JPWO2012137330A1 - 金属用シート及びタグセット - Google Patents

金属用シート及びタグセット Download PDF

Info

Publication number
JPWO2012137330A1
JPWO2012137330A1 JP2013508685A JP2013508685A JPWO2012137330A1 JP WO2012137330 A1 JPWO2012137330 A1 JP WO2012137330A1 JP 2013508685 A JP2013508685 A JP 2013508685A JP 2013508685 A JP2013508685 A JP 2013508685A JP WO2012137330 A1 JPWO2012137330 A1 JP WO2012137330A1
Authority
JP
Japan
Prior art keywords
tag
metal sheet
metal
attached
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013508685A
Other languages
English (en)
Other versions
JP5673801B2 (ja
Inventor
甲斐 学
学 甲斐
照尚 二宮
照尚 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2012137330A1 publication Critical patent/JPWO2012137330A1/ja
Application granted granted Critical
Publication of JP5673801B2 publication Critical patent/JP5673801B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07758Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07756Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being non-galvanic, e.g. capacitive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

金属用シートにおいて、前記金属用シートの中心点を中心にして点対称の位置にそれぞれ第1及び第2の金属部を備え、前記第1及び第2の金属部の一部が非接触で通信を行うタグとそれぞれ接触するように前記タグに貼り付けられる。

