JPWO2014024696A1 - 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ - Google Patents

圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ Download PDF

Info

Publication number
JPWO2014024696A1
JPWO2014024696A1 JP2013549082A JP2013549082A JPWO2014024696A1 JP WO2014024696 A1 JPWO2014024696 A1 JP WO2014024696A1 JP 2013549082 A JP2013549082 A JP 2013549082A JP 2013549082 A JP2013549082 A JP 2013549082A JP WO2014024696 A1 JPWO2014024696 A1 JP WO2014024696A1
Authority
JP
Japan
Prior art keywords
piezoelectric
layer
piezoelectric element
seed layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013549082A
Other languages
English (en)
Other versions
JP5472549B1 (ja
Inventor
健児 馬渡
健児 馬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013549082A priority Critical patent/JP5472549B1/ja
Application granted granted Critical
Publication of JP5472549B1 publication Critical patent/JP5472549B1/ja
Publication of JPWO2014024696A1 publication Critical patent/JPWO2014024696A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

圧電素子(10)は、基板(1)上に、下部電極(3)と、圧電体層(5)の結晶配向性を制御するためのシード層(4)と、上記圧電体層(5)とをこの順で積層して構成される。シード層(4)は、球状粒子の結晶(4a)からなる層を2層以上積層して構成されている。

