JPWO2014024218A1 - 蛍光体光学素子、その製造方法及び光源装置 - Google Patents

蛍光体光学素子、その製造方法及び光源装置 Download PDF

Info

Publication number
JPWO2014024218A1
JPWO2014024218A1 JP2014529152A JP2014529152A JPWO2014024218A1 JP WO2014024218 A1 JPWO2014024218 A1 JP WO2014024218A1 JP 2014529152 A JP2014529152 A JP 2014529152A JP 2014529152 A JP2014529152 A JP 2014529152A JP WO2014024218 A1 JPWO2014024218 A1 JP WO2014024218A1
Authority
JP
Japan
Prior art keywords
phosphor
light
optical element
light source
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014529152A
Other languages
English (en)
Inventor
山中 一彦
一彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014024218A1 publication Critical patent/JPWO2014024218A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum

Abstract

本発明に係る蛍光体光学素子(1)は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子が含有された蛍光体層(20)と、蛍光体層(20)を保持する放熱基板(30)とを備え、蛍光体層(20)の励起光の入射面は、凹凸形状である。

Description

本発明は、プロジェクタや、リアプロジェクションテレビなどの薄型テレビに用いられる光源装置と、その光源装置に用いられる蛍光体光学素子とに関する。
近年、プロジェクタや薄型テレビなどの画像表示装置に用いられる光源装置に、発光ダイオード(LED:Light Emitting Diode)やレーザダイオード(LD:Laser Diode)などの半導体発光素子が用いられるようになってきた。半導体発光素子は、従来の冷陰極管ランプや超高圧水銀ランプと異なり、特定の波長を効率よく発光させることができる。しかしながら、上述の画像表示装置の光源装置は、発光スペクトルとして波長430nm〜490nmの青色光と、波長490nm〜570nmの緑色光と波長570nm〜650nmの赤色光の、いわゆるB(青)、G(緑)、R(赤)の3原色の光を含む必要がある。そこで、例えば特許文献1及び特許文献2には、半導体発光素子を用いた光源装置として、波長380nm〜470nmの青紫色から青色の光を発光する半導体発光素子とこれらの半導体発光素子の光を吸収し、波長430nm〜650nmの蛍光を出射する蛍光体を組み合わせたものが提案されている。
以下、図14および図15を用いて、従来の光源装置の構成について説明する。
図14は、従来の光源装置1063の平面模式図である。図15は、従来の光源装置1063にかかる蛍光体ホイール1071についての平面図である。光源装置1063は、導光装置1075の中心軸と光軸が平行となるように配置された複数の青色レーザ発光器1072と、青色レーザ発光器1072の前方に配置された複数のコリメートレンズ1149と、コリメートレンズ1149を透過した光線束の光軸方向を90度変換する反射ミラー群1150とが備えられている。
また、光源装置1063は、反射ミラー群1150で反射した励起光の光軸と回転軸が平行となるように励起光の光軸上に配置された蛍光体ホイール1071と、蛍光体ホイール1071を回転駆動するホイールモータ1073とを備えている。さらに、光源装置1063には、赤色波長領域光を射出する発光素子1074が備えられる。
蛍光体ホイール1071は、円形の発光板であって、ホイールモータ1073によって回転を制御される。この蛍光体ホイール1071は、青色レーザ発光器1072からの射出光を拡散する拡散領域1001としてのセグメントと蛍光発光領域1002としてのセグメントとが周方向に並設されてなる。この拡散領域1001は、ガラス等の部材の表面に微細な凹凸が施されることで構成される。
蛍光発光領域1002は、金属材料等の表面に緑色蛍光体層1004が敷設されることでなる。この緑色蛍光体層1004は、緑色蛍光体とバインダとにより形成されている。
このような従来の光源装置1063において、青色レーザ発光器1072から射出された光は、反射ミラー群1150により反射されたあと、レンズ1153a及びミラー1151aを通り、集光レンズ群1155により蛍光体ホイール1071の所定の一面に集光される。
蛍光体ホイール1071の所定の一面に集光された青色光は、所定の時間帯においては、拡散領域1001に集光されて拡散された光となる。拡散領域1001で拡散された青色光は、ミラー1151b、レンズ1153b、ミラー1151dを伝搬し、レンズ1154にて導光装置1075に入射される。一方、上記拡散領域1001において拡散されない時間帯においては、青色光は蛍光発光領域1002に集光されて、蛍光発光領域1002の緑色蛍光体において、緑色光の反射光となり、集光レンズ群1155、ミラー1151a、レンズ1153c、ミラー1151c、レンズ1153d及びミラー1151dを伝搬し、レンズ1154により導光装置1075に入射される。つまり、所定の時間帯以外において、蛍光体ホイール1071の所定の一面に集光された青色光は、蛍光発光領域1002で反射されて緑色光の反射光となり、導光装置1075に入射される。さらに発光素子1074から射出された赤色光はミラー1151aを通り、緑色光と同じ光軸を通り導光装置1075に入射される。
このような構成で、青色光、緑色光及び赤色光が導光装置1075に入射される。導光装置1075を通過し光分布が整形された青色光、緑色光及び赤色光は、DMD(Digital Micromirror Device:デジタル・マイクロミラー・デバイス)である画像表示素子(図示なし)に透過もしくは反射することで所定の画像となり、投影される。
上記、従来技術において、緑色蛍光体層に含まれる蛍光体材料として、Y(Al,Ga)12:Ce蛍光体が用いられている。また、特許文献3には、波長380nm〜470nmの光で励起できる他の緑色蛍光体材料として、β―SiAlON:Eu蛍光体が、特許文献4には、赤色光を発光できる赤色蛍光体として、CaAlSiN:Eu蛍光体が提案されている。
特開2004−341105号公報 特開2011−53320号公報 特開2005−255895号公報 特開2005−235934号公報
しかしながら従来の光源装置においては、以下のような課題が挙げられる。
まず、プロジェクタなどの画像表示装置においては画面の輝度としては一般的に3000ルーメン程度が必要とされる。この場合、従来の光源装置においては、励起光源から放射された数10ワットのエネルギーを有するレーザ光を蛍光体ホイールの緑色蛍光体に集光させ、緑色光として利用される。このため、集光領域の蛍光体に照射される光密度が非常に大きくなり、蛍光体における変換効率が飽和する、いわゆる光飽和が発生する。具体的に、蛍光体においては、励起光により、賦活された希土類イオンにおける電子が励起され、基底準位に緩和されることにより蛍光が発せられるが、従来の光源装置の蛍光体においては、光密度が非常に大きいため、励起される電子が枯渇する。このような励起準位が枯渇した蛍光体においては、励起光が蛍光に変換されずにそのまま蛍光体粒子の表面で反射されるため蛍光体における光の変換効率が低下する。このような光飽和を抑制するため、集光領域の面積を拡大し、光密度を低減させることが考えられるが、この場合、蛍光の発光面積が拡大し、発光面積と放射角の積である、所謂、エテンデュが大きくなり、その結果、後段の光学系でのロスが大きくなり画像表示装置の輝度が低下する。また、従来の光源装置は、偏光であるレーザ光を、無偏光である蛍光に変換する構成のため、画像表示素子として入射光の偏光が不要なDMDを画像表示素子として用いる必要があり、液晶パネル等を用いて画像表示装置を簡単な構成にできないという課題もある。
本発明は、上記の課題を解決するためになされたものであり、画像表示装置の輝度を、簡便な方法で効率よく向上させることができる蛍光体光学素子及び光源装置を提供するものである。
上記の課題に対して、本発明に係る蛍光体光学素子は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子が含有された蛍光体含有層と、前記蛍光体含有層を保持する基板とを備え、前記蛍光体含有層の前記励起光の入射面は、凹凸形状である。
