JPWO2014050190A1 - 画像処理装置、撮像装置、コンピュータ及びプログラム - Google Patents

画像処理装置、撮像装置、コンピュータ及びプログラム Download PDF

Info

Publication number
JPWO2014050190A1
JPWO2014050190A1 JP2014538219A JP2014538219A JPWO2014050190A1 JP WO2014050190 A1 JPWO2014050190 A1 JP WO2014050190A1 JP 2014538219 A JP2014538219 A JP 2014538219A JP 2014538219 A JP2014538219 A JP 2014538219A JP WO2014050190 A1 JPWO2014050190 A1 JP WO2014050190A1
Authority
JP
Japan
Prior art keywords
filter
information
restoration
image
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014538219A
Other languages
English (en)
Other versions
JP5779724B2 (ja
Inventor
洋介 成瀬
洋介 成瀬
林 健吉
健吉 林
遠藤 宏
宏 遠藤
入江 公祐
公祐 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014538219A priority Critical patent/JP5779724B2/ja
Application granted granted Critical
Publication of JP5779724B2 publication Critical patent/JP5779724B2/ja
Publication of JPWO2014050190A1 publication Critical patent/JPWO2014050190A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

点像復元精度の劣化を抑えつつ、点像復元処理に用いられる復元フィルタのデータ記憶量を低減させることが可能な技術を提供する。画像の点像復元に関する統計情報D12を取得し、画像の取得時に使用される光学系の点像強度分布を表す光学情報D14を取得し、統計情報及び光学情報のうち少なくとも何れかに基づき、画像の点像復元処理のための復元フィルタのフィルタ情報(復元フィルタの対称性、復元フィルタのタップ数等)D16が求められる。このフィルタ情報D16を拘束条件として、統計情報D12及び光学情報D14に基づき、復元フィルタのフィルタ係数D18が算出される。このようにして算出されたフィルタ係数D18を用いて、画像の点像復元処理が行われる。