Description

本発明は、金属用シート及びタグセットに関する。
近年、UHF帯(例えば860MHz〜960MHz)の無線信号を用いたRFID(Radio Frequency IDentification)システムが注目されている。RFIDシステムは、例えば、リーダライタから約1Wの無線信号を送信し、タグがその無線信号を受信して、リーダライタに応答信号を送信することで、タグ内の情報がリーダライタで読み取れるようにしたシステムである。このようなRFIDシステムは、例えば、段ボールや本などの物品に貼り付けられたタグに情報(IDなど)を記憶させておくことで、製品の在庫管理システムや図書館における本の管理システムとして利用されている。
RFIDシステムに用いられるタグとして、例えば、長さ100mm、幅15mmのダイポールアンテナと、長さ及び幅ともに1mm以下のチップ(例えばLSI(Large Scale Integration))とを有したものがある。かかるサイズのタグの通信距離は、例えば、3〜10m程度となっている。
このようなタグに対して、更に小型化を図るようにしたものがある。例えば、ダイポールアンテナの長さをアンテナの共振波長λに対してλ/2(例えば、周波数953MHzに対して約160mm)よりも短くして、かつ、インダクタンスを形成してチップと整合させるようにしたタグがある。図22はこのようなタグ100の構成例を表わした図である。図22の例では、ダイポール部103−1,103−2の長さ(図22においてX軸方向)は73mm、幅(図21においてZ軸方向)は7mmとなっている。なお、図22のタグ100は、ダイポール部103−1,103−2と、インダクタンス部104、及びチップ105を備えている。また、タグアンテナ109は、例えば、ダイポール部103−1,103−2とインダクタンス部104を含んでいる。
RFIDのチップ105は、例えば、容量成分Cc=1.0pFと抵抗成分Rc=1750Ωの並列回路として等価的に表わすことができる。一方、ダイポール部103−1,103−2は、抵抗RaとインダクタンスLaの並列回路として等価的に表わすことができる。図23は、例えば、図22に表わされたタグ100の等化回路の例を表わす図である。チップ105とダイポール部103−1,103−2の各等化回路が並列に接続されて、例えば、チップ105のキャパシタCcと共振(例えば、f0=2π/√(LaCc))させるように、ダイポール部103−1,103−2のインダクタンスLaが決定される。これにより、例えば、所望の周波数f0(例えば、953MHzなど)でチップ105とダイポール部103−1,103−2とが整合し、ダイポール部103−1,103−2の受信パワーがチップ105側へ十分供給されることになる。
このようにタグ100は整合条件などを考慮して設計されることになるが、RFIDシステムにおけるタグ100は、例えば、何らかの誘電体(誘電率εr、厚さt(図22ではY軸方向))に貼り付けられて利用される。そのため、タグ100を設計する際には、貼付物体の誘電率εrと厚さtを考慮して、タグアンテナ109のサイズなどを設計することが行われる。
図22に表わされたタグ100は、誘電率εr=3、厚さ(図22中でY軸方向)t=10mmの貼付物体(例えば、ポリカーボネイト、ABS樹脂(Acrylonitrile,Butadiene, Styrene共重合合成樹脂)などのプラスチック)101にタグ100が貼り付けられている例を表わしている。
図24は、タグ100について電磁界シミュレーションを行い、周波数(例えば、タグ100で送信又は受信する無線信号の周波数)fをf=700MHzから1200MHzまで変化させたときの計算結果をアドミッタンスチャートにプロットした図面である。また、誘電率εrをεr=3、厚さtをt=10mmの貼付物体101がタグ100に貼り付けられた場合のシミュレーションである。チップ105は、その抵抗RcpをRcp=1750Ω、容量CcpをCcp=1.0pFの並列回路として等価的に表わせるものとし、アドミッタンスチャート上では白丸で表わされた点にプロットされる。アドミッタンスチャートにおけるチップ105の位置(白丸)に対して虚数成分の±を逆転させた点が最適点(黒丸)となる。この最適点において、チップ105の虚数成分とダイポール部103−1,103−2の虚数成分が同じ大きさをもつことで互いにキャンセし、ダイポール部103−1,103−2がチップ105と共振することができる。
図24の太破線は、貼付物体101が貼り付けられたタグ100においてインダクタンス部103がない場合の軌跡(「λ/2よりも短いダイポール」)を表わしている。この場合、ダイポール部103−1,103−2の放射抵抗RapがRap=72Ωで虚部=0となった。
図24の細破線は、貼付物体101が貼り付けられたタグ100にインダクタンス部103が接続された場合の軌跡(「インダクタンス付微小ダイポール」)を表わしている。このようなタグ100に対する軌跡(細破線)は、インダクタンス部104がない軌跡(太破線)に対して、全体的に左回転した結果が得られた。インダクタンス部103が接続されたタグ100において、動作周波数f=953MHzとなる位置は、図24において三角で表わされており、最適点と重なっている。従って、誘電率εrがεr=3で、厚さtがt=10mmの貼付物体101に対するタグ100のサイズは、例えば図22で表わされたサイズが最適なものと考えることができる。
しかしながら、タグ100は、いつも同じ誘電率εr及び厚さtの貼付物体101に貼り付けられていることはなく、貼付物体101とは異なる誘電率εr、異なる厚さtの貼付物体に貼り付けられる場合もある。
図25は、貼付物体について、誘電率εrを変えずに(εr=3)、厚さtを変えたときの通信距離に関する周波数特性の例を表すグラフである。このうち、点線は厚さtがt=10mm、実線は厚さtがt=20mm、太線は厚さtがt=2mmの場合のグラフをそれぞれ表わしている。なお、このようなグラフは、電磁界シミュレーションを行うことで得られたグラフである。貼付物体の厚さtがt=10mmのとき(この場合の貼付物体は貼付物体101)、所望の周波数f0(例えばf0=953MHz)で通信距離が最大となっている。
図25に表わされているように、貼付物体の厚さtを10mmから2mmに薄くした場合、通信距離が最大となる周波数は所望の周波数f0から高周波数側に移行している。一方、貼付物体の厚さtを10mmから20mmに厚くすると、通信距離が最大となる周波数は所望の周波数f0から低周波数側に移行している。
このうち、貼付物体の厚さtを薄くすると通信距離が最大となる周波数が所望の周波数f0から高周波数側に移行する理由は、例えば以下のようになる。すなわち、貼付物体の厚さtを10mmから2mmに薄くすると、厚さが薄くなる分だけ、誘電率εr=3となる領域が少なくなり(または空気の誘電率εr=1となる領域が多くなり)、実行誘電率εeが小さくなる。実行誘電率εeと波長λとの関係については、例えば、
λ=λ0/√(εe) (但し、λ0は自由空間(例えば空気)における1波長の長さ) ・・・(1)
が成立するため、実効誘電率εeが小さくなると空気中を伝搬する無線信号の波長λ0は縮まって短くなる。波長λと周波数fとの関係については、例えば、
c=fλ(但し、cは光の速さ) ・・・(2)
の関係式が成立するため、空気中を伝搬する無線信号の波長λ0が短くなると周波数fは高くなる。すなわち、貼付物体の厚さtを10mmから2mmに薄くすると、通信距離が最大となる周波数は所望の周波数f0から高周波数側に移行することになる。
一方、貼付物体の厚さtを10mmから20mmに厚くすると、厚さtを10mmから2mmに薄くした場合とは逆の理由から、通信距離が最大となる周波数は所望の周波数f0よりも低周波数側に移行することになる。
ここで、貼付物体の厚さtを変えずに、誘電率εrを変化させたときも同様になる。すなわち、貼付物体の厚さtを変えずに誘電率εrを「3」から「2」に小さくなるように変化させると、実行誘電率εeが小さくなり、式(1)及び式(2)の関係から、通信距離が最大となる周波数は所望の周波数f0から高周波数側に移行する。一方、貼付物体の厚さを変えずに、誘電率εrを「3」から「4」など大きくすると、逆に、通信距離が最大となる周波数は所望の周波数f0より低周波数側に移行する。
このように、貼付物体101の誘電率εrと厚さtを変化させると、通信距離が最大となる周波数が高周波数側や低周波数側に移行し、所望の周波数f0における通信距離は、変化前と比較して短くなる。通信距離が最大時よりも短くなると、それだけタグからIDなどの情報を読み出せることができなくなってしまう。
このような問題を考慮した上でRFIDに関する技術としては、例えば以下のようなものがある。すなわち、無線タグ容器内において、タグアンテナの金属部分と接触もしくは容量性結合可能とし、タグアンテナの長さを実質的に変える補助アンテナを設けることで、タグアンテナの周波数特性のチューニングを行い得るようにしたものがある。
また、ICチップと閉ループアンテナとを備える非接触データキャリアにおいて、閉ループアンテナに金属板などの導体を重ねることで共振周波数のばらつきを調整するようにしたものもある。
なお、日本国内では、RFIDシステムで利用される952MHz〜954MHzの周波数帯が、2015年までに915MHz〜927MHzの周波数帯に移行する決定が総務省においてなされた。
特開2006−295879号公報 特開2006−270813号公報 特開2001−160124号公報
しかしながら、上述した無線タグ容器内に補助アンテナを設ける技術では、例えば、一度無線タグ容器の位置が設定されると、その後、設定された無線容器タグの位置を調整することはできない。したがって、このような技術では、無線信号の送受信に利用される周波数が変化したときに無線容器タグの位置を調整することができない。
また、閉ループアンテナに導体を重ねる技術は、導体の位置が厳密に設定されることで共振周波数のばらつきを抑えることができるが、送受信に利用される無線信号の周波数が変化したときでもその変化に対応するように適切な位置に厳密に設定することになる。したがって、このような技術では、周波数が変化したときにその変化に対応するように導体の位置調整を行うことは容易ではなく、また、位置調整に時間もかかる。
さらに、上述したように、既存のRFIDシステムでは、953MHzの周波数が用いられており、利用される周波数帯が915MHz〜927MHzに移行すると、例えば図25に表わされるように、周波数が所望の周波数f0から低周波数側に移行することになる。周波数が低周波数側に移行すると、通信距離は最大でなくなり、最大時よりも短い通信距離となってしまう。
