JPWO2012144067A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
JPWO2012144067A1
JPWO2012144067A1 JP2013510807A JP2013510807A JPWO2012144067A1 JP WO2012144067 A1 JPWO2012144067 A1 JP WO2012144067A1 JP 2013510807 A JP2013510807 A JP 2013510807A JP 2013510807 A JP2013510807 A JP 2013510807A JP WO2012144067 A1 JPWO2012144067 A1 JP WO2012144067A1
Authority
JP
Japan
Prior art keywords
eccentric portion
loss
eccentric
groove
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013510807A
Other languages
English (en)
Other versions
JP5581440B2 (ja
Inventor
小山田 具永
具永 小山田
柳瀬 裕一
裕一 柳瀬
小山 昌喜
昌喜 小山
佐藤 英治
英治 佐藤
大野 耕作
耕作 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012144067A1 publication Critical patent/JPWO2012144067A1/ja
Application granted granted Critical
Publication of JP5581440B2 publication Critical patent/JP5581440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/54Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

スクロール圧縮機は、固定スクロール112、旋回スクロール109と、端部に偏心部108を有するクランク軸103、該クランク軸内を軸方向に貫通し、前記偏心部の端面に開口部を有する給油穴115、旋回スクロールに設けられ前記偏心部と係合して摺動する旋回滑り軸受110、前記偏心部の外周に設けられた給油通路116とを備え、前記給油穴から供給された潤滑油により偏心部と旋回滑り軸受との間を潤滑するように構成されている。前記偏心部の外周には、前記給油通路とは別に軸方向の損失低減溝117が設けられ、この損失低減溝における前記偏心部の端面側と基端側の少なくとも一方にはシール部118a,118bを備える。これにより、クランク軸の偏心部の外周面と旋回滑り軸受の内周面との間に存在する潤滑油による油膜のせん断抵抗を低減でき、流体潤滑時の軸受損失を低減できる。

Description

本発明は、冷凍空調装置に使用されるスクロール圧縮機に関し、特にクランク軸の偏心部と係合して摺動する旋回滑り軸受を旋回スクロールに備えるスクロール圧縮機に関する。
スクロール圧縮機は、渦巻き状の歯型形状を有する2つのスクロール部材を相対的に旋回運動させることにより、冷媒等の気体の圧縮を行う圧縮機である。一般には、ネジや溶接等で拘束された固定スクロールに対して、もう一方の可動な旋回スクロールが旋回運動するように構成されている。旋回スクロールには、クランク軸の偏心部と係合して摺動する旋回滑り軸受が設けられており、クランク軸の偏心部と前記旋回滑り軸受とが潤滑油を介して摺動をしながら、クランク軸の振れ回り回転運動を旋回スクロールに伝達して旋回運動させる機構が多く採用されている。
近年、スクロール圧縮機のエネルギー消費量の低減、及び電動機の負荷低減のため、軸と軸受との摺動により生じる軸受損失の低減が課題となっている。
この軸受損失の低減を図るようにした従来技術としては、特開2003−239876号公報(特許文献1)に記載のものがある。この文献には、「旋回スクロールの下部に形成されたハブの挿入溝にフローティングリング部材が自転と空転自在に保持され、フローティングリング部材の中心には、回転軸の偏心部に固定されたスライドブッシュが挿入されてスクロール圧縮機の摩擦損失低減装置を構成する」と記載されている。
一般に、2つの面が潤滑油を介して滑り摺動する軸受等の摺動部においては、滑り速度の増加に伴い、摩擦損失が増加することが知られている。前記特許文献1に記載のものでは、潤滑油で満たされた回転軸の偏心部とハブ(旋回ボス部)との間の空間に、自転可能なスライドブッシュを挿入した構造としている。これにより、回転軸とハブとの間で生ずる摺動を、回転軸外周とスライドブッシュ内周との間での摺動と、スライドブッシュ外周とハブ内周との間での摺動とに分散させることができ、各摺動部位における相対滑り速度を低減して、特に高速運転時の軸受の摩擦損失を低減するようにしている。
他の従来技術としては、特開平11−159484号公報(特許文献2)に記載のものがある。この特許文献2には、「クランク軸に対して偏心ピン部の偏心方向からクランク軸の反回転方向に30°以上120°以下の範囲内の偏心ピン部の外周面にDカットが形成されている」と記載されている。また、前記Dカットについては「偏心軸部と軸受部との隙間の比較的大きい領域に給油用切欠が設けられ」と記載されている。