この構成により、エテンデュを大きくすることなしに、蛍光体含有層の実効的な表面積を増加させ、蛍光体の光飽和を抑制することができる。また、励起光を蛍光体含有層の表面付近で乱反射させることができ、その結果、励起光を蛍光へ効率良く変換することができる。つまり、簡便な方法で、効率よく輝度を向上させることができる。
また、前記凹凸形状は、凹部と凸部とが周期的に変化する形状であり、当該凹凸形状のピッチは、前記蛍光体粒子の粒径より大きくてもよい。
この構成により、蛍光体含有層の実効的な表面積を容易に増加させ、蛍光体含有層の光飽和を抑制すると同時に、励起光が蛍光体含有層の表面付近で乱反射させることで効率良く、励起光を蛍光へ変換することができる。
また、さらに、前記蛍光体含有層の前記励起光の入射面側に、前記励起光の波長に対して透明な透明基材を備えてもよい。
この構成により、蛍光体含有層の表面形状を容易に変形させることができる。
また、前記透明基材の前記蛍光体含有層側の面は、前記凹凸形状に応じた凹凸形状に形成されてもよい。
この構成により、蛍光体含有層の表面に凹凸形状を容易に形成することができる。
また、前記蛍光体含有層に含まれる前記蛍光体粒子の密度は、前記凹凸形状に向かって高くなってもよい。
この構成により、入射した励起光を、凹凸界面付近の蛍光体含有層で吸収しやすくすることができる。
また、前記基板は金属で構成されていてもよい。
この構成により、蛍光体含有層で発生した蛍光を効率良く入射側へ反射させることができるとともに蛍光体含有層で発生した熱を効率良く排熱させることができる。
また、前記蛍光体含有層を積層方向から見た外形は、円形であってもよい。
この構成により、蛍光体光学素子を、容易に回転させることが可能となり、特定の蛍光体領域に連続して光が入射することを防止することができる。
また、前記凹凸形状は、前記蛍光体含有層を積層方向から見た外形に対して同心円状に形成された複数の溝、もしくは外形に対して法線方向に形成された複数の溝により構成されてもよい。
この構成により、蛍光体光学素子から発せられる蛍光が一定の偏光性を有することができる。このような蛍光体光学素子は、偏光光学系の画像表示装置に適した光源装置を実現できる。
また、前記蛍光体含有層の前記励起光の入射面に形成された凹凸形状の凸部の幅は、前記蛍光体粒子の粒径よりも大きく、かつ、前記蛍光体粒子から発せられる蛍光の波長よりも小さくてもよい。
この構成により、蛍光体光学素子から発せられる蛍光の偏光性をより高くすることができる。
また、前記蛍光体粒子は量子ドット蛍光体であってもよい。
また、本発明に係る蛍光体光学素子の製造方法は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子と熱もしくは光によって硬化する溶媒とが混合された蛍光体含有樹脂溶液を、上面が凹凸形状に形成された透明光学素子の上面に塗布する工程と、前記蛍光体含有樹脂溶液を熱もしくは光により硬化することにより、下面に凹凸形状を有する蛍光体含有層を形成する工程とを含む。
これにより、蛍光体含有層に含まれる蛍光体粒子の密度を凹凸形状に向かって高くすることができ、その結果、入射した励起光を、凹凸界面付近の蛍光体含有層で吸収しやすくすることができる。
また、本発明に係る光源装置は、上記蛍光体光学素子と、励起光源と、ダイクロイックミラーと、集光レンズとを備える。
この構成により、画像表示装置に適した光源装置を、簡単な構成で実現することができる。
本発明によれば、画像表示装置の輝度を、簡便な方法で効率よく向上させることができる蛍光体光学素子及び光源装置を提供することができる。
図1Aは、第1の実施の形態に係る蛍光体光学素子の構造を示す正面図である。 図1Bは、第1の実施の形態に係る蛍光体光学素子の構造を示す断面図である。 図2Aは、第1の実施の形態に係る蛍光体光学素子の正面の一部を拡大した部分拡大図である。 図2Bは、図2AのIa−Ia線における断面図である。 図2Cは、図2Bの蛍光体層付近を拡大した断面図である。 図3は、第1の実施の形態に係る蛍光体光学素子の製造方法を示す断面図である。 図4Aは、比較例における蛍光体光学素子の機能を説明するための図である。 図4Bは、第1の実施の形態に係る蛍光体光学素子の機能を説明するための図である。 図5Aは、シミュレーションに用いたパラメータを示す表である。 図5Bは、シミュレーション結果を示すグラフである。 図6は、第1の実施の形態に係る蛍光体光学素子を用いた光源装置の構成と動作を説明するための図である。 図7Aは、光源装置から出射される出射光のスペクトルを示すグラフである。 図7Bは、光源装置から出射される出射光の色度図である。 図8Aは、第2の実施の形態に係る蛍光体光学素子の構造を示す正面図である。 図8Bは、図8AのIa−Ia線における断面図である。 図9Aは、第2の実施の形態に係る光源装置の動作の一例を説明するための図である。 図9Bは、第2の実施の形態に係る光源装置の動作の他の一例を説明するための図である。 図9Cは、第2の実施の形態に係る光源装置の機能を説明するための図である。 図10は、第2の実施の形態に係る光源装置の構成および動作を説明するための図である。 図11Aは、第3の実施の形態に係る蛍光体光学素子の構造を示す正面図である。 図11Bは、図11AのIa−Ia線における断面図である。 図12Aは、ダイクロイックミラーの機能を説明するための図である。 図12Bは、ダイクロイックミラーの透過特性を示すグラフである。 図13Aは、光源装置から出射される出射光のスペクトルを示すグラフである。 図13Bは、光源装置から出射される出射光の色度図である。 図14は、従来の光源装置の構造を示す平面模式図である。 図15は、従来の光源装置に係る蛍光ホイールの構造を示す平面図である。
以下、本発明の好ましい実施の形態について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示したものではない。また、各図において、同じ構成要素には同じ符号を付している場合がある。
(第1の実施の形態)
図1Aから図7Bを用いて本発明の第1の実施の形態にかかる蛍光体光学素子1及び光源装置100について説明する。
図1Aおよび図1Bは、本実施の形態の蛍光体光学素子1の構造を示す図であり、図1Aは、蛍光体光学素子1を正面から見た図であり、図1Bは図1AのIa−Ia線における断面図である。図2Aは蛍光体光学素子1の正面の一部を拡大した部分拡大図であり、図2Bは図2AのIa−Ia線における断面図であり、図2Cは図2Bの蛍光体層付近を拡大した断面図である。図3は本実施の形態に係る蛍光体光学素子の製造方法を示す断面図である。図4Aは、比較例における蛍光体光学素子の機能を説明するための図であり、図4Bは本実施の形態に係る蛍光体光学素子1の機能を説明するための図である。図5Aはシミュレーションに用いたパラメータを示す表であり、図5Bはシミュレーション結果を示すグラフである。図6は本実施の形態に係る蛍光体光学素子1を用いた光源装置100の構成と動作を説明するための図である。図7Aは、図6に示した光源装置100から出射される出射光のスペクトルを示すグラフであり、図7Bは出射光の色度図である。
以下、蛍光体光学素子1及び光源装置100について具体的に説明する。まず図1A〜図2Cに示すように、蛍光体光学素子1は例えば、厚み0.3mm〜0.5mmのアルミ合金やマグネシウム合金などの放熱基板30に、透明材料であるバインダ(溶媒)に蛍光体粒子が含有された、厚み0.05mm〜0.4mmの蛍光体層20と、例えばB270やBK7などのガラスである厚み0.1mm〜1mmの透明基板10が順に積層され、透明基板10の蛍光体層20側の表面には凹凸形状を有する凹凸部15が形成される。
透明基板10に形成された凹凸部15は、図2Aおよび図2Bに示すように例えば、ピッチpが0.2μm、深さdが0.2μmであり、蛍光体光学素子1の積層方向に垂直な平面方向にドット形状で形成される。凹凸部15は、詳細には、第1平面15a、傾斜面15b、及び、第2平面15cにより構成される。
蛍光体層20は、図1Aに示すように、青色蛍光体粒子が含まれる青色蛍光体層20Bと、緑色蛍光体粒子が含まれる緑色蛍光体層20Gと、赤色蛍光体粒子が含まれる赤色蛍光体層20Rとが、異なる領域に蛍光体光学素子1を3分割するように形成される。バインダを構成する透明材料は、例えば、ジメチルシリコーンなどの有機透明材料である。
なお、透明基板10は本発明の透明基材の一例であり、蛍光体層20は本発明の蛍光体含有層の一例であり、放熱基板30は本発明の基板の一例である。
