯情報端末やコードレス電子機器電源としての民生用途、電動工具の電源や電力貯蔵用といった産業用途、電気自動車やハイブリッド電気自動車といった車載用途を中心に需要が拡大している。また、このような様々な用途に応じて、高容量化に代表される電池性能向上に向けた開発が加速している。
リチウムイオン電池を実用化するには、電池の高性能化とともに、信頼性、安全性の向上が重要である。特に、高性能化にともない、充放電時の発熱量も大きくなっている。充放電時の発熱が大きいと、電池の温度が上昇し、電池の寿命が低下するため、いかに発熱を抑制するかが重要な課題となっている。
リチウムイオン電池の発熱要因としては、ジュール熱とエントロピー変化に由来する発熱(以下、エントロピー発熱)とが知られている。ジュール熱とは、電池の内部抵抗と電流の二乗に比例する発熱であり、必ず正の値、つまり発熱となる。一方、エントロピー発熱とは、充放電により、リチウムイオンの移動に伴って変化するエントロピー変化に由来する発熱であり、電極を構成する物質に応じて、また、電流の向きによって正負両方の値を取り得る。つまり、エントロピー発熱とは、発熱の場合もあり、吸熱の場合もある。また、その値は充放電深度によって決まる。
例えば、特許文献1には、正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ電極と、正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極を備えた電力貯蔵デバイス用正極について説明されている。このような構成とすることで、充電時と放電時で吸熱と発熱が表のキャパシタ正極とは逆になる電池正極を正極集電箔の裏に配置することで、充電時の局部的な温度上昇や局部的な温度変化を緩和している。
日本国特開2011−146431号公報
しかしながら、特許文献1に記載の技術は、充放電時の局部的な温度上昇や局部的な温度変化を緩和するものであるが、充電深度0%〜100%におけるエントロピー発熱の値が負になる範囲は決まっており、その範囲を調節することはできない。そのため、全充電深度で充電を行った場合の全体の発熱量を減少させるのは難しい。
本発明の第1の態様によると、リチウムイオン電池は、リチウムイオンを吸蔵および放出可能な活物質を含む正極合剤層を正極集電箔に形成した正極と、リチウムイオンを吸蔵および放出可能な活物質を含む負極合剤層を負極集電箔に形成した負極と、正極と負極との間に配置されたセパレータと、電解液と、を備え、正極合剤層および負極合剤層の少なくとも一方は複数種類の活物質を含み、複数種類の活物質を含む合剤層は、充電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広い、または、放電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広い。
本発明の第2の態様によると、リチウムイオン電池用電極は、集電箔と、複数種類の活物質を含む合剤層と、を備え、合剤層は、充電時のエントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広い、または、放電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広い。
本発明によれば、充電時または放電時の発熱を抑えることができる。
図1は、本発明に係るリチウムイオン電池1の一実施の形態を示す断面図である。 図2は、図1のA−A断面図である。 図3は、捲回電極群100の一部を示す断面図である。 図4は、正極121に形成された正極合剤層103の構成を模式的に示す図である。 図5は、正極合剤層103を短冊状に区分けした場合の正極集電体121を示す図である。 図6は、3種類の活物質を用いる場合の活物質配置例を示す図である。 図7は、正極合剤層103の上に第二の正極合剤層212を積層した場合の正極集電体121を示す図である。 図8は、LiMn単独の場合のdE/dT曲線を示す図である。 図9は、LiMnとLi1.06Mn1.89Al0.05とを15:85の割合で区分けして集電箔に塗布した場合のdE/dT曲線を示す図である。 図10は、LiMnとLi1.06Mn1.89Al0.05とを15:85の割合で区分けして集電箔に塗布した場合のdE/dT曲線を示す図である。 図11は、負極集電体122のdE/dT曲線を示す図である。 図12は、正極、負極ともに全リチウム容量範囲を使用した場合のdE/dT曲線を示す図である。 図13は、図10の領域(a)と図11の領域(d)とを用いた場合のdE/dT曲線を示す図である。 図14は、図10の領域(b)と図11の領域(c)とを用いた場合のdE/dT曲線を示す図である。
−第1の実施の形態−
図1は、本発明に係るリチウムイオン電池1の第1の実施の形態を示す断面図である。また、図2は、図1のA−A断面図である。なお、本実施の形態では、図1に示す捲回型リチウムイオン電池1を例に説明するが、本発明は、捲回型に限らず積層型にも適用でき、また、電池形状に関しては、円筒型に限らず角型その他の形状でも良い。