偏心軸部と軸受部との隙間の比較的大きい領域に前記給油用切欠(Dカット)を設けることにより、起動時、低速運転時及び過渡運転時にも安定的な給油を促し、これにより油膜切れの防止と流体潤滑の確保が図られる。この結果、クランク軸外周と軸受内周との直接接触が防止され、摩擦損失の増加を防止することができる。
特開2003−239876号公報 特開平11−159484号公報
しかし、上記特許文献1のものでは、部品数が増加するので構造が複雑になり、摺動箇所も増加するため、軸受隙間寸法に高い管理精度が要求される等、新たな課題が生じる。また、低速運転時には滑り速度の減少により油膜ができにくくなり、スライドブッシュとの間で直接接触が起きやすくなる課題もある。
また、上記特許文献2のものでは、外部から軸受隙間への潤滑油の流入を促して油膜切れを防止し、軸と軸受の直接接触を防止する点では有効であるが、偏心軸部と軸受部との隙間の大きいところに切欠きを設けるため、流体潤滑油膜のせん断抵抗の低減は期待できないか、或いは低減効果が小さい。従って、一旦、流体潤滑油膜が形成されて直接接触部分のない状態が形成されると、それ以上の損失低減はなされないか、限定的であった。
本発明の目的は、前記クランク軸の偏心部の外周面と前記旋回滑り軸受の内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減することにある。
上記目的を達成するため、本発明は、固定スクロールと、この固定スクロールと噛み合う旋回スクロールと、この旋回スクロールを旋回運動させるために端部に偏心部を有するクランク軸と、該クランク軸内を軸方向に貫通し、前記偏心部の端面に開口部を有する給油穴と、前記旋回スクロールに設けられ前記クランク軸の偏心部と係合して摺動する旋回滑り軸受と、前記クランク軸の偏心部の外周に、該偏心部の上端側と下端側を連通するように設けられた給油通路とを備え、前記給油穴から供給された潤滑油により前記偏心部と前記旋回滑り軸受との間を潤滑するように構成されたスクロール圧縮機において、前記クランク軸の偏心部の外周に、前記給油通路とは別に設けられた軸方向の損失低減溝と、この損失低減溝における前記偏心部の端面側と基端側の少なくとも一方に設けられたシール部とを備えることを特徴とする。
本発明によれば、クランク軸の偏心部の外周面と旋回滑り軸受の内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することができ、流体潤滑時の軸受損失を低減することができる効果がある。
本発明のスクロール圧縮機の実施例1を示す縦断面図である。 図1に示す偏心部付近の拡大斜視図である。 図1に示す偏心部付近の拡大断面図である。 図3のA−A断面図である。 図3のB−B断面図である。 図3のC−C断面図である。 図3のB−B断面における軸回転方向、角度位置、軸受荷重方向を説明する図である。 本発明における損失低減溝の開始位置を説明する図で、(a)は損失低減溝の開始位置と相対軸受損失との関係を説明する線図、(b)は損失低減溝の開始位置と相対最小油膜厚さとの関係を説明する線図である。 本発明における損失低減溝の深さと相対軸受損失との関係を説明する線図である。 本発明における損失低減溝の周方向角度幅と相対軸受損失との関係を説明する線図である。 本発明における軸の回転速度と相対軸受損失との関係を説明する線図である。 クランク軸の外周に設けた損失低減溝の他の例を示す偏心部付近の拡大斜視図である。 クランク軸の外周に設けた損失低減溝の更に他の例を示す偏心部付近の拡大斜視図である。 クランク軸の外周に設けた損失低減溝の更に他の例を示す偏心部付近の拡大斜視図である。
以下、本発明のスクロール圧縮機の具体的実施例を、図面を用いて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。
図1は本発明のスクロール圧縮機の実施例1を示す縦断面図である。
図1に示すスクロール圧縮機1は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される密閉形のスクロール圧縮機である。密閉容器2内の上部には固定スクロール112と、この固定スクロール112と噛み合って旋回運動する旋回スクロール109が設けられている。また、密閉容器2内には電動機102が設けられ、この電動機102にはクランク軸103が接続され、このクランク軸103は、密閉容器2内に固設されたフレーム104に設けられている主軸受105、及び下フレーム106に設けられた副軸受107により回転自在に支持されている。
クランク軸103の上部には偏心部108が設けられており、この偏心部108は前記旋回スクロール109の端板下面に設けられた旋回滑り軸受110と係合して摺動し、偏心部108の振れ回り回転運動(偏心運動)は旋回スクロール109に伝達される。この旋回スクロール109は、オルダムリング111により自転が規制されており、固定スクロール112に対して旋回運動をする。これにより、吸入口113から低圧の冷媒ガスを吸い込み、圧縮した後に、吐出口114を介して外部へ吐出する。