そこで、本発明の一目的は、位置調整が容易な金属用シート及びタグセットを提供することにある。
また、本発明の他の目的は、所望の周波数で通信距離が最大となるような金属用シート及びタグセットを提供することにある。
一態様によれば、金属用シートにおいて、前記金属用シートの中心点を中心にして点対称の位置にそれぞれ第1及び第2の金属部を備え、前記第1及び第2の金属部の一部が非接触で通信を行うタグとそれぞれ接触するように前記タグに貼り付けられる。
位置調整が容易な金属用シート及びタグセットを提供することができる。また、所望の周波数で通信距離が最大となるような金属用シート及びタグセットを提供することができる。
図1はタグセットの構成例を表わす図である。 図2はタグセットの構成例を表わす図である。 図3はタグセットの構成例を表わす図である。 図4(A)はダミー金属シート、図4(B)はタグシートの例をそれぞれ表わす図である。 図5はタグセットの構成例を表わす図である。 図6は電流経路の例を表わす図である。 図7は通信距離と周波数との関係を表わすグラフの例である。 図8はタグセットの構成例の表わす図である。 図9はL1、L2、L4の関係例を表わす図である。 図10はタグセットの構成例を表わす図である。 図11(A)及び図11(B)はアドミッタンスチャートの例をそれぞれ表わす図である。 図12はタグセットの構成例を表わす図である。 図13はタグセットの構成例を表わす図である。 図14はタグセットのサイズの例を表わす図である。 図15(A)はダミー金属シート、図15(B)はタグシートの例をそれぞれ表わす図である。 図16はタグセットの構成例を表わす図である。 図17は電流経路の例を表わす図である。 図18はタグセットの構成例を表わす図である。 図19は電流経路の例を表わす図である。 図20はタグセットの構成例を表わす図である。 図21(A)及び図21(B)はアドミッタンスチャートの例をそれぞれ表わす図である。 図22はタグセットの構成例を表わす図である。 図23はタグアンテナの等価回路の例を表わす図である。 図24はアドミッタンスチャートの例を表わす図である。 図25は通信距離と周波数との関係例を表わすグラフの例である。
以下、本実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
図1及び図2は第1の実施の形態におけるタグセット10の構成例をそれぞれ表わす図であり、図3はタグセット10の各部分におけるサイズの例を表わす図である。また、図4(A)から図5はタグセット10の正面図をそれぞれ表わしている。
タグセット10は、貼付物体11、タグシート12、ダイポール部(又はダイポールアンテナ)13−1,13−2、インダクタンス部14、チップ15、ダミー金属シート(又は金属用シート)16と、ダミー金属部17−1,17−2とを備える。
なお、タグ20は、タグシート12、ダイポール部13−1,13−2、インダクタンス部14、及びチップ15とを備えており、このうち、タグアンテナ19は、ダイポール部13−1,13−2とインダクタンス部14を備える。
また、図1において、例えば、X軸方向を長さ方向、Y軸方向を厚さ方向、Z軸方向を幅方向とする。また、本第1の実施の形態において、長さはX軸方向の長さ、厚さはY軸方向の長さ、幅はZ軸方向の長さ、と適宜呼ぶ場合がある。
タグ20は貼付物体11に貼り付けられている。また、貼付物体11は、タグ20が貼り付けられた面とは反対面において、例えば本や段ボールなどの物品に貼り付けることができるようになっている。
本タグセット10は、タグ20と貼付物体11とが貼り付けられた状態において、ダミー金属シート16をタグ20に貼り付けることができるようになっている。ダミー金属シート16がタグ20に貼り付けられることにより、通信距離に関する周波数特性が変化して、所望の周波数f0において通信距離が最大となるようにすることができる。その詳細は後述する。
次にタグセット10の各部について説明する。
貼付物体11は、例えば、誘電率がεr=3、厚さ(Y軸方向の長さ)t=2mmの誘電体であり、ABS樹脂、又はポリカーボネイトなどのプラスチックなどで形成されている。なお、本第1の実施の形態において、貼付物体11の誘電率εrは図22に表わされた貼付物体101と同じ誘電率(εr=3)で、厚さt(=2mm)は、貼付物体101の厚さt(=10mm)よりも薄いものとなっている。
タグシート12は、例えば、紙、フィルム、PET(Polyethylene terephthalate)などで形成されている。タグシート12には、ダイポール部13−1,13−2とインダクタンス部14、及びチップ15が設けられている。
ダイポール部13−1,13−2は、例えば、チップ15を中心にX軸方向において左右対称に形成され、例えばリーダライタから送信された無線信号を受信して電力を抽出してチップ15に出力することができる。また、ダイポール部13−1,13−2は、例えば、チップ15から読み出されたIDなどの情報をリーダライタから受信した無線信号に対する応答信号に含めるようにすることができ、この応答信号を無線信号としてリーダライタに送信することもできる。ダイポール部13−1,13−2は、図3の例では、X軸方向におけるダイポール部13−1,13−2の最も外側の距離(又は先端間距離)は73mm、幅(Y軸方向の長さ)は7mmとなっている。ダイポール部13−1,13−2の長さである73mmは、タグアンテナ19の共振波長をλとすると、λ/2(例えば送受信する無線信号の周波数が953MHzのとき、約160mm)よりも短い長さとなっている。また、ダイポール部13−1,13−2は、線幅(Z軸方向)の一部が他と比較して幅広になっており、ダイポール部13−1,13−2の面積を広げることができる。図3の例では、幅広部分の長さは20mmとなっている。なお、ダイポール部13−1,13−2は、放射抵抗RaとインダクタンスLaの並列回路で等価的に表わすことができる。
インダクタンス部14は、ダイポール部13−1,13−2と並列に接続されており、チップ15を取り囲むように設けられている。インダクタンス部14は、チップ15とダイポール部13−1,13−2とを整合させるようにすることができ、これにより、ダイポール部13−1,13−2における受信パワーを十分チップ15へ供給させることができるようになっている。例えば、アドミッタンスチャート(例えば図24など)において、インダクタンス部14がある場合の軌跡(「インダクタンス付き微小ダイポール」)は、インダクタンス部14がない場合の軌跡(「λ/2よりも短いダイポール」)に対して、全体的に左回転させることができる。これにより、インダクタンス部14は、ダイポール部13−1,13−2とチップ105とを、所望の周波数f0(例えば953MHz)で整合させることができる。
なお、ダイポール部13−1,13−2とインダクタンス部14は、例えば、上述した図22に表わされたタグ100と同じサイズとなっている。ダイポール部13−1,13−2とインダクタンス部14の長さは、それぞれ73mm、16mmとなっている。このサイズにより、タグ20に誘電率εrがεr=3、厚さtがt=10の誘電体が貼り付けられたとき、例えば所望の周波数f0(例えば953MHz)で通信距離が最大となる。
チップ15は、X軸方向においてダイポール部13−1,13−2のほぼ中央に配置され、例えばX軸方向の長さとZ軸方向の長さがともに1mm以下の四角形状となっている。チップ15は物品に関するIDなどの情報を記憶することができる。チップ15は、例えば、抵抗Rcpと容量Ccpの並列回路として等価的に表わすことができる。
なお、タグシート12上に形成されたダイポール部13−1,13−2、インダクタンス部14、及びチップ15は、例えば、銅(Cu)、銀(Ag)、又はアルミニウム(Al)を主成分とする金属で形成されている。このような金属は、例えば、ペースト状の銀の塗布(またはAgペースト)、アルミニウムの蒸着(またはAl蒸着)、Cuエッチングなどにより形成させることができる。
ダミー金属シート16は、例えば、紙、フィルム、PETなどで形成されている。例えば、ダミー金属シート16の中心点18を中心にして点対称の位置に少なくとも夫々一つずつ、ダミー金属部17−1,17−2を備えている。図4(A)の例では、左右に1個づつのダミー金属部17−1,17−2を備えている。なお、ダミー金属シート16は、タグ20側と接触する面、あるいは両面に接着剤が塗布されていてもよい。これにより、ダミー金属シート16はタグ20に貼り付けることができるようになっている。
ダミー金属部17−1,17−2は、例えば、銅(Cu)、銀(Ag)、又はアルミニウム(Al)を主成分とする金属で形成され、Agペースト、Al蒸着、又はCuエッチングなどにより形成させることができる。図3の例では、ダミー金属部17−1,17−2は、ともに、X軸方向の長さが10mm、Z軸方向の長さが5mmの四角形状となっている。また、ダミー金属部17−1,17−2のX軸方向における最も外側の長さ(又は先端間距離)が例えば80mmとなっており、ダイポール部13−1,13−2の先端間距離である73mmよりも長くなっている。
さらに、ダミー金属部17−1,17−2は、ダミー金属シート16がタグ20に貼り付けられたとき、ダイポール部13−1,13−2とオーバーラップして貼り付けられるようになっている。或いは、ダミー金属部17−1,17−2は、ダミー金属シート16を介してダイポール部13−1,13−2と接触するように、ダミー金属シート16はタグ20に貼り付けられる。そのとき、ダミー金属部17−1,17−2は、ダイポール部13−1,13−2のX軸方向におけるインダクタンス部14とは反対側の先端(以下、「ダイポール部13−1,13−2の先端」と称す)とオーバーラップして貼り付けられる。図3の例では、ダミー金属部17−1,17−2とダイポール部13−1,13−2とはX軸方向において、オーバーラップ部分が6.5mmで、ダイポール部13−1,13−2の先端からX軸方向において外側に3.5mmにはみ出すように貼り付けられている。
このように、ダミー金属シート16がタグ20に貼り付けられたとき、ダイポール部13−1,13−2の先端とダミー金属部17−1,17−2とがオーバーラップすることで、通信距離が最大となる周波数を所望の周波数f0に戻すことができる。以下、その理由について説明する。