円筒型リチウムイオン電池1は、正極121、セパレータ107、負極122およびセパレータ107からなる一積層単位を、軸心109に捲回して捲回電極群100を形成し、これを電池缶101に収納した構造を有している。なお、軸心109に関しては、捲回電極群100を作成後に取り外され、存在しない構成のものもある。
図3は、捲回電極群100の一部の断面を示したものである。図3では、捲回電極群100の2層分(100a,100b)を示したものであり、内側層100aの外側に外側層100bが捲回されている。捲回電極群100の構成要素である正極121は、正極集電箔104と、正極集電箔104上に形成された正極合剤層103とにより構成される。正極合剤層103は、正極活物質や導電助剤、バインダを含む。負極122は、負極集電箔106と、負極集電箔106上に形成された負極合剤層105とにより構成される。負極合剤層105は、負極活物質や導電助剤、バインダを含む。なお、合剤層103、105は活物質や導電助剤、バインダの他に、添加物等を含んでも良い。
図4は、正極121に形成された正極合剤層103の構成を模式的に示す図である。図4において、(a)は正極121の一方の面に形成された正極合剤層103を示す図であり、(b)はB−B断面図、(c)は正極121の他方の面に形成された正極合剤層103を示す図である。本実施形態では、正極合剤層103に複数種類の活物質が用いられ、複数種類の活物質は、それぞれ独立して区分けして正極集電箔104上に塗布されている。図4に示す例では、2種類の活物質が正極活物質として用いられ、符号103aで示す合剤層領域に一方の活物質が含まれ、符号103bで示す合剤層領域に他方の活物質が含まれている。図4(c)に示す他方の面の正極合剤層103では、一方の面の合剤層領域103aに対応する領域に合剤層領域103bが配置され、一方の面の合剤層領域103bに対応する領域に合剤層領域103aが配置されている。これは、合剤層領域103aにおける発熱と合剤層領域103bにおける発熱とが等しいとは限らないので、発熱時における電極全体の温度分布ができるだけ均一となるようにするためである。また、合剤層領域103a,103bの面積は小さい方が好ましい。
なお、図4では、正極合剤層103を格子状に区分けし、合剤層領域103aと合剤層領域103bとを交互に配置したが、図5に示すように短冊状に区分けしても良い。この場合も、一方の面の合剤層領域103aに対応する領域に合剤層領域103bが配置され、一方の面の合剤層領域103bに対応する領域に合剤層領域103aが配置されるのが望ましい。
正極集電箔104はアルミニウム箔、負極集電体106は銅箔が一般的に使用されるが、ニッケル箔、ステンレス箔などの導電性材料を用いても良く、またこれらに限られるものではない。
図6は、3種類の活物質を用いる場合の活物質配置例を示したものである。活物質領域103d、103e、103fには、それぞれ異なる活物質が用いられる。活物質領域103d、103e、103fの占める面積の比を変化させることで、正極のdE/dT曲線(後述する)において、放電時または充電時の吸熱に相当するリチウム容量領域を任意に調節することが可能となる。また、活物質領域103d、103e、103fの面積は小さい方が好ましい。
正極合剤層103を構成する活物質材料として、例えば、LiCoO、LiMn、LiNiO、LiAlO、LiNi0.5Mn0.5、LiNi1/3Mn1/3Co1/3、LiMMn2−y(M=Cr、Fe、Co、Ni、Cu)、LiNiVO、LiCoVO、LiMnVO、LiFePO、LiCoPO、LiMnPO、LiNiPO、LiFeSiO、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.2、Li0.156Mn1.844、Li0.06Mn1.89Al0.05などが使用される。図4,5の場合には、これらの中から2種類の活物質が選択され、それぞれ活物質領域103a、103bに塗布される。また、図6の場合には、これらの中から3種類の活物質が選択され、それぞれ活物質領域103d〜103fに塗布される。また、活物質材料はこれらに限るものではなく、適宜その他の材料に変えることができる。
なお、図4〜6に示す例では、集電箔104,106の表裏両面に合剤層を一層だけ形成したが、図7に示すように二層以上形成するようにしても良い。図7に示す例では、図6に示した正極合剤層103の上に、第二の正極合剤層212を積層した。第二の正極合剤層212には、図4〜6に示したような正極合剤層を用いても良いし、一種類の活物質を含む正極合剤層としても良い。さらには、合剤層の層数を三層以上としても良い。