なお、クランク軸103の内部には、その下端から前記偏心部108の端面(上端面)側まで貫通する給油穴115が設けられており、密閉容器下部に溜められた潤滑油3が、圧力差により、或いはクランク軸下端部に別途取り付けられたポンプにより、給油穴115を通じて押し上げられ、各軸受部(主軸受105、副軸受107、旋回滑り軸受110)などの摺動部に供給されるように構成されている。本実施例では、密閉容器2内は吐出圧力となっており、また前記旋回スクロール109の端板背面の中間室(背圧室)119は吐出圧力と吸込圧力との中間の圧力となっている。このため、密閉容器下部に溜められている潤滑油は吐出圧力と前記中間圧力との圧力差で前記給油穴115を介して前記各軸受部などに給油される構成となっている。
図2は図1に示す偏心部108付近の拡大斜視図である。偏心部108の上端面には、前記給油穴115が開口している。偏心部108には、その上端(端面)108a側から下端(基端)108b側を連通するように軸方向の給油通路116が設けられている。また、前記給油通路116とは別に、偏心部108の外周面を掘り込んだ損失低減溝117が軸方向に形成されている。この損失低減溝117の上端108a側と下端108b側には、それぞれ、前記偏心部108の外周面を掘り込んでいないシール部118a,118bが設けられている。
図3は図1に示す偏心部108付近の拡大断面図である。旋回スクロール109の旋回ボス部109a内には旋回滑り軸受110が設けられており、この旋回滑り軸受110内にはクランク軸103の偏心部108が挿入して係合され、この偏心部108と前記旋回滑り軸受110とは滑り摺動する。前記偏心部108の上端(端面)108aと旋回スクロール109との間に囲まれた空間は前記給油穴115と連通しており、給油経路の上流のため、ここに供給された潤滑油の圧力はほぼ吐出圧力となっている。
これに対し、偏心部108の下端(基端)108b側の圧力は、前記上端108側より低圧の前記中間室119と連通しており、給油穴115から供給された潤滑油は、旋回スクロール109と偏心部108と旋回滑り軸受110とで囲まれた空間(旋回ボス部内空間)4を満たした後、前記給油通路116などを通って下方の中間室119へと排出される。
前記給油通路116は、前記偏心部108の外周を内側に掘り込んだ掘り込み溝或いは切欠きにより形成され、この給油通路116は、偏心部108と旋回滑り軸受110との隙間を拡大させると共に、旋回滑り軸受110を軸方向に跨いで偏心部108の上端108a側と下端108b側の両方に通じている。従って、旋回ボス部内空間4の潤滑油が給油通路116を通って中間室119に流れる流路抵抗は、偏心部108外周面の前記給油通路116以外の部分を流れる潤滑油の流路抵抗よりも小さくなる。
一方、前記損失低減溝117も、偏心部108の外周を内側に掘り込んだ掘り込み溝或いは切欠きにより形成されているが、この損失低減溝117の上端108a側と下端108b側には、偏心部108の外周面と同径のシール部118が形成されており、損失低減溝117の軸方向長さは前記旋回滑り軸受110よりも短くなっている。従って、前記損失低減溝117は、前記旋回滑り軸受110を軸方向に跨がず、偏心部108の上端108a側と下端108b側とに同時には開口しない構成となっている。
更に、前記シール部118a,118bの部分においては、偏心部108の外周と旋回滑り軸受110の内周との隙間が、偏心部108の外周における前記給油通路116以外の部分と同等となる。即ち、前記損失低減溝117を通過して偏心部108の上端108aから下端108bへ向かう流路抵抗は、偏心部108外周面の給油通路116以外の部分を流れる流路抵抗と概略同等となる。このため、給油穴115から旋回ボス部内空間4に供給された潤滑油は、給油通路116の部分を優先的に通過して、中間室119側に流れ易くなっている。また、旋回滑り軸受110の部分全体において、潤滑油が軸方向に流れる流路抵抗は、前記損失低減溝117を設けない場合と概略同等となり、損失低減溝117を設けても給油量の増大は防止される。
図4は図3のA−A断面図、図5は図3のB−B断面図、図6は図3のC−C断面図である。偏心部108の外周面の直径は旋回滑り軸受110の内周面の直径よりも小さいため、それらの間には隙間が存在し、この隙間は潤滑油で満たされている。
図4に示すように、給油通路116は偏心部108の上端108aの部分で開口し、この給油通路116の部分と旋回滑り軸受110との間の隙間は、給油通路116が設けられていない部分の偏心部108と旋回滑り軸受110との間の隙間よりも特に広くなっている。
また、前記偏心部108の軸方向中間の部位においては、図5に示すように、偏心部108の給油通路116と旋回滑り軸受110との間の隙間、及び偏心部108の損失低減溝117と旋回滑り軸受110との間の隙間が、偏心部108のその他の部分と旋回滑り軸受110との間の隙間よりも特に広くなっている。
更に、前記偏心部108の軸方向の下端(基端)付近では、図6に示すように、前記損失低減溝117は存在しておらず、偏心部108の給油通路116の部分と旋回滑り軸受110との間の隙間が、給油通路116が設けられていない部分の偏心部108と旋回滑り軸受110との間の隙間よりも特に広くなっている。