Description

本発明は画像処理装置、撮像装置、コンピュータ及びプログラムに係り、特に、点像復元処理において用いられる復元フィルタに関する。
撮像光学系を介して撮影される被写体像には、撮像光学系に起因する回折や収差等の影響により、点被写体が微小な広がりを持つ所謂点拡がり現象が見られることがある。光学系の点光源に対する応答を表す関数は点拡がり関数(PSF:Point Spread Function)と呼ばれ、撮影画像の解像度劣化(ボケ)を左右するパラメータとして知られている。
この点拡がり現象のために画質劣化した撮影画像は、PSFに基づく点像復元処理を受けることで画質劣化を回復することができる。点像復元処理は、レンズ(光学系)の収差等に起因する劣化特性(点像特性)を予め求めておき、その点像特性に応じた復元フィルタ(回復フィルタ)を用いる画像処理によって撮影画像の点拡がりをキャンセルする処理である。
点像復元処理については、様々な工夫が提案されている。例えば特許文献1は、PSFの拡がりの対称性を考慮し、回転非対称な鮮鋭度回復フィルタの代わりに回転対称な鮮鋭度回復フィルタを用いて、光軸外の光学性能の劣化を補償することが可能な補正データ作成方法を開示する。また特許文献2は、光学伝達関数に基づく画像回復フィルタを用いて回復画像を生成し、回復画像に対して色ずれを低減することで、倍率色収差による色ずれを補正する画像処理方法を開示する。
この点拡がり現象は、絞り、ズーム位置、被写体距離等の撮影条件や像高位置等によって様々に変化するため、単一の撮像系であっても、点像復元処理に必要なPSF等のデータ量は膨大となる。そこで、特許文献3は、撮像光学系の光学伝達関数の再構成に必要なデータの記憶量を低減させるための画像処理装置を開示し、PSFの記憶データ量の低減が図られている。
特開2003−172873号公報 特開2012−129932号公報 特開2012−073691号公報
上述のように、復元フィルタを利用した点像復元処理を適切に行うためには膨大な記憶データ量が必要になるが、記憶データ量を低減させることも大きな課題の一つになっている。その一方で、点像復元処理のために復元フィルタを所定の記憶手段に記憶しておくことの要望は非常に強く、作成した復元フィルタを記憶しておき、利用時にその記憶された復元フィルタを読み出すことで、計算負荷の軽減や処理スピードの向上を図ることができる。しかしながら、復元フィルタは多数のタップによって構成され、各タップに対してフィルタ係数が割り当てられるため、記憶負荷が非常に大きい。
特許文献1や特許文献2に開示の装置では、点像復元精度を維持しつつ点像復元処理の復元フィルタのデータ量を効果的に低減させるための工夫は、特になされていない。すなわち特許文献1では、回転対称な係数を持つ鮮鋭化フィルタによって光軸から離れた領域での画質劣化を改善する工夫が提案されているが、光学系のボケ特性が回転非対称な場合に回転対称な係数を持つ鮮鋭化フィルタを近似適用するため、点像復元の精度が落ちる。また特許文献2では、点像復元フィルタの記憶データ量の低減に関して何らの工夫も示唆されていない。
また特許文献3は、撮像光学系の光学伝達関数の再構成に必要なデータの記憶量を低減させる技術を開示するものであるが、点像復元処理のための復元フィルタの記憶データ量を直接的に低減する工夫については開示も示唆もされていない。すなわち、特許文献3が開示する技術は、画像回復フィルタを作成するための光学伝達関数の情報量を低減するためのものではあるが、作成される画像回復フィルタ自体の記憶量を低減するものではない。
本発明は上述の事情に鑑みてなされたものであり、点像復元精度の劣化を抑えつつ、点像復元処理に用いられる復元フィルタのデータ記憶量を低減させることが可能な技術を提供することを目的とする。
本発明の一態様は、画像の点像復元に関する統計情報を取得する統計情報取得部と、画像の取得時に使用される光学系の点像強度分布を表す光学情報を取得する光学情報取得部と、統計情報及び光学情報のうち少なくとも何れかに基づき、画像の点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部と、フィルタ情報を拘束条件として、統計情報及び光学情報に基づき、復元フィルタのフィルタ係数を算出するフィルタ係数算出部と、フィルタ係数算出部で算出されたフィルタ係数を用いて点像復元処理を行う点像復元処理部と、を備える画像処理装置に関する。
本態様によれば、画像の点像復元に関する統計情報及び光学系の点像強度分布を表す光学情報のうち少なくともいずれかに基づき、復元フィルタのフィルタ情報が求められ、このフィルタ情報を拘束条件として、復元フィルタのフィルタ係数が算出される。したがって、点像復元処理の精度を落とすことなく、点像復元処理に用いられる復元フィルタのデータ記憶量を低減させることができる。点像強度分布(光学伝達関数)の特性によって、事前に復元フィルタの情報量(フォーマット)を決定しておき、それ(タップ数、対称性など)を拘束条件として復元フィルタを生成することによって、フィルタ係数の格納に必要な情報量を削減しつつ、その範囲でベストな特性の復元フィルタを設計することも可能である。
ここでいう「画像の点像復元に関する統計情報」は、画像の点像復元に影響を及ぼし得る統計的な情報であり、例えばSN比が含まれうる。また「光学系の点像強度分布を表す光学情報」は、光学系に起因する点像強度分布を直接的又は間接的に表す光学的な情報である。例えばPSFやOTF(Optical Transfer Function)(MTF:Moduration Transfer Function;PTF:Phase Transfer Function)が光学情報に含まれうる。また「復元フィルタのフィルタ情報」は、点像復元処理の際に使用される復元フィルタのフィルタ特性を示す情報であり、例えば復元フィルタのタップ構成(全体タップ数、タップ対称性、対称性を加味した場合の最小必要タップ数、等)が含まれうる。また「フィルタ係数」とは、フィルタリング処理において処理対象の画像データ(画素データ)に適用される係数であり、復元フィルタが複数タップによって構成される場合には各タップにフィルタ係数が割り当てられる。また「点像復元」とは点拡がりをキャンセルして元の点像を復元することであり、「点像復元処理」とはそのような点像復元を行う処理である。点像復元処理は任意の手法を用いることができ、例えば複数タップによって構成される復元フィルタを処理対象画像に適用し、処理対象画像の各画素データとフィルタ係数とを加重平均する処理を採用することが可能である。
望ましくは、フィルタ情報は、復元フィルタのタップ数に関する情報と、復元フィルタの対称性の種類を示す情報とを含み、フィルタ係数算出部は、フィルタ情報算出部が求める復元フィルタのタップ数に関する情報と復元フィルタの対称性の種類を示す情報とを拘束条件として、フィルタ係数を算出する。
この場合、「復元フィルタのタップ数に関する情報」及び「復元フィルタの対称性の種類を示す情報」を拘束条件としてフィルタ係数が算出されるため、復元フィルタに必要なフィルタ係数の情報量を復元フィルタの対称性の種類に応じて低減させることが可能である。なお、復元フィルタに必要なフィルタ係数の情報量は、「復元フィルタのタップ数に関する情報」及び「復元フィルタの対称性の種類を示す情報」から、完全な復元フィルタを再現可能な情報量である。
望ましくは、光学情報は、点像強度分布の対称性の種類を示す情報と、点像強度分布の対称性の種類に基づいて点像強度分布を再現可能な圧縮された情報であって点像強度分布の対称性の種類を示す情報と対応づけられた圧縮された情報とを含み、フィルタ情報算出部は、点像強度分布の対称性の種類を示す情報から復元フィルタの対称性の種類を示す情報を求め、点像強度分布の対称性の種類を示す情報と対応づけられた圧縮された情報及び統計情報に基づいて復元フィルタのタップ数に関する情報を求める。
この場合、点像強度分布の対称性の種類を示す情報と対応づけられた圧縮された情報から、復元フィルタのタップ数に関する情報を求めることができるため、点像強度分布を表す光学情報に必要な情報量を、点像強度分布の対称性に応じて低減させることが可能である。また、点像強度分布の対称性の種類に基づいて点像強度分布を再現可能な圧縮された情報(光学伝達関数情報)を用いることによって、フィルタ情報量(フォーマット)の判定が容易になり、フィルタ設計における演算量を削減することも可能である。
ここでいう「点像強度分布の対称性の種類に基づいて点像強度分布を再現可能な圧縮された情報」とは、点像強度分布の対称性の種類を加味することで、本来の点像強度分布を再現可能な程度に圧縮された(情報量が低減された)情報のことである。
望ましくは、光学情報取得部は、光学情報と、点像強度分布に対応づけられる復元フィルタの対称性の種類を示す情報とを取得し、フィルタ情報は、復元フィルタのタップ数に関する情報を含み、フィルタ係数算出部は、フィルタ情報算出部が求める復元フィルタのタップ数に関する情報と光学情報取得部が取得する復元フィルタの対称性の種類を示す情報とを拘束条件として、フィルタ係数を算出する。
この場合、復元フィルタの対称性の種類を示す情報が光学情報と共に取得されるため、フィルタ情報算出部において「復元フィルタの対称性の種類を示す情報」を求める必要がなくなる。
望ましくは、画像処理装置は、フィルタ係数とフィルタ係数に対応するフィルタ情報とを相互に関連づけて記憶する記憶部を更に備える。
この場合、フィルタ係数及びフィルタ情報が記憶部に記憶されるため、記憶部にアクセスすることでフィルタ係数及びフィルタ情報を容易に得ることが可能であり、これらのフィルタ係数及びフィルタ情報を再度算出する必要がない。また、圧縮されたフィルタ係数情報の場合、冗長性を付加せずにそのままの形で記憶部に記録することも可能である。
望ましくは、画像処理装置は、記憶部に記憶されるフィルタ係数及びフィルタ情報に基づいて復元フィルタを作成する復元フィルタ作成部を更に備える。
この場合、点像復元処理部は、復元フィルタ作成部の作成した復元フィルタを使用して、適切な点像復元処理を行うことができる。また、フィルタ係数の圧縮フォーマットに依存せずに、同一の復元フィルタ適用装置によって、復元フィルタを使用することも可能である。
望ましくは、記憶部は、画像の取得条件と画像によって表される画像中の位置とに応じて、フィルタ係数及びフィルタ情報を記憶し、画像の取得条件及び画像によって表される画像中の位置と、相互に関連づけられるフィルタ係数及びフィルタ情報が記憶される記憶部のメモリアドレスとが対応づけられたインデックス−オフセット変換テーブルを記憶し、復元フィルタ作成部は、インデックス−オフセット変換テーブルに基づき、画像の取得条件及び画像によって表される画像中の位置に応じたフィルタ係数及びフィルタ情報を記憶部から読み出す。
この場合、インデックス−オフセット変換テーブルの対応のメモリアドレスを参照し、画像の取得条件及び画像データによって表される画像中の位置に応じたフィルタ係数及びフィルタ情報を、記憶部から直接的に読み出す(ランダムアクセスする)ことが可能である。
望ましくは、点像復元処理部は、復元フィルタの対称性の複数の種類の各々に対して専用の復元処理部を有し、復元フィルタ作成部は、復元フィルタの対称性の種類と復元処理部との対応関係を示すフィルタ−フォーマット変換テーブルを持つフォーマット変換部を有し、フォーマット変換部は、フィルタ−フォーマット変換テーブルに基づき、記憶部から読み出されるフィルタ情報から復元フィルタの対称性の種類を求めて対応の復元処理部を特定し、復元フィルタ作成部は、記憶部から読み出されるフィルタ係数と共にフォーマット変換部が特定した対応の復元処理部を示す処理部指示情報を、復元フィルタとして復元処理部に送り、復元処理部は、復元フィルタ作成部から送られてくる処理部指示情報によって示される復元処理部により、復元フィルタ作成部から送られてくるフィルタ係数を用いて点像復元処理を行う。
この場合、フィルタの対称性の種類に応じた専用の復元処理部によって点像復元処理を行って、点像復元処理の最適化を図ることが可能である。
望ましくは、光学系は、位相を変調して被写界深度を拡大させるレンズ部を有する。
本態様によれば、いわゆるEDoF(Extended Depth of Field(Focus))光学系を介して得られる画像に対しても、点像復元処理の精度を落とすことなく、点像復元処理に用いられる復元フィルタのデータ記憶量を低減させることができる。なお、レンズ部における位相を変調させる手法(光学的位相変調手段)は特に限定されず、レンズ間に位相変調部を設けたり、レンズ自体(例えばレンズの入射面/出力面)に位相変調機能を持たせたりすることも可能である。
本発明の他の態様は、画像の点像復元に関する統計情報を記憶する統計情報記憶部と、画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部と、統計情報記憶部及び光学情報記憶部に接続される上記画像処理装置と、を備える撮像装置に関する。
本発明の他の態様は、レンズユニットと、このレンズユニットに接続される本体部とを備える撮像装置であって、レンズユニットは、画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部を有し、本体部は、画像の点像復元に関する統計情報を記憶する統計情報記憶部と、統計情報記憶部及び光学情報記憶部に接続される上記画像処理装置と、を有する撮像装置に関する。
本発明の他の態様は、画像の点像復元に関する統計情報が画像と共に入力されるコンピュータであって、画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部と、光学情報記憶部に接続される上記画像処理装置と、を備えるコンピュータに関する。
本発明の他の態様は、画像の点像復元に関する統計情報と、画像の取得時に使用される光学系の点像強度分布を表す光学情報とが画像と共に入力されるコンピュータであって、上記画像処理装置を備えるコンピュータに関する。
本発明の他の態様は、画像の点像復元に関する統計情報を取得する手順と、画像の取得時に使用される光学系の点像強度分布を表す光学情報を取得する手順と、統計情報及び光学情報のうち少なくとも何れかに基づき、画像の点像復元処理のための復元フィルタのフィルタ情報を求める手順と、フィルタ情報を拘束条件として、統計情報及び光学情報に基づき、復元フィルタのフィルタ係数を算出する手順と、算出されたフィルタ係数を用いて点像復元処理を行う手順と、をコンピュータに実行させるためのプログラムに関する。
本発明によれば、画像の点像復元に関する統計情報及び光学系の点像強度分布を表す光学情報のうち少なくともいずれかに基づき復元フィルタのフィルタ情報が求められ、このフィルタ情報を拘束条件として、復元フィルタのフィルタ係数が算出される。
これにより、点像復元処理の精度を落とすことなく、点像復元処理に用いられる復元フィルタのデータ記憶量を低減させることができる。
コンピュータに接続されるデジタルカメラの概略を示すブロック図である。 点像復元処理の一例の概略を示すブロック図である。 第1実施形態に係る点像復元処理の復元フィルタ作成記憶方法を示すブロック図であり、主としてデータの流れを示す図である。 図3に示すデータ処理を行うコントローラの機能ブロック図である。 フォーマット識別子(フィルタ情報ID)、PSFの対称性、位相成分の有無、復元フィルタ(フィルタ係数)の配置フォーマット及び記憶すべきフィルタ係数の数(タップ数)の関係を示す表である。 記憶部に記憶されるフィルタ係数及びフィルタ情報に基づいて復元フィルタを作成する流れを示す機能ブロック図である。 第2実施形態に係るPSF記憶部に記憶される光学伝達関数(PSF、OTF)の関係を示す表である。 第3実施形態に係るフィルタ係数−フォーマット記憶部を示す機能ブロック図である。 第4実施形態に係る復元フィルタ係数フォーマット変換部及び信号処理部の構成を示す機能ブロック図である。 各処理部の設置に関する例(実施例)を示す表である。 スマートフォンの外観図である。 図11に示すスマートフォンの構成を示すブロック図である。 EDoF光学系を備える撮像モジュールの一形態を示すブロック図である。 EDoF光学系の一例を示す図である。 図13に示す復元処理ブロックにおける復元処理の一例を示すフローチャートである。 EDoF光学系を介して取得された画像の復元例を示す図であり、(a)は復元処理前のボケた画像を示し、(b)は復元処理後のボケが解消された画像(点像)を示す。
添付図面を参照して本発明の実施形態について説明する。以下の説明では、一例として、コンピュータ(PC:パーソナルコンピュータ)に接続可能なデジタルカメラ(撮像装置)に本発明を適用する例について説明する。
図1は、コンピュータに接続されるデジタルカメラの概略を示すブロック図である。
デジタルカメラ10は、交換可能なレンズユニット12と、撮像素子26を具備するカメラ本体(本体部)14とを備え、レンズユニット12のレンズユニット端子22とカメラ本体14のカメラ本体端子30とを介して、レンズユニット12とカメラ本体14とは電気的に接続される。
レンズユニット12は、レンズ16や絞り(図示省略)等の光学系と、この光学系を制御する光学系操作部18とを具備し、光学系操作部18は、レンズユニット端子22に接続されるレンズユニットコントローラ20と、光学系を操作するアクチュエータ(図示省略)とを含む。レンズユニットコントローラ20は、レンズユニット端子22を介してカメラ本体14から送られてくる制御信号に基づき、アクチュエータを介して光学系を制御し、例えば、レンズ移動によるフォーカス制御やズーム制御、絞りの絞り量制御、等を行う。
カメラ本体14の撮像素子26は、RGB等のカラーフィルタとイメージセンサ(CMOS、CCD等)とを有し、レンズユニット12の光学系(レンズ16、絞り等)を介して照射される被写体像の光を電気信号に変換し、画像信号をカメラ本体コントローラ(画像処理装置)28に送る。
カメラ本体コントローラ28は、カメラ本体14を統括的に制御し、例えば撮像素子26からの画像信号(画像データ)の出力を制御したり、撮像素子26からの画像信号を画像処理したり、レンズユニット12を制御するための制御信号を作成してカメラ本体端子30を介してレンズユニット12(レンズユニットコントローラ20)に送信したり、入出力インターフェース32を介して接続される外部機器類(コンピュータ60等)に画像処理前後の画像データ(RAWデータ、JPEGデータ等)を送信したりする。