なお、上述した実施の形態では、短冊状、格子状に区分けして複数の活物質で構成する電極構造について説明したが、その区分けの形状は短冊状、格子状に限定するものではなく、円形や多角形、またその他の形状でももちろん良い。また、全面が必ずしも均一に区分けられている必要はなく、電極の一部は円形、一部は格子状のように組み合わせても良い。
以下では、正極合剤層103が複数種類の活物質を含む場合を例に説明するが、負極合剤層105が複数種類の活物質を含む構成でも良いし、正極合剤層103および負極合剤層105の両方が複数種類の活物質を含む構成であっても良い。また、合剤層の厚さに関しては、正極集電箔104の表裏両面で等しくても、等しくなくてもどちらでも良い。また、正極集電箔104の片面側にのみ正極合剤層103を設けるようにしても良い。負極の場合も、正極の場合と同様であり、複数種類の活物質を選択して区分けして電極を構成し、その面積比を調節することで、負極のdE/dT曲線において、放電または充電時の吸熱に相当する領域を任意に調節することが可能となる。
負極合剤層105の活物質材料としては、例えば天然黒鉛や、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチベース炭素繊維(MCF)、気相成長炭素繊維(VGCF)などの人造黒鉛、また、Nb、TiO、Li4/3Ti5/3、WO、MoO、Fe、Li2.6Co0.4、LiTi12などの酸化物、Li2.6Co0.4、に代表されるLi3−xN(M=Co、Ni、Cu)で表される窒化物、Al、Si、Ge、Sn、Pb、As、Sb等とLiとの合金材料などが使用される。また、活物質材料はこれらに限るものではなく、適宜その他の材料に変えることができる。負極合剤層105も正極合剤層103と同様に、複数種類の活物質材料で構成されても良い。
セパレータ107は、正極と負極が直接接触することを防ぎ、イオン導電性を保持する必要があるが、電解液を用いる電池では、細孔部を有する多孔性材料を用いることが多い。この多孔性材料として、ポリオレフィンやポリエチレン、ポリプロピレンに代表されるが、これらに限るものではない。
電解液(図1では図示せず)は、多孔性材料であるセパレータ107や、正極合剤層103、負極合剤層105の細孔部に存在する。ここで、電解液はイオン導電層として働き、リチウムイオン電池では、非水溶液系電解質が用いられる。リチウムイオン電池内の電解液はLiPF、LiBF、LiClO、のようなリチウム塩とエチレンカーボネイトやジエチルカーボネートのような溶媒によって構成される。また、電解液は液体やゲルに限らず、固体でも良い。
ところで、リチウムイオン電池の熱収支は式(1)、(2)で表される。式(1)において、ρは密度、Cは比熱である。式(1)の右辺第一項Qjはジュール発熱、第二項Qsはエントロピー変化による発熱(エントロピー発熱)、第三項Qaは放熱を表している。ジュール発熱Qjは電池の内部抵抗と電流の二乗に比例する。一方、エントロピー変化による発熱Qsは温度Tと、電位の温度に対する変化率dE/dTと、電流Iとの積で表される。電流Iは、電池全体で見ると、充電のとき正、放電のとき負となる。
Figure 2014155496
エントロピー変化による発熱Qsは、リチウムイオンサイトにリチウムイオンの挿入、脱離する際のエントロピー変化に起因するものである。式(2)から、エントロピー発熱Qsは、dE/dTおよび電流Iの符号に応じて、正(発熱)にも負(吸熱)にもなり得る。上述したように、正極合剤層103や負極合剤層105は複数種類の活物質から構成されるため、それぞれの活物質に応じた複数種類のリチウムイオンサイトが形成されることになり、エントロピー発熱Qsも活物質の種類に応じてそれぞれ異なることになる。
合剤層を複数種類の活物質で構成した場合、充電時および放電時のエントロピー発熱Qsは各活物質のエントロピー発熱に基づいた値となる。そのため、複数種類の活物質を組み合わせ、それらの量を調整することにより、エントロピー発熱の値が負となる充放電深度の範囲を調整することができる。このような調整を行うことにより電池の発熱の抑制が可能となり、温度上昇に起因する電池の劣化を抑制することができる。
一例として、正極活物質としてLiMnのみを用いた場合と、2種類の活物質LiMn、Li1.06Mn1.89Al0.05を用いた場合について説明する。図8は、LiMn単独のdE/dT曲線、すなわち、金属リチウムを基準とした場合のLiMnの電位について、電位の温度に対する変化率の曲線を示したものである。図8の曲線は、LiMnを含む合剤層に対する実測値である。図9は、LiMnとLi1.06Mn1.89Al0.05とを15:85の割合で区分けして集電箔に塗布した場合のdE/dT曲線を、リチウムイオンサイトにリチウムイオンが挿入・脱離する際のエネルギー等を考慮して、シミュレーション計算により算出したものである。より具体的には、統計力学的手法により、各活物質のリチウムイオンサイトエネルギー、リチウムイオン間の反発エネルギー、活物質の結晶配位数などを考慮したモデルを構築し、シミュレーションにより算出した。