Description

本発明は、基板上に、電極と、シード層と、圧電体層とをこの順で積層した圧電素子と、その圧電素子を備えた圧電デバイスと、その圧電デバイスを備えたインクジェットヘッドと、インクジェットプリンタとに関するものである。
近年、駆動素子やセンサなどに応用するための機械電気変換素子として、Pb(Zr,Ti)O3などの圧電体が用いられている。このような圧電体は、Si(シリコン)等の基板上に薄膜として形成することで、MEMS(Micro Electro Mechanical Systems)素子へ応用が期待されている。
MEMS素子の製造においては、フォトリソグラフィーなど半導体プロセス技術を用いた高精度な加工を適用できるため、素子の小型化や高密度化が可能となる。特に、直径6インチや直径8インチといった比較的大きなSiウェハ上に素子を高密度に一括で作製することにより、素子を個別に製造する枚葉製造に比べて、コストを大幅に低減することができる。
また、圧電体の薄膜化やデバイスのMEMS化により、機械電気の変換効率が向上することで、デバイスの感度や特性が向上するといった新たな付加価値も生み出されている。例えば、熱センサでは、MEMS化による熱コンダクタンス低減により、測定感度を上げることが可能となり、プリンター用のインクジェットヘッドでは、ノズルの高密度化による高精細パターニングが可能となる。
圧電体薄膜(圧電薄膜)の材料としては、PZT(チタン酸ジルコン酸鉛)と呼ばれるPb、Zr、Ti、Oからなる結晶を用いることが多い。PZTは、図18に示すABO3型のペロブスカイト構造となるときに良好な圧電効果を発現するため、ペロブスカイト単相にする必要がある。ペロブスカイト構造を採るPZTの結晶の単位格子の形は、Bサイトに入る原子であるTiとZrとの比率によって変化する。つまり、Tiが多い場合には、PZTの結晶格子は正方晶となり、Zrが多い場合には、PZTの結晶格子は菱面体晶となる。ZrとTiとのモル比が52:48付近では、これらの結晶構造が両方とも存在し、このような組成比を採る相境界のことを、MPB(Morphotropic Phase Boundary)と呼ぶ。このMPB組成では、圧電定数、分極値、誘電率といった圧電特性の極大が得られることから、MPB組成の圧電薄膜が積極的に利用されている。
圧電体に電界を印加することによって圧電体が変形したり、逆に、圧電体を変形させることによって圧電体に電界(電位差)が生じることを、ここでは圧電効果と呼ぶ。図19は、圧電体の結晶配向の違いによる圧電効果の違いを模式的に示している。圧電体が(100)配向の場合、つまり、圧電体の分極方向Pを(100)方向として、この方向が基板に垂直な方向となる場合、基板に垂直な方向に電界を印加すると、圧電体の分極方向Pと電界の印加方向Eとが揃っているため、電界の大きさが圧電体の変形の力に完全に変換され、基板に垂直な方向に圧電体が効率よく変形する。一方、圧電体が(111)配向の場合、圧電体の分極方向Pである(100)方向が電界の印加方向Eと交差するため、電界の大きさが圧電体の変形の力に完全に変換されず、基板に垂直な方向における圧電体の変形量が少なくなる。
このように、圧電体の圧電特性は、圧電体の結晶配向性によっても変化し、(100)配向のほうが(111)配向よりも圧電特性が高くなる。圧電薄膜をMEMS駆動素子として用いる際には、必要な変位発生力を満たすために3〜5μmの厚みで成膜する必要があり、駆動には高い圧電特性が求められることから、圧電薄膜の結晶配向性は(100)配向であることが望ましい。
しかし、疲労特性や加工のしやすさなどから、例えば(111)配向などの他の結晶配向が好ましい場合もある。つまり、電圧印加時にドメインの回転が起こり難く、エッチングによるパターニング加工がしやすい点では、圧電薄膜を(100)配向よりも(111)配向で形成するほうが望ましい。どちらにせよ、圧電薄膜の結晶配向性を制御することは、安定した特性を得るために重要である。
圧電薄膜をSiなどの基板上に成膜するには、CVD(Chemical Vapor Deposition )法などの化学的成膜法、スパッタ法やイオンプレーティング法といった物理的な方法、ゾルゲル法など液相での成長法を用いることができる。
ところで、Si基板上などに圧電体を薄膜(厚さ数ミクロン程度)で形成する場合、所望の特性が得られないことがしばしば起こる。これは、基板や下部電極と圧電薄膜との格子定数の違いや、線膨張係数の違いによる残留応力により、圧電薄膜において必要なペロブスカイト構造や結晶配向が実現できていないためと考えられる。
そこで、基板と圧電体層との間に、圧電体層の結晶性を制御するための下地層(バッファ層、シード層)を設ける技術が知られている。例えば特許文献1では、基板と圧電体層(例えばPLZT;チタン酸ランタンジルコン酸鉛)との間に、PLT(チタン酸ランタン酸鉛)からなる下地層を設けるようにしている。下地層のPLTは、Si基板や下部電極の上でもペロブスカイト型の結晶ができやすい性質を持っている。したがって、このような下地層上に圧電体層を形成することで、圧電体層をペロブスカイト構造で形成しやすくなる。
また、例えば特許文献2では、圧電体層(PZT)を第1圧電体膜と第2圧電体膜との2層で構成し、基板と上記圧電体層との間にバッファ層としてのPLTを設けている。PLTは柱状粒子からなり、その断面径は例えば40nmである。圧電体層においては、バッファ層側の第1圧電体膜を構成する柱状粒子の断面径(例えば40nm)よりも、第2圧電体膜を構成する柱状粒子の断面径(例えば160nm)のほうが大きくなっている。このような構成により、圧電体層の密着性を向上させて膜剥がれを抑えながら、高い圧電特性を実現するようにしている。
特開平6−290983号公報(請求項1、段落〔0008〕、〔0014〕、図1等参照) 特開2005−203725号公報(請求項2、段落〔0017〕、〔0019〕、〔0139〕〜〔0143〕等参照)
近年では、変位量の大きい圧電素子が益々求められていることから、素子の耐電圧を向上させることが必要となってきている。耐電圧とは、圧電素子に印加できる限界の電圧のことであり、印加電圧が耐電圧を超えると、圧電薄膜の内部で絶縁破壊が生じ、素子が破壊されてしまう。したがって、高い電界を圧電薄膜に印加して高い変位量を得るためには、耐電圧を向上させることが重要であり、耐電圧が低下すると、素子としての信頼性が大きく低下する。
ところが、基板と圧電体層との間にシード層を有する従来の圧電素子の構成では、耐電圧を十分に向上させることができない。以下、この点について、図面を用いて説明する。
図20は、シード層を有する従来の一般的な圧電素子100の概略の構成を模式的に示す断面図である。この圧電素子100は、基板101上に、下部電極102、シード層103、圧電体層104、上部電極(図示せず)をこの順で積層して構成されている。シード層103および圧電体層104をスパッタ法で成膜する場合、一般的には、それらの結晶は柱状に成長し、柱状結晶(柱状粒子)となる。このことは、上述した特許文献2でも示されているが、図21を参照することでより明確となる。
図21は、従来の圧電素子100のシード層103をスパッタ法で形成する際の結晶201の一般的な成長過程を模式的に示している。まず、下地層(下部電極102)の上に、シード層103の構成材料からなる結晶核201aが生成され、この結晶核201aを起点として結晶201が成長する。そして、成長の過程で隣り合う結晶201・201がぶつかると、そこからは各結晶201が膜厚方向に成長し、柱状に形成される。
図20において、シード層103が柱状結晶で構成されると、隣り合う柱状結晶と柱状結晶子との界面、すなわち結晶粒界103aが、シード層103の膜厚方向にストレートに伸びる。このため、圧電体層104を挟む上下の電極間に電圧を印加したときに、結晶粒界103aが電流のリークパスとなり、絶縁破壊が生じると考えられる。
なお、特許文献2の実施例では、0から−100Vまで変化する三角波電圧(周波数2kHz)を電極に印加して、そのときの圧電素子における膜剥がれ等の発生状況を調べているが、三角波電圧の印加では、最大電圧(上記の例では絶対値で100V)が瞬間的(上記の例では1/2000秒の間)にしか電極に印加されない。例えばインクジェットヘッドなどの圧電デバイスでは、直流(Direct Current)の電圧が電極に印加されることを想定しており、描画位置に応じて直流電圧が所定期間連続して印加される。このため、実際のデバイスへの適用を考えた場合、0から−100Vまで変化する三角波電圧の印加に耐え得るからといって、耐電圧が十分であるとは必ずしも言えない。
本発明は、上記の問題点を解決するためになされたもので、その目的は、基板と圧電体層との間にシード層を有する構成であっても、実使用上の耐電圧を十分に向上させることができる圧電素子と、その圧電素子を備えた圧電デバイスと、その圧電デバイスを備えたインクジェットヘッドと、インクジェットプリンタとを提供することにある。