カメラ本体コントローラ28は、必要に応じた任意の画像処理を行うことができ、センサ補正処理、デモザイク(同時化)処理、画素補間処理、色補正処理(ホワイトバランス処理、カラーマトリック処理、ガンマ変換処理、等)、RGB画像処理(シャープネス処理、トーン補正処理、露出補正処理、等)及びJPEG圧縮処理を行うことができる。加えて、本例のカメラ本体コントローラ28は、いわゆる点像復元処理を画像データに対して施す。この点像復元処理の詳細については後述する。
カメラ本体コントローラ28において画像処理された画像データは、入出力インターフェース32に接続されるコンピュータ60等に送られる。この時、コンピュータ60等に送られる画像データのフォーマットは特に限定されず、RAW、JPEG、TIFF等の任意のフォーマットとしうる。したがってカメラ本体コントローラ28は、いわゆるExifフォーマットのように、ヘッダ情報(撮影情報(撮影日時、機種、画素数、絞り値等)等)、主画像データ及びサムネイル画像データを相互に対応づけて1つの画像ファイルとして構成し、この画像ファイルがカメラ本体14からコンピュータ60に送信されるようにしてもよい。
コンピュータ60は、カメラ本体14の入出力インターフェース32及びコンピュータ端子62を介してデジタルカメラ10に接続され、カメラ本体14から送られてくる画像データ等のデータ類を受信する。コンピュータ60のコンピュータコントローラ64は、コンピュータ60を統括的に制御し、デジタルカメラ10からの画像データを画像処理したり、インターネット70等のネットワーク回線を介してコンピュータ端子62に接続されるサーバ80との通信制御をしたりする。コンピュータ60はディスプレイ66を有し、コンピュータコントローラ64における処理内容等がディスプレイ66に必要に応じて表示される。ユーザは、ディスプレイ66の表示を確認しながらキーボード等の入力手段(図示省略)を操作することで、コンピュータコントローラ64に対してデータや指示を入力し、コンピュータ60に接続されるデジタルカメラ10やサーバ80を制御することも可能である。
サーバ80は、サーバ端子82及びサーバコントローラ84を有する。サーバ端子82は、コンピュータ60等の外部機器類との送受信接続部を構成し、インターネット70を介してコンピュータ60のコンピュータ端子62に接続される。サーバコントローラ84は、コンピュータ60からの制御指示信号に応じ、コンピュータコントローラ64と共働し、データ類をコンピュータ60にダウンロードしたり、演算処理を行ってその演算結果をコンピュータ60に送信したりする。
なお、各コントローラ(レンズユニットコントローラ20、カメラ本体コントローラ28、コンピュータコントローラ64、サーバコントローラ84)は、制御処理に必要な回路類を備え、例えば演算処理回路(CPU等)やメモリ等を具備する。
次に、撮像素子26を介して得られる被写体像の撮像データ(画像データ)の点像復元処理について説明する。なお、本例では、カメラ本体14(カメラ本体コントローラ28)において下記の一連の点像復元処理が実施される例について説明するが、点像復元処理の全部又は一部を他のコントローラ(レンズユニットコントローラ20、コンピュータコントローラ64等)において実施することも可能である(図10参照)。
図2は、点像復元処理の一例の概略を示すブロック図である。
点像復元処理P10は、復元フィルタFを用いたフィルタリング処理によって、点像復元処理前画像データD10から点像復元処理後画像データD10’を作成する処理である。すなわち、N×Mのタップによって構成される復元フィルタFを処理対象の画像データに適用し、各タップに割り当てられるフィルタ係数と対応の画素データ(点像復元処理前画像データD10の処理対象画素データ及び隣接画素データ)とを加重平均演算することで、点像復元処理後の画素データ(点像復元処理後画像データD10’)を算出することができる。この復元フィルタFを用いた加重平均処理を、対象画素を順番に代え、画像データを構成する全画素データに適用することで、点像復元処理を行うことができる。
なお、復元フィルタFは、撮影条件(レンズ種、絞り、ズーム位置、被写体距離、等)や画像内の位置(像高)のそれぞれの条件に応じて準備されており、点像復元処理P10では、処理対象の画素データの条件(撮影条件、画像中位置等)に応じた復元フィルタFが選択されて使用される。したがって、撮影条件(絞り、ズーム位置、被写体距離、等)や画像内の位置(像高)などの条件が増えるほどに、準備しておくべき復元フィルタFのデータ量は増え、復元フィルタFの記憶データ量は膨大になる。しかしながら、以下の各実施形態によれば、そのような復元フィルタFの必要記憶量を低減することができる。
<第1実施形態>
一般に、点像復元処理の復元フィルタサイズはPSFのサイズと相関があり、点拡がりの大きなPSFほど大きなタップ数の復元フィルタによって点像復元処理を行うことが望ましい。また、PSFが対称な形であれば、復元フィルタも対称な形となるため、そのような対称性を利用することで復元フィルタの情報量を圧縮することが可能である。すなわち、「光学系の点像強度分布を表す光学情報(PSF等)の特徴(対称性)」や「フィルタ情報圧縮のための他の特性(タップ数)」を拘束条件として考慮した復元フィルタの設計を行うことによって、点像復元処理の精度を落とすことなく、復元フィルタに必要な情報を効率良く圧縮することができる。
図3は、第1実施形態に係る点像復元処理の復元フィルタ作成記憶方法を示すブロック図であり、主としてデータの流れを示す図である。
本実施形態では、画像データの点像復元に関する統計情報(復元条件パラメータ)D12が取得され、また画像データの取得時に使用される光学系の点像強度分布を表す光学情報(PSF)D14が取得される。そして、取得された復元条件パラメータD12及びPSFデータD14に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報D16が求められる(図3のP12)。
復元条件パラメータD12は、点像復元処理の際の入力画像データの統計情報(例えばSN比)を含み、点像復元処理の復元フィルタの作成に必要な付加情報であって、PSFデータD14以外の情報である。
光学系の点像強度分布を表す光学情報として、例えばPSF(点拡がり関数)が挙げられる。PSFは、与えられる条件下での点像拡がり(PSF形状)を表し、撮影条件や画像中の位置によって変化する。なお、光学情報は、PSFに限定されるものではなく、PSFをフーリエ変換して得られるOTF(MTF、PTF)等であってもよいが、本実施形態では一例としてPSFが光学情報として用いられる。
フィルタ情報D16は、PSFデータD14に対応する点像復元処理の復元フィルタを、復元条件パラメータD12及びPSFデータD14から一定の精度で復元するために、最低限必要なフィルタ係数以外の情報を含む。具体的には、例えば、復元フィルタのタップ数に関する情報や復元フィルタの対称性の種類(点対称、回転対称など)を示す情報が、フィルタ情報D16に含まれうる。
例えば、PSF形状(点拡がり)のサイズが大きい場合には復元フィルタ全体のタップ数を多く設定し、PSF形状が点対称である場合には復元フィルタの対称性を点対称に設定し、PSF形状が回転対称である場合には復元フィルタの対称性を回転対称に設定することが可能である。また、復元フィルタの対称性を考慮して、復元フィルタの再現に必要な復元フィルタのタップ数が定められ、具体的には、復元フィルタを構成する総タップ数や対称性に基づき最低限記憶すべきタップ数が決められる。
これらのフィルタ情報(対称性、復元フィルタタップ数、等)は、相互に関連づけられ、フォーマット識別子(フィルタ情報ID)が割り当てられる。これらのフィルタ情報とフォーマット識別子(フィルタ情報ID)との関係については後述する(図5参照)。
そして、フィルタ情報D16を拘束条件として、復元条件パラメータ(統計情報)D12及びPSFデータ(光学情報)D14に基づき、復元フィルタのフィルタ係数D18が算出される(P14)。すなわち、復元フィルタの情報量(タップ数、対称性)の拘束条件下で、最も性能が高いフィルタ係数が算出される。
例えば、フィルタ情報が復元フィルタのタップ数に関するデータと復元フィルタの対称性の種類を示すデータとを含む場合、復元フィルタのタップ数に関するデータと復元フィルタの対称性の種類を示すデータとを拘束条件として、フィルタ係数を算出することが可能である。このとき、復元フィルタの再現に必要な復元フィルタの各タップに対してフィルタ係数が算出される。したがって、復元フィルタが所定の対称性を有し、復元フィルタの再現に必要な復元フィルタのタップ数が本来の復元フィルタを構成するタップ数よりも少ない場合、フィルタ係数の情報量を低減(圧縮)することができる。このように拘束条件を指定した上でフィルタ係数を最適設計することによって、復元フィルタを設計してからフィルタ係数を無理矢理非可逆圧縮する場合よりも、復元フィルタによる点像復元精度を向上させることができる。
なお以下では、復元条件パラメータ(統計情報)D12及びPSFデータ(光学情報)D14の両者からフィルタ係数D18を算出する例について説明するが、PSFデータ(光学情報)D14のみからフィルタ係数D18を算出することも可能であり、復元条件パラメータ(統計情報)D12が不明な場合であってもフィルタ係数D18を算出することができる。
そして、算出されたフィルタ係数D18とこのフィルタ係数D18に対応するフィルタ情報(フィルタフォーマット)D16とは、相互に関連づけられて、メモリ(ROM等)に記憶される(P16)。
図4は、図3に示すデータ処理を行うコントローラの機能ブロック図である。本例では、以下の復元条件パラメータ算出部34、PSF記憶部36、フィルタ情報算出部38、フィルタ係数算出部40及びフィルタ係数−フォーマット記憶部42が、カメラ本体コントローラ28(図1参照)によって構成される。
まず、復元条件パラメータ算出部(統計情報取得部)34によって復元条件パラメータ(統計情報:SN比等)D12が取得され、この復元条件パラメータD12はフィルタ情報算出部38に送られる。
復元条件パラメータ算出部34は、復元に関する入力画像の統計情報(SN比等)を算出取得し、この統計情報を復元条件パラメータD12として出力する。一般に、Wienerフィルタによる画像復元には撮影対象画像のSN比が必要とされる。この場合のSN比は、周波数毎に必要とされ、SNR(ω,ω)によって表現される。ここで、ω及びωはそれぞれx軸方向及びy軸方向の角周波数である。SN比の情報は、デジタルカメラ10で使用されるISO感度、撮像素子26のOB(オプティカルブラック)領域のデータ値、等から総合的に算出される。
なお、SN比等の統計情報を、予め算出しておき、所定のメモリ(記憶部)記憶しておいてもよい。この場合、例えば復元条件パラメータ算出部34が、画像データの復元に関する統計情報を記憶する統計情報記憶部として機能し、復元条件パラメータ算出部34に記憶される統計情報を取得する統計情報取得部としてフィルタ情報算出部38が機能してもよい。
一方、PSF記憶部36は、画像データの取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部として機能する。本例のPSF記憶部36には、撮影条件や画像中位置等の点像分布関数に影響を及ぼし得る条件(PSF条件)と、各条件に応じたPSFデータD14とが予め対応づけられて格納される。これらの相互に対応づけられた情報(単に「PSFデータD14」とも表記する)は、PSF記憶部36からフィルタ情報算出部38に送られる。
フィルタ情報算出部38は、画像データの取得時に使用される光学系の点像強度分布を表す光学情報を取得する光学情報取得部として働き、レンズ情報に基づく光学伝達関数(光学情報(PSF))を取得する。光学伝達関数は、撮影時における光学系の状態(ズーム位置、絞り、フォーカス位置、等)や画像中の中心からの距離(位置)に応じて定められる。光学伝達関数の取得の方法は、カメラ本体14の内部ROM(カメラ本体コントローラ28)、交換レンズ式カメラの場合には交換レンズ内のROM(レンズユニットコントローラ20)、RAW現像ソフトがコンピュータ60にインストールされている場合にはインターネット70を介して接続されるサーバ80等から、光学伝達関数を読み出す手法が考えうる。本例では、カメラ本体14の内部ROM(カメラ本体コントローラ28)に光学伝達関数(PSF)が記憶される場合について説明する。
なお、光学伝達関数は、PSFやOTFによって表現可能である。PSFとOTFとは相互にフーリエ変換・逆フーリエ変換することによって得られる関係にあり、PSFは実関数、OTFは複素関数である。これらと等価な情報を持つものとして、MTF及びPTFがあり、それぞれOTFの振幅成分及び位相成分を示す。したがって、情報量の観点からは、MTF及びPTFの組み合わせがOTF或いはPSFと等価となる。これらは、画像中の位置によって異なるため、画像中の位置毎に求める必要がある。PSF、OTF、MTF及びPTFのうち、いずれの情報を取得可能なのかはシステムによって異なるが、少なくとも1つは取得できる必要がある。
復元条件パラメータD12及びPSFデータD14を取得したフィルタ情報算出部38は、これらの情報に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報D16を求める。復元フィルタは上述のPSF条件(撮影条件、画像中位置)に応じて変動しうるため、フィルタ情報算出部38は、PSF条件毎にフィルタ情報を求める。
図5は、フォーマット識別子(フィルタ情報ID)、PSFの対称性、位相成分の有無、復元フィルタ(フィルタ係数)の配置フォーマット及び記憶すべきフィルタ係数の数(タップ数)の関係を示す表である。図5には、一例として、PSFの対称性が「回転対称」、「垂直対称」、「水平対称」、「点対称」及び「非対称」の場合が例示されており、またMタップ×Mタップ(最大7タップ×7タップ)の正方フィルタのタップ数によって復元フィルタが構成される場合が例示されている。
図5の復元フィルタ(フィルタ係数)の配置フォーマットを示す「フィルタ係数配置フォーマット」の項目において、記号1〜9、a〜z及びA〜Nによって表される復元フィルタのタップのうち、共通する記号が割り当てられるタップには共通のフィルタ係数が割り当てられる。また、「フィルタ係数配置フォーマット」の項目において、塗りつぶされたタップの数が「記憶すべきフィルタ係数の数(N)」に相当する。
例えば、PSFが回転対称性を有する場合、PSF形状は「PSF(x,y)=g(√(x+y))」の関係性を持ち、位相は無く、記憶すべきフィルタ係数の数(タップ数)Nは「N=(M+1)((M+1)/2+1)/4」によって表される。またPSFが垂直対称性を有する場合、PSF形状は「PSF(x,y)=PSF(x,−y)」の関係性を持ち、位相は存在し、記憶すべきフィルタ係数の数Nは「N=(M+1)(M−1)/4」によって表される。またPSFが水平対称性を有する場合、PSF形状は「PSF(x,y)=PSF(−x,y)」の関係性を持ち、位相は存在し、記憶すべきフィルタ係数の数Nは「N=(M+1)(M−1)/4」によって表される。またPSFが点対称性を有する場合、PSF形状は「PSF(x,y)=PSF(−x,−y)」の関係性を持ち、位相は無く、記憶すべきフィルタ係数の数Nは「N=(M+1)/4」によって表される。またPSFが対称性を有さない場合、PSF形状は非対称性であり、位相は存在し、記憶すべきフィルタ係数の数Nは「N=M」によって表される。
図4に示すフィルタ情報算出部38は、復元条件パラメータD12及びPSFデータD14に基づいてフィルタ情報(タップ数・対称性)を算出し、図5に示される表データに従って、PSFの対称性の判定を行い、対応のフィルタ情報ID(フォーマットID:識別子p)を求める。このフィルタ情報ID(識別子p)は、復元フィルタを表現するのに必要なフィルタ係数の配置情報に対応づけられ、フィルタ情報算出部38によって保持されている。一般に、ゼロ位相フィルタであればフィルタ情報量(記憶すべきタップ数)は(おおまかには)半分となり、更に回転対称であれば1/8となる。ゼロ位相とならない場合であっても、垂直対称や水平対称であれば、フィルタ情報量(記憶すべきタップ数)を半分にすることができる。
光学伝達関数がPSFとして与えられる場合には、上記のように単純にPSF対称性のみによって判断することができるが、MTF及びPTFのうち片方だけしか利用できない場合においては選び方の基準が若干異なる。MTFしか利用できない場合には、必然的にゼロ位相フィルタによる復元しかできず、図5に示す例ではフィルタ情報ID(識別子p)の1番及び4番のうちから対応のフィルタ情報ID(識別子p)を選ぶことになる(MTFが回転対称ならば図5のp=1がフィルタ情報として定められ、回転対称でないならばp=4がフィルタ情報として定められる)。
なお、復元フィルタの対称性の種類を示すデータは、上述のようにPSF形状からフィルタ情報算出部38によって求められてもよいし、予めPSFと対応づけられてPSF記憶部36に記憶しておき、PSFと共にPSF記憶部36からフィルタ情報算出部38に送られるようにしてもよい。
この場合、フィルタ情報算出部38は、PSFと、このPSFによる点像強度分布に対応づけられる復元フィルタの対称性の種類を示すフィルタ情報IDデータ(フォーマットID:識別子p)とを、PSF記憶部36から取得する。フィルタ情報算出部38によって算出されるフィルタ情報は、復元フィルタのタップ数に関するデータとなる。なお、フィルタ係数算出部40は、フィルタ情報算出部38が求める復元フィルタのタップ数に関するデータとフィルタ情報算出部38が取得する復元フィルタの対称性の種類を示すデータとを拘束条件とし、フィルタ係数を算出することとなる。
フィルタ情報算出部38は、フィルタ情報ID(識別子p)を決定した後に、フィルタサイズ(図5の表中のM値)を決定する。一般に、広がりが大きなPSFほど、復元フィルタに必要なタップ数は多くなり、またSN比が大きいほど、周波数特性が急峻になる可能性が高いことから、タップ数を大きくとる必要がある。しかしながら、所望の復元精度のフィルタを得るためにどの程度のタップ数が必要なのかを正確に判断するには多くの計算量が必要なことから、現実的にはPSFのサイズとSN比をパラメータとして、経験的な予測をするのが現実的である。
具体的には、フィルタ情報IDごとに、2次元のテーブルを持ち、フィルタサイズを以下のように決定する。