図8,9において、縦軸はdE/dT、横軸は正極内のリチウム容量を示している。すなわち、リチウムイオンサイトの全てにリチウムイオンが挿入された場合にはリチウム容量は1であり、リチウムイオンサイトの全てからリチウムイオンが脱離している場合にはリチウム容量は0である。正極内におけるリチウム容量は、放電時には0→1のように増加し、充電時には1→0のように減少する。
図8に示すLiMn単独の場合のdE/dT曲線では、dE/dTは、リチウム容量が0.0〜約0.2、および、約0.45〜約0.65の範囲にある場合にはdE/dT>0となり、約0.2〜約0.45、および、約0.65〜1.0の範囲にある場合にはdE/dT<0となる。式(2)の電流Iは正極での放電時には負の値となるので、エントロピー発熱は、dE/dT>0である0.0〜約0.2、および、約0.45〜約0.65では負の値(吸熱)となり、dE/dT<0である約0.2〜約0.45、および、約0.65〜1.0では正の値(発熱)となる。一方、正極での充電時の電流Iは正の値となるので、エントロピー発熱は、dE/dT>0である0.0〜約0.2、および、約0.45〜約0.65では正の値(発熱)となり、dE/dT<0である約0.2〜約0.45、および、約0.65〜1.0では負の値(吸熱)となる。
図8から分かるように、LiMn単独の場合、全リチウム容量領域において、放電時は吸熱領域よりも発熱領域の方が大きい。つまり、正極合剤層103の活物質をLiMn単独で構成した電池では、全リチウム容量領域で放電を行った場合、エントロピー発熱の平均は正となり、発熱量(ジュール発熱Qjとエントロピー発熱Qsとの和)が大きい。
一方、正極合剤層103の活物質として2種類の活物質LiMn、Li1.06Mn1.89Al0.05を用いた場合には、図9に示すように、リチウム容量が0.0〜約0.65の範囲においてdE/dT>0となり、約0.65〜1.0の範囲においてdE/dT<0となる。すなわち、LiMnとLi1.06Mn1.89Al0.05とを組み合わせた電極では、放電時の吸熱領域が増大していることが分かる。
これは、dE/dT特性の異なる2種類の活物質を用いることにより、吸熱領域が広くなったと考えられる。dE/dTは電位の温度に対する変化率であるので、正極活物質103全体に関するdE/dTは、LiMn単独のdE/dTとLi1.06Mn1.89Al0.05単独のdE/dTとを単純に足し合わせたものとはならない。しかしながら、複数種類(例えば、2種類)の活物質を選択する場合には、それぞれの吸熱領域を合わせたものが、広いリチウム容量領域に拡がっていることが、一つの指標となり得る。リチウムイオンサイトにリチウムイオンが入るときのエネルギーも指標の一つとして用いることが可能である。このエネルギーが異なる活物質を組み合わせると、吸熱と発熱との境界位置がずれることが分かっている。
このように、本実施の形態では、異なる活物質を塗布することで、放電時もしくは充電時においてエントロピー発熱が吸熱となる領域(リチウム容量領域)を増やすことが可能となり、放電時もしくは充電時のどちらか一方において、電池の発熱を抑制し、電池の劣化を抑制することが可能となる。図9に示した例は、放電時における発熱量を抑制する場合の構成であり、充電時にはリチウム容量0.0〜約0.65という広い範囲においてエントロピー発熱が正(発熱)となる。放電時の発熱を特に抑制したい電池の用途としては、例えば、無停電電源装置等がある。一方、充電時の発熱を特に抑制したい電池の用途としては、急速充電が必要な装置等がある。
−第2の実施の形態−
次に、本発明の第2の実施形態を図10〜13を参照して説明する。図10は、上述した図9に示すdE/dT曲線と同一のdE/dT曲線を示したものである。すなわち、LiMnとLi1.06Mn1.89Al0.05とを15:85の割合で区分けして正極集電箔104に塗布して構成された正極集電体121のdE/dT曲線である。一方、図11は負極集電体122のdE/dT曲線(金属リチウムを基準とした場合の、温度に対する電位の変化率)を示す図であり、メソカーボンマイクロビーズ(MCMB)を活物質として負極集電箔106に塗布した場合の実測値を示す。
この二つの電極(正極、負極)を使用し、正極、負極ともに全リチウム容量範囲を使用するように、すなわち、正極のx=0と負極のx=1.0とが充電深度100%の状態となり、正極のx=1.0と負極のx=0とが充電深度0%の状態となるように電池を作製する。そのように電池を作製すると、電池全体でのdE/dT曲線は、正極のdE/dTから負極のdE/dTを引いたものとなり、図12に示すようなdE/dT曲線となる。なお、図12において、横軸は充電深度(SOC: state of charge)を表している。