ここで蛍光体層20の詳細構成を、図2Cの赤色蛍光体層20R付近の一部を拡大した図で説明する。赤色蛍光体層20Rは、赤色の蛍光体である赤色蛍光体粒子21Rがバインダ22に混合された構成であり、赤色蛍光体層20Rに含まれる赤色蛍光体粒子21Rの密度は、凹凸面に向かって高くなる。同様に、青色蛍光体層20Bは、青色の蛍光体である青色蛍光体粒子21Bがバインダ22に混合された構成であり、緑色蛍光体層20Gは、緑色の蛍光体である緑色蛍光体粒子21Gがバインダ22に混合された構成である。また、同様に、青色蛍光体粒子21Bの密度、及び、緑色蛍光体粒子21Gの密度は、凹凸面に向かって高くなる。
そして、蛍光体光学素子1の透明基板10の、凹凸部15の反対側の表面には、所定の波長の光を反射する、波長カットフィルタ膜40が形成される。ここで波長カットフィルタ膜40は、例えばZrO、TiO、CaF等の誘電膜が多層に積層された誘電体多層膜で構成される。
また、蛍光体光学素子1の外形は、図1Aに示すように円形の形状であり、回転させて用いるために、中央部に軸穴50が形成されている。
上記において、青色蛍光体層20Bを構成する蛍光体は、例えばBaMgAl1017:Eu蛍光体であり、波長405nmの励起光を例えばピーク波長440〜500nmの蛍光に変換する。緑色蛍光体層20Gを構成する蛍光体は、例えば、Y(Al,Ga)12:Ce蛍光体、β−SiAlON:Eu蛍光体、(Sr、Ba)SiO:Eu蛍光体、もしくは、BaMgAl1017:Eu、Mn蛍光体であり、波長405nmの励起光を例えばピーク波長500nm〜600の蛍光に変換する。赤色蛍光体層20Rの蛍光体は、例えばCaAlSiN:Eu蛍光体、(Sr、Ca)AlSiN:Eu蛍光体、もしくは、(Sr、Ba)SiO:Eu蛍光体であり、波長405nmの励起光を例えばピーク波長600nm〜660nmの蛍光に変換する。
なお、ここで蛍光体の名称または組成においてコロン(:)は、いわゆる「賦活された」という意味であり、例えばY(Al,Ga)12:CeとはCeによって賦活された、という意味である。
本実施の形態において用いられる蛍光体の種類を、以下の表1に示す。
Figure 2014024218
なお、蛍光体の組成や材料は、上記表1に限られず、他の材料や組成のものも使用可能である。
続いて図3を用いて本実施の形態に係る蛍光体光学素子1の製造方法について説明する。
まず図3の(a)に示すように厚みが0.8mmの例えば円形状のガラスである透明基板10に、半導体リソグラフィーを用いて凹凸部15に適応したレジストパターン形状を形成し(図示せず)、図3の(b)に示すように、例えばドライエッチングにより凹凸部15を形成した後、機械加工により軸穴50を形成する。
続いて図3の(c)に示すように、透明基板10上に、3種類の蛍光体層である赤色蛍光体層20R、緑色蛍光体層20G、青色蛍光体層20Bを形成するため、上記に示した蛍光体のうち青色用、緑色用、赤色用に対応した3種類の蛍光体のそれぞれを含有する蛍光体含有樹脂溶液(青色用、緑色用、赤色用)を作製する。
具体的には、緑色用には、例えばβ―SiAlON:Eu蛍光体を液状のジメチルシリコーン樹脂溶液に混合させた蛍光体含有樹脂溶液23Gを、透明基板10の所定の領域の凹凸部15表面に滴下する。続いて、赤色用に、例えばCaAlSiN:Euを混合させた蛍光体含有樹脂溶液23Rを所定の領域の凹凸部15表面に滴下する。続いて、青色用に関しても同様の作業を行う。
続いて図3の(d)に示すように、蛍光体含有樹脂溶液23B、23G、23Rを滴下された透明基板10を真空中に1時間程度、放置することにより、透明基板10の凹凸部15と蛍光体含有樹脂溶液23B、23G、23Rとの間にある空隙21を除去するとともに、蛍光体含有樹脂溶液23B、23G、23Rに含まれる蛍光体粒子を凹凸部15側に沈殿させる。このとき図2Cに示した赤色蛍光体粒子21Rの濃度が凹凸部に向かって高くなる構成を形成することが出来る。この結果、入射光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。
続いて図3の(e)に示すように、透明基板10の外形および軸穴50に対応した形状の、厚み0.5mmのアルミ基板である放熱基板30を、透明基板10の蛍光体含有樹脂溶液23B、23G、23R側から接着し、加圧する。このとき、蛍光体含有樹脂溶液23B、23G、23Rの放熱基板30側には蛍光体粒子の濃度が低いため、容易に接着させることができる。つづいて、例えば160℃の高温炉中に放置することにより、所定の厚みの蛍光体層20を形成する。
続いて図3の(f)に示すように、真空蒸着装置中で、透明基板10の蛍光体層20と反対の面に誘電体多層膜である波長カットフィルタ膜40を形成する。
上記の製造方法により、本実施の形態に係る蛍光体光学素子1を簡単に製造することができる。
続いて、図4A及び図4Bを用いて蛍光体光学素子1の機能について説明する。
図4Aは、比較例の蛍光体光学素子の機能を説明するための図であり、この蛍光体光学素子は、具体的には透明基板10と蛍光体層20との界面に凹凸面が形成されていない構成を有する。図4Bは、本実施の形態に係る蛍光体光学素子1の機能を説明するための図であり、本実施の形態に係る蛍光体光学素子1は、具体的には、透明基板10と蛍光体層20との界面に凹凸面が形成されている構成を有する。
図4A及び図4Bにおいて、透明基板10側から蛍光体層20に向けて、励起光である入射光60が蛍光体層20へ入射する。このとき蛍光体層20へ入射した光の一部は蛍光体層20の光変換領域70の蛍光体で吸収され、一部は蛍光体で吸収されずに、蛍光体層20における蛍光体とバインダ(例えば、シリコーン樹脂)との屈折率の差などにより、そのまま反射されて反射光61となり、入射側に反射される。
蛍光体層20の光変換領域70の蛍光体で吸収された入射光60の一部は蛍光体で蛍光80に変換され、残りは蛍光に変換されずに熱となり、蛍光体層20を伝熱する。蛍光体で変換された蛍光80は、蛍光体とシリコーン樹脂との屈折率の差により多重反射され、もしくは放熱基板30で反射され、ランバーシアンの拡がり角分布をもって、入射光60の入射側から取り出される。
上記図4Aに示す比較例の構成において、蛍光80の実効的な発光面積である実効発光面積Sを小さくするために、入射光60の照射面積を固定して入射光量を増加させた場合、蛍光体層20の蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)に賦活された希土類イオンの量に対する励起光量の比率が急激に増加する。この結果、蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)に賦活される希土類イオンにおける励起電子が枯渇し、蛍光体に吸収される入射光60の比率が低下して反射光61の比率が増加する。その結果、蛍光体光学素子における励起光の蛍光への変換効率が低下する。
一方、図4Bに示す本実施の形態の蛍光体光学素子1においては、蛍光体層20と透明基板10との界面に凹凸が形成されている。このため、比較例と比較して、実効発光面積Sを大きくすることなく、蛍光体層20の実効的な表面積S’を増加させることができる。また、蛍光体層20の表面に傾斜面15bをつけることで、反射光61の一部は、反射される際に、そのまま入射光60の入射側へ向かわずに、角度を変えて、再び蛍光体層20へと入射することができる。ここで、蛍光体層20の凹凸界面近傍には蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度の高い領域が形成されているため、効率的に入射光を蛍光へ変換することが出来る。
つまり、本実施の形態に係る蛍光体光学素子1における実効発光面積Sと比較例における実効発光面積Sとが同じ場合、本実施の形態に係る蛍光体光学素子1は、比較例と比較して、蛍光体層20の透明基板10側の面に形成された凹凸面により実効的な表面積S’を増加させることができる。さらに、蛍光体層20に形成された凹凸面により、反射光の一部をさらに蛍光体層20に入射させて蛍光へ変換することができる。
よって、本実施の形態に係る蛍光体光学素子1は、比較例と比較して、入射した励起光を蛍光へ効率良く変換することができる。なお、実効発光面積Sとは、蛍光体層20を積層方向から見た場合の発光面積であり、実効的な表面積S’とは、蛍光体層20において発光している領域の表面積である。
続いて具体的に、蛍光体層20の凹凸の効果を、下記理論式と図5A及び図5Bとに示す計算結果を用いて説明する。まず、入射光密度の増加による蛍光体における変換効率の低下(光飽和)は、実験的に次の式で表すことができる。蛍光体の外部領域効率をηext、蛍光体の内部量子効率をηini、励起光密度をxとすると、外部領域効率ηextと吸収係数α(x)とはそれぞれ、式1及び式2で表すことができる。
Figure 2014024218
Figure 2014024218
ここで、α(0)は光励起密度が非常に低いときの蛍光体の吸収係数であり、βは光飽和係数、S’は上述の蛍光体層20の実効的な表面積、dは入射光の侵入長である。このとき、蛍光体層20の表面に凹凸を形成することで得られる2つの効果、すなわち、実効的な表面積Sを増加させる効果と、反射光61の蛍光体層20への再入射の効果とは、それぞれ以下のように表される。