M=Tp(ρ,SNR)
ここで、pはフィルタ情報ID(識別子)を示し、ρはPSFのサイズを示し、SNRはSN比を示す。また、復元フィルタは、Mタップ×Mタップの正方フィルタである(タップ数=M×M)。記憶すべきタップ数(自由度)Nは、Mの値と図5の表中の式(「記憶すべきフィルタ係数の数(N)」)によって決定される。
そして、求められたフィルタ情報(フィルタ情報ID(識別子p)、タップ数)D16は、PSFデータD14及び復元条件パラメータD12と一緒に、フィルタ情報算出部38からフィルタ係数算出部40に送られる。
フィルタ係数算出部40は、送られてくるフィルタ情報D16を拘束条件として、復元条件パラメータD12及びPSFデータD14に基づき、PSF条件(撮影条件、画像中位置)毎に、復元フィルタのフィルタ係数D18を算出する。すなわち、フィルタ係数算出部40は、フィルタ情報D16を拘束条件として、入力画像統計情報(SN比)及びPSF画像情報(PSF)から、記憶すべきタップに割り当てられるフィルタ係数を算出する。具体的には、フィルタ係数算出部40は、まず復元フィルタの周波数特性を算出する。
一般に、PSFによるボケの復元には、コンボリュージョン型のWienerフィルタを利用することができる。OTFとSN比の情報を参照して、以下の式によって復元フィルタの周波数特性d(ω,ω)を算出することができる。
Figure 2014050190
ここでH(ω,ω)はOTFを表し、H(ω,ω)はその複素共役を表す。また、SNR(ω,ω)はSN比を表す。
フィルタ係数の設計は、フィルタの周波数特性が、所望のWiener周波数特性に最も近くなるように係数値を選択する最適化問題であり、任意の公知の手法によってフィルタ係数が適宜算出される。
この復元フィルタ設計は、評価汎関数Jp[x]を最小化する
Figure 2014050190
を求める問題となる。汎関数Jp[x]は、復元フィルタの理想的な周波数特性d(ω,ω)と、フィルタ係数xによって実現された実際のフィルタの周波数特性との近さを、任意の公知の評価手法によって定義したものである。フィルタが実現できる周波数特性の範囲はフィルタフォーマットに依存するため、評価汎関数は識別子pによって異なった定義となる。
求めるべきフィルタ係数xは、次のように表現できる。
Figure 2014050190
いずれの方法を用いるにせよ、最適化に必要な計算量は、フィルタ係数の自由度(記憶すべきタップ数)Nに大きな影響を受け、自由度Nが大きいほどより多くの計算量が必要とされ、自由度Nが大きくなるほど、その計算量の複雑化の傾向は顕著となる。したがって、PSFの対称性などを最初に考慮してフィルタフォーマットを予め決定しておくことによって、フィルタ設計に必要な計算量を大幅に減らすことが可能となる。
また「M×Mタップのフィルタ係数を最初に算出しておいてから、フィルタ係数自体の対称性を考慮して、フィルタ係数の非可逆圧縮を行うケース」と比較すると、上述の例によるフィルタ係数の決定方法は、周波数近似によってフィルタ係数を直接的に最適化することができる一方で、フィルタ係数を圧縮(フィルタ係数の自由度Nを低減)することができる。そのため、復元フィルタの周波数特性に関してもより望ましいフィルタ係数を得ることが可能である。
算出されたフィルタ係数D18は、フィルタ情報D16及びPSF条件と関連づけられて、フィルタ係数算出部40からフィルタ係数−フォーマット記憶部42に送られ、フィルタ係数−フォーマット記憶部42に記憶格納される。フィルタ係数−フォーマット記憶部42は、フィルタ係数D18とフィルタ係数D18に対応するフィルタ情報D16とを相互に関連づけて記憶し、PSF条件(画像データの取得条件(撮影条件)、画像データによって表される画像中の位置)に応じて、フィルタ係数D18及びフィルタ情報D16を記憶する。
図6は、記憶部に記憶されるフィルタ係数及びフィルタ情報に基づいて復元フィルタを作成する流れを示す機能ブロック図である。
フィルタ係数−フォーマット記憶部42に記憶されるフィルタ情報D16及びフィルタ係数D18は、復元フィルタ係数フォーマット変換部(復元フィルタ作成部)44によって読み出される。
復元フィルタ係数フォーマット変換部44は、フィルタ係数−フォーマット記憶部42に記憶されるフィルタ係数D18及びフィルタ情報D16に基づいて、復元フィルタD20を作成する。すなわち、復元フィルタ係数フォーマット変換部44は、復元フィルタ係数の情報データ(フォーマット識別子)を参考にして、格納されているフィルタ係数を、復元フィルタ(フィルタ係数)を用いて点像復元処理を行う信号処理部(点像復元処理部)46が扱える形に変換する。具体的には、復元フィルタ係数フォーマット変換部44は、フォーマット識別子に関連づけられた復元フィルタの対称性に基づき、フィルタ係数が割り当てられるタップを拡張して、例えばMタップ×Mタップの復元フィルタを作成する。したがって、復元フィルタ係数フォーマット変換部44は、周囲のタップに0を割り当てたり、フィルタ係数のタップを回転対称に拡張して、全てのタップにフィルタ係数の割り当てを拡張したりする。なお、復元フィルタ係数フォーマット変換部44で作成される復元フィルタD20は、後段の信号処理部46において画像データD22に適用可能な任意の形式とすることができる。
復元フィルタ係数フォーマット変換部44は、このようにして作成される復元フィルタD20を、信号処理部46に送る。信号処理部46は、復元フィルタ係数フォーマット変換部44から復元フィルタ(フィルタ係数)を受信し、この復元フィルタを入力画像データD22に適用することで、入力画像データD22に対して点像復元処理を行う。
以上説明したように、本実施形態によれば、光学系の点像強度分布を表す光学情報(PSF等)の対称性などを最初に考慮してフィルタフォーマットが予め決定される。これにより、復元フィルタによる点像復元精度を一定レベル以上に保持しつつ、フィルタ設計に必要な記憶フィルタ情報量を減らし、計算量を大幅に減らすことができる。したがって、完全な復元フィルタを再現するのに必要なフィルタ係数の保存データ量を低減することができ、必要なROM容量(記憶容量)を削減することが可能である。
また、「M×Mのフィルタ係数を最初に算出しておいてから、フィルタ係数自体の対称性を考慮して、フィルタ係数の非可逆圧縮を行うケース」と比較すると、本実施形態によるフィルタ係数の決定方法は、記憶すべき復元フィルタのタップのフィルタ係数を周波数近似によって直接的に最適化することで求めることができる。これにより、復元フィルタの周波数特性に関しても、より望ましい復元フィルタを得ることが可能となる。
<第2実施形態>
本実施形態において、上述の第1実施形態と共通の構成については同一の符号を付し、その詳細な説明は省略する。
PSF記憶部36(図4参照)に記憶される光学伝達関数(画像データ取得時に使用される光学系の点像強度分布を表す光学情報)は、任意のフォーマットで記憶しておくことが可能である。以下では、対称性による冗長性が排除された状態で光学伝達関数(PSF)がPSF記憶部36に格納されるケースについて説明する。
本実施形態のPSF記憶部36に記憶される光学情報は、PSFに基づく点像強度分布の対称性の種類を示すデータと、この点像強度分布の対称性の種類に基づいて点像強度分布を再現可能に圧縮されたPSFのデータ(圧縮データ)とを含む。圧縮されたPSFのデータ(圧縮データ)は、点像強度分布の対称性の種類を示すデータと対応づけられている。
図7は、第2実施形態に係るPSF記憶部36に記憶される光学伝達関数(PSF、OTF)の関係を示す表であり、フォーマット識別子(PSF種別ID)、PSFの対称性、位相成分の有無、格納すべきPSFの定義域及び格納すべきOTF定義域の対応関係を示す。
本実施形態において、格納すべき定義域におけるPSF及びOTFの離散化のサンプリング間隔は、各PSF種別IDに応じて、適切なものを選ぶ必要がある。PSF情報のサンプリング値の数Kは、格納すべき定義域が少なく(狭く)なるほど小さくなる。
なお、図5に示されるフォーマット識別子(フィルタ情報ID)と図7に示されるフォーマット識別子(PSF種別ID)とは相互に対応しており、対応するフォーマット識別子には共通の識別子pが割り当てられる。相互に対応するPSF種別ID(図7参照)とフィルタ情報ID(図5参照)とに共通の識別子pを割り当てることで、PSFの対称性を考慮して冗長性を排除した状態でPSFがPSF記憶部36に格納される場合、フィルタ情報算出部38における復元フィルタの対称性を判定するプロセスが不要になる。フィルタ情報算出部38における他の処理は、上述の第1実施形態と略同じである。
フィルタ情報算出部38は、点像強度分布の対称性の種類を示すデータから、復元フィルタの対称性の種類を示すデータを求める。またフィルタ情報算出部38は、点像強度分布の対称性の種類を示すデータと対応づけられた圧縮データ及び復元条件パラメータ(統計情報、SN比)に基づいて、復元フィルタのタップ数に関するデータを求める。
フィルタ係数算出部40は、Wienerフィルタ周波数(復元フィルタの所望周波数)の算出のために、対称性を考慮して部分的にしか保存されていないPSFをその対称性を考慮して定義域(必要域)全体へ展開し、全体が完全に復元されたPSF条件を算出した上で、個々のフィルタ係数の算出を行う。ここで、PSFを一旦定義域全体に展開する必要があるのは、Wienerフィルタ周波数の算出式が非線形であることに起因する。しかしながら、復元フィルタ作成の基準を以下のように少し変えることによって、計算量と必要なメモリを大幅に削減することが可能となる。すなわち、復元フィルタの適用結果の画像データ(点像復元処理後画像データ)と、点拡がり現象による劣化前の理想画像との平均二乗誤差JWNR[x]は、以下のように表現される。
Figure 2014050190
上記式において、各関数は以下のように定義される。
Figure 2014050190
この平均二乗誤差JWNR[x]はWienerフィルタの評価基準そのものであり、もしfがノンパラメトリックならば、平均二乗誤差JWNR[x]を最小化するフィルタ周波数特性はf(ω,ω)=d(ω,ω)の関係を有し、コンボリュージョン型の理想Wienerフィルタ周波数と一致する。
もしH(ω,ω|y)がyに関して線形の式であれば、上記の評価基準を最小化するxは、上記第1実施形態の場合と同様となり、目標となる理想Wienerフィルタ周波数の算出を経なくて済むため、計算量と必要メモリ量を低減することができる。
以上説明したように、本実施形態によれば、光学系の点像強度分布を表す光学情報(PSF、OTF情報)は対称性による冗長性が取り除かれた状態で記憶及び使用されるため、光学情報の対称性を判定する必要がなくなる。また、対称性が考慮されて、光学情報(PSF、OTF)の一部しか保存されていない場合には、フィルタ係数演算の途中のWienerフィルタ周波数算出を行わないでフィルタ設計を行うことができ、演算処理負荷を軽減することができる。
<第3実施形態>
本実施形態において、上述の第1実施形態及び第2実施形態と共通の構成については同一の符号を付し、その詳細な説明は省略する。
フィルタ係数−フォーマット記憶部42(図4参照)は、フィルタ係数D18、フィルタ情報D16及びPSF条件を、任意のフォーマットで記憶しておくことが可能である。
図8は、第3実施形態に係るフィルタ係数−フォーマット記憶部42を示す機能ブロック図である。
フォーマット指定されて圧縮された形でフィルタ係数算出部40から出力されるフィルタ係数は、フィルタ情報(フィルタ情報ID(識別子p)、フィルタサイズデータ(M))と共にフィルタ係数−フォーマット記憶部42にストレージ記録される。これらの情報をストレージ記録する理由は、フィルタ係数の算出には計算コストがかかるため、一度算出したフィルタ係数は、次回にすぐ使えるように保存しておいた方が好ましいためである。なお、フィルタ係数の算出をカメラ本体内やパソコンにインストールされるRAW現像ソフト内で行わない場合であっても、例えば予め算出されたフィルタ係数を出荷時にROMに格納しておく場合には、上記のストレージ記録方法は有効である。
本実施形態に係るフィルタ係数−フォーマット記憶部42は、シリアライザ49及びデシリアライザ50を有する格納処理部48と、格納処理部48に接続されるインデックス−オフセット変換テーブル格納部52及び復元フィルタ情報格納部54とを備える。
シリアライザ49は、入力されるフィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数から、フィルタ係数ベクトル(サイズN)を割り出し、フィルタ情報ID(識別子p)とフィルタサイズデータ(M)とフィルタ係数ベクトルとを復元フィルタ情報格納部54に必要最小限の記憶サイズで記録する。一方、デシリアライザ50は、シリアライザ49の処理と逆の処理を行い、復元フィルタ情報格納部54から読み出される「フィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数ベクトル」から、フィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数を復元する。
記録すべき復元フィルタは、撮影条件や画像中における位置などに応じて多数存在するが、記憶要素のデータ長が固定でないためメモリ(復元フィルタ情報格納部54)へのランダムアクセスが難しくなる一方で、どの条件において撮影されるのかはユーザによってランダムに決定されるためメモリへのランダムアクセスが必要になる。そのため、インデックス−オフセット変換テーブル格納部52にインデックス−オフセット変換テーブルを記憶しておき、ランダムアクセスを容易にする工夫が必要となる。
すなわち、画像データの撮影条件(取得条件)及び画像データによって表される画像中の位置と、相互に関連づけられるフィルタ係数及びフィルタ情報が記憶されるフィルタ係数−フォーマット記憶部42(復元フィルタ情報格納部54)のメモリアドレスとが対応づけられたインデックス−オフセット変換テーブルが、インデックス−オフセット変換テーブル格納部52に記憶される。したがって、復元フィルタ情報格納部54における「フィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数ベクトル」のメモリアドレス(オフセット情報)と、対応の「撮影条件及び画像中位置」(インデックス)とを相互に関連づけたインデックス−オフセット変換テーブルが、格納処理部48(シリアライザ49)によってインデックス−オフセット変換テーブル格納部52に格納される。
復元フィルタ係数フォーマット変換部44は、インデックス−オフセット変換テーブル格納部52に格納されるインデックス−オフセット変換テーブルに基づき、画像データの取得条件及び画像データによって表される画像中の位置に応じたフィルタ係数及びフィルタ情報を、フィルタ係数−フォーマット記憶部42(復元フィルタ情報格納部54)から読み出す。すなわち、復元フィルタ係数フォーマット変換部44は、デシリアライザ50を介し、必要な「フィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数ベクトル」を読み出す際にはインデックス−オフセット変換テーブル格納部52に格納されるインデックス−オフセット変換テーブルを参照し、必要とされる復元フィルタの「対応撮影条件及び対応画像中位置」(インデックス)を手掛かりにして復元フィルタ情報格納部54における対応のメモリアドレスを取得する。そして復元フィルタ係数フォーマット変換部44は、デシリアライザ50を介し、取得した復元フィルタ情報格納部54のメモリアドレスに対してランダムアクセスすることで、必要な「フィルタ情報ID(識別子p)、フィルタサイズデータ(M)及びフィルタ係数ベクトル」を迅速に読み出すことができる。
以上説明したように、本実施形態によれば、フォーマット指定されて圧縮された形で出力されたフィルタ係数を、必要最小限の記憶サイズによって記憶部(フィルタ係数−フォーマット記憶部42)に記録することができる。また、記憶部(メモリ)に保持される各データに対して効率的にランダムアクセスすることができるため、復元フィルタの再現に必要なデータ(フィルタ係数、フィルタ情報(識別子p、フィルタサイズM))の読み込み速度が遅くなることを回避することができる。
<第4実施形態>
本実施形態において、上述の第1実施形態、第2実施形態及び第3実施形態と共通の構成については同一の符号を付し、その詳細な説明は省略する。
図9は、第4実施形態に係る復元フィルタ係数フォーマット変換部44及び信号処理部46の構成を示す機能ブロック図である。
復元フィルタ係数フォーマット変換部44は、フィルタ係数−フォーマット記憶部42(図6参照)に保持されたフィルタ係数とフィルタ情報(フォーマット識別子)とから復元フィルタを作成し、作成された復元フィルタを用いて信号処理部46が画像データの点像復元処理を行う。
本実施形態の信号処理部46は、画像データに復元フィルタを適用して点像復元処理を行う複数の専用信号処理装置(復元処理部)58−i(i=1〜Q;以下単に符号「58」によって複数の専用信号処理装置を表す)を有し、これらの専用信号処理装置58は、復元フィルタの対称性の複数種類の各々に対して用意される。
復元フィルタ係数フォーマット変換部44は、フォーマット変換処理部56を有し、このフォーマット変換処理部56は、復元フィルタの対称性の種類と専用信号処理装置58との対応関係を示すフィルタ−フォーマット変換テーブルT1を格納するフィルタフォーマット変換テーブル格納部57を持つ。
フォーマット変換処理部56は、フィルタ−フォーマット変換テーブルT1に基づき、フィルタ係数−フォーマット記憶部42から読み出されるフィルタ情報から、復元フィルタの対称性の種類を求め、対応の専用信号処理装置58(専用信号処理装置ID(q))を特定する。またフォーマット変換処理部56は、必要に応じて、特定した対応の専用信号処理装置58(専用信号処理装置ID(q))に応じた形式(タップフォーマット)に、フィルタ係数を(拡張)変換する。なお、このフィルタ係数の変換をすることなく、フィルタ係数−フォーマット記憶部42から読み出されるフィルタ係数(記憶すべきフィルタ係数)が、特定した対応の専用信号処理装置58に対して直接的に入力可能な場合には、フォーマット変換処理部56におけるフィルタ係数の変換は行われない。