例えば、SOC=100%におけるdE/dTは、正極のx=0におけるdE/dT=約0.13から、負極のx=1.0におけるdE/dT=約−0.07を引いた値であって、約0.2となる。また、SOC=25%におけるdE/dTは、正極のx=0.75におけるdE/dT=約−0.05から、負極のx=0.25におけるdE/dT=約−0.05を引いた値であって、ほぼ0となる。
放電状態を考える場合には、放電時の電流Iは負の値とされるので、領域(e)では発熱、領域(f)では吸熱となる。SOC=25%においては、正極における発熱(dE/dT=約−0.05)と負極による吸熱(dE/dT=約−0.05)とがほぼ等しくなり、正極と負極とを合わせた全体(図12参照)の発熱はほぼ0となる。一方、充電の場合には電流Iは正の値とされるため、領域(e)では吸熱、領域(f)では発熱となる。しがたって、このように構成した場合には、充電深度の全範囲(0〜100%)において、必ず発熱領域が存在することになる。
以下では、全充電深度においてエントロピー発熱が必ず負となるように、つまり吸熱となるようにすることができる構成について説明する。まず、放電時の発熱を特に抑制したい場合には、正極では図10の領域(a)のみを使用し、負極では図11の領域(d)のみを使用するように各電極を構成することで、全充電深度において放電時のエントロピー発熱が必ず負、つまり吸熱とすることができる。
具体的には、図10の領域(a)の左端(x=0.0)と図11の領域(d)の右端(x=1.0)とが充電深度100%の状態となり、領域(a)の右端(x=約0.65)と領域(d)の左端(x=約0.21)とが充電深度0%の状態となるように、すなわち、領域(a)のリチウムイオンサイト数と領域(d)のリチウムイオンサイト数とが等しくなるように、正極活物質と負極活物質の量を調整する。
図10,11に示す正極および負極の場合には、正極における領域(a)のリチウム容量範囲の幅は約0.65で、負極における領域(d)のリチウム容量範囲の幅は約0.79である。そのため、図10,11のデータが得られたときの正極合剤層の塗布量に対して、塗布量を(0.79/0.65)倍の量に増加させることで、領域(a)のリチウムイオンサイト数と領域(d)のリチウムイオンサイト数とを同じにすることができる。その結果、放電時にエントロピー発熱が吸熱となる領域(a)、(d)を、充電深度0%から100%の範囲に設定することが可能となる。その場合の電池全体のdE/dT曲線は図13のようになる。放電時には電流Iは負の値となるため、エントロピー変化による発熱は、全充電深度(0〜100%)において負の値となり、吸熱となる。その結果、放電の際の全充電深度において電池の発熱を抑制し、劣化を抑制することが可能となる。
なお、図13に示す充電深度(SOC)0%〜100%の範囲は、図10の領域(a)が対応しているので、複数種類の活物質を選択する際には、領域(a)が可能な限り大きくなるように選択するのが好ましい。
一方、充電時の発熱を特に抑制したい場合には、正極においては図10の領域(b)のみが使用され、負極においては図11の領域(c)のみが使用されるように、正極活物質と負極活物質の量を調節する。すなわち、領域(b)の左端と領域(c)の右端が充電深度100%の状態となり、領域(b)の右端と領域(c)の左端が充電深度0%の状態となるように、正極および負極を構成する。このように構成した場合の、電池全体のdE/dT曲線は図14のようになる。充電時には電流Iは正の値となるため、この構成によれば、全充電深度(0〜100%)においてエントロピー変化に由来する熱を吸熱とすることができる。
以上の説明では、正極の活物質がLiMnとLi1.06Mn1.89Al0.05との複合体で、負極活物質がMCMBの場合において、放電時および充電時のいずれか一方で、全充電深度でエントロピー発熱を負(吸熱)とするための電池構成について説明した。すなわち、放電時にエントロピー発熱を負の値(吸熱)とするには、正極(LiMnとLi1.06Mn1.89Al0.05との複合体)では0≦x≦0.65のリチウム容量範囲を含み、負極(MCMB)では、0.21≦x≦1.0のリチウム容量範囲を含むように電池を構成するのが好ましい。一方、充電時にエントロピー発熱を負の値(吸熱)とするには、正極では、0.65≦x≦1.0のリチウム容量範囲を含み、負極では、0≦x≦0.21のリチウム容量範囲を含むように電池を構成することが好ましい。
他の活物質を用いた場合を例示すると、放電時に吸熱とするには、例えば、正極にLiNi0.8Co0.15Al0.05を用いた場合は0≦x≦0.5のリチウム容量範囲を包含するようにするのが良く、LiNi0.8Co0.2を用いた場合には0≦x≦0.4のリチウム容量範囲を包含するようにするのが良く、Li1.156Mn1.844を用いた場合には0≦x≦0.3のリチウム容量範囲を包含するようにするのが良く、Li1.06Mn1.89Al0.05を用いた場合には0≦x≦0.65のリチウム容量範囲を包含するようにすると良い。