本発明の1側面の圧電素子は、基板上に、電極と、圧電体層の結晶配向性を制御するためのシード層と、前記圧電体層とをこの順で積層した圧電素子であって、前記シード層は、球状粒子の結晶からなる層を2層以上積層して構成されている。
本発明の実施の一形態に係る圧電素子の概略の構成を模式的に示す断面図である。 上記圧電素子のシード層をスパッタ法で形成する際の結晶の成長過程を模式的に示す断面図である。 実施例1の圧電素子の製造工程を示す断面図である。 実施例1の圧電素子の製造工程を示す断面図である。 実施例1の圧電素子の製造工程を示す断面図である。 実施例1の圧電素子の製造工程を示す断面図である。 実施例1の圧電素子のシード層を構成するPLTに対する、XRDの2θ/θ測定の結果を示すグラフである。 実施例1の圧電素子の圧電体層を構成するPZTに対する、XRDの2θ/θ測定の結果を示すグラフである。 圧電変位測定計の概略の構成を示す斜視図である。 実施例1および比較例1の圧電素子における耐電圧の測定結果を示すグラフである。 実施例2の圧電素子のシード層を構成するPLTに対する、XRDの2θ/θ測定の結果を示すグラフである。 実施例2の圧電素子の圧電体層を構成するPZTに対する、XRDの2θ/θ測定の結果を示すグラフである。 実施例3の圧電素子のシード層を構成するPLTに対する、XRDの2θ/θ測定の結果を示すグラフである。 実施例3の圧電素子の圧電体層を構成するPZTに対する、XRDの2θ/θ測定の結果を示すグラフである。 比較例1の圧電素子のシード層を構成するPLTに対する、XRDの2θ/θ測定の結果を示すグラフである。 比較例1の圧電素子の圧電体層を構成するPZTに対する、XRDの2θ/θ測定の結果を示すグラフである。 本実施形態の圧電素子を備えた圧電デバイスの構成を示す平面図である。 図14のA−A’線矢視断面図である。 上記圧電デバイスを備えたインクジェットヘッドの断面図である。 上記インクジェットヘッドを備えたインクジェットプリンタの一部を拡大して示す斜視図である。 PZTの結晶構造を模式的に示す説明図である。 圧電体の結晶配向の違いによる圧電効果の違いを模式的に示す説明図である。 シード層を有する従来の一般的な圧電素子の概略の構成を模式的に示す断面図である。 上記シード層をスパッタ法で形成する際の結晶の一般的な成長過程を模式的に示す断面図である。
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
〔圧電素子の構成〕
図1は、本実施形態の圧電素子10の概略の構成を模式的に示す断面図である。この圧電素子10は、基板1上に、熱酸化膜2と、下部電極3と、シード層4と、圧電体層5と、上部電極6とをこの順で積層して構成されている。なお、圧電素子10において上部電極6を除いた部分、つまり、基板1上に圧電体層5までを積層したものは、圧電薄膜基板を構成している。
基板1は、厚さが例えば300〜500μm程度の単結晶Si(シリコン)単体からなる半導体基板またはSOI(Silicon on Insulator)基板で構成されている。熱酸化膜2は、例えば厚さが0.1μm程度のSiO2(酸化シリコン)からなり、基板1の保護および絶縁の目的で形成されている。
下部電極3は、Ti(チタン)層とPt(白金)層とを積層して構成されている。Ti層は、熱酸化膜2とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1μm程度である。
シード4は、圧電体層5の結晶性を制御するための層であり、バッファ層とも呼ばれるものである。このシード層4は、例えばPLT(チタン酸ランタン酸鉛)で構成されているが、その詳細については後述する。
圧電体層5は、PTO(PbTiO3;チタン酸鉛)とPZO(PbZrO3;ジルコン酸鉛)との固溶体であるPZT(チタン酸ジルコン酸鉛)で構成されている。PZTの厚みは、用途によって異なるが、メモリやセンサの用途では例えば1μm以下であり、アクチュエータでは例えば3〜5μmであるのが一般的である。本実施形態では、圧電体層5のTi/Zr比は、前述した組成相境界(MPB)を構成する比(48/52〜47/53)またはこれに近い比となるように設定されている。
上部電極6は、圧電体層5に対して下部電極3とは反対側に位置しており、Ti層とPt層とを積層して構成されている。Ti層は、圧電体層5とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1〜0.2μm程度である。
上記した下部電極3、シード層4、圧電体層5および上部電極6の各層は、スパッタ法で成膜される。
〔シード層の詳細〕
次に、上記したシード層4の詳細について説明する。図1に示すように、シード層4は、球状粒子の結晶4aからなる層を2層以上積層して構成されている。ここで、本出願において球状粒子の「球状」とは、「柱状」のように同じ断面形状で一方向に伸びた形状ではない形状を意味しており、これには、完全な球状のみならず、球を変形させた形状、断面楕円形状、柱状以外の多面体形状、その他平面と曲面とを組み合わせた形状、凹凸を有する形状なども含まれるものとする。以下、「球状」の表現は、このように解釈するものとするが、図面では、便宜的に、球状粒子を完全な球状で図示する。
球状粒子の粒径(断面径)は、例えば10nm〜50nm程度であり、PLTの格子定数(0.4nm程度)の十倍以上である。すなわち、PLTの1つ1つの単位結晶が寄り集まって1つの球状粒子(結晶4a)が形成されている。
スパッタ法でシード層を形成する場合、前述したように、通常であればシード層は柱状結晶で成長する。しかし、基板温度やスパッタ圧等の成膜条件を工夫することにより、上記のような球状粒子の結晶4aを成長させてシード層4を形成することができる。以下、より詳細に説明する。
図2は、シード層4をスパッタ法で形成する際の結晶4aの成長過程を模式的に示している。本実施形態では、スパッタ法でのシード層4の成膜の際に、ターゲットからはじき飛ばされる粒子(ターゲットの材料成分)の運動エネルギーが高くなるように成膜条件を設定して、結晶核4a1の生成を起こりやすくしている。このようにすることで、結晶核4a1を起点とした結晶4aの成長と、新たな結晶核4a1の生成とがほぼ並行して行われるようになり、下層の結晶4aが柱状に成長する前に(球状粒子の生成後に)、下層の結晶4aと結晶4aとの隙間に入り込んだ結晶核4a1を起点として、上層の結晶4aを成長させることができる。以降、このようなメカニズムにより、球状粒子の結晶4aからなる層を次々に堆積させることが可能となる。なお、上層の結晶核4a1は、結晶4aよりも小さい粒であり、下層の結晶4aと結晶4aとの隙間に入り込もうとするため、下層の結晶4aを構成する球状粒子の真上に上層の結晶4aを構成する球状粒子が形成されることはない。つまり、シード層4を構成する上層と下層とで、球状粒子はシード層4の膜厚方向に垂直な方向にずれて位置する。なお、図2においてシード層4は、最下層で半球状に図示されている結晶を含め3層の構造を有している。この図からも明らかなように、膜厚方向と基板面方向に関する大きさが異なる変形形状の場合も球状結晶に含まれるものである。
このように、シード層4を、球状粒子の結晶4aからなる2層以上の層で形成することにより、シード層4の上層と下層とで球状粒子の位置をずらして、隣り合う球状粒子と球状粒子との間の界面(結晶粒界)を網目状につなげることができる。これにより、シード層4の膜厚方向にストレートに伸びるような結晶粒界、すなわち電流のリークパスが形成されるのを回避できる。その結果、シード層4を設ける構成であっても、実使用上の耐電圧、つまり、インクジェットヘッド等のデバイス適用時に、所定のDC電圧が連続して印加される場合の耐電圧を十分に向上させることができ、素子の信頼性を向上させることができる。なお、具体的な耐電圧の値については、以降の実施例の中で示す。
特に、シード層4を構成する上層の球状粒子が、その直下の層の球状粒子の真上から、膜厚方向に垂直な方向にずれて位置することで、結晶粒界は確実に網目状につながり、シード層4の膜厚方向にストレートに伸びるリークパスは確実に形成されない。これにより、実使用上の耐電圧を確実に向上させることができる。
また、圧電素子10の耐電圧が向上することで、上部電極6と下部電極3との間に高い電圧を印加して、圧電体層5を大きく変位させることが可能となり、圧電特性の高い圧電素子10を実現することができる。
以下、本発明の具体的な実施例について、実施例1〜3として説明する。また、実施例1〜3との比較のため、比較例についても併せて説明する。
〔実施例1〕
図3A〜図3Dは、本実施例の圧電素子10の製造工程を示す断面図である。まず、図3Aに示すように、厚さ400μm程度の単結晶Siウェハからなる基板1に、例えば厚さ100nm程度のSiO2からなる熱酸化膜2を形成する。なお、基板1としては、厚さが300μm〜725μm、直径が3インチ〜8インチなどの標準的なものでよい。また、熱酸化膜2は、ウェット酸化用熱炉を用い、基板1を酸素雰囲気中で1200℃程度の高温にさらすことで形成可能である。