このようにして特定される「対応の専用信号処理装置58を示す専用信号処理装置ID(q:処理部指示データ)」及び「フィルタ係数」は、復元フィルタとしてフォーマット変換処理部56から信号処理部46に送られる。
信号処理部46は、復元フィルタ係数フォーマット変換部44から送られてくる専用信号処理装置ID(q)によって示される専用信号処理装置58−qにより、復元フィルタ係数フォーマット変換部44(フォーマット変換処理部56)から送られてくるフィルタ係数を用いて、入力画像データに対する点像復元処理を行う。
信号処理部46における復元フィルタの適用は、ハードウェア又はソフトウェアによって行われるが、いずれの場合にせよ、復元フィルタが対称な形をしているなどの拘束条件が存在する場合には、乗算回数を減らすなどの最適化を行うことができる。
専用信号処理装置58は、それぞれ関連づけられた復元フィルタの対称性に応じて最適化された点像復元処理デバイスであり、対称性を考慮した最適な演算処理によって、演算負荷を軽減して高速演算を行うことができる。例えば、復元フィルタ(フィルタ係数)の格納フォーマット(識別子p)のそれぞれについて、専用の信号処理装置(専用信号処理装置58)が存在している場合には、対応する専用信号処理装置58のパラメータを設定するだけでよい。しかしながら、専用信号処理装置58のパターン数が少ない場合には、フォーマットの変換が必要となる。
適用可能な専用信号処理装置58には、フィルタフォーマットの自由度(復元フィルタの対称性)に応じて、包含関係が存在する。例えば、回転対称の復元フィルタ係数用の信号処理装置として、水平対称の復元フィルタのフィルタ係数専用に設計された専用信号処理装置58を使うことができる。この場合、フォーマット変換処理部56は、フィルタフォーマット変換テーブル格納部57に格納されているフィルタ−フォーマット変換テーブルT1を参照して、回転対称の復元フィルタのフィルタフォーマットを水平対称のフィルタフォーマットに変換する。また、復元フィルタの再現に必要なタップ(図5のフィルタ係数配置フォーマット及び記憶すべきフィルタ係数の数(N)参照)に関しても、フォーマット変換処理部56は、回転対称の復元フィルタの場合のタップ数から水平対称の復元フィルタの場合のタップ数に拡張し、拡張されたタップに対して対応のフィルタ係数を割り当てる。
回転対称専用の信号処理装置が存在していない場合にこのような変換をする本例は、回転対称専用の信号処理装置が存在している場合に比べ、点像復元処理のための計算量は多くなるが、可能な範囲でなるべく計算量が少なくなるような専用信号処理装置58に点像復元処理を実行させることができるため、好ましい。このようにフィルタフォーマットを、フォーマット変換することにより、既存の専用信号処理装置58によって扱うことが可能となる場合がある。
これを実現するために、フィルタフォーマット識別子p(1≦p≦P)と、信号処理装置が扱うことができるフィルタフォーマット識別子q(専用信号処理装置ID(q):1≦q≦Q)との間で、フォーマット変換が可能なペアを列挙したテーブル(フィルタ−フォーマット変換テーブルT1)又は判定ロジックを用意しておき、フォーマット変換処理部56は、変換可能なフィルタフォーマット識別子q(専用信号処理装置ID(q))のうちで、最も計算コストが少なくてすむフォーマットへの変換処理を実行し、その対応装置を選択して処理を行わせる。例えば、信号処理装置の計算量が(q=1)<(q=2)<…<(q=Q)となるように番号が付けられていたとすると、変換可能な「フィルタフォーマット識別子p−フィルタフォーマット識別子q」変換ペアのうちで、最も小さいq番号を持つ変換ペアを選ぶことで、演算負荷を軽減することができる。
以上説明したように、本実施形態によれば、復元フィルタの格納フォーマットとフィルタ適用の信号処理装置のフィルタ係数入力フォーマットが一致していない場合でも、復元フィルタを適切に適用して点像復元処理を行うことができる。また、複数の専用の信号処理装置を利用可能な場合には、より計算コストの少ない信号処理装置に点像復元処理を担当させることができる。
<変形例>
上述のデジタルカメラ10は例示に過ぎず、他の構成に対しても本発明を適用することが可能である。また各機能構成は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。したがって、例えば、上述の各処理部(復元条件パラメータ算出部34、PSF記憶部36、フィルタ情報算出部38、フィルタ係数算出部40、フィルタ係数−フォーマット記憶部42、復元フィルタ係数フォーマット変換部44及び信号処理部46)における処理手順をコンピュータに実行させるソフトウェア(各処理工程(手順)をコンピュータに実行させるためのプログラム等)に対しても本発明を適用することができる。このソフトウェア(プログラム等)はROMなどのコンピュータ読み取り可能な非一時的記録媒体(non−transitory computer−readable medium)に記録されてもよい。
また、上述の各実施形態では、カメラ本体14(カメラ本体コントローラ28)が各処理部(復元条件パラメータ算出部34、PSF記憶部36、フィルタ情報算出部38、フィルタ係数算出部40、フィルタ係数−フォーマット記憶部42、復元フィルタ係数フォーマット変換部44及び信号処理部46)を具備する態様について説明したが、これらの処理部は任意の箇所に設けることができる。
例えば、画像データの復元に関する統計情報を算出記憶する復元条件パラメータ算出部34(パラメータ記憶部)と、画像データの取得時に使用される光学系の点像強度分布を表す光学情報(PSF、OTF等)を記憶するPSF記憶部(光学情報記憶部)36と、統計情報及び光学情報を取得し、これらの統計情報及び光学情報に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部38(復元条件パラメータ取得部、光学情報取得部、フィルタ情報算出部)とを、単一のデジタルカメラ10(撮像装置)に設けることができる。
また、デジタルカメラ10のレンズユニット12のレンズユニットコントローラ(光学情報記憶部)20に、画像データの取得時に使用される光学系の点像強度分布を表す光学情報(PSF等)を記憶し、カメラ本体14のカメラ本体コントローラ28(パラメータ記憶部)に画像データの復元に関する統計情報(SN比等)を記憶し、統計情報及び光学情報に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部38(復元条件パラメータ取得部、光学情報取得部、フィルタ情報算出部)をカメラ本体14に設けるようにしてもよい。
また、画像データの復元に関する統計情報が画像データと共にコンピュータに入力されるようにし、画像データの取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部(PSF記憶部36)と、統計情報及び光学情報に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部38(復元条件パラメータ取得部、光学情報取得部、フィルタ情報算出部)とをコンピュータに設けるようにしてもよい。
また、画像データの復元に関する統計情報と、画像データの取得時に使用される光学系の点像強度分布を表す光学情報とが画像データと共にコンピュータに入力されるようにして、統計情報及び光学情報に基づき、画像データの点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部38(復元条件パラメータ取得部、光学情報取得部、フィルタ情報算出部)をこのコンピュータに設けるようにしてもよい。
図10は、各処理部の設置に関する具体例(実施例)を示す表である。
上述の各実施形態は、図4及び図6に示す各処理部がカメラ本体14に設けられる例であったため、図10の実施例1に対応する。本実施例1は、例えば、レンズユニット12とカメラ本体14とが一体的に構成されるデジタルカメラ10に対して好適である。
一方、デジタルカメラ10のレンズユニット12が交換可能な場合には、PSF記憶部36をレンズユニット12(レンズユニットコントローラ20)に設け、他の処理部をカメラ本体14(カメラ本体コントローラ28)に設けることも可能である(図10の実施例2)。この場合、レンズユニット12毎に定義される光学伝達関数(PSF、OTF)をレンズユニット12と共に保持することができる。これにより、カメラ本体14側で点像復元処理を行う場合には、使用しない他のレンズユニットに対して定義される光学伝達関数をカメラ本体14側において保持しておく必要がなくなるため、記憶負荷を軽減することができる。
また、PSF記憶部36がカメラ本体14に設けられる場合であっても、PSF記憶部36に記憶する光学伝達関数をサーバ80のサーバコントローラ84に予め記憶しておき、必要な光学伝達関数を、サーバコントローラ84からインターネット70(ネットワーク)及びコンピュータ60を介してPSF記憶部36にダウンロード(DL)/インストールするようにしてもよい(実施例3)。
また図4及び図6に示す各処理部をコンピュータ60(コンピュータコントローラ64)によって実現することも可能である。この場合、復元条件パラメータ算出部34をカメラ本体14(カメラ本体コントローラ28)によって実現してもよく、カメラ本体コントローラ28によって算出された復元条件パラメータ(統計情報)をExif画像ファイルのヘッダ情報に含め、主画像(画像データ)と共に復元条件パラメータをカメラ本体14からコンピュータ60に送信することもできる(実施例4)。また、PSF記憶部36に記憶する光学伝達関数は、コンピュータ60(コンピュータコントローラ64)のPSF記憶部36にプリインストールされていてもよいし、必要に応じてサーバコントローラ84からインターネット70(ネットワーク)を介してPSF記憶部36にダウンロード(DL)/インストールされるようにしてもよい。また、カメラ本体14(カメラ本体コントローラ28)によって復元条件パラメータ算出部34を実現し、交換可能なレンズユニット12(レンズユニットコントローラ20)によってPSF記憶部36を実現し、他の処理部をコンピュータ60(コンピュータコントローラ64)によって実現してもよい(実施例5)。
本発明を適用可能な態様はデジタルカメラやコンピュータには特に限定されず、撮像を主たる機能とするカメラ類の他に、撮像以外の他の機能(通話機能、通信機能、その他のコンピュータ機能)を備えるモバイル機器類に対しても適用可能である。本発明を適用可能な他の態様としては、例えば、カメラ機能を有する携帯電話機やスマートフォン、PDA(Personal Digital Assistants)、携帯型ゲーム機が挙げられる。以下、スマートフォンを例に挙げ、図面を参照しつつ、詳細について説明する。
<スマートフォンの構成>
図11は、本発明の撮影装置の一実施形態であるスマートフォン101の外観を示すものである。図11に示すスマートフォン101は、平板状の筐体102を有し、筐体102の一方の面に表示部としての表示パネル121と、入力部としての操作パネル122とが一体となった表示入力部120を備えている。また、係る筐体102は、スピーカ131と、マイクロホン132、操作部140と、カメラ部141とを備えている。なお、筐体102の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造やスライド機構を有する構成を採用することもできる。
図12は、図11に示すスマートフォン101の構成を示すブロック図である。図12に示すように、スマートフォンの主たる構成要素として、無線通信部110と、表示入力部120と、通話部130と、操作部140と、カメラ部141と、記憶部150と、外部入出力部160と、GPS(Global Positioning System)受信部170と、モーションセンサ部180と、電源部190と、主制御部100とを備える。また、スマートフォン101の主たる機能として、基地局装置BSと移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。
無線通信部110は、主制御部100の指示にしたがって、移動通信網NWに収容された基地局装置BSに対し無線通信を行うものである。係る無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。
表示入力部120は、主制御部100の制御により、画像(静止画像及び動画像)や文字情報などを表示して視覚的にユーザに情報を伝達し、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネルであって、表示パネル121と、操作パネル122とを備える。
表示パネル121は、LCD(Liquid Crystal Display)、OELD(Organic Electro−Luminescence Display)などを表示デバイスとして用いたものである。操作パネル122は、表示パネル121の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。係るデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部100に出力する。次いで、主制御部100は、受信した検出信号に基づいて、表示パネル121上の操作位置(座標)を検出する。
図11に示すように、本発明の撮影装置の一実施形態として例示しているスマートフォン101の表示パネル121と操作パネル122とは一体となって表示入力部120を構成しているが、操作パネル122が表示パネル121を完全に覆うような配置となっている。係る配置を採用した場合、操作パネル122は、表示パネル121外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル122は、表示パネル121に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル121に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。
なお、表示領域の大きさと表示パネル121の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル122が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体102の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル122で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。
通話部130は、スピーカ131やマイクロホン132を備え、マイクロホン132を通じて入力されたユーザーの音声を主制御部100にて処理可能な音声データに変換して主制御部100に出力したり、無線通信部110あるいは外部入出力部160により受信された音声データを復号してスピーカ131から出力するものである。また、図11に示すように、例えば、スピーカ131を表示入力部120が設けられた面と同じ面に搭載し、マイクロホン132を筐体102の側面に搭載することができる。
操作部140は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図11に示すように、操作部140は、スマートフォン101の筐体102の側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。
記憶部150は、主制御部100の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータ、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶し、またストリーミングデータなどを一時的に記憶するものである。また、記憶部150は、スマートフォン内蔵の内部記憶部151と着脱自在な外部メモリスロットを有する外部記憶部152により構成される。なお、記憶部150を構成するそれぞれの内部記憶部151と外部記憶部152は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)などの格納媒体を用いて実現される。
外部入出力部160は、スマートフォン101に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等(例えば、ユニバーサルシリアルバス(USB)、IEEE1394など)又はネットワーク(例えば、インターネット、無線LAN、ブルートゥース(Bluetooth)(登録商標)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)(登録商標)、UWB(Ultra Wideband)(登録商標)、ジグビー(ZigBee)(登録商標)など)により直接的又は間接的に接続するためのものである。
スマートフォン101に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)やSIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器、無線接続される外部オーディオ・ビデオ機器、有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホンなどがある。外部入出力部は、このような外部機器から伝送を受けたデータをスマートフォン101の内部の各構成要素に伝達することや、スマートフォン101の内部のデータが外部機器に伝送されるようにすることができる。
GPS受信部170は、主制御部100の指示にしたがって、GPS衛星ST1〜STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、このスマートフォン101の緯度、経度、高度からなる位置を検出する。GPS受信部170は、無線通信部110や外部入出力部160(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。
モーションセンサ部180は、例えば、3軸の加速度センサなどを備え、主制御部100の指示にしたがって、スマートフォン101の物理的な動きを検出する。スマートフォン101の物理的な動きを検出することにより、スマートフォン101の動く方向や加速度が検出される。係る検出結果は、主制御部100に出力されるものである。