タグ20(またはダイポール部13−1,13−2とインダクタンス部14)は、誘電率εrがεr=3、厚さtがt=10mmの貼付物体101が貼り付けられたとき、ダイポール部13−1,13−2とチップ15とが整合するように、そのサイズが調整されている。そして、このように調整されたタグ20の通信距離は所望の周波数f0で最大となっている(例えば図22や図25)。
このようなタグ20に対して、誘電率εrは同じεr=3、厚さtがt=10mmからt=2mmに薄くした貼付物体11が貼り付けられたとき、通信距離が最大となる周波数は所望の周波数f0から約100MHz、高周波側に移行する(例えば、図25の太線)。高周波側に移行した通信距離が最大となる周波数を所望の周波数f0に移行させるためには、通信距離が最大となる周波数を低周波側に移行させるようにすればよい。例えば、全体として、誘電率εrがεr=3、厚さtがt=10mmの場合のグラフと同一となるように低周波側に移行して、所望の周波数で最大となるように移行させればよい。
そのために、上述した式(2)において、タグアンテナ19において送信または受信する無線信号の周波数fと波長λは反比例の関係があるため、周波数fを低周波側に移行させるには波長λを長くするようにすればよい。
ここで、ダイポール部13−1,13−2の長さは共振波長λ1に対してλ1/2よりも短くなっており、ダイポール部13−1,13−2の長さと波長λとは比例関係にあると言える。従って、波長λを長くするには、ダイポール部13−1,13−2の長さを73mmよりも長くするようにすればよい。ダイポール部13−1,13−2の長さを73mmよりも長くすることによって、通信距離が最大となる周波数を低周波側に移行させることができる。
図6はタグセット10における電流経路の例を表わしており、点線(X3)はダミー金属部17−1,17−2無しの場合の電流経路、実線(X2)はダミー金属部17−1,17−2有りの場合における電流経路の例をそれぞれ表わしている。この図6から理解されるように、ダミー金属部17−1,17−2有りの場合の方が無しの場合よりも電流経路は長くなっている。
すなわち、ダミー金属シート16をタグ20に貼り付けて、ダミー金属部17−1,17−2をダイポール部13−1,13−2の先端とオーバーラップして貼り付けることで、ダイポール部13−1,13−2の長さが見かけ上長くなる。この長くなった部分に電流が流れることで電流経路はダイポール部13−1,13−2単独の場合よりも長くすることができ、通信距離が最大となる周波数を低周波数側に移行させることができる。
ここで、ダミー金属部17−1,17−2とダイポール部13−1,13−2との間には、ダミー金属シート16が存在している。しかし、ダミー金属部17−1,17−2とダイポール部13−1,13−2とがオーバーラップしていれば、ダミー金属シート16によって絶縁されていても、高周波の無線信号の場合、2つが接続しているのと同じと考えることができる。
貼付物体の厚さtを10mmから2mmに薄くしたとき、電磁界シミュレーションによって、通信距離が最大となる周波数は所望の周波数f0から約100MHz高周波側に移行した結果を得た。所望の周波数f0に対して約10%高周波側に移行しているため、ダミー金属部17−1,17−2の先端間距離をダイポール部13−1,13−2の先端間距離(長さ)である73mmから10%長くして80mmとした。ダミー金属部17−1,17−2の先端間距離を80mmとしたダミー金属シート16が、貼付物体11が貼り付けられたタグ20に貼り付けられた場合でタグセット10の電磁界シミュレーションを行うと、所望の周波数f0において通信距離が最大となった。
図7は、電磁界シミュレーションによって得られた通信距離の周波数特性の例を表わすグラフである。点線は、図22に表わされたタグ100におけるタグアンテナ109の通信距離に関する周波数特性の例を表わしている(「貼付誘電体(εr=3,t=10mm)」)。また、太線は、ダミー金属シート16を貼り付けた本タグセット10におけるタグアンテナ19の通信距離に関する周波数特性の例を表わしている(「貼付物体(εr=3,t=20mm)」)。どちらのアンテナ109,19も、ダイポール部103−1,103−2,13−1,13−2のサイズは同一であり、インダクタンス部104,14のサイズも同一である。図7の太線で表わされているように、ダミー金属シート16が貼り付けられたタグセット10においては、所望の周波数f0で通信距離が最大となるシミュレーション結果を得た。
なお、電磁界シミュレーションとしては、例えば、チップ15を給電点として、給電点から周波数の異なる(f=700MHzから1200MHzなど)電流をタグアンテナ19に流すようにしたシミュレーションである。そして、電磁界シミュレーションによって、ダイポール部13−1,13−2の反射係数などを測定することにより、周波数と通信距離との関係を表わす図7のようなグラフが得られた。
また、ダミー金属部17−1,17−2の先端間距離である80mmは一例であって、貼付物体11の厚さt(または誘電率εr)に応じて適宜、異なる値でもよい。
ここで、貼り付けについて、ダミー金属部17−1,17−2とダイポール部13−1,13−2の先端とがオーバーラップし、ダミー金属部17−1,17−2とダイポール部13−1,13−2とを合わせた最も外側の距離が例えば80mmに維持されていればよい。そのように維持されていれば、ダミー金属シート16は、タグ20に対してX軸方向へ多少ずれて貼り付けられても良い。
図8はダミー金属シート16がX1方向(例えば、X1方向はX軸と平行)に約3.5mmずれて貼り付けられた場合の例を表わしている。この場合でも、ダミー金属部17−1,17−2とダイポール部13−1,13−2の先端とがオーバーラップしている。また、ダイポール部13−1,13−2とダミー金属部17−1,17−2の2つを合わせた最も外側の距離は80mmを維持している。この距離が維持されていれば、式(2)のλは変化せず、よって、周波数fも変化しないため、通信距離が最大となる周波数は所望の周波数f0のままにすることができる。
なお、ダミー金属シート16のタグ20に対する貼り付けに関して、Z軸方向へのずれも許容される。式(2)の関係式から所望の周波数f0で通信距離が最大となることは変わらないからである。
ここで、ダイポール部13−1とダミー金属部17−1とがオーバーラップしている部分の長さをL1、ダミー金属シート16を貼り付ける際にX軸方向にずれてもよい許容量をL2、ダイポール部13−1の幅広部分の長さをL4とすると、
L2<L1<L4−L2 ・・・(3)
の関係式が満たされるようにL1,L2,L4が決まればよい。図3の例では、L1=6.5mm、L4=20mmとなっている。例えば、許容量L2がL2=2mmのとき、式(3)の関係式を満たしている。
図9はこの関係式を説明するための図である。オーバーラップしている長さL1が、図9において矢印で表わされているように、インダクタンス部14側(X1方向)に除々に長くなり、長さL1がL4−L2<L1の関係となったときを考える。この場合、ダミー金属部17−1を少しでもX1方向にずらすと、ダミー金属部17−1はインダクタンス部14側にはみ出てしまう。ダミー金属部17−1がインダクタンス部14側にはみ出てしまうと、例えば、インダクタンス部14に流れる電流が変化し、ダイポール部13−1に流れる電流も変化する。例えば、ダイポール部13−1に流れる電流の変化により、整合条件なども変化して周波数特性も変化することになる。よって、ダミー金属シート16がX軸方向にずれてもよい許容量L2は、式(3)を満たすようにすればよいことになる。
従って、ダミー金属シート16がタグ20に貼り付けられて、距離が例えば80mmを維持し、式(3)を満たすようにL1,L2,L4が設定されていれば、L2だけX1方向にずれても通信距離が最大となる周波数は、X1方向にずれる前と同じ周波数となる。
このことは、例えば反対側のダイポール部13−2についても同様である。すなわち、ダミー金属シート16がX2方向にずれていても、距離が例えば80mmを維持し、式(3)を満たすようにL1,L2,L4が設定されていれば、通信距離が最大となる周波数はX2方向にずれる前と同じ周波数になる。
なお、図3に表わされているように、ダミー金属部17−1,17−2のZ軸方向の長さ(又は幅)は5mmとなっている。ただし、通信距離に関する周波数特性は、上述したようにX軸方向における電流経路長によりほぼ決めるため(例えば図6)、ダミー金属部17−1,17−2の幅は、電流経路長と比較して、通信距離に関する周波数特性に関しそれほど影響を与えない。
図10はタグセット10の他の構成例を表わす図である。ダミー金属シート16は、タグシート12と貼付物体11との間にあってもよい。例えば、工場出荷の際にタグシート12とダミー金属シート16、及び貼付物体11とがすべて貼り合わされた状態とすることができる。この場合のダミー金属シート16の貼り付けについても、例えば工場における作業者は、許容量L2だけX1方向やX2方向にずらして貼り付けるようにしてもよい。なお、この場合、例えば、タグセット10全体が、フィルム、PET、紙などの他のシートによりラミネートされるようにしてもよい。
図11(A)及び図11(B)はアドミッタンスチャートの例をそれぞれ表わしている。このうち、図11(A)は図20に表わされたタグ100(又は図1などのタグ20)に対して、貼付物体101の厚さtを10mmから2mmにしたとき(このときの貼付物体は、貼付物体11となる)のアドミッタンスチャートの例を表わす。また、図11(B)は、ダミー金属シート16を貼り付けたタグセット10におけるアドミッタンスチャートの例を表わしている。どちらの図面も、電磁界シミュレーションを行って、周波数fを700MHzから1200MHzに変化させたときの計算結果をアドミッタンスチャートにプロットしたときの図面である。
図11(A)の太線は、インダクタンス部14がダイポール部13−1,13−2と並列に接続され、誘電率εrがεr=3、厚さtがt=2mmの貼付物体11が貼り付けられたときの軌跡(「インダクタンス付微小ダイポール」)を表わしている。図22と比較して、貼付物体の厚さがt=10mmからt=2mmに変化したため、全体が左回転した軌跡となっている。これは、例えば、貼付物体の厚さtが10mmから2mmに薄くなった分だけ、誘電率εr=3となる部分が少なくなり、空気の誘電率であるεr=1の部分が増加するため、タグアンテナ19周囲の実効誘電率が相対的に小さくなっているからである。所望の周波数f0をf0=953MHzとしたとき、アドミッタンスチャート上の位置は三角で表わされた位置にプロットされ、最適点からずれた位置にある。