まず、実効的な表面積S’を増加させる効果に関しては式2のS’を大きくすることで計算できる。一方、反射光61の蛍光体層20への再入射の効果を考慮した吸収係数α’(x)は、
Figure 2014024218
となる。上記において、反射光61が蛍光体層20へ再入射した場合、蛍光体表面における光密度も増加するため、上記の2つの効果が相殺される可能性がある。したがって、これらの効果を数値的に求めた結果が図5Aおよび図5Bとなる。図5Aはシミュレーションに用いたパラメータを示す表であり、図5Bは変換効率の励起光密度依存性を、シミュレーション条件ごとに計算したものである。なお、励起光密度とは入射光量P/実効発光面積Sである。
図5Bにおいて、比較例は式1及び式2で計算された結果を示し、検討1は実効的な表面積を2倍にした結果を示し、検討2は検討1の計算結果に対して再入射の効果を光密度の増加を考慮しないで2次まで計算した結果を示す。さらに本実施の形態は、検討2の計算結果に対して再入射における光密度の増加を考慮した場合の計算結果を示す。
図5Bの結果から、本実施の形態に係る蛍光体光学素子1は、検討2と比較して、再入射における光密度の増加により変換効率が若干低下する。しかしながら、上記2つの効果、すなわち、蛍光体層20の実効的な表面積の増加、及び、反射光61の蛍光体層20への再入射により、蛍光体層20の透明基板10側の面が平面である比較例と比較して、十分に良好な変換効率を有することがわかる。
以上のように、本実施の形態に係る蛍光体光学素子1は、励起光源から放射される励起光である入射光60の波長の光を吸収する蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)が含有された蛍光体層20と、蛍光体層20を保持する放熱基板30とを備え、蛍光体層20の励起光の入射面は、凹凸形状である。これにより、エテンデュを大きくすることなしに、蛍光体層20の実効的な表面積S’を増加させ、蛍光体の光飽和を抑制することができる。また、励起光を蛍光体層20の凹凸面付近で乱反射させることができ、その結果、励起光を蛍光へ効率良く変換することができる。つまり、簡便な方法で、効率よく輝度を向上させることができる。
また、蛍光体層20の透明基板10側の面に形成された凹凸形状は、凹部と凸部とが周期的に変化する形状であり、当該凹凸形状のピッチ(周期)は、蛍光体粒子の粒径よりも大きい。これにより、蛍光体層20の実効的な表面積S’を容易に増加させ、蛍光体層20の光飽和を抑制すると同時に、励起光を蛍光体層20の凹凸面付近で乱反射させることで、励起光を蛍光へ効率良く変換することができる。
また、蛍光体層20の励起光の入射面側には、励起光の波長に対して透明な透明基板10が設けられている。これにより、蛍光体層20の透明基板10側の面を、容易に変形させることができる。
この透明基板10の蛍光体層20側の面は、蛍光体層20の透明基板10側の面に形成されている凹凸形状に応じた凹凸形状に形成されている。つまり、蛍光体層20の透明基板10側の面に形成されている凹凸形状は、透明基板10の凹凸部15と嵌合する。これにより、蛍光体層20の透明基板10側の面に凹凸形状を容易に形成することができる。
また、蛍光体層20に含まれる蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度は、凹凸形状に向かって高くなる。これにより、入射した励起光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。
また、放熱基板30は金属で形成されている。これにより、蛍光体層20で発生した蛍光を効率良く入射側へ反射させることができ、さらに、蛍光体層20で発生した熱を効率よく排熱することができる。
また、蛍光体光学素子1の製造方法は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)と熱もしくは光によって硬化するバインダ22とが混合された蛍光体含有樹脂溶液23B、23G、23Rを、上面が凹凸形状に形成された透明基板10の上面に塗布する工程と、蛍光体含有樹脂溶液23B、23G、23Rを熱により硬化することにより、下面に凹凸形状を有する蛍光体層20を形成する工程とを含む。以下、蛍光体含有樹脂溶液23B、23G、23Rを特に区別せず、蛍光体含有樹脂溶液23と記載する場合がある。
これにより、蛍光体層20に含まれる蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度を凹凸形状に向かって高くすることができ、その結果、入射した励起光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。
なお、上記において、好ましくは、透明基板10の屈折率と蛍光体層20に含まれるシリコーン樹脂の屈折率との差は小さい方がよく、例えば透明基板10として屈折率1.46の石英ガラス、シリコーン樹脂として屈折率1.46のジメチルシリコーンを用いることができる。
また、上記において、蛍光体層20に含まれる樹脂(バインダ)をジメチルシリコーンなどのシリコーン樹脂としたが、この限りではない、例えば、エポキシ樹脂、アクリル樹脂等の他の透明材料を用いてもよい。この結果、製造時の液状の蛍光体含有樹脂溶液23を硬化させるときに、紫外線照射による硬化を用いることができる。また、上記材料を用いることで、透明基板10との屈折率差をより自由に調整することができる。また、低融点ガラスなどの無機透明材料を用いることもできる。この場合、透明基板10に用いられるガラス材料よりもガラス転移温度が低いものを用いる。そして製造方法としては、例えば、透明基板10の凹凸面に蛍光体粒子を混合させた低融点ガラスを滴下させ、放熱基板30を接着下のちに冷却する方法を用いる。この構成により、透明基板10に形成された凹凸の形状が変形することを防止するとともに、バインダが光により劣化することを防止することができる。
続いて図1A、図1B、図6、図7A及び図7Bを用いて本実施の形態に係る蛍光体光学素子1を用いた光源装置100について説明する。
光源装置100は、例えば、発光波長405nmの複数の半導体レーザである半導体発光素子120と、複数のコリメートレンズ130、ダイクロイックミラー131、集光レンズ132、蛍光体光学素子1とで構成される。蛍光体光学素子1はモータ110の回転軸111に固定されており、所定の回転数で回転する。ここで蛍光体光学素子1の青色蛍光体層20Bの蛍光体には例えばBaMgAl1017:Eu蛍光体を、緑色蛍光体層20Gの蛍光体には例えばβ―SiAlON:Eu蛍光体を、赤色蛍光体層20Rの蛍光体には例えばCaAlSiN:Eu蛍光体を用いた場合について説明する。
半導体発光素子120から出射された波長405nmの出射光190は、コリメートレンズ130にて平行光に変換され合波されることで出射光190となり、ダイクロイックミラー131を通過し、集光レンズ132により蛍光体光学素子1の所定の位置に集光される。蛍光体光学素子1の所定の位置に集光されるように向かった光は、波長カットフィルタ膜40を透過し、図4Bに示すように効率良く蛍光へ変換される。そして、変換された蛍光は、波長カットフィルタ膜40の方向に向かい不要な波長の一部の光は反射され、色純度が高くなった蛍光として、蛍光体光学素子1を出射し、再び集光レンズ132にて平行光に変換され、その後、ダイクロイックミラー131により、出射光190と分離され、波長変換光192として放射される。
上記の動作により光源装置100より出射された出射光のスペクトルおよび色度座標を図7Aおよび図7Bに示す。図7Aに示すスペクトルは、青色蛍光体層20Bの蛍光体にBaMgAl1017:Eu蛍光体を、緑色蛍光体層20Gの蛍光体にβ―SiAlON:Eu蛍光体を、赤色蛍光体層20Rの蛍光体にCaAlSiN:Euを用いた場合のスペクトルである。また波長カットフィルタ膜40に関しては、青色蛍光体層20Bの表面には波長500nm以上の光を反射する誘電体多層膜が形成され、緑色蛍光体層20Gの表面には波長590nm以上の光を反射する誘電体多層膜が形成され、赤色蛍光体層20Rの表面には波長590nm以下の光を反射する誘電体多層膜が形成される。
このとき、波長405nmの出射光190のスペクトルに対して、青色蛍光体層20Bから出射された蛍光80Bを波長カットフィルタ膜40で色純度を向上させた波長変換光(青色光)191B、緑色蛍光体層20Gから出射された蛍光80Gを波長カットフィルタ膜40で色純度を向上させた波長変換光(緑色光)191G、及び、赤色蛍光体層20Rから出射された蛍光80Rを波長カットフィルタ膜40で色純度を向上させた波長変換光(赤色光)191Rは、図7Bの色度図において各色度座標に示されるようにsRGB規格を十分にカバーする色再現性のよい光となる。つまり、蛍光体光学素子1を用いた光源装置100は、sRGB規格を十分にカバーする単色光を放射することができる。