また、逆に充電時を吸熱とする場合には、正極にLiNi0.8Co0.15Al0.05を用いた場合は0.5≦x≦1.0のリチウム容量範囲を包含するようにするのが良く、LiNi0.8Co0.2を用いた場合には0.4≦x≦1.0のリチウム容量範囲を包含するようにするのが良く、Li1.156Mn1.844を用いた場合には0.3≦x≦1.0のリチウム容量範囲を包含するようにするのが良く、Li1.06Mn1.89Al0.05を用いた場合には0.65≦x≦1.0のリチウム容量範囲を包含するようにすると良い。
(C1)以上説明したように、本発明によるリチウムイオン電池は、リチウムイオンを吸蔵および放出可能な活物質を含む正極合剤層103を正極集電箔に形成した正極121と、リチウムイオンを吸蔵および放出可能な活物質を含む負極合剤層105を負極集電箔に形成した負極122と、正極121と負極122との間に配置されたセパレータと、電解液と、を備え、正極合剤層103および負極合剤層105の少なくとも一方は複数種類の活物質を含み、複数種類の活物質を含む合剤層は、充電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広い、または、放電時エントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広い、ことを特徴とする。このような構成とすることにより、充電時または放電時の発熱を抑えることができる。
(C2)複数種類の活物質を含む合剤層は、放電時のエントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広く設定されるものにおいて、正極合剤層の放電時のエントロピー発熱が負となるリチウム容量範囲および負極合剤層の放電時のエントロピー発熱が負となるリチウム容量範囲を、充電深度0%から100%の範囲に設定可能なように、正極合剤層および負極合剤層の形成量を設定する。その結果、図13に示すように、充電深度0%から100%の範囲において放電時のエントロピー発熱を負とすることができ、放電時の発熱を抑えることができる。
(C3)逆に、複数種類の活物質を含む合剤層は、充電時のエントロピー発熱が負となるリチウム容量範囲が、複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広いものにおいては、正極合剤層の充電時のエントロピー発熱が負となるリチウム容量範囲および負極合剤層の充電時のエントロピー発熱が負となるリチウム容量範囲を、充電深度0%から100%の範囲に設定可能なように、正極合剤層および負極合剤層の形成量を設定する。その結果、図14に示すように、充電深度0%から100%の範囲において充電時のエントロピー発熱を負とすることができ、充電時の発熱を抑えることができる。
(C4)複数種類の活物質を含む合剤層は、例えば、図4に示すように、活物質の種類毎に区切られた2つの合剤層領域103a,103bを有し、一方の活物質は合剤層領域103aに含まれ、他方の活物質は合剤層領域103bに含まれるように構成されている。図10のようなLiMnとLi1.06Mn1.89Al0.05との複合体のdE/dT特性を得るためには、LiMnのdE/dT特性とLi1.06Mn1.89Al0.05のdE/dT特性とから最適な配分(15:85)を設定する。
2種類の活物質を一様に混合して塗布して正極合剤層とした場合、通常、リチウムイオンの入り方には場所により、例えば、円筒の中心と外側などではばらつきが生じることが知られている。それにより発熱分布が生じ電池の劣化を招く恐れがあった。そこで複数の活物質を区分けして塗布することで、例えばリチウムイオンが入りやすい場所に、2種類の活物質のうちリチウムイオンが入りにくい活物質を重点的に塗布することで、リチウムイオンの入り方を均等化し、発熱を抑えることができる。
もちろん、2つの(または複数の)活物質を混合して、一様な正極合剤層を形成しても構わない。なお、具体的に例示していないが、負極合剤層についても正極合剤層と同様に考えることができる。
なお、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。

Claims (6)

  1. リチウムイオンを吸蔵および放出可能な活物質を含む正極合剤層を正極集電箔に形成した正極と、
    リチウムイオンを吸蔵および放出可能な活物質を含む負極合剤層を負極集電箔に形成した負極と、
    前記正極と前記負極との間に配置されたセパレータと、
    電解液と、を備え、
    前記正極合剤層および負極合剤層の少なくとも一方は複数種類の活物質を含み、
    複数種類の活物質を含む合剤層は、
    充電時エントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広い、または、放電時エントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広い、リチウムイオン電池。