次に、図3Bに示すように、熱酸化膜2上に、厚さ10nm程度のTi層(密着層)と、厚さ100nm程度のPt層とを順にスパッタ法で成膜し、下部電極3を形成する。このときのTiのスパッタ条件は、Ar流量;20sccm、圧力;0.9Pa、ターゲットに印加するRFパワー;100W、基板温度;400℃である。Ptのスパッタ条件は、Ar流量;20sccm、圧力;0.8Pa、ターゲットに印加するRFパワー;150W、基板温度;400℃である。
次に、図3Cに示すように、下部電極3のPt層上に、スパッタ法により、厚さ100nm程度のPLT層を成膜し、シード層4を形成する。このときのPLTのスパッタ条件は、Ar流量;30sccm、O2流量;0.6sccm、圧力;0.5Pa、ターゲットに印加するRFパワー;150W、基板温度;600℃である。
なお、本実施例では、Ti、Pt、PLTの各成膜を、チャンバー内にTi、Pt、PLTの3つのターゲットをもつ3元スパッタリング装置を用いて行っている。このため、PLT/Pt/Ti/Si基板の積層構造を、in-situで(その場で)真空から出すことなく連続して形成することができる(図3B、図3C参照)。
Ti、Pt、PLTの膜厚および成膜条件を上記のように設定することにより、球状粒子からなるPLT結晶が得られる。図4は、実施例1のシード層4を構成するPLTに対する、XRD(X線回折)の2θ/θ測定の結果を示している。なお、図4の縦軸の強度(回折強度、反射強度)は、1秒間あたりのX線の計数率(cps;count per second)に対応する任意単位(Arbitary Unit)で示している。なお、縦軸の強度の表し方については、他のXRD測定結果を示す図面でも同様とする。
図4より、PLTからなるシード層4は、ペロブスカイトの(100)面または(001)面に強く配向していることがわかる。なお、PLTの結晶構造は、ほぼ立方晶(疑立方晶)であり、(100)面と(001)面とはほぼ等価であるため、以下では特に断らない限り、これらをまとめて(100)面と表現する。
ここで、X線回折から得られるペロブスカイト結晶の各面方位のピーク強度をそれぞれ、(100)、(110)、(111)とし、(100)面の配向度を、(100)/{(100)+(110)+(111)}×100で表すものとする。図4の各ピーク強度から、上記演算式に基づいてPLTの(100)面の配向度を算出した結果、配向度は99%であった。つまり、PLTにおいて、ペロブスカイトの(100)面または(001)面に配向している結晶の割合は、全体の90%以上であった。
また、SEM(Scanning Electron Microscope;走査型電子顕微鏡)での観察から、PLTの結晶の粒径は40nm程度であり、PLTからなるシード層4は、球状粒子からなる結晶4aが2層積層した構成となっていることが分かった。
次に、図3Dに示すように、スパッタリング装置において、PLTからなるシード層4上にPZTを4μm程度形成し、圧電体層5を形成した。このときのPZTのスパッタ条件は、Ar流量;30sccm、O2流量;0.6sccm、圧力;0.5Pa、基板温度;600℃、ターゲットに印加するRFパワー;500Wであった。なお、圧電体層5の形成方法は、スパッタ法に限定されず、パルスレーザーデポジション(PLD)法やイオンプレーティング法などの他の物理成膜法、MOCVD(Metal Organic Chemical Vapor Deposition ;有機金属気相成長法)法やゾルゲル法などの化学成膜法でもよい。
ここで、スパッタのターゲットには、ZrとTiとのモル比(Zr/Ti比)が52/48となっているものを用いた。また、ターゲットに含まれるPbは、高温成膜時に再蒸発しやすく、形成された薄膜がPb不足になりやすいため、ペロブスカイト結晶の化学量論比よりも多めにターゲットに添加することが望ましい。例えば、Pbの添加量は、成膜温度にもよるが、化学量論比よりも10〜30%増やすことが望ましい。
図5は、実施例1の圧電体層5を構成するPZTに対する、XRDの2θ/θ測定の結果を示している。図5の各ピーク強度から、PLTの場合と同様の手法(演算式)を用いて、PZTの(100)面の配向度を算出した結果、配向度は99%であった。なお、PZTの結晶構造は、Zr/Ti比がMPBを構成する比と完全に一致している場合は立方晶となり、(100)面と(001)面とは等価と考えることができる。したがって、上記した配向度の演算結果は、PZTにおいて、ペロブスカイトの(100)面または(001)面に配向している結晶の割合が全体の90%以上であることを示しているとも言える。
次に、上記した圧電体層5の上に、例えばTiおよびPtを順にスパッタして上部電極6(図1参照)を形成し、圧電素子10を完成させた後、ウェハ中心から圧電素子10を分離して取り出し、図6に示す圧電変位測定計を用いたカンチレバー法により圧電変位を測定し、圧電定数d31を求めた。その結果、圧電定数d31の値は、−170pm/Vであった。
なお、上記の圧電変位測定計では、カンチレバーの可動長さが10mmになるように、圧電素子10の端部を固定部11でクランプして片持ち梁構造とし、関数発生器12により、上部電極6に最大0V、下部電極3に最小−20Vの電圧を500Hzの周波数にて印加し、圧電素子10の端部の変位をレーザードップラー振動計13によって観察した。そして、得られた圧電変位から、公知の手法で圧電定数d31を求めた。
次に、アジレントテクノロジー社の半導体デバイス・アナライザB1500Aを用いて、I−V測定により圧電素子10の耐電圧を測定した。その結果、耐電圧は、正バイアスで+88V、負バイアスで−89Vであった。なお、正バイアスとは、下部電極3を接地した状態で、上部電極6に正の電圧を(周期的ではなく)連続して印加した状態を指し、負バイアスとは、下部電極3を接地した状態で、上部電極6に負の電圧を(周期的ではなく)連続して印加した状態を指す。実施例1における耐電圧の測定結果を図7に示す。
〔実施例2〕
本実施例では、実施例1と同様に基板1上に熱酸化膜2を形成した後、熱酸化膜2上に、厚さ6nm程度のTi層(密着層)と、厚さ100nm程度のPt層とを順にスパッタ法で成膜し、下部電極3を形成した。このときのTiのスパッタ条件は、Ar流量;20sccm、圧力;0.7Pa、ターゲットに印加するRFパワー;90W、基板温度;400℃である。Ptのスパッタ条件は、Ar流量;20sccm、圧力;0.4Pa、ターゲットに印加するRFパワー;150W、基板温度;400℃である。
次に、下部電極3のPt層上に、スパッタ法により、厚さ150nm程度のPLT層を成膜し、シード層4を形成した。このときのPLTのスパッタ条件は、Ar流量;30sccm、O2流量;0.5sccm、圧力;0.5Pa、ターゲットに印加するRFパワー;150W、基板温度;640℃である。
Ti、Pt、PLTの膜厚および成膜条件を上記のように設定することにより、球状粒子からなるPLT結晶が得られる。図8は、実施例2のシード層4を構成するPLTに対する、XRDの2θ/θ測定の結果を示している。
図8より、PLTからなるシード層4は、ペロブスカイトの(100)面または(001)面に強く配向していることがわかる。また、図8の各ピーク強度から、実施例1と同様に、PLTの(100)面の配向度を算出した結果、配向度は95%であった。つまり、本実施例のPLTにおいても、ペロブスカイトの(100)面または(001)面に配向している結晶の割合は、全体の90%以上であった。
また、SEMでの観察から、PLTの結晶の粒径は50nm程度であり、PLTからなるシード層4は、球状粒子からなる結晶4aが3層積層した構成となっていることが分かった。
次に、スパッタリング装置において、PLTからなるシード層4上にPZTを4μm程度形成し、圧電体層5を形成した。このときのPZTのスパッタ条件は、Ar流量;30sccm、O2流量;0.6sccm、圧力;0.5Pa、基板温度;600℃、ターゲットに印加するRFパワー;500Wであった。また、スパッタのターゲットには、ZrとTiとのモル比(Zr/Ti比)が50/50となっているものを用いた。
図9は、実施例2の圧電体層5を構成するPZTに対する、XRDの2θ/θ測定の結果を示している。図9の各ピーク強度から、PLTの場合と同様の手法(演算式)を用いて、PZTの(100)面の配向度を算出した結果、配向度は99%であった。なお、図9のグラフにおいて、PZTのペロブスカイト(100)面に対応するピークと、(001)面に対応するピークとが分離されていないことから、(100)面と(001)面とはほぼ等価である(結晶構造が立方晶に近い)と考えられる。したがって、上記した配向度の演算結果は、PZTにおいて、ペロブスカイトの(100)面または(001)面に配向している結晶の割合が全体の90%以上であることを示しているとも言える。