以上のように、本実施の形態に係る光源装置100は、蛍光体光学素子1と、半導体発光素子120と、ダイクロイックミラー131と、集光レンズ132とを備える。
上記の構成により、簡便な構成で、光源装置100を実現できる。つまり、蛍光体光学素子1の蛍光体において効率良く半導体発光素子120からの光を蛍光に変換でき、さらに色純度の高い青色光、緑色光、赤色光を放射することができるため、輝度の高い光源装置100を実現させることができる。言い換えると、本実施の形態に係る光源装置100は、簡単な構成で、画像表示装置に適した構成を実現できる。なお、半導体発光素子120は、本発明に係る励起光源の一例である。
また、蛍光体層20を積層方向から見た外形は円形であるので、蛍光体光学素子1を容易に回転させることが可能となり、特定の蛍光体領域に連続して光が入射することを防止することができる。
(第2の実施の形態)
続いて、図8A〜図10を用いて本発明の第2の実施の形態に係る蛍光体光学素子および光源装置について説明する。
本実施の形態に係る光源装置は、画像表示素子として液晶パネルのような偏光光学系を用いる画像表示装置に適したものである。
図8Aは、本実施の形態に係る蛍光体光学素子の構造を示す正面図であり、図8Bは、図8AのIa−Ia線における断面図である。図9A及び図9Bは、本実施の形態に係る光源装置の動作を説明するための図である。図9Cは、本実施の形態に係る光源装置の機能を説明するための図である。図10は、本実施の形態に係る光源装置の構成及び動作を説明するための図である。
(構成)
以下、本実施の形態に係る蛍光体光学素子について、具体的に説明する。本実施の形態に係る蛍光体光学素子は、第1の実施の形態に係る蛍光体光学素子1と比較して、ほぼ同様の構成を有するが、透明基板と蛍光体層との界面の凹凸形状が、凹部と凸部とが一定周期で繰り返す同心円状に形成されている点が異なる。以下、第1の実施の形態と異なる点を中心に説明する。
まず図8Aおよび図8Bに示すように、蛍光体光学素子201は、例えば、厚み0.3mm〜0.5mmのアルミ合金やマグネシウム合金などの放熱基板230上に、例えば厚み0.05mm〜0.4mmの青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rと、例えばB270やBK7などのガラスである厚み0.1mm〜1mmの透明基板210とが順に積層されることにより形成されている。
ここで、青色蛍光体層220Bには青色蛍光用として例えばBaMgAl1017:Eu蛍光体が、緑色蛍光体層220Gには緑色蛍光用として例えばβ―SiAlON:Eu蛍光体が、赤色蛍光体層220Rには赤色蛍光用として例えば、CaAlSiN:Eu蛍光体が、例えばシリコーンなどのバインダに含有されてなる。以降、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rを特に区別せず、蛍光体層220と記載する場合がある。
さらに、透明基板210と蛍光体層220との界面の透明基板210側の表面には凹凸形状を有する凹凸部215が形成される。また、透明基板210に形成されている凹凸部215は、図8Aに示すように中心位置から同心円状に形成された複数の溝により構成され、例えば、ピッチが0.05mm、深さが0.1mmの複数の溝で構成される。
蛍光体光学素子201の透明基板210の凹凸部215の反対側の表面には、例えばZrO、TiO、CaF等の誘電膜が多層に積層された誘電体多層膜である波長カットフィルタ膜240が形成されている。
蛍光体光学素子201の外形は、図8Aに示すように円形の形状であり、回転して用いるために、中央部に軸穴250が形成されている。
(動作)
続いて図9A、図9B及び図9Cを用いて、本実施の形態に係る蛍光体光学素子201の動作を、周辺の光学素子と組み合わせた場合において説明する。本実施の形態において、蛍光体光学素子201の凹凸部215は、出射光190の偏光方向の電界成分と垂直な方向に溝が形成されるように設定される。
図9Aは、本実施の形態に係る蛍光体光学素子201を用いた光源装置において、半導体発光素子120から出射された出射光が、蛍光体光学素子201に到達するまでの動作を表す。図9Bは、蛍光体光学素子201から放射された蛍光が、ダイクロイックミラー131にて反射され、光源装置外部に放射されるまでの動作を表す。
波長405nmの光を放射する半導体レーザである半導体発光素子120から出射された出射光290aは、図中の水平方向に電界成分を有する偏光光である。出射光290aは、偏光方向が維持されたまま、コリメートレンズ130で平行光である出射光290bとなりダイクロイックミラー131を透過する。ダイクロイックミラー131を透過した出射光290cは集光レンズ132により蛍光体光学素子201の蛍光体層220に集光される。蛍光体層220に集光された出射光290cは蛍光体層220の蛍光体において蛍光に変換されるが、蛍光体光学素子201に形成された凹凸により、表面を複数回反射して蛍光体光学素子201から出射する。このとき、図9Cに示すように、凹凸部215が、入射光の偏光方向に垂直な方向に屈折率界面を有する周期構造であるため、蛍光が屈折率界面を複数回反射して蛍光体光学素子201から出射される蛍光は、入射光の偏光とは偏光方向が90°回転した偏光成分が大きい蛍光292aとなり、蛍光体光学素子201から集光レンズ132の方向へ放射される。この蛍光292aは集光レンズ132で再び平行光292bとなり、ダイクロイックミラー131で垂直方向へ反射され光源装置から放射される。このような光源装置から放射される光は入射光の一部と、それぞれ青色、緑色及び赤色が一定時間ごとに出射される。これらの出射された偏光性の高い蛍光を利用して、画像を投影することが容易となる。
上記の構成により簡便な構成で、光源装置を構成することができるとともに、蛍光体光学素子の効率の低下を抑制し、輝度を向上させることができる。さらに、蛍光体光学素子から出射される光は偏光であるため、表示素子に液晶パネルなどの偏光光学系を用いる場合、効率よく蛍光を利用することができる。
(効果)
続いて図10を用いて、上記の効果を説明するため、上記本実施の形態に係る蛍光体光学素子201を用いた光源装置の一例を示す。
図10の光源装置300は、図9Aおよび図9Bに示した構成のほかに、モニタ素子325、偏光ビームスプリッタ340、モニタレンズ343、回折格子346、制御IC350および偏光を利用する例えばLCOS(Liquid Crystal On Si)素子である反射型表示素子380を備える。
同図に示す光源装置300は、図9Aおよび図9Bで説明した動作を行い、ダイクロイックミラー131から青色、緑色及び赤色の波長変換光292を放射する。波長変換光292は偏光ビームスプリッタ340で大部分を透過し、反射型表示素子380に照射される。このとき、偏光ビームスプリッタ340を透過しなかったごく一部の波長変換光294は回折格子346で波長ごとに分けられ、分割受光素子を有するモニタ素子325に照射される。ここで、モニタ素子325における各分割受光素子は、青色、緑色及び赤色それぞれに分けられた波長変換光294の輝度変化を読み取り、その結果を制御IC350にフィードバックすることができる。
一方、反射型表示素子380に放射された波長変換光292は、マトリックス状の画素ごとに形成されている液晶により偏光方向が変えられて反射される。それにより、反射型表示素子380で反射された波長変換光292は、偏光ビームスプリッタ340で画素ごとの映像光396となり、光源装置300から出射され、図示しない投影レンズにより投影される。
以上のように、本実施の形態に係る蛍光体光学素子201は、上記の構成により簡便な構成で、光源装置300を構成することができるとともに、蛍光体光学素子201の蛍光体における変換効率の低下を抑制し、光源装置300の輝度を向上させることができる。さらに、蛍光体光学素子201からの波長変換光(出射光)292の偏光性を高くすることができ、このような蛍光体光学素子201を用いることにより、偏光性の高い光を出射する光源装置300を構成することができる。
言い換えると、本実施の形態に係る蛍光体光学素子201は、透明基板210と蛍光体層220との界面の凹凸形状が、凹部と凸部とが一定周期で繰り返す同心円状に形成されている。つまり、凹凸部215は、蛍光体層220を積層方向から見た外形に対して同心円状に形成されている。
これにより、蛍光体光学素子201から発せられる蛍光、つまり蛍光体光学素子201からの波長変換光が一定の偏光性を有することができる。このような蛍光体光学素子201を用いることにより、偏光光学系の画像表示装置に適した光源装置300を実現できる。