図7は図3のB−B断面における軸回転方向、角度位置、軸受荷重方向を説明する図である。給油通路116、損失低減溝117、クランク軸103の回転方向120及び偏心部108に対して、旋回滑り軸受110が押し付けられる軸受荷重方向121の位置は、図7に示すようになる。更に詳しく説明する。まず、偏心部108の中心を基準とし、偏心部108の偏心方向の反対側を0°とした座標系を使用して、各種部位の角度位置を説明する。
クランク軸103が、軸回転方向120に示すように、図の時計回りに回転運動すると、旋回スクロール109はガスを圧縮する反力と、旋回スクロールが偏心方向に振り回される遠心力との合力として、軸受荷重方向121に軸受荷重が発生する。この時、偏心部108と旋回滑り軸受110との間の隙間は、周方向に均一ではなく偏りを生じ、前記軸受荷重方向121から反回転方向にシフトした最小隙間部122において最小となる。
軸の外周に前記損失低減溝117を設け、この軸を円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失の評価を行い、前記損失低減溝による軸受損失の低減効果を検証した。この検証結果を図8〜図11に示す。また、この結果から、効果的に軸受損失を低減できる前記損失低減溝117の位置、深さ、幅を検討した。なお、この検証にあたっては、エアコン用のスクロール圧縮機で、前記偏心部の軸径が14〜18mmのものを想定して検証している。
以下、図8〜図11を用いて詳細に説明する。
図8は、本発明における損失低減溝117の開始位置を説明する図で、(a)は損失低減溝117の開始位置と相対軸受損失との関係を説明する線図、(b)は損失低減溝の開始位置と相対最小油膜厚さとの関係を説明する線図である。
前記(a)図は、損失低減溝117を、軸の外周を掘り込んで掘り込み溝に形成し、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の周方向開始位置を種々変えて評価を行ったものである。横軸は、損失低減溝117の周方向開始位置を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、前記損失低減溝117は、深さが0.1mmで、周方向に30度の角度範囲(角度幅)に渡る掘り込み溝とした。
この検証の結果、(a)図に示すように、相対軸受損失は、損失低減溝の開始角度が140度から210度の範囲で、特に減少する傾向を示している。従って、損失低減溝117の開始位置は140°〜210°の範囲に設けることが好ましく、この範囲とすることにより、軸受損失を少なくとも2%以上低減できる。また、前記開始位置を145°〜180°の範囲にすると最も低減効果が大きくなる。なお、前記140°〜210°の範囲に前記損失低減溝117の少なくとも一部が存在するように設ければ、軸受損失低減効果を従来のものより低減できる。
前記(b)図は、損失低減溝の開始位置と相対最小油膜厚さとの関係を示す図であり、横軸は、損失低減溝117の周方向開始位置を、縦軸は、損失低減溝117の無い軸を使用した場合の最小油膜厚さを100%とし、これに対する相対最小油膜厚さを示している。この図に示すように、損失低減溝117の開始位置が140度以下では、損失低減溝117の開始位置が最小油膜厚さとなる角度付近になってしまうため、140度よりも小さな角度範囲に軸受低減溝117を設けると、軸受挙動が不安定となり、軸と軸受との接触による摩耗が進行し易くなるので、少なくとも140度以上の角度範囲に前記損失低減溝117の開始位置を決めることが好ましい。なお、損失低減溝117の一部が210度以上の部分に掛っても最小油膜厚さは十分に大きいので、損失低減溝117の開始位置が140°〜210°の範囲にあれば、その終了位置は210度以上の位置となっても良い。
図9は本発明における損失低減溝117の深さと相対軸受損失との関係を説明する線図である。前記損失低減溝117は、軸の外周を掘り込んだ掘り込み溝とし、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の深さ(加工前の前記偏心部外周円からの径方向深さ)を種々変えて評価を行ったものである。横軸は、損失低減溝117の深さ(掘り込み深さ)を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、損失低減溝117は、周方向に30度の角度範囲(角度幅)で形成し、この損失低減溝の開始角度は150度とした。
この検証の結果、図9に示すように、損失低減溝の掘り込み深さを0.002mm以上とすることにより、軸受損失を少なくとも2%以上低減できる。また、前記損失低減溝の深さを0.01mm以上とすれば少なくとも5%以上の軸受損失低減効果があり、前記損失低減溝の深さを0.05mm以上にすると軸受損失低減効果が最も大きくなる。なお、損失低減溝117の深さを大きくし過ぎると軸の剛性低下を引き起こすので、損失低減溝117の深さは最大でも軸径(クランク軸の偏心部の軸径)の20%以下とすることが好ましい。従って、一般には、前記損失低減溝の深さを0.05〜0.5mm程度とするのが好ましい。