電源部190は、主制御部100の指示にしたがって、スマートフォン101の各部に、バッテリ(図示しない)に蓄えられる電力を供給するものである。
主制御部100は、マイクロプロセッサを備え、記憶部150が記憶する制御プログラムや制御データにしたがって動作し、スマートフォン101の各部を統括して制御するものである。また、主制御部100は、無線通信部110を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。
アプリケーション処理機能は、記憶部150が記憶するアプリケーションソフトウェアにしたがって主制御部100が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部160を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。
また、主制御部100は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画像や動画像のデータ)に基づいて、映像を表示入力部120に表示する等の画像処理機能を備える。画像処理機能とは、主制御部100が、上記画像データを復号し、係る復号結果に画像処理を施して、画像を表示入力部120に表示する機能のことをいう。
更に、主制御部100は、表示パネル121に対する表示制御と、操作部140、操作パネル122を通じたユーザ操作を検出する操作検出制御を実行する。
表示制御の実行により、主制御部100は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトウェアキーを表示したり、あるいは電子メールを作成するためのウィンドウを表示する。なお、スクロールバーとは、表示パネル121の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。
また、操作検出制御の実行により、主制御部100は、操作部140を通じたユーザ操作を検出したり、操作パネル122を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。
更に、操作検出制御の実行により主制御部100は、操作パネル122に対する操作位置が、表示パネル121に重なる重畳部分(表示領域)か、それ以外の表示パネル121に重ならない外縁部分(非表示領域)かを判定し、操作パネル122の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。
また、主制御部100は、操作パネル122に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。
カメラ部141は、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge−Coupled Device)などの撮像素子を用いて電子撮影するデジタルカメラである。また、カメラ部141は、主制御部100の制御により、撮像によって得た画像データを例えばJPEG(Joint Photographic coding Experts Group)などの圧縮した画像データに変換し、記憶部150に記録したり、入出力部160や無線通信部110を通じて出力することができる。図11に示すにスマートフォン101において、カメラ部141は表示入力部120と同じ面に搭載されているが、カメラ部141の搭載位置はこれに限らず、表示入力部120の背面に搭載されてもよいし、あるいは、複数のカメラ部141が搭載されてもよい。なお、複数のカメラ部141が搭載されている場合には、撮影に供するカメラ部141を切り替えて単独にて撮影したり、あるいは、複数のカメラ部141を同時に使用して撮影することもできる。
また、カメラ部141はスマートフォン101の各種機能に利用することができる。例えば、表示パネル121にカメラ部141で取得した画像を表示することや、操作パネル122の操作入力のひとつとして、カメラ部141の画像を利用することができる。また、GPS受信部170が位置を検出する際に、カメラ部141からの画像を参照して位置を検出することもできる。更には、カメラ部141からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用して、スマートフォン101のカメラ部141の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部141からの画像をアプリケーションソフトウェア内で利用することもできる。
その他、静止画又は動画の画像データにGPS受信部170により取得した位置情報、マイクロホン132により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)、モーションセンサ部180により取得した姿勢情報等などを付加して記憶部150に記録したり、入出力部160や無線通信部110を通じて出力することもできる。
上述のスマートフォン101において、点像復元処理に関連する上述の各処理部は、例えば主制御部100、記憶部150等によって適宜実現可能である。
<EDoFシステムへの適用例>
上述の実施形態における復元処理は、特定の撮影条件(例えば、絞り値、F値、焦点距離、レンズ種類、など)に応じて点拡がり(点像ボケ)を回復修正することで本来の被写体像を復元する画像処理であるが、本発明を適用可能な画像復元処理は上述の実施形態における復元処理に限定されるものではない。例えば、拡大された被写界(焦点)深度(EDoF:Extended Depth of Field(Focus))を有する光学系(撮影レンズ等)によって撮影取得された画像データに対する復元処理に対しても、本発明に係る復元処理を適用することが可能である。EDoF光学系によって被写界深度(焦点深度)が拡大された状態で撮影取得されるボケ画像の画像データに対して復元処理を行うことで、広範囲でピントが合った状態の高解像度の画像データを復元生成することができる。この場合、EDoF光学系の点拡がり関数(PSF、OTF、MTF、PTF、等)に基づく復元フィルタであって、拡大された被写界深度(焦点深度)の範囲内において良好な画像復元が可能となるように設定されたフィルタ係数を有する復元フィルタを用いた復元処理が行われる。
以下に、EDoF光学系を介して撮影取得された画像データの復元に関するシステム(EDoFシステム)の一例について説明する。なお、以下に示す例では、デモザイク処理後の画像データ(RGBデータ)から得られる輝度信号(Yデータ)に対して復元処理を行う例について説明するが、復元処理を行うタイミングは特に限定されず、例えば「デモザイク処理前の画像データ(モザイク画像データ)」や「デモザイク処理後であって輝度信号変換処理前の画像データ(デモザイク画像データ)」に対して復元処理が行われてもよい。
図13は、EDoF光学系を備える撮像モジュール201の一形態を示すブロック図である。本例の撮像モジュール(デジタルカメラ等)201は、EDoF光学系(レンズユニット)210と、撮像素子212と、AD変換部214と、復元処理ブロック(画像処理部)220とを含む。
図14は、EDoF光学系210の一例を示す図である。本例のEDoF光学系210は、単焦点の固定された撮影レンズ210Aと、瞳位置に配置される光学フィルタ211とを有する。光学フィルタ211は、位相を変調させるもので、拡大された被写界深度(焦点深度)(EDoF)が得られるようにEDoF光学系210(撮影レンズ210A)をEDoF化する。このように、撮影レンズ210A及び光学フィルタ211は、位相を変調して被写界深度を拡大させるレンズ部を構成する。
なお、EDoF光学系210は必要に応じて他の構成要素を含み、例えば光学フィルタ211の近傍には絞り(図示省略)が配設されている。また、光学フィルタ211は、1枚でもよいし、複数枚を組み合わせたものでもよい。また、光学フィルタ211は、光学的位相変調手段の一例に過ぎず、EDoF光学系210(撮影レンズ210A)のEDoF化は他の手段によって実現されてもよい。例えば、光学フィルタ211を設ける代わりに、本例の光学フィルタ211と同等の機能を有するようにレンズ設計された撮影レンズ210AによってEDoF光学系210のEDoF化を実現してもよい。
すなわち、撮像素子212の受光面への結像の波面を変化させる各種の手段によって、EDoF光学系210のEDoF化を実現することが可能である。例えば、「厚みが変化する光学素子」、「屈折率が変化する光学素子(屈折率分布型波面変調レンズ等)」、「レンズ表面へのコーディング等により厚みや屈折率が変化する光学素子(波面変調ハイブリッドレンズ、レンズ面上に位相面として形成される光学素子、等)」、「光の位相分布を変調可能な液晶素子(液晶空間位相変調素子等)」を、EDoF光学系210のEDoF化手段として採用しうる。このように、光波面変調素子(光学フィルタ211(位相板))によって規則的に分散した画像形成が可能なケースだけではなく、光波面変調素子を用いた場合と同様の分散画像を、光波面変調素子を用いずに撮影レンズ210A自体によって形成可能なケースに対しても、本発明は応用可能である。
図14に示すEDoF光学系210は、メカ的に焦点調節を行う焦点調節機構を省略することができるため小型化が可能であり、カメラ付き携帯電話や携帯情報端末に好適に搭載可能である。
EDoF化されたEDoF光学系210を通過後の光学像は、図13に示す撮像素子212に結像され、ここで電気信号に変換される。
撮像素子212は、所定のパターン配列(ベイヤー配列、GストライプR/G完全市松、X−Trans配列、ハニカム配列、等)でマトリクス状に配置された複数画素によって構成され、各画素はマイクロレンズ、カラーフィルタ(本例ではRGBカラーフィルタ)及びフォトダイオードを含んで構成される。EDoF光学系210を介して撮像素子212の受光面に入射した光学像は、その受光面に配列された各フォトダイオードにより入射光量に応じた量の信号電荷に変換される。そして、各フォトダイオードに蓄積されたR・G・Bの信号電荷は、画素毎の電圧信号(画像信号)として順次出力される。
AD変換部214は、撮像素子212から画素毎に出力されるアナログのR・G・B画像信号をデジタルのRGB画像信号に変換する。AD変換部214によりデジタルの画像信号に変換されたデジタル画像信号は、復元処理ブロック220に加えられる。
復元処理ブロック220は、例えば、黒レベル調整部222と、ホワイトバランスゲイン部223と、ガンマ処理部224と、デモザイク処理部225と、RGB/YCrCb変換部226と、Y信号復元処理部227とを含む。
黒レベル調整部222は、AD変換部214から出力されたデジタル画像信号に黒レベル調整を施す。黒レベル調整には、公知の方法が採用されうる。例えば、ある有効光電変換素子に着目した場合、その有効光電変換素子を含む光電変換素子行に含まれる複数のOB光電変換素子の各々に対応する暗電流量取得用信号の平均を求め、その有効光電変換素子に対応する暗電流量取得用信号からこの平均を減算することで、黒レベル調整が行われる。
ホワイトバランスゲイン部223は、黒レベルデータが調整されたデジタル画像信号に含まれるRGB各色信号のホワイトバランスゲインに応じたゲイン調整を行う。
ガンマ処理部224は、ホワイトバランス調整されたR、G、B画像信号が所望のガンマ特性となるように中間調等の階調補正を行うガンマ補正を行う。
デモザイク処理部225は、ガンマ補正後のR、G、B画像信号にデモザイク処理を施す。具体的には、デモザイク処理部225は、R、G、Bの画像信号に色補間処理を施すことにより、撮像素子212の各受光画素から出力される一組の画像信号(R信号、G信号、B信号)を生成する。すなわち、色デモザイク処理前は、各受光画素からの画素信号はR、G、Bの画像信号のいずれかであるが、色デモザイク処理後は、各受光画素に対応するR、G、B信号の3つの画素信号の組が出力されることとなる。
RGB/YCrCb変換部226は、デモザイク処理された画素毎のR、G、B信号を、輝度信号Yと色差信号Cr、Cbに変換し、画素毎の輝度信号Y及び色差信号Cr、Cbを出力する。
Y信号復元処理部227は、予め記憶された復元フィルタに基づいて、RGB/YCrCb変換部226からの輝度信号Yに復元処理を行う。復元フィルタは、例えば、7×7のカーネルサイズを有するデコンボリューションカーネル(M=7、N=7のタップ数に対応)と、そのデコンボリューションカーネルに対応する演算係数(復元ゲインデータ、フィルタ係数に対応)とからなり、光学フィルタ211の位相変調分のデコンボリューション処理(逆畳み込み演算処理)に使用される。なお、復元フィルタは、光学フィルタ211に対応するものが図示しないメモリ(例えばY信号復元処理部227が付随的に設けられるメモリ)に記憶される。また、デコンボリューションカーネルのカーネルサイズは、7×7のものに限らない。
次に、復元処理ブロック220による復元処理について説明する。図15は、図13に示す復元処理ブロック220における復元処理の一例を示すフローチャートである。
黒レベル調整部222の一方の入力には、AD変換部214からデジタル画像信号が加えられており、他の入力には黒レベルデータが加えられており、黒レベル調整部222は、デジタル画像信号から黒レベルデータを減算し、黒レベルデータが減算されたデジタル画像信号をホワイトバランスゲイン部223に出力する(ステップS1)。これにより、デジタル画像信号には黒レベル成分が含まれなくなり、黒レベルを示すデジタル画像信号は0になる。
黒レベル調整後の画像データに対し、順次、ホワイトバランスゲイン部223、ガンマ処理部224による処理が施される(ステップS2及びS3)。
ガンマ補正されたR、G、B信号は、デモザイク処理部225でデモザイク処理された後に、RGB/YCrCb変換部226において輝度信号Yとクロマ信号Cr、Cbに変換される(ステップS4)。
Y信号復元処理部227は、輝度信号Yに、EDoF光学系210の光学フィルタ211の位相変調分のデコンボリューション処理を掛ける復元処理を行う(ステップS5)。すなわち、Y信号復元処理部227は、任意の処理対象の画素を中心とする所定単位の画素群に対応する輝度信号(ここでは7×7画素の輝度信号)と、予めメモリなどに記憶されている復元フィルタ(7×7のデコンボリューションカーネルとその演算係数)とのデコンボリューション処理(逆畳み込み演算処理)を行う。Y信号復元処理部227は、この所定単位の画素群ごとのデコンボリューション処理を撮像面の全領域をカバーするよう繰り返すことにより画像全体の像ボケを取り除く復元処理を行う。復元フィルタは、デコンボリューション処理を施す画素群の中心の位置に応じて定められている。すなわち、近接する画素群には、共通の復元フィルタが適用される。さらに復元処理を簡略化するためには、全ての画素群に共通の復元フィルタが適用されることが好ましい。
図16(a)に示すように、EDoF光学系210を通過後の輝度信号の点像(光学像)は、大きな点像(ボケた画像)として撮像素子212に結像されるが、Y信号復元処理部227でのデコンボリューション処理により、図16(b)に示すように小さな点像(高解像度の画像)に復元される。
上述のようにデモザイク処理後の輝度信号に復元処理をかけることで、復元処理のパラメータをRGB別々に持つ必要がなくなり、復元処理を高速化することができる。また、飛び飛びの位置にあるR・G・Bの画素に対応するR・G・Bの画像信号をそれぞれ1単位にまとめてデコンボリューション処理するのでなく、近接する画素の輝度信号同士を所定の単位にまとめ、その単位には共通の復元フィルタを適用してデコンボリューション処理するため、復元処理の精度が向上する。なお、色差信号Cr・Cbについては、人の目による視覚の特性上、復元処理で解像度を上げなくても画質的には許容される。また、JPEGのような圧縮形式で画像を記録する場合、色差信号は輝度信号よりも高い圧縮率で圧縮されるので、復元処理で解像度を上げる必要性が乏しい。こうして、復元精度の向上と処理の簡易化及び高速化を両立できる。
以上説明したようなEDoFシステムの復元処理に対しても、本発明の各実施形態に係る点像復元処理を適用することが可能である。すなわち、フィルタ情報算出部38(光学情報取得部)において、画像の取得時に使用されるEDoF光学系210の点像強度分布を表す光学情報を取得し、この光学情報に基づき復元フィルタのフィルタ係数を算出し、信号処理部46において、算出されたフィルタ係数を用いた点像復元処理を行うことが可能である。
本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
10…デジタルカメラ、12…レンズユニット、14…カメラ本体、16…レンズ、18…光学系操作部、20…レンズユニットコントローラ、22…レンズユニット端子、26…撮像素子、28…カメラ本体コントローラ、30…カメラ本体端子、32…入出力インターフェース、34…復元条件パラメータ算出部、36…PSF記憶部、38…フィルタ情報算出部、40…フィルタ係数算出部、42…フォーマット記憶部、44…復元フィルタ係数フォーマット変換部、46…信号処理部、48…格納処理部、49…シリアライザ、50…デシリアライザ、52…オフセット変換テーブル格納部、54…復元フィルタ情報格納部、56…フォーマット変換処理部、57…フィルタフォーマット変換テーブル格納部、58…専用信号処理装置、60…コンピュータ、62…コンピュータ端子、64…コンピュータコントローラ、66…ディスプレイ、70…インターネット、80…サーバ、82…サーバ端子、84…サーバコントローラ、100…主制御部、101…スマートフォン、102…筐体、110…無線通信部、120…表示入力部、121…表示パネル、122…操作パネル、130…通話部、131…スピーカ、132…マイクロホン、140…操作部、141…カメラ部、150…記憶部、151…内部記憶部、152…外部記憶部、160…外部入出力部、160…入出力部、170…受信部、170…GPS受信部、180…モーションセンサ部、190…電源部、201…撮像モジュール、210…EDoF光学系、210A…撮影レンズ、211…光学フィルタ、212…撮像素子、214…AD変換部、220…復元処理ブロック、222…黒レベル調整部、223…ホワイトバランスゲイン部、224…ガンマ処理部、225…デモザイク処理部、226…YCrCb変換部、227…Y信号復元処理部