最適点においては、上述したように例えば、チップ15の虚数成分とダイポール部13−1,13−2の虚数成分が同じ大きさをもって互いにキャンセルし、ダイポール部13−1,13−2がチップ15と共振することができる。
一方、図11(B)の太線は、インダクタンス部14がダイポール部13−1,13−2と並列に接続され、貼付物体11がタグ20に貼り付けられ、さらにダミー金属シート15をタグ20に貼り付けた場合の軌跡(「インダクタンス付微小ダイポール+ダミー金属シート」)を表わしている。
ダミー金属シート16が貼り付けられると、図11(B)の太線に表わされるように、図11(A)の太線の軌跡に対して右回転し、所望の周波数f0において最適点と重なるようになった。この図から理解されるように、本タグセット10に所望の周波数f0において、タグアンテナ19は共振し、ダイポール部13−1,13−2からチップ15に十分電力を供給することができる。また、この所望の周波数f0は、上述した図7の太線でも表わされているように、タグセット10の通信距離を最大にすることができる周波数となっている。
なお、図10(B)における太線の軌跡は、図11(A)の太線と同じ軌跡上であって、f=953MHzの三角が右下に動くような軌跡となっている。
また、電磁界シミュレーションとしては、例えば、チップ15を給電点として、給電点から周波数の異なる(f=700MHzから1200MHz)電流をタグアンテナ19に流して、ダイポール部13−1,13−2の反射係数などを測定することにより得られたものである。
上述した第1の実施の形態では、貼付物体の誘電率εrは同じで厚さtを変化させたときの例について説明した。貼付物体の厚さtを変えずに、誘電率εrをεr1からεr2(εr2<εr1)に小さくした場合でも同様に実施することができる。貼付物体の厚さtを変えず誘電率εrをεr1からεr2に小さくすると、タグアンテナ19周囲の実効誘電率は、誘電率が小さくなった分、貼付物体の厚さtを小さくした場合と同様に小さくなる。従って、貼付物体の厚さtを変えずに、誘電率εrをεr1からεr2に小さくした場合の通信距離と周波数との関係を表わすグラフは、厚さtを薄くした場合と同様に、例えば図25の太線で表わすことができる。この場合、通信距離が最大となるときの周波数fは所望の周波数f0に対して高周波側にずれることになり、ダミー金属シート16を上述した例と同様に貼り付けることで、通信距離が最大となる周波数を所望の周波数f0に戻すことができるようになる。
以上説明してきたように、本第1の実施の形態では、ある誘電率εr、ある厚さtで、所望の周波数f0で通信距離が最大となるように最適化されたタグ20に対して、異なる誘電率εr、異なる厚さtの誘電体に貼り付けたタグ20を動作させる。このとき、ダミー金属シート16をタグ20に貼り付けることで、通信距離を最大となる周波数を所望の周波数f0に戻すことができる。また、ダミー金属シート16の貼り付けに関して、ダミー金属部17−1,17−2がダイポール部13−1,13−2の先端とがオーバーラップし、最も外側の距離が例えば80mmを維持されて、式(3)を満たせば、許容量L2分だけずらしてもよい。従って、ダミー金属シート16の位置調整は厳密に行う場合よりも容易となる。
また、日本国内においてRFIDに利用される周波数は2015年までに953MHzから915〜927MHzの低周波数側に移行することになることが決定された。例えば図25において、所望の周波数f0(例えば953MHz)で通信距離が最大となるように調整されたものが、利用される周波数が低周波数側に移行すると、通信距離は最大値よりも短くなる。この場合、通信距離を最大にするためには、所望の周波数f0で最大だったものを所望の周波数f0よりも低周波数側で最大となるように、通信距離が最大となる周波数をf0から低周波数側に移行させればよい。したがって、本第1の実施の形態におけるダミー金属シート16を貼り付けることで低周波数側に移行させることができるため、915〜927MHzにおいて通信距離を最大にすることができる。このように本ダミー金属シート16によって周波数移行についても効果がある。
例えば、本屋や図書館において本にタグ20が貼り付けられた場合において、ダミー金属シート16を作業担当者がタグ20の上から貼り付けることで、通信距離が最大となる周波数を低周波数側に移行させることができる。しかも、作業担当者は、例えば1mm単位で厳密な作業を要するのではなく、3.5mm程度などの許容量L2だけずらしても、最大通信距離となる周波数は変化しないため、作業担当者の労力や時間の軽減にもなる。
[第2の実施の形態]
次に第2の実施の形態について説明する。第1の実施の形態においては、ダイポール部13−1,13−2の先端とダミー金属部17−1,17−2とがオーバーラップするようにダミー金属シート16がタグ20に貼り付けられる例について説明した。第2の実施の形態では、ダミー金属部23−1,23−2とインダクタンス部14とがオーバーラップするように、ダミー金属シート(又は金属用シート)22をタグ20に貼り付けるようにした例である。図12から図20は第2の実施の形態におけるタグセット10の構成例などをそれぞれ表わす図である。
このうち、図12から図13はタグセット10の構成例を表わす図であり、図14はタグセット10のサイズ、図15(A)から図16はタグセット10の正面図の例をそれぞれ表わす図である。本第2の実施の形態において、タグ20には貼付物体21が貼り付けられている。貼付物体21は、例えば、誘電率εr=3、厚さt=20mmの誘電体である。
例えば、誘電率εrがεr=3、厚さtがt=10mmの貼付物体101で通信距離が最大となるよう調整されたタグ20(例えば図22のタグ100とサイズは同一)に対して、貼付物体21により誘電率εrは同じで厚さtがt=20mmと厚くなった場合を考える。この場合、例えば図25において説明したように、通信距離が最大となる周波数は所望の周波数f0から低周波数側に移行する。このような場合、通信距離が最大となる周波数を高周波数側に移行させることで、通信距離が最大となる周波数を所望の周波数に戻すことができる。所望の周波数f0に戻すために、本第2の実施の形態では、ダミー金属部23−1,23−2とインダクタンス部14とがオーバーラップするようにダミー金属シート22をタグ20に貼り付けるようにしている。あるいは、ダミー金属部23−1,23−2はダミー金属シート22を介してインダクタンス部14と接触するように、ダミー金属シート22はタグ20に貼り付けられる。
例えば、このダミー金属シート22も、第1の実施の形態と同様に、フィルム、PET、紙等で形成されている。また、ダミー金属部23−1,23−2も、第1の実施の形態と同様に、銅(Cu)、銀(Ag)、又はアルミニウム(Al)を主成分とする金属で形成され、Agペースト、Al蒸着、Cuエッチングなどにより形成させることができる。
図14はタグセット10の主要部分のサイズ例を表わす図である。インダクタンス部14のX軸方向における最も外側の長さ(又は先端間距離)は16mm、インダクタンス部14のX軸方向における内側の長さ(又は内側間距離)は14mm、また、Z軸方向の長さ(幅)は4mmとなっている。これに対して、ダミー金属部23−1,23−2は、それぞれ、長さ(X軸方向)、幅(Z軸方向)ともに4mmの正方形となっており、ダミー金属部23−1,23−2の内側の長さ(又は内側間距離)は11mmとなっている。
このダミー金属シート22も、第1の実施の形態におけるダミー金属シート16と同様に、例えば図15(A)に表わされるように、中心点18を中心に点対称の位置に少なくとも夫々一つずつ、ダミー金属部23−1,23−2を備えている。
図12などに表わされるように、ダミー金属シート22がタグ20に貼り付けられて、インダクタンス部14とダミー金属部23−1,23−2とがオーバーラップすることで、通信距離が最大となる周波数を所望の周波数f0に戻すことができる。以下、その理由を説明する。
貼付物体について誘電率εr=3、厚さt=10mmを想定して調整されたタグ20に対して、貼付物体21により厚さtがt=20mmに厚くなったとき、通信距離が最大となる周波数は所望の周波数f0から低周波数側に移行する(例えば図25)。低周波数側に移行した周波数を所望の周波数f0に戻すためには、通信距離が最大となる周波数を高周波数側に移行させるようにすればよい。
周波数fを高周波数側に移行させるには、数(2)の関係式から、波長λを短くするようにすればよい。第1の実施の形態では、電流経路長を長くすることで、波長λを長くするようにした。同様にして、電流経路長を短くすることで波長λを短くすることができる。よって、タグアンテナ19に流れる電流の電流経路長をダミー金属シート22がない場合よりも短くする(以下、このような経路を「ショート経路」と称する)ことで、所望の周波数f0よりも低周波数側に移行した周波数を高周波数側の所望の周波数f0に戻すことができる。
図17は電流経路の例を表わし、破線はダミー金属無しの場合の電流経路、実線はダミー金属有りの場合における電流経路の例をそれぞれ表わしている。ダミー金属部23−1,23−2が貼り付けられることで、インダクタンス部14に沿って流れた電流がダミー金属部23−1,23−2の内側に流れるようになる。これにより、ダミー金属有りの場合の電流経路は、ダミー金属無しの場合の電流経路よりも短くなっている。
なお、ダミー金属部23−1,23−2とインダクタンス部14との間にダミー金属シート22があっても無線信号が高周波信号の場合、ダミー金属部23−1,23−2とインダクタンス部14とは接続されていると考えることができる。
図7において細実線で表わされたグラフ(「貼付誘電体(εr=3,t=20mm)+インダクタンス部ダミー金属」)は、図12になどに表わされたタグセット10の通信距離に関する周波数特性の例を表わしている。細実線で表わされたグラフは、例えば、図12などで表わされたダミー金属部23−1,23−2のサイズで、第1の実施の形態と同様に電磁界シミュレーションにより得られたものである。例えば、シミュレーションを行った結果、ダミー金属部23−1,23−2の内側間距離を11mmのとき所望の周波数f0で通信距離が最大となった。この11mmという内側間距離は、貼付物体21の誘電率εrがεr=3、厚さtがt=20mmのときの最適な長さの一例である。ダミー金属部23−1,23−2の内側間距離は、貼付物体21の厚さt(又は誘電率εr)に応じて通信距離が所望の周波数f0で最大となるように調整されればよい。