次に、上記した圧電体層5の上に上部電極6を形成し、圧電素子10を完成させた後、実施例1と同様に、圧電変位測定計を用いたカンチレバー法により圧電変位を測定し、圧電定数d31を求めた。その結果、圧電定数d31の値は、−150pm/Vであった。また、実施例1と同様に、圧電素子10の耐電圧を測定した結果、耐電圧は、正バイアスで+96V、負バイアスで−84Vであった。つまり、本実施例では、圧電定数d31については実施例1よりも若干低いが、耐電圧については実施例1と同等の値が得られた。
〔実施例3〕
本実施例では、実施例1と同様に基板1上に熱酸化膜2を形成した後、熱酸化膜2上に、厚さ6nm程度のTi層(密着層)と、厚さ100nm程度のPt層とを順にスパッタ法で成膜し、下部電極3を形成した。このときのTiのスパッタ条件は、Ar流量;20sccm、圧力;0.8Pa、ターゲットに印加するRFパワー;90W、基板温度;550℃である。Ptのスパッタ条件は、Ar流量;20sccm、圧力;0.4Pa、ターゲットに印加するRFパワー;150W、基板温度;550℃である。
次に、下部電極3のPt層上に、スパッタ法により、厚さ150nm程度のPLT層を成膜し、シード層4を形成した。このときのPLTのスパッタ条件は、Ar流量;30sccm、O2流量;0.5sccm、圧力;0.5Pa、ターゲットに印加するRFパワー;150W、基板温度;690℃である。
Ti、Pt、PLTの膜厚および成膜条件を上記のように設定することにより、球状粒子からなるPLT結晶が得られる。図10は、実施例3のシード層4を構成するPLTに対する、XRDの2θ/θ測定の結果を示している。
図10より、PLTからなるシード層4は、ペロブスカイトの(111)面に強く配向していることがわかる。また、(111)面の配向度を、(111)/{(100)+(110)+(111)}×100で表したとき、図10の各ピーク強度から、PLTの(111)面の配向度を算出した結果、配向度は95%であった。つまり、本実施例のPLTにおいては、ペロブスカイトの(111)面に配向している結晶の割合が、全体の90%以上であった。
また、SEMでの観察から、PLTの結晶の粒径は40nm程度であり、PLTからなるシード層4は、球状粒子からなる結晶4aが2層積層した構成となっていることが分かった。
次に、スパッタリング装置において、PLTからなるシード層4上にPZTを4μm程度形成し、圧電体層5を形成した。このときのPZTのスパッタ条件は、Ar流量;30sccm、O2流量;0.6sccm、圧力;0.5Pa、基板温度;600℃、ターゲットに印加するRFパワー;500Wであった。また、スパッタのターゲットには、ZrとTiとのモル比(Zr/Ti比)が52/48となっているものを用いた。
図11は、実施例3の圧電体層5を構成するPZTに対する、XRDの2θ/θ測定の結果を示している。図11の各ピーク強度から、PLTの場合と同様の手法(演算式)を用いて、PZTの(111)面の配向度を算出した結果、配向度は99%であった。つまり、実施例3のPZTにおいて、ペロブスカイトの(111)面に配向している結晶の割合は、全体の90%以上であった。
次に、上記した圧電体層5の上に上部電極6を形成し、圧電素子10を完成させた後、実施例1と同様に、圧電変位測定計を用いたカンチレバー法により圧電変位を測定し、圧電定数d31を求めた。その結果、圧電定数d31の値は、−120pm/Vであった。また、実施例1と同様に、圧電素子10の耐電圧を測定した結果、耐電圧は、正バイアスで+90V、負バイアスで−86Vであった。つまり、本実施例では、PZTが(111)面に優先配向している結果、圧電定数d31が実施例1および2よりも低いが、耐電圧については実施例1および2と同等の値が得られた。
〔比較例1〕
本比較例では、実施例1と同様に基板1上に熱酸化膜2を形成した後、熱酸化膜2上に、厚さ20nm程度のTi層(密着層)と、厚さ100nm程度のPt層とを順にスパッタ法で成膜し、下部電極3を形成した。このときのTiのスパッタ条件は、Ar流量;20sccm、圧力;0.3Pa、ターゲットに印加するRFパワー;90W、基板温度;550℃である。Ptのスパッタ条件は、Ar流量;20sccm、圧力;0.4Pa、ターゲットに印加するRFパワー;150W、基板温度;550℃である。
次に、下部電極3のPt層上に、スパッタ法により、厚さ150nm程度のPLT層を成膜し、シード層4を形成した。このときのPLTのスパッタ条件は、Ar流量;18sccm、O2流量;0.5sccm、圧力;0.5Pa、ターゲットに印加するRFパワー;150W、基板温度;680℃である。
Ti、Pt、PLTの膜厚および成膜条件を上記のように設定することにより、柱状粒子からなるPLT結晶が得られる。図12は、比較例1のシード層4を構成するPLTに対する、XRDの2θ/θ測定の結果を示している。
図12の各ピーク強度から、実施例1と同様に、PLTの(100)面の配向度を算出した結果、配向度は64%であった。また、SEMでの観察から、PLTの結晶の粒径は80nm程度であり、PLTからなるシード層4は、結晶が膜厚方向に成長した柱状粒子で構成されていることが分かった。
次に、スパッタリング装置において、PLTからなるシード層4上にPZTを4μm程度形成し、圧電体層5を形成した。このときのPZTのスパッタ条件は、Ar流量;30sccm、O2流量;0.3sccm、圧力;0.3Pa、基板温度;650℃、ターゲットに印加するRFパワー;500Wであった。また、スパッタのターゲットには、ZrとTiとのモル比(Zr/Ti比)が52/48となっているものを用いた。
図13は、比較例1の圧電体層5を構成するPZTに対する、XRDの2θ/θ測定の結果を示している。図13の各ピーク強度から、PLTの場合と同様の手法(演算式)を用いて、PZTの(100)面の配向度を算出した結果、配向度は95%であった。
次に、上記した圧電体層5の上に上部電極6を形成し、圧電素子10を完成させた後、実施例1と同様に、圧電変位測定計を用いたカンチレバー法により圧電変位を測定し、圧電定数d31を求めた。その結果、圧電定数d31の値は、−156pm/Vであった。また、実施例1と同様に、圧電素子10の耐電圧を測定した結果、耐電圧は、正バイアスで+56V、負バイアスで−61Vであった。つまり、比較例1では、実施例1〜3のように、耐電圧として十分な値が得られなかった。比較例1における耐電圧の測定結果を図7に併せて示す。
以上の実施例1〜3および比較例1の結果より、以下のことが言える。
実施例1〜3のように、シード層4を、球状粒子の結晶からなる2層以上の層で構成することにより、比較例1のように、シード層4を柱状粒子の結晶で構成する場合に比べて、耐電圧を大幅に向上させることができ、これによって、圧電素子10の信頼性を十分に向上させることができる。特に、圧電体層5として、一般的な圧電材料であるPZTを用いた場合でも、耐電圧を十分に向上させることができる。
また、実施例1および2のように、シード層4を構成する結晶がペロブスカイト型構造であり、その90%以上が(100)面または(001)面に配向していることにより、そのシード層4の上に、ペロブスカイト構造で(100)面または(001)面に優先配向した圧電体層5を形成することができる。また、このように圧電体層5を形成することにより、圧電体層5の結晶が(111)面に優先配向した構成に比べて、高い圧電定数d31を得ることができ、電圧印加時に効率よく圧電体層5を変形させて大きな変位量を得ることができる。
特に、シード層4は、(ペロブスカイト型の結晶構造を有する)PLTで構成されているので、そのシード層4の上に、圧電体層5をペロブスカイト型の結晶構造で形成することが容易となり、高い圧電特性を持つ圧電体層5を実現することができる。
なお、実施例1〜3では、球状粒子からなる結晶4aを2層または3層積層してシード層4を構成した例について説明したが、4層以上を積層してシード層4を構成した場合でも、膜厚方向にストレートに伸びる結晶粒界(リークパス)が形成されない点は実施例1〜3と同様であるため、耐電圧を十分に向上させることができる。
〔圧電素子の応用例〕
図14は、本実施形態で作製した圧電素子10をダイヤフラム(振動板)に応用した圧電デバイス20の構成を示す平面図であり、図15は、図14のA−A’線矢視断面図である。なお、ここでは、圧電体層5のd31変形(電界方向と分極方向とが同一で、変形(伸縮)がそれらに垂直)を利用して圧電デバイス20を駆動するものとする。
圧電デバイス20は、圧電素子10の基板1に開口部を形成して構成されている。より詳しくは、基板1は、2枚のSi基板21・22を貼り合わせて構成されており、一方のSi基板22(支持基板)には断面円形状の開口部1aが形成されている。そして、Si基板21において、開口部1aの上方に位置する部分(開口部1aの上壁となる部分)は、振動板1bを構成している。なお、基板1を1枚のSi基板で構成し、このSi基板の厚さ方向の一部を除去することで開口部が形成され、その上方に残存する部分が振動板となっていてもよい。