  2. 請求項1に記載のリチウムイオン電池において、
    前記複数種類の活物質を含む合剤層は、放電時のエントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広く、
    前記正極合剤層の放電時のエントロピー発熱が負となるリチウム容量範囲および前記負極合剤層の放電時のエントロピー発熱が負となるリチウム容量範囲を、充電深度0%から100%の範囲に設定可能なように、前記正極合剤層および負極合剤層の形成量が設定されている、リチウムイオン電池。
  3. 請求項1に記載のリチウムイオン電池において、
    前記複数種類の活物質を含む合剤層は、充電時のエントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広く、
    前記正極合剤層の充電時のエントロピー発熱が負となるリチウム容量範囲および前記負極合剤層の充電時のエントロピー発熱が負となるリチウム容量範囲を、充電深度0%から100%の範囲に設定可能なように、前記正極合剤層および負極合剤層の形成量が設定されている、リチウムイオン電池。
  4. 請求項1乃至3のいずれか一項に記載のリチウムイオン電池において、
    前記複数種類の活物質を含む合剤層は、前記活物質の種類毎に区切られた複数の領域を有し、
    前記複数種類の活物質は各々の種類に対応する前記領域のみに含まれている、リチウムイオン電池。
  5. 集電箔と、
    前記複数種類の活物質を含む合剤層と、を備え、
    前記合剤層は、充電時のエントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、充電時エントロピー発熱が負となるリチウム容量範囲よりも広い、または、放電時エントロピー発熱が負となるリチウム容量範囲が、前記複数種類の活物質の内のいずれか一つを含む合剤層における、放電時エントロピー発熱が負となるリチウム容量範囲よりも広い、リチウムイオン電池用電極。
  6. 請求項5に記載のリチウムイオン電池用電極において、
    前記合剤層は、前記活物質の種類毎に区切られた複数の領域を有し、
    前記複数種類の活物質は各々の種類に対応する前記領域に含まれている、リチウムイオン電池用電極。
JP2015507721A 2013-03-25 2013-03-25 リチウムイオン電池、およびリチウムイオン電池用電極 Pending JPWO2014155496A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058608 WO2014155496A1 (ja) 2013-03-25 2013-03-25 リチウムイオン電池、およびリチウムイオン電池用電極

Publications (1)

Publication Number Publication Date
JPWO2014155496A1 true JPWO2014155496A1 (ja) 2017-02-16

Family

ID=51622586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507721A Pending JPWO2014155496A1 (ja) 2013-03-25 2013-03-25 リチウムイオン電池、およびリチウムイオン電池用電極

Country Status (2)

Country Link
JP (1) JPWO2014155496A1 (ja)
WO (1) WO2014155496A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904228B2 (ja) * 2017-12-07 2021-07-14 トヨタ自動車株式会社 リチウムイオン二次電池用負極
JP7194541B2 (ja) * 2018-09-20 2022-12-22 武蔵エナジーソリューションズ株式会社 キャパシタ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172571A (ja) * 1996-12-16 1998-06-26 Aichi Steel Works Ltd リチウム二次電池及びその正極活物質の製造方法
JPH11354122A (ja) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd リチウム二次電池用負極活物質及びリチウム二次電池
JP2000156230A (ja) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd リチウムイオン二次電池用の炭素材活物質
JP2001196097A (ja) * 2000-12-13 2001-07-19 Mitsubishi Electric Corp リチウム二次電池