図18は、図13の貼付位置と比較してダミー金属シート22がX4方向にずれて貼り付けられたときのタグセット10の構成例を表わす図である。ダミー金属部23−1,23−2は、例えば、インダクタンス部14とオーバーラップし、電流経路長がショート経路であり、さらに、ダミー金属部23−1,23−2の最適な内側間距離(例えば11mm)が維持されていれば、X4方向にずれて貼り付けられてもよい。図18の例では、X4方向に1.5mmずれて貼り付けられた例である。X4方向とは反対方向にずれて貼り付けられてもよい。
ただし、図18において、ダミー金属部23−1,23−2がインダクタンス部14の下側部14−2とオーバーラップしないとき、電流経路はショート経路とならず、むしろこれまでよりも長くなる。また、ダミー金属部23−1,23−2が上側部14−1とオーバーラップしないときも電流経路はショート経路にならない。
また、例えば、図19に表わされるように、ダミー金属部23−1,23−2のサイズについて、X軸方向の長さを2mmにし、X4方向に1.5mmずらしたとき、インダクタンス部14の接続部14−3とダミー金属部23−1との間において0.5mmの隙間が生じる場合がある。この場合でも電流は最も内側の経路に流れることになり、電流経路はショート経路となる。よって、この場合でも通信距離の周波数特性は、上述した場合とほぼ同じ特性を得ることができる。
なお、ダミー金属部23−1,23−2のZ軸方向の長さは、少なくともダミー金属部23−1,23−2とインダクタンス部14の上側部14−1及び下側部14−2とオーバーラップするサイズであれば、電流経路はショート経路にすることができる。
以上のことから、ダミー金属部23−1,23−2は、インダクタンス部14とオーバーラップし、電流経路がショート経路となっていれば、X軸方向やZ軸方向にずれていても、通信距離に関する周波数特性は維持されることになる。
図20は本第2の実施の形態におけるタグセット10の他の構成例を表わす図である。第1の実施の形態(例えば図10)と同様に、タグシート12と貼付物体21との間にダミー金属シート22があってもよい。この場合でも、ダミー金属シート22の貼付位置は、X軸方向やZ軸方向にずれていても所望の周波数f0で通信距離を最大にすることができる。図20に表わされたタグセット10についても、フィルム、PET、紙などの他のフィルムで全体をラミネートするようにしてもよい。
図21(A)及び同図(B)は、第2の実施の形態におけるアドミッタンスチャートの例をそれぞれ表わしている。このうち、図21(A)はタグ20(例えば図22に表わされたタグ100と同一サイズ)に対して貼付物体101の厚さtを10mmから20mmにしたときのアドミッタンスチャートの例を表わしている。また、図21(B)は、タグ20にダミー金属シート22が貼り付けられたタグセット10におけるアドミッタンスチャートの例を表わしている。どちらの図面も、第1の実施の形態と同様に、電磁界シミュレーションを行って、チップ15を給電点として電流の周波数を700MHzから120MHzまで変化させたときの計算結果をアドミッタンスチャートにプロットしたときの図面である。
図21(A)の実線は、インダクタンス部14がダイポール部13−1,13−2と並列に接続され、貼付物体21(誘電率εr=3、厚さt=20mm)が貼り付けられたときの計算結果をプロットしたときの軌跡(「インダクタンス付微小ダイポール」)を表わしている。図24と比較して、f=953MHzの点(三角)が右回転する。これは、例えば、貼付物体の厚さtがt=10mmからt=20mmに厚くなった分だけ、誘電率εr=3となる部分が多くなり、空気の誘電率εr=1となる部分が少なくなるため、タグアンテナ19周囲の実効誘電率が相対的に高くなったからである。所望の周波数f0をf0=953MHzとしたとき、図21(A)に表わされるように、アドミッタンスチャートの所望の周波数f0の位置は最適点からずれた位置にある。
一方、図21(B)の実線は、インダクタンス部14がダイポール部13−1,13−2と並列に接続され、貼付物体11がタグ20に貼り付けられ、さらにダミー金属シート22がタグ20に貼り付けられた場合の軌跡(「インダクタンス付微小ダイポール+ダミー金属シート」)を表わしている。
図21(B)において実線で表わされるように、ダミー金属シート22がタグ20に貼り付けられると、ダミー金属シート22がない軌跡(図21(A))と比較して、ダミー金属シートが貼り付けられた場合の軌跡が全体的に左回転している。全体的に左回転することで、所望の周波数f0=953MHzにおいて最適点と重なるようになった。ダミー金属シート22がタグ20に貼り付けられることで、所望の周波数f0において、タグアンテナ19は共振し、ダイポール部13−1,13−2からチップ15に十分電力を供給することができる。また、上述した図7の細実線でも表わされるように、タグセット10の通信距離は所望の周波数f0で最大となる。
なお、電磁界シミュレーションにより、ダイポール13−1,13−2の最も外側の距離は、共振波長λ1の2分の1(λ1/2)よりも短いときに通信距離が最大となった。
また、図21(B)の実線の軌跡に関して、第1の実施の形態における図10(B)と比較すると、図10(B)における太線の軌跡は図10(A)の太線と同じ軌跡を描きながらf0=953MHzで最適点となった。図21(B)の実線の軌跡は、図21(A)の実線の軌跡全体が左回転することでf0=953MHzの点が最適点に移動するような軌跡となっており、図21(A)の実線の軌跡全体が左回転する点で第1の実施の形態における場合と異なる。
上述した第2の実施の形態では、貼付物体の誘電率εrは同じで厚さtを10mmから20mmに厚くしたときの例について説明した。貼付物体の厚さtを変えずに、誘電率εrをεr2からεr1(εr2<εr1)に大きくした場合でも同様に実施することができる。
貼付物体の厚さtを変えず誘電率εrをεr2からεr1に大きくすると、タグアンテナ19周囲の実効誘電率は、誘電率が大きくなった分、貼付物体の厚さtを厚くした場合と同様に大きくなる。従って、貼付物体の厚さtを変えずに、誘電率εrをεr2からεr1に厚くした場合の通信距離と周波数との関係を表わすグラフは、厚さtを厚くした場合と同様に、例えば図23の実線で表わすことができる。この場合、通信距離が最大となるときの周波数fは所望の周波数f0に対して低周波数側にずれることになる。そして、ダミー金属シート16が上述した例と同様にタグ20に貼り付けられることで、通信距離が最大となる周波数を所望の周波数f0に戻すことができるようになる。
以上説明してきたように、本実施の形態では、ある誘電率εr、ある厚さtで通信距離が最大となるように最適化されたタグ20に対して、それぞれ異なる誘電率εr、厚さtを有する誘電体に貼り付けたタグ20を動作させるとき、タグ20にダミー金属シート16を貼り付けるようにした。これにより、所望の周波数で通信距離を最大にすることができる。
また、ダミー金属シート16の貼り付けに関して、ダミー金属部23−1,23−2は、電流経路がショート経路となっていれば、X軸方向やZ軸方向にずれていても通信距離の周波数特性を維持することができる。従って、ダミー金属シート22の位置調整を1mm単位で厳密に行う場合よりも、ずれは許されているため位置調整は容易となる。
[その他の実施の形態]
上述した第1及び第2の実施の形態では、ともにタグ20に対してダミー金属部17−1,17−2,23−1,23−2を備えるダミー金属シート16,22を貼り付ける例を説明した。例えば、ダミー金属シート16,22が予めタグ20に貼り付けられて、ダミー金属シート20がタグ20から剥がされることで、通信距離が最大となる周波数を所望の周波数f0から高周波数側や低周波数側にずらすようにすることもできる。例えば、図2の状態からダミー金属シート16が剥がされると、通信距離が最大となる周波数は所望の周波数f0よりも高周波数側に移行させることができる。また、図13の状態からダミー金属シート22が剥がされると、通信距離が最大となる周波数は所望の周波数f0から低周波数側に移行させることもできる。
また、第1及び第2の実施の形態において、ダミー金属部17−1,17−2,23−1,23−1は、ダミー金属シート16,22の中心点18を中心にして左右1個ずつ備えていることを説明した。ダミー金属シート16,22は、例えば、ダミー金属部17−1,17−2,23−1,23−1について左右2個以上ずつ備えてもよいし、左右で異なる個数のダミー金属部17−1,17−2,23−1,23−1を備えるようにしてもよい。第1の実施の形態におけるダミー金属シート16では、ダミー金属部17−1,17−2の最も外側の距離が、誘電体の誘電率εrと厚さtに応じて調整された距離が維持されていればその個数は左右それぞれで2個以上でもよい。また、第2の実施の形態におけるダミー金属シート22は、ダミー金属部23−1,23−2の内側間距離が誘電体の誘電率εrと厚さtに応じて調整された距離であれば、左右それぞれで2個以上あってもよい。また、ダミー金属部17−1,17−2,23−1,23−1の形状についても、四角形状以外に、円状のものや、三角形状のもの、これらを組み合わせた複雑な形状のものであってもよい。
以上から、ある誘電率εr、ある厚さtで通信距離が最大となるように調整されたタグ20に対して、異なる誘電率εr、厚さtの誘電体に貼り付けて動作させるときにダミー金属シート16,22が貼り付けられるようにする。ダミー金属シート16,22は、ダミー金属シート16,22の中心点18を中心にして点対称の位置に少なくともそれぞれ一つずつダミー金属部17−1,17−2,23−1,23−2を備える。ダミー金属部17−1,17−2,23−1,23−2の一部がタグ20とオーバーラップするように、ダミー金属シート16,22はタグ20に貼り付けられる。これにより、通信距離が最大となる周波数は調整前の所望の周波数f0に戻すことができる。また、ダミー金属シート16,22のタグ20に対する貼り付け誤差があっても所望の周波数f0で通信距離が最大となるように調整することができる。
10:タグセット 11:貼付物体
12:タグシート
13−1,13−2:ダイポール部 14:インダクタンス部
14−1:上側部 14−2:下側部
14−3:接続部 15:チップ
16:ダミー金属シート 17−1,17−2:ダミー金属部
18:中心点 19:タグアンテナ
20:タグ 21:貼付物体
22:ダミー金属シート 23−1,23−2:ダミー金属部
L1:オーバーラップ長 L2:許容量
L4:ダイポールの長さ