圧電体層5は、基板1の必要な領域に、2次元の千鳥状に配置されている。下部電極3および上部電極6は、図示しない配線により、外部の制御回路と接続されている。なお、圧電体層5は、開口部1aの上方に位置しているが、上部電極6を引き出すために、開口部1aの上方から開口部1aの側壁の上方に引き出されていてもよい。つまり、圧電体層5は、少なくとも開口部1aの上方に位置していればよい。
制御回路から、所定の圧電体層5を挟む下部電極3および上部電極6に電気信号を印加することにより、所定の圧電体層5のみを駆動することができる。つまり、圧電体層5の上下の電極に所定の電界を加えると、圧電体層5が左右方向に伸縮し、バイメタルの効果によって圧電体層5および振動板1bが上下に湾曲する。したがって、基板1の開口部1aに気体や液体を充填しておくと、圧電デバイス20をポンプとして用いることができ、例えばインクジェットヘッドに好適なものとなる。したがって、上述した本実施形態の圧電素子10は、このような圧電デバイス20の使用時における耐電圧を向上し得るものとして非常に有効となる。
また、所定の圧電体層5の電荷量を下部電極3および上部電極6を介して検出することにより、圧電体層5の変形量を検出することもできる。つまり、音波や超音波により、圧電体層5が振動すると、上記と反対の効果によって上下の電極間に電界が発生するため、このときの電界の大きさや検出信号の周波数を検出することにより、圧電デバイス20をセンサ(超音波センサ)として用いることもできる。
また、圧電体層5を構成するPZTは、圧電特性の他に焦電性および強誘電性を有しているため、圧電素子10を赤外線センサ(熱センサ)や不揮発性の記憶メモリなどのデバイスとして利用することもできる。
上記のインクジェットヘッドについて説明を補足しておく。図16は、圧電デバイス20を備えたインクジェットヘッド30の断面図である。このインクジェットヘッド30は、圧電デバイス20の基板1に、図示しないガラスプレートを介してノズルプレート25を接合(例えば陽極接合)することで構成されている。ノズルプレート25はノズル開口25aを有しており、基板1に形成された開口部1aと外部とがノズル開口25aを介して連通している。また、開口部1aは、図示しないインク供給路と連結されており、インク供給路から供給されるインクを収容する圧力室として機能している。この構成において、下部電極3および上部電極6に電圧を印加して振動板1bを湾曲させ、開口部1a内のインクに圧力を付与することにより、上記インクをノズル開口25aを介して外部に吐出させることができる。
また、図17は、上記のインクジェットヘッド30を備えたインクジェットプリンタ40の一部を拡大して示す斜視図である。インクジェットプリンタ40は、一部が開口した筐体31内に、左右方向(図中B方向)に移動可能なキャリッジ32を有している。このキャリッジ32には、複数の色(例えばイエロー、マゼンタ、シアン、ブラックの4色)の各々に対応するインクジェットヘッド30が一列に並んで搭載されている。図示しない記録媒体をプリンタの奥側から手前側(図中A方向)に向かって搬送しながら、キャリッジ32を左右に移動させて各色のインクを対応するインクジェットヘッド30から吐出させることにより、記録媒体上にカラーの画像を形成することができる。
〔その他〕
下部電極3を構成する電極層は、本実施形態で用いたPtに限定されるわけではなく、その他にも、Au、Ir、IrO2、RuO2、LaNiO3、SrRuO3等の金属または金属酸化物、およびこれらの組み合わせを用いることもできる。
シード層4を構成する材料は、本実施形態のPLTに限定されるわけではなく、その他にも、LaNiO3、SrRuO3、PbTiO3等の酸化物を用いることもできる。
圧電体層5を構成する材料は、本実施形態のPZTに限定されるわけではなく、PZTにLaや、Nb、Srなどの不純物を添加したもの、BaTiO3、LiTaO3、Pb(Mg,Nb)O3、Pb(Ni,Nb)O3、PbTiO3等の酸化物やこれらの組み合わせを用いることもできる。
以上説明した圧電素子は、基板上に、電極と、圧電体層の結晶配向性を制御するためのシード層と、前記圧電体層とをこの順で積層した圧電素子であって、前記シード層は、球状粒子の結晶からなる層を2層以上積層して構成されている。
シード層を構成する結晶粒子が柱状粒子ではなく球状粒子であれば、このような球状粒子からなる層を2層以上積層する際に、2層目の球状粒子を、1層目の球状粒子の真上からずらして位置させることができ、3層目以降も同様に、直下の層の球状粒子とずれた位置に上層の球状粒子を位置させることができる。これにより、隣り合う球状粒子と球状粒子との間の界面(結晶粒界)をほぼ網目状につなげることができ、結晶粒界に沿ってシード層の膜厚方向にストレートに伸びるような、電圧印加時のリークパスが形成されるのを回避できる。その結果、シード層を設ける構成であっても、実使用上の(デバイス適用時の)耐電圧を十分に向上させることができ、素子の信頼性を向上させることができる。
前記シード層において、上層の球状粒子は、その直下の層の球状粒子の真上から、膜厚方向に垂直な方向にずれて位置していることが望ましい。この場合、結晶粒界は確実に網目状につながり、シード層の膜厚方向にストレートに伸びるようなリークパスは確実に形成されないので、実使用上の耐電圧を確実に向上させることができる。
前記シード層を構成する前記結晶は、ペロブスカイト型構造であり、その90%以上が(100)面または(001)面に配向していることが望ましい。
この場合、シード層の上に形成される圧電体層を、シード層の結晶配向性に倣う形で、ペロブスカイト構造で(100)面または(001)面に優先配向させることができる。
前記圧電体層を構成する結晶は、ペロブスカイト型構造であり、その90%以上が(100)面または(001)面に配向していることが望ましい。この場合、圧電体層の結晶が(111)面に配向した構成に比べて、電圧印加時に効率よく圧電体層を変形させて圧電特性を向上させることができる。
前記シード層は、PLTであってもよい。PLTは、ペロブスカイト型の結晶構造であるため、PLTからなるシード層の上に、圧電体層を、高い圧電特性が得られるペロブスカイト型の結晶構造で形成することが容易となる。
前記圧電体層は、PZT、またはPZTに添加物を加えたもので構成されていてもよい。圧電体層をそのような材料で構成した場合において、実使用上の耐電圧を向上させることができる。
上記した圧電素子は、前記電極を下部電極とすると、前記圧電体層に対して前記下部電極とは反対側に形成される上部電極をさらに備えていてもよい。シード層の上記構成により、耐電圧を十分に向上させることができるので、上部電極と下部電極との間に高い電圧を印加して、圧電体層の変位量を大きくすることができる。
また、以上説明した圧電デバイスは、上述した構成の圧電素子を備え、前記圧電素子の前記基板には開口部が形成されており、前記圧電体層は、少なくとも前記開口部の上方に位置している構成であってもよい。
開口部内に液体(例えばインク)や気体を充填しておけば、上部電極および下部電極に電圧を印加して圧電体層を変形させ、開口部内の液体等に圧力を付与することで、液体等を外部に吐出させることができる。したがって、この場合は、ポンプ(インクジェットヘッドも含む)として機能する圧電デバイスであって、耐電圧が十分に向上した圧電デバイスを実現することができる。また、開口部を介して音波や超音波を受信したときの圧電体層の変位によって生じる電位差を、上部電極および下部電極を介して検出するようにすれば、超音波センサとして機能する圧電デバイスを実現することもできる。
なお、上記各説明における球状粒子の「球状」とは、「柱状」のように同じ断面形状で一方向に伸びた形状ではない形状を意味するものである。すなわち、完全な球状のみならず、球を変形させた形状、断面楕円形状、柱状以外の多面体形状、その他平面と曲面とを組み合わせた形状、凹凸を有する形状なども含まれるものと解釈される。
以上のように、シード層を構成する結晶粒子が球状粒子であり、これを2層以上積層することで、上下の層で球状粒子を互いにずらして位置させて、結晶粒界に沿ってシード層の膜厚方向にストレートに伸びるようなリークパスが形成されるのを回避できる。その結果、シード層を設ける構成であっても、デバイス適用時の耐電圧を十分に向上させることができ、素子の信頼性を向上させることができる。
本発明の圧電素子は、例えばインクジェットヘッド、超音波センサ、赤外線センサ、不揮発性メモリなどの種々のデバイスや、インクジェットプリンタに利用可能である。
1 基板
1a 開口部
3 下部電極
4 シード層
4a 結晶
5 圧電体層
6 上部電極
10 圧電素子
20 圧電デバイス
30 インクジェットヘッド
40 インクジェットプリンタ