図10は本発明における損失低減溝の周方向角度幅と相対軸受損失との関係を説明する線図である。前記損失低減溝117は、軸の外周を掘り込んだ掘り込み溝とし、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の周方向角度幅を種々変えて評価を行ったものである。横軸は、損失低減溝117の周方向角度幅を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、損失低減溝117の深さは0.1mm、該溝の開始角度は150度とした。
この検証の結果、図10に示すように、相対軸受損失は、損失低減溝117の周方向角度幅を10度以上、即ちこの例では開始角度150度の位置から周方向に10度以上の角度幅とすることにより、軸受損失を少なくとも2%以上低減できる。また、損失低減溝を開始角度150°から周方向角度幅60度まで次第に広げた場合、相対軸受損失は周方向角度幅の増加に応じて減少し、60度よりも広い角度幅にしても相対軸受損失はほとんど減少しない傾向を示している。従って、前記角度幅は、軸受損失溝117の加工性なども考慮すると20°〜60°の範囲とすることが好ましい。
以上説明したことから、クランク軸103の偏心部108の外周に損失低減溝117を形成するにあたっては、掘り込み溝や切欠きにより、図7に示した座標系における角度140度から210度の範囲に、掘り込み深さが0.002mm以上となる部分を設けることにより、軸受損失を低減でき、特に、前記損失低減溝117の開始位置を、図7に示した座標系における角度150度付近の位置とし、その溝の角度幅を20°〜60°、該溝の深さを0.01mm以上とすれば、大きな軸受損失低減効果が得られることが検証された。
図11は、本発明における軸の回転速度と相対軸受損失との関係を説明する線図である。即ち、外周に損失低減溝117を設けた軸と、損失低減溝の無い軸とを用い、円筒状の軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の回転速度を種々変えて評価を行ったものである。図11の横軸は、回転速度を、縦軸は、損失低減溝の無い軸を使用して回転数6000回転/分で回転させた場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、前記損失低減溝117の深さは0.1mmの掘り込み溝とし、該損失低減溝117を周方向に30度の角度範囲(角度幅)で形成すると共に、この損失低減溝の開始角度は150度とした。
この検証の結果、図11に示すように、損失低減溝117を設けることにより各回転数において軸受損失が低減しているのを確認できた。また、回転速度が増加すると軸受損失は増加するが、損失低減溝を設けた本発明の方が、損失低減溝を設けていない従来のものに対し、回転速度が増加するほど相対的に軸受損失低減効果も増加していることがわかる。
図12〜図14は、それぞれ、クランク軸の外周に設けた前記損失低減溝117の他の例を示す偏心部付近の拡大斜視図である。
前記損失低減溝117については、図9から明らかなように、加工前の軸外周面から深さ0.05mm以上掘り込んだ掘り込み溝とすることが望ましいが、図12に示すように、切欠き形状としても良く、掘り込み溝とした場合とほぼ同様の軸受損失低減効果を得ることができる。
このような切欠き形状とした場合には、軸の加工前の外周面から軸中心方向への深さが、周方向の角度位置により、0mmから連続的に増減するため、軸受損失低減効果が特に大きくなる0.05mm以上の深さを確保するためには、より広い周方向角度幅が必要となる。しかし、図12に示すような切欠き形状とした方が、図2に示す掘り込み溝として形成する場合よりも加工コストを低減できる効果がある。
また、図12の例では、前記損失低減溝117における前記偏心部の端面108a側にシール部118aを、基端108b側にはシール部118bをそれぞれ設けているが、このシール部118は前記シール部118aと118bのうち少なくとも一方に設けるようにしても良い。図13に示す例では、シール部118を損失低減溝117の基端108b側(中間室側)にのみ設けた構造としている。この場合、偏心部108の上端に開口した給油穴115から流出した潤滑油は、損失低減溝117に流れ込み易くなり、給油量は多少増加する。しかし、図13の例とした場合、損失低減溝117の周方向幅が同じであっても、損失低減溝117の面積を増加させることができるので、軸受損失低減効果をより向上できる利点がある。また、中間室側(基端側)に隣接してシール部118を設けておけば、極端な給油量の増加は防止できる。
また、損失低減溝117については、図14に示すように、前記偏心部108の周方向に複数個形成するようにしても良い。即ち、前記偏心部108の反偏心方向からクランク軸の反回転方向に140度の位置を、前記損失低減溝117の開始位置とし、その溝の終了位置を210度とした場合、損失低減溝117の周方向角度幅は70度になる。このように広い角度幅の溝とする場合、その途中に、偏心軸の外周面に切欠きを設けない部分を、図14に示すように、例えば周方向に20度程度の幅でとり、前記損失低減溝117を、前記角度位置で、140°〜165°の範囲の損失低減溝117aと、185°〜210°の範囲の損失低減溝117bとなるように分割して設け、損失低減溝117の中間部の165°〜185°の範囲には前記切欠きを設けていない部分を残すようにする。