Claims (12)

  1. 金属用シートにおいて、
    前記金属用シートの中心点を中心にして点対称の位置にそれぞれ第1及び第2の金属部を備え、
    前記第1及び第2の金属部の一部が非接触で通信を行うタグとそれぞれ接触するように前記タグに貼り付けられることを特徴とする金属用シート。
  2. 前記金属用シートが前記タグに貼り付けられたとき、前記第1及び第2の金属部は前記タグに設けられた第1及び第2のダイポールアンテナの第1の軸方向における最も外側の先端部分とそれぞれ接触し、前記第1の軸方向における前記第1の金属部と前記第2の金属部の最も外側の距離は、前記第1のダイポールアンテナと前記第2のダイポールアンテナの前記第1の軸方向における前記先端部分間の距離よりも長いことを特徴とする請求項1記載の金属用シート。
  3. 前記第1の軸方向において前記第1又は第2の金属部と前記第1又は第2のダイポールアンテナの先端部分とがそれぞれ接触したときの接触した部分の長さをL1、前記金属用シートを前記タグに貼り付けたとき前記第1の軸方向に対する貼り付け誤差の許容量をL2、前記第1の軸方向における前記第1又は第2のダイポールアンテナの長さをL4とすると、L2<L1<(L4−L2)の関係をそれぞれ満たすことを特徴とする請求項2記載の金属用シート。
  4. 第1の誘電率と第2の軸方向において第1の厚さとを有する第1の誘電体が前記タグに貼り付けられたときに第1の周波数で前記タグの通信距離が最大となるとき、前記第1の誘電率よりも小さい第2の誘電率、又は前記第2の軸方向において前記第1の厚さよりも薄い第2の厚さ、を有する第2の誘電体が前記タグに貼り付けられているときにおいて前記金属用シートが前記タグに貼り付けられたときに前記第1の周波数で通信距離が最大となるように、前記第1の金属部と前記第2の金属部の距離は調整されることを特徴とする請求項2記載の金属用シート。
  5. 前記金属用シートが前記タグに貼り付けられたとき、前記タグに設けられたダイポールアンテナに対する電流経路長は、前記金属用シートが前記タグに貼り付けられていないときよりも長いことを特徴とする請求項1記載の金属用シート。
  6. 前記金属用シートが前記タグに貼り付けられたとき、前記第1及び第2の金属部は前記タグに設けられたインダクタンス部と接触し、前記インダクタンス部の電流経路長は前記金属用シートが前記タグに貼り付けられてないときよりも短いことを特徴とする請求項1記載の金属用シート。
  7. 第1の誘電率と第2の軸方向において第1の厚さとを有する第1の誘電体が前記タグに貼り付けられたときに第1の周波数で通信距離が最大となるとき、前記第1の誘電率よりも大きい第3の誘電率、又は前記第2の軸方向において前記第1の厚さよりも厚い第3の厚さ、を有する第3の誘電体が前記タグに貼り付けられているときにおいて前記金属用シートが前記タグに貼り付けられたときに前記第1の周波数で通信距離が最大となるように、前記第1の金属部と前記第2の金属部の距離は調整されていることを特徴とする請求項6記載の金属用シート。
  8. 前記金属用シートが前記タグに貼り付けられたとき、前記タグに設けられたインダクタンス部に対する電流経路長は、前記金属用シートが前記タグに貼り付けられていないときよりも短いことを特徴とする請求項1記載の金属用シート。
  9. 誘電体と、
    前記誘電体に貼り付けられ、非接触で通信を行うタグと
    を備えたタグセットにおいて、
    さらに、金属用シートを備え、
    前記金属用シートは前記金属用シートの中心点を中心にして点対称の位置にそれぞれ第1及び第2の金属部を備え、
    前記金属用シートは、前記第1及び第2の金属部の一部が前記タグとそれぞれ接触するように前記タグに貼り付けられることを特徴とするタグセット。
  10. 前記金属用シートが前記タグに貼り付けられたとき、前記第1及び第2の金属部は第1の軸方向において前記タグに設けられた第1及び第2のダイポールアンテナの最も外側の先端部分とそれぞれ接触し、前記第1の軸方向における前記第1の金属部と前記第2の金属部の最も外側の距離は、前記第1の軸方向における前記第1のダイポールアンテナと前記第2のダイポールアンテナの最も外側の距離よりも長いことを特徴とする請求項9記載のタグセット。
  11. 前記金属用シートが前記タグに貼り付けられたとき、前記第1及び第2の金属部は前記タグに設けられたインダクタンス部と接触し、前記インダクタンス部の電流経路長は前記金属用シートが前記タグに貼り付けられないときよりも短いことを特徴とする請求項9記載のタグセット。
  12. 前記ダイポールアンテナの第1の軸方向における長さは前記ダイポールアンテナの共振波長の2分の1よりも短いことを特徴とする請求項11記載のタグセット。
JP2013508685A 2011-04-07 2011-04-07 金属用シート及びタグセット Expired - Fee Related JP5673801B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058798 WO2012137330A1 (ja) 2011-04-07 2011-04-07 金属用シート及びタグセット