Claims (12)

  1. 画像の点像復元に関する統計情報を取得する統計情報取得部と、
    前記画像の取得時に使用される光学系の点像強度分布を表す光学情報を取得する光学情報取得部と、
    前記統計情報及び前記光学情報のうち少なくとも何れかに基づき、前記画像の点像復元処理のための復元フィルタのフィルタ情報を求めるフィルタ情報算出部と、
    前記フィルタ情報を拘束条件として、前記統計情報及び前記光学情報に基づき、前記復元フィルタのフィルタ係数を算出するフィルタ係数算出部と、前記フィルタ係数算出部で算出された前記フィルタ係数を用いて前記点像復元処理を行う点像復元処理部と、を備える画像処理装置。
  2. 前記フィルタ情報は、前記復元フィルタのタップ数に関する情報と、前記復元フィルタの対称性の種類を示す情報とを含み、
    前記フィルタ係数算出部は、前記フィルタ情報算出部が求める前記復元フィルタのタップ数に関する情報と前記復元フィルタの対称性の種類を示す情報とを拘束条件として、前記フィルタ係数を算出する請求項1に記載の画像処理装置。
  3. 前記光学情報は、前記点像強度分布の対称性の種類を示す情報と、前記点像強度分布の対称性の種類に基づいて前記点像強度分布を再現可能な圧縮された情報であって前記点像強度分布の対称性の種類を示す情報と対応づけられた圧縮された情報とを含み、
    前記フィルタ情報算出部は、前記点像強度分布の対称性の種類を示す情報から前記復元フィルタの対称性の種類を示す情報を求め、前記点像強度分布の対称性の種類を示す情報と対応づけられた前記圧縮された情報及び前記統計情報に基づいて前記復元フィルタのタップ数に関する情報を求める請求項2に記載の画像処理装置。
  4. 前記光学情報取得部は、前記光学情報と、前記点像強度分布に対応づけられる前記復元フィルタの対称性の種類を示す情報とを取得し、
    前記フィルタ情報は、前記復元フィルタのタップ数に関する情報を含み、
    前記フィルタ係数算出部は、前記フィルタ情報算出部が求める前記復元フィルタのタップ数に関する情報と前記光学情報取得部が取得する前記復元フィルタの対称性の種類を示す情報とを拘束条件として、前記フィルタ係数を算出する請求項1に記載の画像処理装置。
  5. 前記フィルタ係数と当該フィルタ係数に対応する前記フィルタ情報とを相互に関連づけて記憶する記憶部を更に備える請求項1から4のいずれか1項に記載の画像処理装置。
  6. 前記記憶部に記憶される前記フィルタ係数及び前記フィルタ情報に基づいて前記復元フィルタを作成する復元フィルタ作成部を更に備える請求項5に記載の画像処理装置。
  7. 前記光学系は、位相を変調して被写界深度を拡大させるレンズ部を有する請求項1から6のいずれか1項に記載の画像処理装置。
  8. 画像の点像復元に関する統計情報を記憶する統計情報記憶部と、
    前記画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部と、
    前記統計情報記憶部及び前記光学情報記憶部に接続される請求項1から7のいずれか1項に記載の画像処理装置と、を備える撮像装置。
  9. レンズユニットと、当該レンズユニットに接続される本体部とを備える撮像装置であって、
    前記レンズユニットは、画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部を有し、
    前記本体部は、前記画像の点像復元に関する統計情報を記憶する統計情報記憶部と、前記統計情報記憶部及び前記光学情報記憶部に接続される請求項1から7のいずれか1項に記載の画像処理装置と、を有する撮像装置。
  10. 画像の点像復元に関する統計情報が前記画像と共に入力されるコンピュータであって、
    前記画像の取得時に使用される光学系の点像強度分布を表す光学情報を記憶する光学情報記憶部と、
    前記光学情報記憶部に接続される請求項1から7のいずれか1項に記載の画像処理装置と、を備えるコンピュータ。
  11. 画像の点像復元に関する統計情報と、前記画像の取得時に使用される光学系の点像強度分布を表す光学情報とが前記画像と共に入力されるコンピュータであって、
    請求項1から7のいずれか1項に記載の画像処理装置を備えるコンピュータ。
  12. 画像の点像復元に関する統計情報を取得する手順と、
    前記画像の取得時に使用される光学系の点像強度分布を表す光学情報を取得する手順と、
    前記統計情報及び前記光学情報のうち少なくとも何れかに基づき、前記画像の点像復元処理のための復元フィルタのフィルタ情報を求める手順と、
    前記フィルタ情報を拘束条件として、前記統計情報及び前記光学情報に基づき、前記復元フィルタのフィルタ係数を算出する手順と、算出された前記フィルタ係数を用いて点像復元処理を行う手順と、をコンピュータに実行させるためのプログラム。
JP2014538219A 2012-09-26 2013-04-24 画像処理装置、撮像装置、コンピュータ及びプログラム Active JP5779724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538219A JP5779724B2 (ja) 2012-09-26 2013-04-24 画像処理装置、撮像装置、コンピュータ及びプログラム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012212243 2012-09-26
JP2012212243 2012-09-26
JP2013040681 2013-03-01
JP2013040681 2013-03-01
JP2014538219A JP5779724B2 (ja) 2012-09-26 2013-04-24 画像処理装置、撮像装置、コンピュータ及びプログラム
PCT/JP2013/062001 WO2014050190A1 (ja) 2012-09-26 2013-04-24 画像処理装置、撮像装置、コンピュータ及びプログラム