損失低減溝117の部分は軸受荷重を支持する油膜圧力が形成しにくいが、図14に示したように、損失低減溝を周方向に複数に分けて設け、その間に、ある周方向角度範囲で掘り込み溝や切欠きを形成せずに偏心軸外周面を残すことにより、この偏心軸外周面を残した部分には油膜圧力をある程度発生させる能力を確保できる。これにより、万一、地震や大きな振動などが発生して、前記損失低減溝の部分に予期せぬ動的な荷重が負荷されたような場合でも、偏心軸108と旋回滑り軸受110との衝突を防止でき、かじりや焼付きなどの発生を防止できる。
なお、この図14に示す例において、複数個形成されている前記損失低減溝117a,117bの両方共、その周方向開始位置を、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°〜210°の位置に設けることが好ましいが、前記複数個の損失低減溝のうちの少なくとも1つの周方向開始位置を、前記140°〜210°の位置に設けることで前記軸受損失低減効果は得られる。
以上述べた本実施例によれば、クランク軸の偏心部の外周面と旋回滑り軸受の内周面とが潤滑油を介して摺動する構造において、前記偏心部外周面と前記滑り軸受内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することができるので、流体潤滑時の軸受損失を低減することができる。この効果を更に詳しく説明する。
一般に、薄い流体潤滑油膜のせん断応力τは、潤滑油の軸回転方向流速Uの油膜厚さh方向に関する変化勾配dU/dhと、潤滑油粘度ηに伴い、増加する関係を有することが知られている。本実施例によれば、油膜圧力により荷重支持を行う役割がほとんど無く、且つ偏心軸外周と旋回滑り軸受内周との隙間が比較的小さくなる部分の隙間を、偏心軸外周に前記掘り込み溝或いは切欠きにより形成した損失低減溝を設けることにより拡大することができる。この結果、前記損失低減溝の部分を満たす潤滑油による油膜厚さhを増加できるから、前記変化勾配dU/dhを減少させて、油膜のせん断応力を減少できる。従って、前記せん断応力の積分値である油膜のせん断抵抗が低減されるから、軸受損失を低減できる。
また、前記損失低減溝における前記偏心部の端面(上端)側と基端(下端)側の少なくとも一方に、クランク軸の軸方向への流路抵抗となるシール部を設けているので、前記の損失低減溝は、前記旋回滑り軸受を軸方向に跨いで、前記偏心部の端面側と基端側に同時には連通しない。一方、前記給油通路は、前記前記旋回滑り軸受を軸方向に跨いで、前記偏心部の端面側と基端側に連通させる構成となっている。この結果、軸方向の流路抵抗は、前記給油通路において最小となり、給油穴から供給された潤滑油が前記給油通路に優先的に流れる。従って、前記偏心部における潤滑油の給油状態は、前記損失低減溝を設けていない従来のものと概略同様に維持され、本実施例のように損失低減溝を設けても、給油量が増大したり給油状態が悪化するのを防止できる。
本実施例では、前記損失低減溝の開始位置を、前記偏心軸の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に140°〜210°の角度範囲内に設ける構造としている。この理由は前述したように、前記損失低減溝の開始位置を140度以下にすると、荷重を支持する油膜圧力の発生が妨げられ、軸受損失を低減する効果が無くなるほか、油膜圧力を低下させてしまうので油膜切れを引き起こす可能性があるため、140度以上としている。また、前記損失低減溝の開始位置を210度以上にしても、その領域はスクロール圧縮機の運転中において軸と軸受との隙間が元々比較的大きい状態にある部分であるため、前記変化勾配dU/dhを低減させて油膜せん断応力を低減させ軸受損失を低減させる効果は得られ難く、従って210度以下としている。
また、本実施例では、前記損失低減溝は、その加工前の前記偏心部外周円から0.002mm以上(好ましくは0.01〜0.05mm以上)の径方向深さとなる部分が、前記偏心部の反偏心方向から前記クランク軸の反回転方向に140°〜210°(好ましくは145°〜180°)の範囲内に存在するよう形成されているので、寸法誤差等によるばらつきの少ない安定的な軸受損失低減効果を得ることができる。
1:スクロール圧縮機、2:密閉容器、3:潤滑油、4:旋回ボス部内空間、
102:電動機、103:クランク軸、104:フレーム、105:主軸受、
106:下フレーム、107:副軸受、
108:偏心部、108a:端面(上端)、108b:基端(下端)、
109:旋回スクロール、110:旋回滑り軸受、
111:オルダムリング、
112:固定スクロール、
113:吸入口、
114:吐出口、
115:給油穴、
116:給油通路、
117,117a,117b:損失低減溝、
118,118a,118b:シール部、
119:中間室(背圧室)、
120:軸回転方向、121:軸受荷重方向、
122 最小隙間部。

Claims (9)

  1. 固定スクロールと、この固定スクロールと噛み合う旋回スクロールと、
    この旋回スクロールを旋回運動させるために端部に偏心部を有するクランク軸と、
    該クランク軸内を軸方向に貫通し、前記偏心部の端面に開口部を有する給油穴と、
    前記旋回スクロールに設けられ前記クランク軸の偏心部と係合して摺動する旋回滑り軸受と、