Claims (10)

  1. 基板上に、電極と、圧電体層の結晶配向性を制御するためのシード層と、前記圧電体層とをこの順で積層した圧電素子であって、
    前記シード層は、球状粒子の結晶からなる層を2層以上積層して構成されていることを特徴とする圧電素子。
  2. 前記シード層において、上層の球状粒子は、その直下の層の球状粒子の真上から、膜厚方向に垂直な方向にずれて位置していることを特徴とする請求項1に記載の圧電素子。
  3. 前記シード層を構成する前記結晶は、ペロブスカイト型構造であり、その90%以上が(100)面または(001)面に配向していることを特徴とする請求項1または2に記載の圧電素子。
  4. 前記圧電体層を構成する結晶は、ペロブスカイト型構造であり、その90%以上が(100)面または(001)面に配向していることを特徴とする請求項3に記載の圧電素子。
  5. 前記シード層は、PLTであることを特徴とする請求項1から4のいずれかに記載の圧電素子。
  6. 前記圧電体層は、PZT、またはPZTに添加物を加えたもので構成されていることを特徴とする請求項1から5のいずれかに記載の圧電素子。
  7. 前記電極を下部電極とすると、
    前記圧電体層に対して前記下部電極とは反対側に形成される上部電極をさらに備えていることを特徴とする請求項1から6のいずれかに記載の圧電素子。
  8. 請求項1から7のいずれかに記載の圧電素子を備え、
    前記圧電素子の前記基板には開口部が形成されており、
    前記圧電体層は、少なくとも前記開口部の上方に位置していることを特徴とする圧電デバイス。
  9. 前記開口部と外部とを連通するノズル開口を備え、請求項8に記載の圧電素子を用いて前記開口部内のインクを前記ノズル開口から吐出するよう構成されている、インクジェットヘッド。
  10. 請求項9に記載のインクジェットヘッドを備えたインクジェットプリンタ。
JP2013549082A 2012-08-10 2013-07-25 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ Active JP5472549B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013549082A JP5472549B1 (ja) 2012-08-10 2013-07-25 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012178777 2012-08-10
JP2012178777 2012-08-10
PCT/JP2013/070208 WO2014024696A1 (ja) 2012-08-10 2013-07-25 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ
JP2013549082A JP5472549B1 (ja) 2012-08-10 2013-07-25 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ

Publications (2)

Publication Number Publication Date
JP5472549B1 JP5472549B1 (ja) 2014-04-16
JPWO2014024696A1 true JPWO2014024696A1 (ja) 2016-07-25

Family

ID=50067929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549082A Active JP5472549B1 (ja) 2012-08-10 2013-07-25 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ

Country Status (4)

Country Link
US (1) US9318687B2 (ja)
EP (1) EP2889927B1 (ja)
JP (1) JP5472549B1 (ja)
WO (1) WO2014024696A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853203B2 (en) * 2012-08-08 2017-12-26 Konica Minolta, Inc. Piezoelectric element with underlying layer to control crystallinity of a piezoelectric layer, and piezoelectric device, inkjet head, and inkjet printer including such piezoelectric element
KR101971771B1 (ko) 2014-06-20 2019-04-23 가부시키가이샤 아루박 다층막 및 다층막의 제조 방법
US9887344B2 (en) 2014-07-01 2018-02-06 Seiko Epson Corporation Piezoelectric element, piezoelectric actuator device, liquid ejecting head, liquid ejecting apparatus, and ultrasonic measuring apparatus
JP6633852B2 (ja) * 2014-07-28 2020-01-22 ローム株式会社 圧電素子、およびインクジェットヘッド
JP6699662B2 (ja) 2015-05-25 2020-05-27 コニカミノルタ株式会社 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
JP6721856B2 (ja) * 2015-08-07 2020-07-15 セイコーエプソン株式会社 圧電素子の製造方法
JP7107782B2 (ja) * 2017-09-06 2022-07-27 ローム株式会社 圧電素子
JP2022057129A (ja) * 2020-09-30 2022-04-11 株式会社リコー アクチュエータ、液体吐出ヘッド及び液体吐出装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290983A (ja) 1993-04-06 1994-10-18 Matsushita Electric Ind Co Ltd 誘電体薄膜及びその製造方法
JP3520403B2 (ja) * 1998-01-23 2004-04-19 セイコーエプソン株式会社 圧電体薄膜素子、アクチュエータ、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP3379479B2 (ja) * 1998-07-01 2003-02-24 セイコーエプソン株式会社 機能性薄膜、圧電体素子、インクジェット式記録ヘッド、プリンタ、圧電体素子の製造方法およびインクジェット式記録ヘッドの製造方法、
JP4058018B2 (ja) 2003-12-16 2008-03-05 松下電器産業株式会社 圧電素子及びその製造方法、並びにその圧電素子を備えたインクジェットヘッド、インクジェット式記録装置及び角速度センサ
EP1726050B1 (en) * 2004-02-27 2011-10-19 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
JP2008042069A (ja) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 圧電体素子とその製造方法
JP2010021375A (ja) * 2008-07-10 2010-01-28 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びに圧電素子
JP5615591B2 (ja) * 2009-07-16 2014-10-29 日本碍子株式会社 結晶粒子の製造方法及び結晶配向セラミックスの製造方法
JP5429385B2 (ja) 2010-08-12 2014-02-26 株式会社村田製作所 圧電薄膜素子の製造方法、圧電薄膜素子及び圧電薄膜素子用部材
JP2012119347A (ja) * 2010-11-29 2012-06-21 Konica Minolta Holdings Inc 圧電モジュール、圧電デバイスおよび圧電モジュールの製造方法

Also Published As

Publication number Publication date
EP2889927A1 (en) 2015-07-01
EP2889927A4 (en) 2016-04-06
US20150214465A1 (en) 2015-07-30
EP2889927B1 (en) 2019-04-17
JP5472549B1 (ja) 2014-04-16
US9318687B2 (en) 2016-04-19
WO2014024696A1 (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5472549B1 (ja) 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ
US9136459B2 (en) Piezoelectric device and method of manufacturing piezoelectric device
KR100978145B1 (ko) 에피택셜 산화물막, 압전막, 압전막 소자, 압전막 소자를이용한 액체 토출 헤드 및 액체 토출 장치
US8864288B2 (en) Piezoelectric device, method of manufacturing piezoelectric device, and liquid ejection head
JP2015088521A (ja) 圧電体素子及び圧電体素子の製造方法
JP6699662B2 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
JP2005333108A (ja) 圧電素子、インクジェットヘッド、角速度センサ及びインクジェット式記録装置
JPWO2017082049A1 (ja) インクジェットヘッドおよびその製造方法、ならびにインクジェット記録装置
JP2008041921A (ja) 圧電薄膜素子およびその製造方法、ならびにインクジェットヘッドおよびインクジェット式記録装置
JP6346693B2 (ja) 圧電体素子の製造方法
JP2019522902A (ja) 優先電界駆動方向における圧電薄膜素子の分極
JP6478023B2 (ja) 圧電素子、圧電アクチュエーター装置、液体噴射ヘッド、液体噴射装置及び超音波測定装置
WO2012165110A1 (ja) 強誘電体膜およびそれを備えた圧電素子
JP5194463B2 (ja) 圧電体薄膜素子の製造方法
WO2015125520A1 (ja) 強誘電体薄膜、圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび強誘電体薄膜の製造方法
JP6481686B2 (ja) 強誘電体薄膜、圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
JP5835460B2 (ja) 圧電薄膜、圧電素子、インクジェットヘッド、インクジェットプリンタおよび圧電薄膜の製造方法
JP2008028285A (ja) 圧電体薄膜素子、インクジェットヘッドおよびインクジェット式記録装置
JP5861404B2 (ja) 圧電素子およびその製造方法
US9853203B2 (en) Piezoelectric element with underlying layer to control crystallinity of a piezoelectric layer, and piezoelectric device, inkjet head, and inkjet printer including such piezoelectric element
JP2007335489A (ja) 圧電体薄膜素子、薄膜アクチュエータ、インクジェットヘッドおよびインクジェット式記録装置
JP7067085B2 (ja) 圧電素子及び液体吐出ヘッド
JP6468881B2 (ja) 圧電薄膜、圧電薄膜の製造方法、圧電薄膜付き基板、圧電アクチュエータ、圧電センサ、インクジェットヘッドおよびインクジェットプリンタ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5472549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150