JP2005285633A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP2006318868A (ja) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd リチウム二次電池
JP2007115687A (ja) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd 負極活物質、その製造方法、並びにそれを採用した負極及びリチウム電池
JP2007173222A (ja) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp リチウムイオン二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172571A (ja) * 1996-12-16 1998-06-26 Aichi Steel Works Ltd リチウム二次電池及びその正極活物質の製造方法
JPH11354122A (ja) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd リチウム二次電池用負極活物質及びリチウム二次電池
JP2000156230A (ja) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd リチウムイオン二次電池用の炭素材活物質
JP2001196097A (ja) * 2000-12-13 2001-07-19 Mitsubishi Electric Corp リチウム二次電池
JP2005285633A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP2006318868A (ja) * 2005-05-16 2006-11-24 Hitachi Maxell Ltd リチウム二次電池
JP2007115687A (ja) * 2005-10-17 2007-05-10 Samsung Sdi Co Ltd 負極活物質、その製造方法、並びにそれを採用した負極及びリチウム電池
JP2007173222A (ja) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp リチウムイオン二次電池

Also Published As

Publication number Publication date
WO2014155496A1 (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6883262B2 (ja) 非水電解液二次電池
KR102446271B1 (ko) 리튬 이차 전지
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP6252593B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2019096476A (ja) 直列積層型全固体電池
JP2007123251A (ja) 非水電解質二次電池
JP2015072805A (ja) 非水二次電池
JP2012048959A (ja) 非水電解質二次電池用電極及び非水電解質二次電池
JP6184810B2 (ja) 非水二次電池
JP2016024987A (ja) 非水系二次電池
JP2016207614A (ja) 固体電池
JP2018116856A (ja) リチウムイオン二次電池用正極活物質
JP2018174070A (ja) リチウムイオン二次電池
CN106133952A (zh) 非水电解质二次电池
JP2009277395A (ja) 非水二次電池および非水二次電池システム
KR20190029456A (ko) 비수전해액 이차 전지
JP7036701B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP5216973B2 (ja) 非水二次電池および非水二次電池システム
JP2012014973A (ja) 二次電池用電解質組成物および二次電池
JP6622414B2 (ja) 固体電電解質、全固体電池
JP2015018670A (ja) バイポーラ電池
JP2023533403A (ja) リチウムイオン電池、電池モジュール、電池パックおよび電気装置
WO2014155496A1 (ja) リチウムイオン電池、およびリチウムイオン電池用電極
WO2013129376A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、及び非水電解質二次電池用活物質の製造方法
JP2016058343A (ja) 二次電池用電極

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170921