    前記クランク軸の偏心部の外周に、該偏心部の端面側と基端側を連通するように設けられた給油通路とを備え、
    前記給油穴から供給された潤滑油により前記偏心部と前記旋回滑り軸受との間を潤滑するように構成されたスクロール圧縮機において、
    前記クランク軸の偏心部の外周に、前記給油通路とは別に設けられた軸方向の損失低減溝と、
    この損失低減溝における前記偏心部の端面側と基端側の少なくとも一方に設けられたシール部と
    を備えることを特徴とするスクロール圧縮機。
  2. 請求項1に記載のスクロール圧縮機において、前記損失低減溝の開始位置は、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°〜210°の位置に設けられていることを特徴とするスクロール圧縮機。
  3. 請求項2に記載のスクロール圧縮機において、前記損失低減溝の開始位置は、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、145°〜180°の位置に設けられていることを特徴とするスクロール圧縮機。
  4. 請求項2に記載のスクロール圧縮機において、前記給油通路及び前記損失低減溝は、それぞれ前記偏心部の外周に、掘り込み溝或いは切欠きにより形成されており、且つ、前記損失低減溝はその加工前の前記偏心部外周円から0.002mm以上の径方向深さとなる部分が存在するよう形成されていることを特徴とするスクロール圧縮機。
  5. 請求項4に記載のスクロール圧縮機において、前記損失低減溝の深さを0.01mm以上とし、且つ前記偏心部の軸径の20%以下としたことを特徴とするスクロール圧縮機。
  6. 請求項5に記載のスクロール圧縮機において、前記損失低減溝の深さを0.05〜0.5mmとしたことを特徴とするスクロール圧縮機。
  7. 請求項1に記載のスクロール圧縮機において、前記損失低減溝は、前記偏心部の周方向に複数個形成されていることを特徴とするスクロール圧縮機。
  8. 請求項7に記載のスクロール圧縮機において、複数個形成されている前記損失低減溝のうちの少なくとも1つは、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°〜210°の位置に設けられていることを特徴とするスクロール圧縮機。
  9. 請求項1に記載のスクロール圧縮機において、前記シール部は、前記損失低減溝における前記偏心部の基端側には少なくとも設けられていることを特徴とするスクロール圧縮機。
JP2013510807A 2011-04-22 2011-04-22 スクロール圧縮機 Active JP5581440B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059938 WO2012144067A1 (ja) 2011-04-22 2011-04-22 スクロール圧縮機

Publications (2)

Publication Number Publication Date
JPWO2012144067A1 true JPWO2012144067A1 (ja) 2014-07-28
JP5581440B2 JP5581440B2 (ja) 2014-08-27

Family

ID=47041214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013510807A Active JP5581440B2 (ja) 2011-04-22 2011-04-22 スクロール圧縮機

Country Status (6)

Country Link
EP (1) EP2700818B1 (ja)
JP (1) JP5581440B2 (ja)
KR (1) KR101484728B1 (ja)
CN (1) CN103502645B (ja)
TR (1) TR201816164T4 (ja)
WO (1) WO2012144067A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806165B1 (de) * 2013-05-22 2015-09-09 Obrist Engineering GmbH Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor
EP2806164B1 (de) * 2013-05-22 2015-09-09 Obrist Engineering GmbH Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor
US9488171B2 (en) * 2014-06-06 2016-11-08 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
KR102234708B1 (ko) * 2014-08-06 2021-04-01 엘지전자 주식회사 스크롤 압축기
CN108266374A (zh) * 2017-12-26 2018-07-10 广州万宝集团压缩机有限公司 一种卧式涡旋压缩机
EP3857069A4 (en) 2018-09-28 2022-05-11 Emerson Climate Technologies, Inc. COMPRESSOR OIL MANAGEMENT SYSTEM