なお、本実施の形態においては、半導体発光素子120として、半導体レーザとしたが、半導体レーザと同じ導波路が形成された端面出射型の発光素子であるスーパールミネッセントダイオードでもよい。また半導体レーザの発光波長を405nmとしたが、例えば波長380nmから440nmの波長の光を出射する半導体レーザでもよい。
また、上記構成で、蛍光体光学素子201の凹凸(透明基板210と蛍光体層220との界面の凹凸形状)は、同心円状に形成された複数の溝により構成されるとしたがこの限りではない。例えば、蛍光体層220の中心から法線方向に形成された溝が所定の方位に形成された複数の溝により構成されるとしてもよい。つまり、蛍光体層220の中心から所定の角度間隔で形成された複数の溝により構成されてもよい。この場合、蛍光292aの偏光方向が90度変化するため、蛍光体光学素子201の位置や、ダイクロイックミラー131の構成は、凹凸形状に合わせて最適なものに変更される。
また、上記構成で、凹凸部215のピッチ(周期)は蛍光の発光波長よりも十分大きい、例えばピッチが0.05mm、深さが0.1mmとしたがこの限りではない。
例えば、凹凸部215のピッチを、蛍光体からの蛍光の発光波長よりも同程度からもしくは小さく設定し、例えば、ピッチが0.1μm、溝部(透明基板210に形成された凹凸部215の凹部)の幅がピッチの約半分の0.06μm、深さが0.2μmとしてもよい。この場合、蛍光体からの出射光は、凹凸部215の周期構造の影響を強く受けるためより偏光性を高くすることができる。
ここで、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rに含有される蛍光体粒子の粒径は、溝部幅よりも小さく設定する必要があり、凹凸のピッチが0.1μm、溝部(透明基板210に形成された凹凸部215の凹部)の幅が0.06μmの場合は、蛍光体粒子の粒径は、例えば、粒径10〜50nm程度とする。
つまり、蛍光体層220の励起光の入射面に形成された凹凸形状の凸部の幅、すなわち透明基板210に形成された凹凸部215の凹部の幅は、蛍光体粒子の粒径よりも大きく、かつ、蛍光体粒子から発せられる蛍光、つまり波長変換光292(出射光)の波長よりも小さい。これにより、蛍光体光学素子201から発せられる波長変換光292の偏光性をより高くすることができる。
上記の場合、蛍光体として上記大きさの、例えば、BaMgAl1017:Eu蛍光体、β―SiAlON:Eu蛍光体、CaAlSiN:Eu蛍光体を用いることができる。
さらに他の蛍光体材料として、例えば、CdSe/ZnSのコア・シェル型量子ドット蛍光体のような、粒径が発光波長と同程度か、もしくはそれ以下である蛍光体を用いることができる。
この場合、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rにはいずれも量子ドット蛍光体を用い、発光波長に合わせて粒径を変化させることで、本実施の形態に係る蛍光体光学素子201を構成することが出来る。
さらに蛍光体粒子をCdSe/ZnSコア・シェル型量子ドット蛍光体以外の量子ドット蛍光体を用いることができる。量子ドット蛍光体材料としては、例えばII−V族化合物半導体であるInN、InP、InAs、InSb、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSbおよびBN、II−VI族化合物半導体であるHgS、HgSe、HgTe、CdS、CdSe、CdTe、ZnS、ZnSeおよびZnTe、並びにこれらの混晶結晶よりなる群から選択することができる。また、上記蛍光体は、ノンドープ型量子ドット蛍光体であるが、ドープ型量子ドット蛍光体を用いてもよい。ドープ型量子ドット蛍光体としては、例えば構成する材料を、ZnS:Mn2+、CdS:Mn2+およびYVO4:Eu3+を用いることができる。
(第3の実施の形態)
続いて、図11A〜図13Bを用いて本発明の第3の実施の形態に係る蛍光体光学素子および光源装置について説明する。
図11Aは、本実施の形態に係る蛍光体光学素子401の構造を示す正面図であり、図11Bは図11AのIa−Ia線における断面図である。図12Aは、ダイクロイックミラー131の機能を説明するための図であり、図12Bは、ダイクロイックミラー131の透過特性を示すグラフであり、図13Aは、本実施の形態に係る光源装置から出射される出射光のスペクトルを示すグラフであり、図13Bは出射光の色度図である。
本実施の形態は第2の実施の形態とほとんど同じであるが、半導体発光素子から出射される光の波長が異なる。以下、第2の実施の形態と異なる点を中心に説明する。本実施の形態においては、半導体発光素子としては、出射光の波長が435nm〜480nmである、所謂、可視の青色である光を放射する半導体レーザ素子を用いる。一方、蛍光体光学素子401については、出射光の偏光方向を変えて反射する反射層425と、第2の実施の形態に示した偏光を有する蛍光に変換する蛍光体層420とに領域が分かれている。なお、透明基板410、凹凸部415、放熱基板430及び軸穴450はそれぞれ、第2の実施の形態における透明基板210、凹凸部215、放熱基板230及び軸穴250と同様である。
蛍光体層420は緑色蛍光体粒子が含有される緑色蛍光体層420Gと、赤色蛍光体粒子が含有される赤色蛍光体層420Rとで構成される。本実施の形態では、緑色蛍光体として、Y(Al,Ga)12:Ce蛍光体、赤色蛍光体として、CaAlSiN:Eu蛍光体を用いる。
一方、反射層425については、蛍光体層420の蛍光体粒子の代わりに例えば、TiO粒子などの高反射材料に置き換えることで容易に実現できる。
またダイクロイックミラー131については、図12Aに示すように、半導体発光素子から出射される出射光290bの波長に対して、例えば紙面に向かって水平方向(紙面左右方向)の出射光290cのみ透過し、長波長側の蛍光および紙面に向かって垂直方向(紙面上下方向)の出射光の波長の光を反射するように設計することで構成部品点数を変えずに容易に実現することができる。なお、図12Bは、波長450nmに対して、ダイクロイックミラー131の誘電体多層膜を設計した場合の透過特性を示す。
このような構成を有する光源装置から出射される光は、図13A及び図13Bに示すように、色純度が高く、色再現性の優れた青色光292B、緑色光292G、赤色光292Rの光となる。さらに、青色光292B、緑色光292G、赤色光292Rは偏光性が高く方向もそろっているため、偏光光学系の表示素子を用いた画像表示装置等で利用することが可能となる。
以上のように、本実施の形態に係る蛍光体光学素子401は、上記の構成により簡便な構成で、光源装置を構成することができるとともに、蛍光体光学素子401の蛍光体における変換効率の低下を抑制し、光源装置の輝度を向上させることができる。さらに、蛍光体光学素子からの出射光を偏光性の高い光とすることができるので、偏光性の高い光を出射する光源装置を構成することができる。
以上、本発明に係る蛍光体光学素子及び光源装置について、実施の形態に基づいて説明したが、本発明は、上記の実施の形態及に限定されるものではなく、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。
本発明に係る蛍光体光学素子および光源装置は液晶テレビや液晶モニタなどのバックライトの光源やプロジェクタなどの投影型ディスプレイの光源として用いることが可能である。
1、201、401 蛍光体光学素子
10、210、410 透明基板
15、215、415 凹凸部
15a、15c 平面
15b 傾斜面
20、220、420 蛍光体層
20B、220B 青色蛍光体層
20G、220G、420G、1004 緑色蛍光体層
20R、220R、420R 赤色蛍光体層
21 空隙
21B 青色蛍光体粒子
21G 緑色蛍光体粒子
21R 赤色蛍光体粒子
22 バインダ
23、23B、23G、23R 蛍光体含有樹脂溶液
30、230、430 放熱基板
40、240、440 波長カットフィルタ膜
50、250、450 軸穴
60 入射光
61 反射光
70 光変換領域
80、80B、80G、80R、292a 蛍光
100、300、1063 光源装置
110 モータ
111 回転軸
120 半導体発光素子
130、1149 コリメートレンズ
131 ダイクロイックミラー
132 集光レンズ
190、290a、290b、290c 出射光
192、292、294 波長変換光
325 モニタ素子
340 偏光ビームスプリッタ
343 モニタレンズ
346 回折格子
350 制御IC
380 反射型表示素子
396 映像光
1001 拡散領域
1002 蛍光発光領域
1071 蛍光体ホイール
1072 青色レーザ発光器
1073 ホイールモータ
1074 発光素子
1075 導光装置
1150 反射ミラー群
1151a、1151b、1151c、1151d ミラー
1153a、1153b、1153c、1153d、1154 レンズ
1155 集光レンズ群