Publications (2)

Publication Number Publication Date
JP5779724B2 JP5779724B2 (ja) 2015-09-16
JPWO2014050190A1 true JPWO2014050190A1 (ja) 2016-08-22

Family

ID=50387610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538219A Active JP5779724B2 (ja) 2012-09-26 2013-04-24 画像処理装置、撮像装置、コンピュータ及びプログラム

Country Status (4)

Country Link
US (1) US9489719B2 (ja)
JP (1) JP5779724B2 (ja)
CN (1) CN104854858B (ja)
WO (1) WO2014050190A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204868B2 (en) 2011-12-02 2015-12-08 Interscope, Inc. Methods and apparatus for removing material from within a mammalian cavity using an insertable endoscopic instrument
US9808146B2 (en) 2011-12-02 2017-11-07 Interscope, Inc. Endoscopic tool for debriding and removing polyps
CN105409198B (zh) * 2013-07-29 2018-11-09 富士胶片株式会社 摄像装置及图像处理方法
JP2015201724A (ja) * 2014-04-07 2015-11-12 キヤノン株式会社 画像処理装置および画像処理方法
JP6071966B2 (ja) * 2014-09-17 2017-02-01 キヤノン株式会社 画像処理方法およびそれを用いた撮像装置、画像処理装置、画像処理プログラム
JP6071974B2 (ja) * 2014-10-21 2017-02-01 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
JP6376974B2 (ja) * 2014-12-26 2018-08-22 キヤノン株式会社 撮像装置及び撮像システム
JP2017021425A (ja) * 2015-07-07 2017-01-26 キヤノン株式会社 画像生成装置、画像生成方法、および画像生成プログラム
JP6448526B2 (ja) 2015-12-02 2019-01-09 キヤノン株式会社 画像処理装置、撮像装置、画像処理プログラム
JP6426323B2 (ja) * 2016-02-26 2018-11-21 富士フイルム株式会社 画像処理装置、撮像装置及び画像処理方法
US10853926B2 (en) 2016-03-29 2020-12-01 Sony Corporation Image processing device, imaging device, and image processing method
CN106920220B (zh) * 2017-02-24 2019-07-19 西北工业大学 基于暗原色和交替方向乘子法优化的湍流图像盲复原方法
JP6407330B2 (ja) * 2017-03-10 2018-10-17 キヤノン株式会社 画像投射装置
WO2021171928A1 (ja) * 2020-02-26 2021-09-02 ソニーグループ株式会社 画像処理装置、画像処理方法および画像処理プログラム
CN112418054B (zh) * 2020-11-18 2024-07-19 北京字跳网络技术有限公司 图像处理方法、装置、电子设备和计算机可读介质
JP2022129053A (ja) * 2021-02-24 2022-09-05 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、およびプログラム
CN116819909B (zh) * 2023-08-31 2023-11-17 光科芯图(北京)科技有限公司 一种数据压缩方法、装置、曝光设备及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101282A (ja) * 1990-08-20 1992-04-02 Olympus Optical Co Ltd 空間周波数フィルタリング装置
JP2003172873A (ja) 2001-09-28 2003-06-20 Olympus Optical Co Ltd 補正データ作成方法及び撮像装置
CN1910614A (zh) * 2004-01-15 2007-02-07 松下电器产业株式会社 光学传递函数的测定方法、图像恢复方法以及数字图像拍摄装置
JP5261796B2 (ja) * 2008-02-05 2013-08-14 富士フイルム株式会社 撮像装置、撮像方法、画像処理装置、画像処理方法、およびプログラム
KR101422503B1 (ko) 2008-05-09 2014-07-25 삼성전자주식회사 연장된 초점 심도를 갖는 렌즈 및 이를 포함하는 광학시스템
WO2010103527A2 (en) * 2009-03-13 2010-09-16 Ramot At Tel-Aviv University Ltd. Imaging system and method for imaging objects with reduced image blur
JP5546229B2 (ja) * 2009-12-09 2014-07-09 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
JP5441652B2 (ja) * 2009-12-09 2014-03-12 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
WO2011118077A1 (ja) * 2010-03-24 2011-09-29 富士フイルム株式会社 立体撮像装置および視差画像復元方法
JP2011215707A (ja) * 2010-03-31 2011-10-27 Canon Inc 画像処理装置、撮像装置、画像処理方法およびプログラム
JP5506573B2 (ja) * 2010-07-01 2014-05-28 キヤノン株式会社 画像処理装置、画像処理方法
JP4931266B2 (ja) * 2010-08-27 2012-05-16 キヤノン株式会社 画像処理方法、画像処理装置および画像処理プログラム
JP5153846B2 (ja) 2010-09-28 2013-02-27 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、及び、プログラム
JP5409589B2 (ja) 2010-12-17 2014-02-05 キヤノン株式会社 画像処理方法、画像処理プログラム、画像処理装置および撮像装置
CN102625043B (zh) * 2011-01-25 2014-12-10 佳能株式会社 图像处理设备、成像设备和图像处理方法

Also Published As

Publication number Publication date
CN104854858B (zh) 2017-11-07
JP5779724B2 (ja) 2015-09-16
CN104854858A (zh) 2015-08-19
US9489719B2 (en) 2016-11-08
US20150199795A1 (en) 2015-07-16
WO2014050190A1 (ja) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5779724B2 (ja) 画像処理装置、撮像装置、コンピュータ及びプログラム
US9633417B2 (en) Image processing device and image capture device performing restoration processing using a restoration filter based on a point spread function
JP5864813B2 (ja) 復元フィルタ生成装置及び方法、画像処理装置及び方法、撮像装置、プログラム並びに記録媒体
JP5851650B2 (ja) 復元フィルタ生成装置及び方法、画像処理装置、撮像装置、復元フィルタ生成プログラム並びに記録媒体
JP5844940B2 (ja) 復元フィルタ生成装置及び方法、画像処理装置及び方法、撮像装置、プログラム、並びに記録媒体
US9866750B2 (en) Image processing device, imaging device, image processing method, and image processing program
JP5752866B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム並びに記録媒体
JP5903529B2 (ja) 撮像装置、撮像方法及び画像処理装置
US9892495B2 (en) Image processing device, imaging device, image processing method, and image processing program
JP6096382B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP5870231B2 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JPWO2014122804A1 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
US9633418B2 (en) Image processing device, imaging apparatus, image processing method, and program
US10559068B2 (en) Image processing device, image processing method, and program processing image which is developed as a panorama
JPWO2014171423A1 (ja) 撮像装置、キャリブレーションシステム、及びプログラム
WO2014050191A1 (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250