KR102503234B1 (ko) * 2018-11-30 2023-02-24 한온시스템 주식회사 스크롤 압축기
FR3102792B1 (fr) 2019-11-05 2021-10-29 Danfoss Commercial Compressors Compresseur à spirales comportant un maneton ayant un évidement supérieur
CN113954577B (zh) * 2021-11-17 2024-03-12 浙江四和机械有限公司 一种带abs传感器的轻量节能型轮毂单元
CN114922817A (zh) * 2022-06-24 2022-08-19 广东美的环境科技有限公司 曲轴用偏心滑块、涡旋压缩机及温控设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515609Y2 (ja) * 1987-03-18 1993-04-23
US4954057A (en) * 1988-10-18 1990-09-04 Copeland Corporation Scroll compressor with lubricated flat driving surface
JPH0424684U (ja) * 1990-06-21 1992-02-27
JP2928593B2 (ja) * 1990-06-22 1999-08-03 株式会社日立製作所 スクロール圧縮機
JP3050708B2 (ja) * 1992-12-07 2000-06-12 株式会社日立製作所 スクロール圧縮機の軸受給油装置
JPH0712068A (ja) * 1993-06-22 1995-01-17 Hitachi Ltd スクロール流体機械の軸受給油装置
JPH11141478A (ja) * 1997-11-06 1999-05-25 Zexel:Kk スクロール型コンプレッサ
JP3279236B2 (ja) * 1997-11-26 2002-04-30 ダイキン工業株式会社 スクロール型流体機械
US6354822B1 (en) * 2000-05-16 2002-03-12 Scroll Technologies Oil retention in compressor slider block
KR100425740B1 (ko) 2002-02-09 2004-04-01 엘지전자 주식회사 스크롤 압축기의 마찰손실 저감장치

Also Published As

Publication number Publication date
CN103502645B (zh) 2016-07-13
KR20130125812A (ko) 2013-11-19
EP2700818B1 (en) 2018-08-01
JP5581440B2 (ja) 2014-08-27
CN103502645A (zh) 2014-01-08
WO2012144067A1 (ja) 2012-10-26
EP2700818A4 (en) 2014-12-03
EP2700818A1 (en) 2014-02-26
KR101484728B1 (ko) 2015-01-20
TR201816164T4 (tr) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5581440B2 (ja) スクロール圧縮機
KR101947305B1 (ko) 스크롤 압축기
JP6862294B2 (ja) スクロール圧縮機
JP2008240597A (ja) 可変クランク機構及び可変クランク機構を備えたスクロール流体機械
JP5370425B2 (ja) 圧縮機
JP5178612B2 (ja) スクリュー圧縮機
JP2015161209A (ja) 圧縮機及び冷凍サイクル機器
JP6758867B2 (ja) 流体機械
JP6328322B2 (ja) すべり軸受を有する圧縮機
JP6618663B1 (ja) すべり軸受構造及びスクロール圧縮機
JP6679399B2 (ja) スクロール圧縮機
JP5863436B2 (ja) 流体機械
JP6611648B2 (ja) スクロール圧縮機
JP2017053221A (ja) 電動圧縮機
JP2010174732A (ja) スクロール流体機械
JP2011174407A (ja) スクロール流体機械
JP2019056336A (ja) スクロール型流体機械
JP2007162679A (ja) 流体機械
JP5114708B2 (ja) 密閉形スクロール圧縮機
JP2020094557A (ja) 流体機械
JPWO2004029461A1 (ja) スクロール圧縮機
JP4726914B2 (ja) スクロール流体機械
JP6917845B2 (ja) スクロール型流体機械
JP3988524B2 (ja) 密閉型圧縮機
US20130236346A1 (en) Two step compressor unit and compressor system having the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250