Claims (12)

  1. 励起光源から放射される励起光の波長の光を吸収する蛍光体粒子が含有された蛍光体含有層と、
    前記蛍光体含有層を保持する基板とを備え、
    前記蛍光体含有層の前記励起光の入射面は、凹凸形状である
    蛍光体光学素子。
  2. 前記凹凸形状は、凹部と凸部とが周期的に変化する形状であり、
    当該凹凸形状のピッチは、前記蛍光体粒子の粒径よりも大きい
    請求項1記載の蛍光体光学素子。
  3. さらに、
    前記蛍光体含有層の前記励起光の入射面側に、前記励起光の波長に対して透明な透明基材を備える
    請求項1又は2記載の蛍光体光学素子。
  4. 前記透明基材の前記蛍光体含有層側の面は、前記凹凸形状に応じた凹凸形状に形成されている
    請求項3記載の蛍光体光学素子。
  5. 前記蛍光体含有層に含まれる前記蛍光体粒子の密度は、前記凹凸形状に向かって高くなる
    請求項1から4のいずれか1項に記載の蛍光体光学素子。
  6. 前記基板は金属で構成されている
    請求項1から5のいずれか1項に記載の蛍光体光学素子。
  7. 前記蛍光体含有層を積層方向から見た外形は、円形である
    請求項1から6のいずれか1項に記載の蛍光体光学素子。
  8. 前記凹凸形状は、前記蛍光体含有層を積層方向から見た外形に対して同心円状に形成された複数の溝、もしくは外形に対して法線方向に形成された複数の溝により構成される
    請求項7記載の蛍光体光学素子。
  9. 前記蛍光体含有層の前記励起光の入射面に形成された凹凸形状の凸部の幅は、前記蛍光体粒子の粒径よりも大きく、かつ、前記蛍光体粒子から発せられる蛍光の波長よりも小さい
    請求項1から8のいずれか1項に記載の蛍光体光学素子。
  10. 前記蛍光体粒子は量子ドット蛍光体である
    請求項1から9のいずれか1項に記載の蛍光体光学素子。
  11. 励起光源から放射される励起光の波長の光を吸収する蛍光体粒子と熱もしくは光によって硬化する溶媒とが混合された蛍光体含有樹脂溶液を、上面が凹凸形状に形成された透明光学素子の上面に塗布する工程と、
    前記蛍光体含有樹脂溶液を熱もしくは光により硬化することにより、下面に凹凸形状を有する蛍光体含有層を形成する工程とを含む
    蛍光体光学素子の製造方法。
  12. 請求項1から10のいずれか1項に記載の蛍光体光学素子と、励起光源と、ダイクロイックミラーと、集光レンズとを備える
    光源装置。
JP2014529152A 2012-08-06 2012-08-06 蛍光体光学素子、その製造方法及び光源装置 Pending JPWO2014024218A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004984 WO2014024218A1 (ja) 2012-08-06 2012-08-06 蛍光体光学素子、その製造方法及び光源装置

Publications (1)

Publication Number Publication Date
JPWO2014024218A1 true JPWO2014024218A1 (ja) 2016-07-21

Family

ID=50067510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014529152A Pending JPWO2014024218A1 (ja) 2012-08-06 2012-08-06 蛍光体光学素子、その製造方法及び光源装置

Country Status (2)

Country Link
JP (1) JPWO2014024218A1 (ja)
WO (1) WO2014024218A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940494A (zh) 2014-02-28 2016-09-14 松下知识产权经营株式会社 发光器件以及发光装置
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
CN105940508B (zh) 2014-02-28 2019-01-11 松下知识产权经营株式会社 发光器件以及发光装置
JP2016034017A (ja) 2014-02-28 2016-03-10 パナソニックIpマネジメント株式会社 発光装置
JP6357835B2 (ja) 2014-03-31 2018-07-18 ソニー株式会社 発光素子、光源装置およびプロジェクタ
JP6507548B2 (ja) 2014-09-26 2019-05-08 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター
KR20160038325A (ko) * 2014-09-30 2016-04-07 코닝정밀소재 주식회사 색변환용 기판, 그 제조방법 및 이를 포함하는 디스플레이 장치
JP6428193B2 (ja) * 2014-11-21 2018-11-28 日亜化学工業株式会社 波長変換部材および該波長変換部材を備えたプロジェクタ
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
JP2016171228A (ja) 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 発光素子、発光装置および検知装置
JP6569856B2 (ja) 2015-03-13 2019-09-04 パナソニックIpマネジメント株式会社 発光装置および内視鏡
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
JP2017005054A (ja) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 発光装置
JP2017003697A (ja) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP2017040818A (ja) 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 発光素子
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
JP6719094B2 (ja) 2016-03-30 2020-07-08 パナソニックIpマネジメント株式会社 発光素子
JP2018028647A (ja) * 2016-08-20 2018-02-22 セイコーエプソン株式会社 波長変換素子、光源装置、およびプロジェクター
JP2018155968A (ja) * 2017-03-17 2018-10-04 日亜化学工業株式会社 透光性部材の製造方法及び発光装置の製造方法
CN110494777B (zh) * 2017-04-04 2021-10-29 富士胶片株式会社 含荧光体膜及背光单元
US10345688B2 (en) * 2017-04-18 2019-07-09 Unique Materials Co., Ltd. Light emitting apparatus using composite material
JP2018189927A (ja) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 蛍光体ホイール
JP7124831B2 (ja) * 2017-10-05 2022-08-24 ソニーグループ株式会社 波長変換素子および投射型表示装置
JP7106349B2 (ja) * 2018-05-15 2022-07-26 キヤノン株式会社 光源装置および画像投射装置
CN112639544B (zh) * 2018-09-26 2022-10-28 松下知识产权经营株式会社 波长转换构件及使用了它的白色光输出设备
JP6593520B2 (ja) * 2018-10-31 2019-10-23 日亜化学工業株式会社 波長変換部材および該波長変換部材を備えたプロジェクタ
CN112147836B (zh) 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源系统及显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040240A (ja) * 2000-07-31 2002-02-06 Canon Inc 蛍光性薄膜、それを用いた蛍光素子およびその製造方法
JP2005268708A (ja) * 2004-03-22 2005-09-29 Stanley Electric Co Ltd 半導体発光装置及び製造方法
JP2005311153A (ja) * 2004-04-23 2005-11-04 Harison Toshiba Lighting Corp 発光素子の外囲器
JP2007027751A (ja) * 2005-07-14 2007-02-01 Samsung Electro Mech Co Ltd 波長変換型の発光ダイオードパッケージ
JP2012093454A (ja) * 2010-10-25 2012-05-17 Seiko Epson Corp 光源装置及びプロジェクター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040240A (ja) * 2000-07-31 2002-02-06 Canon Inc 蛍光性薄膜、それを用いた蛍光素子およびその製造方法
JP2005268708A (ja) * 2004-03-22 2005-09-29 Stanley Electric Co Ltd 半導体発光装置及び製造方法
JP2005311153A (ja) * 2004-04-23 2005-11-04 Harison Toshiba Lighting Corp 発光素子の外囲器
JP2007027751A (ja) * 2005-07-14 2007-02-01 Samsung Electro Mech Co Ltd 波長変換型の発光ダイオードパッケージ
JP2012093454A (ja) * 2010-10-25 2012-05-17 Seiko Epson Corp 光源装置及びプロジェクター

Also Published As

Publication number Publication date
WO2014024218A1 (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2014024218A1 (ja) 蛍光体光学素子、その製造方法及び光源装置
US20160147136A1 (en) Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
US9429830B2 (en) Fluorescent light emitting element and projector
US9146453B2 (en) Light-emitting device and projection apparatus
JP5605047B2 (ja) 光源装置およびそれを用いた投写型表示装置
JP6323020B2 (ja) 光源装置およびプロジェクター
US9206959B2 (en) Wavelength conversion element, light source device, and projector
US20120327374A1 (en) Illumination apparatus and projection display apparatus
US9645481B2 (en) Light source apparatus and projection display apparatus
JP2012003923A (ja) 照明装置及び画像表示装置
US10379284B2 (en) Light source device and projector
US20170242241A1 (en) Wavelength conversion element, light source device, and projector
JP2016161709A (ja) 光源装置及び光源装置を備えたプロジェクタ
US10877362B2 (en) Wavelength conversion element, light source device, and projector
US10261402B2 (en) Light source device and projector
WO2016181768A1 (ja) 蛍光体基板、光源装置および投射型表示装置
JP5919476B2 (ja) 光源装置および映像表示装置
US10802385B2 (en) Phosphor plate, light source apparatus, and projection display apparatus
JP2017215507A (ja) 波長変換素子、光源装置および画像投射装置
US10574950B2 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
JP2018165785A (ja) 波長変換素子、光源装置およびプロジェクター
JP2018036457A (ja) 波長変換素子、光源装置、およびプロジェクター
WO2016121720A1 (ja) 波長変換部材及び画像形成装置
CN112782922B (zh) 波长转换元件、光源装置和投影仪
JP2019040154A (ja) 波長変換素子、波長変換光学系、光源装置、およびプロジェクター

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170808