Publications (2)

Publication Number Publication Date
JPWO2012137330A1 true JPWO2012137330A1 (ja) 2014-07-28
JP5673801B2 JP5673801B2 (ja) 2015-02-18

Family

ID=46968766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013508685A Expired - Fee Related JP5673801B2 (ja) 2011-04-07 2011-04-07 金属用シート及びタグセット

Country Status (4)

Country Link
US (1) US8777117B2 (ja)
JP (1) JP5673801B2 (ja)
CN (1) CN103477497B (ja)
WO (1) WO2012137330A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361431B2 (ja) 2014-09-30 2018-07-25 富士通株式会社 周波数特性調整用治具、アンテナ検査装置及びアンテナ検査方法及びならびにループアンテナ
JP6611165B2 (ja) * 2015-09-25 2019-11-27 Fdk株式会社 アンテナ装置
JP6841135B2 (ja) * 2017-04-10 2021-03-10 凸版印刷株式会社 コイン形状のicタグとその製造方法
US10366319B2 (en) * 2017-08-31 2019-07-30 Fisher Controls International Llc Mounting bracket apparatus to amplify electromagnetic field strengths associated with mountable RFID
JP7176313B2 (ja) * 2018-09-12 2022-11-22 大日本印刷株式会社 Rfタグラベル
JP7183651B2 (ja) * 2018-09-18 2022-12-06 大日本印刷株式会社 Rfタグラベル
JP7131227B2 (ja) * 2018-09-18 2022-09-06 大日本印刷株式会社 Rfタグラベル
US11397884B2 (en) 2020-03-23 2022-07-26 Fisher Controls International Llc Brackets for amplifying antenna gain associated with mountable RFID tags
CN112164861B (zh) * 2020-08-24 2021-09-17 南京航空航天大学 一种小型化折叠式超高频抗金属抗液体标签天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242786A (ja) * 1998-02-24 1999-09-07 Matsushita Electric Works Ltd 非接触ラベルのアンテナ長の調整方法
JP2001160124A (ja) 1999-12-02 2001-06-12 Tokin Corp 非接触型データキャリア
JP4330575B2 (ja) * 2005-03-17 2009-09-16 富士通株式会社 タグアンテナ
JP5021175B2 (ja) * 2005-03-25 2012-09-05 東芝テック株式会社 無線タグ用容器
US7315248B2 (en) * 2005-05-13 2008-01-01 3M Innovative Properties Company Radio frequency identification tags for use on metal or other conductive objects
US7323996B2 (en) * 2005-08-02 2008-01-29 International Business Machines Corporation RFID reader having antenna with directional attenuation panels for determining RFID tag location
JP4871579B2 (ja) * 2005-12-01 2012-02-08 東芝テック株式会社 無線タグ調整システム
JP2007235926A (ja) 2006-01-31 2007-09-13 Toshiba Tec Corp 無線icタグ
JP4755921B2 (ja) * 2006-02-24 2011-08-24 富士通株式会社 Rfidタグ
JP4839257B2 (ja) * 2007-04-11 2011-12-21 株式会社日立製作所 Rfidタグ

Also Published As

Publication number Publication date
CN103477497A (zh) 2013-12-25
JP5673801B2 (ja) 2015-02-18
US8777117B2 (en) 2014-07-15
CN103477497B (zh) 2015-04-29
WO2012137330A1 (ja) 2012-10-11
US20140021265A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5673801B2 (ja) 金属用シート及びタグセット
US7652636B2 (en) RFID devices having self-compensating antennas and conductive shields
EP2204882B1 (en) Wireless IC device
EP2009736B1 (en) Wireless ic device
EP2173009B1 (en) Wireless tag and method for manufacturing the same
JP6583589B2 (ja) 無線通信デバイス
WO2006064540A1 (ja) アンテナ及び非接触型タグ
JP5737448B2 (ja) 無線通信デバイス
JPWO2007000807A1 (ja) 無線周波数識別タグ
KR20090012026A (ko) Rfid 태그 실장 패키지 및 그 제조 방법
JP2012520517A (ja) ユニバーサルrfidタグおよび製造方法
EP1614192B1 (en) Rfid devices having self-compensating antennas and conductive shields
JP7074275B1 (ja) Rfidモジュールを備えた容器
WO2017014151A1 (ja) 無線通信デバイスおよびそれを備えた物品
EP2309597A1 (en) RFID devices having self-compensating antennas and conductive shields
US20190173180A1 (en) Wireless communication device and antenna device
JP6911958B2 (ja) パッケージ用板紙およびその製造方法
JP6532004B2 (ja) 非接触型データ受送信体
WO2013012083A1 (ja) アンテナ及び無線タグ
TWI418089B (zh) 無線射頻識別標籤及其製造方法
JP7197065B2 (ja) Rfidモジュールを備えた容器
JP7239073B2 (ja) Rfidモジュールを備えた容器
WO2022097682A1 (ja) Rfidモジュールを備えた容器
JP7243931B2 (ja) Rfidモジュールを備えた容器及びrfidモジュールを備えた容器の製造方法
CN108038534B (zh) 一种rfid珠宝标签

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees