JPWO2012014984A1 - マイクロ波共振器 - Google Patents
マイクロ波共振器 Download PDFInfo
- Publication number
- JPWO2012014984A1 JPWO2012014984A1 JP2012526551A JP2012526551A JPWO2012014984A1 JP WO2012014984 A1 JPWO2012014984 A1 JP WO2012014984A1 JP 2012526551 A JP2012526551 A JP 2012526551A JP 2012526551 A JP2012526551 A JP 2012526551A JP WO2012014984 A1 JPWO2012014984 A1 JP WO2012014984A1
- Authority
- JP
- Japan
- Prior art keywords
- impedance
- transmission line
- zero
- microwave
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 657
- 239000004020 conductor Substances 0.000 claims description 176
- 230000010287 polarization Effects 0.000 claims description 132
- 230000035699 permeability Effects 0.000 claims description 53
- 239000006185 dispersion Substances 0.000 claims description 47
- 230000001939 inductive effect Effects 0.000 claims description 45
- 239000003990 capacitor Substances 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 32
- 230000001902 propagating effect Effects 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract description 482
- 230000002441 reversible effect Effects 0.000 description 157
- 238000004088 simulation Methods 0.000 description 91
- 238000004364 calculation method Methods 0.000 description 68
- 230000005855 radiation Effects 0.000 description 68
- 238000010586 diagram Methods 0.000 description 54
- 230000005684 electric field Effects 0.000 description 36
- 238000005259 measurement Methods 0.000 description 30
- 230000002427 irreversible effect Effects 0.000 description 28
- 230000014509 gene expression Effects 0.000 description 22
- 230000005672 electromagnetic field Effects 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 12
- 230000005415 magnetization Effects 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000010363 phase shift Effects 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005418 spin wave Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0138—Electrical filters or coupling circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/203—Strip line filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/082—Microstripline resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0115—Frequency selective two-port networks comprising only inductors and capacitors
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
(i)線路長に関係なく、単位セルの構造パラメータのみによって決まる共振周波数で共振すること、
(ii)共振時には、共振器内の電磁界分布の振幅及び位相が一様となることが挙げられる。
上記マイクロ波伝送線路の各単位セルは、上記マイクロ波伝送線路に入力されるマイクロ波信号の動作周波数と、上記マイクロ波伝送線路の位相定数との関係を示す分散曲線において上記マイクロ波伝送線路が所定の位相定数を有するように回路構成され、
上記マイクロ波伝送線路は第1のポートと第2のポートとを有し、
上記マイクロ波共振器は、
上記マイクロ波伝送線路の第1のポートに接続され、所定の動作周波数において、上記第1のポートから第1の反射用インピーダンス回路を見たインピーダンスが第1のインピーダンスとなるように動作する第1の反射用インピーダンス回路と、
上記マイクロ波伝送線路の第2のポートに接続され、上記動作周波数において、上記第1のポートから第2の反射用インピーダンス回路を見たインピーダンスが第2のインピーダンスとなるように動作する第2の反射用インピーダンス回路とを備え、
上記第1のインピーダンスの虚部と上記第2のインピーダンスの虚部とは互いに異符号であり、かつ上記第1のインピーダンスの虚部の大きさと上記第2のインピーダンスの虚部の大きさとは実質的に互いに等しいことを特徴とする。
上記第2のインピーダンスは、上記第1のインピーダンスと共役である純虚数であることを特徴とする。
裏面に接地導体を有する誘電体基板と、
上記誘電体基板上に形成されたマイクロストリップ線路と、
上記マイクロストリップ線路を複数の線路部に分断し、上記分断された複数の線路部のうちの互いに隣接する各線路部を接続する複数のキャパシタと、
上記各線路部をそれぞれ接地導体に接続する複数の誘導性スタブ導体とを備えたことを特徴とする。
上記第1の反射用インピーダンス回路又は上記第2の反射用インピーダンス回路に接続され、上記マイクロ波共振器によって受信されたマイクロ波信号を出力する給電回路をさらに備えたことを特徴とする。
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記アンテナ装置は、
上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
上記給電回路から出力されたマイクロ波信号の受信電力を検出する受信電力検出手段をさらに備え、
上記制御手段は、上記検出された受信電力に基づいて、上記受信電力が最大になるように上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させることを特徴とする。
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域通過フィルタ装置は、
当該帯域通過フィルタ装置の帯域通過周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域阻止フィルタ装置は、
当該帯域阻止フィルタ装置の帯域阻止周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
始めに、図1乃至図6を参照して、本発明の実施形態に係る伝送線路型マイクロ波共振器において用いる右手/左手系複合伝送線路100の基本構成を説明する。図1は、基本的な右手/左手系複合伝送線路100を用いた従来技術に係る伝送線路型マイクロ波共振器の等価回路モデルを示す回路図であり、図2は、図1の単位セルUCn(n=1,2,…,N)を簡略化して表した、従来技術に係る伝送線路型マイクロ波共振器の等価回路モデルを示す回路図である。図1の伝送線路型マイクロ波共振器は、有限の長さを有する右手/左手系複合伝送線路100と、右手/左手系複合伝送線路100の両端に伝送信号を反射するようにそれぞれ接続された終端負荷151及び152とを備えて構成される。さらに、右手/左手系複合伝送線路100の構成は、伝送信号の波長に比べて充分小さなサイズを有する複数N個の単位セルUC1,UC2,…,UCNを縦続接続した梯子型伝送線路構成である。ここで、図1及び図2に示すように、単位セルUCnは2端子対網の微小構成要素である。
次に、図7乃至図10を参照して、可逆右手/左手系複合伝送線路を備えた本発明の実施形態に係る伝送線路型マイクロ波共振器である零次共振器の共振条件を説明する。図7は、本発明の実施形態に係る伝送線路型マイクロ波共振器である零次共振器の等価回路モデルを示す回路図である。図7において、本実施形態に係るマイクロ波共振器は、ポートP1及びP2を有する有限長さl=Npの直線形状の右手/左手系複合伝送線路(CRLHTL)100(複数N個の基本セルUC1,UC2,…,UCNからなり、1個の基本セルの長さはpである。)と、ポートP1に接続された反射用インピーダンス素子151Rと、ポートP2に接続された反射用インピーダンス素子152Rとを備えて構成される。ここで、反射用インピーダンス素子151Rは、動作周波数において、ポートP1から見たインピーダンスがZL1となるように動作し、反射用インピーダンス素子152Rは、動作周波数において、ポートP2から見たインピーダンスがZL2となるように動作する。図7におけるパラメータβ+及びΔφ+はそれぞれポートP1からポートP2までの電力伝送に関する線路の位相定数及び位相遅延を示し、パラメータβ−及びΔφ−はそれぞれポートP2からポートP1までの電力伝送に関する線路の位相定数及び位相遅延を示し、xは、右手/左手系複合伝送線路100の長手方向の位置を示す。さらに、ポートP1及びP2における反射に起因する移相は、それぞれΔφ1及びΔφ2である。この事例では、共振条件は、次式の位相関係式が成り立つときに満たされる。
次に、図8乃至図10を参照して、可逆かつ平衡型の右手/左手系複合伝送線路100を用いたときの零次共振器の動作を説明する。
次に、可逆かつ非平衡型の右手/左手系複合伝送線路100を用いたときの零次共振器の動作を説明する。位相定数βがゼロになるときの直列共振角周波数ωse及び並列共振角周波数ωshにおいて、一方は実効透磁率μeffがゼロとなる角周波数であり、他方は実効誘電率εeffがゼロとなる角周波数である。さらに、この2つの角周波数に挟まれた領域は、右手/左手系複合伝送線路100に沿って電磁波の伝搬が許されない禁止帯であるが、実効誘電率εeff及び実効透磁率μeffのうち一方のみが負となるので、右手/左手系複合伝送線路100の特性インピーダンス(厳密には周期構造のブロッホインピーダンスZCRLHTL)Z0=(μeff/εeff)1/2は純虚数となる。以上のことから、右手/左手系複合伝送線路100のポートP1に反射器として挿入されたリアクタンスjBを有する反射用インピーダンス素子151Rが、インピーダンス整合の取れる負荷として動作する周波数が存在する。つまり、右手/左手系複合伝送線路100の特性インピーダンスZ0がインピーダンスjBと等しくなる角周波数が、直列共振角周波数ωseと、並列共振角周波数ωshとの間の禁止帯に必ず存在する。このとき、右手/左手系複合伝送線路100の他方のポートP2からこの反射用インピーダンス素子151R(負荷インピーダンスである。)を見たときの入力インピーダンスZinは線路長lに関係なく、常にjBとなる。従って、ポートP2にインピーダンス−jBを有する反射用インピーダンス素子152Rを接続することにより、共振条件は自動的に満たされる。
前節では、順方向の伝搬定数β+と逆方向の伝搬定数β−とが同一の値βである可逆位相特性を有する右手/左手系複合伝送線路100を用いたときの零次共振器の共振条件を説明した。本節では、順方向の位相定数β+と逆方向の位相定数β−とが互いに異なる非可逆位相特性を有する右手/左手系複合伝送線路100を用いたときの零次共振器の共振条件を説明する。
次に、可逆右手/左手系複合伝送線路を用いた場合の図7の零次共振器の具体的構成例について、図11乃至図14を参照して以下に説明する。図11は、零次共振器を構成する単位セルの数Nが10であり、かつ可逆な右手/左手系複合伝送線路100を備えたときの、図7の零次共振器の具体的な構成を示す平面図である。また、図12は、図11のA−A’ラインを横切る縦断面図であり、図13は、図11のB−B’ラインを横切る縦断面図である。さらに、図14は、放射角θ及びφの定義を示す図11の零次共振器の斜視図である。
(a)可逆な右手/左手系複合伝送線路100と、
(b)右手/左手系複合伝送線路100の一端に接続され、長さlr1を有する開放終端マイクロストリップ線路にてなる反射用インピーダンス素子151Rと、
(c)右手/左手系複合伝送線路100の他端に接続され、長さlr2を有する開放終端マイクロストリップ線路にてなる反射用インピーダンス素子152Rとを備えて構成される。
(a)裏面に接地導体11を有する誘電体基板10と、
(b)誘電体基板10の表面に形成された1本のストリップ導体を分断してなる複数のストリップ導体12と、
(c)複数のストリップ導体12のうちの互いに隣接する各ストリップ導体12を接続する複数のキャパシタ14と、
(d)上記各ストリップ導体12を、それぞれビア導体12Sを介して接地導体11に接続する複数の短絡スタブ導体13とを備えて構成される。
次に、可逆かつ平衡型の右手/左手系複合伝送線路100を用いたときの、図11の零次共振器の共振特性及び電磁界分布についてのシミュレーション計算値及び実験測定値について以下に説明する。
(2)右手/左手系複合伝送線路100の線路幅Lfを1.7mmに設定し、右手/左手系複合伝送線路100に対して、1mmの幅Leと、18mmの長さLdとを有する短絡スタブ導体13を並列枝として接続し、直列枝に、4.0pFのキャパシタンスCのチップコンデンサ14を5mmの周期Lcで挿入した。
(3)ストリップ導体12P1及び12P2の線路幅Laを、特性インピーダンスが50Ωになるように2.1mmに設定した。
(4)零次共振器のインピーダンスを、給電線路導体12Fと裏面に接地導体11を有する誘電体基板10とを備えて構成される給電線路の特性インピーダンス(50[Ω]である。)に整合させるために、ストリップ導体12P1の開放端からの給電線路導体12Fの距離Lgaを16.5mmに固定した。
(5)動作周波数における半波長(λg/2)の長さを46mmに設定し、ストリップ導体12P1の長さlr1(図14の長さLb)及びストリップ導体12P2の長さlr2の総和が46mmになるように、長さlr1及び長さlr2を変化させた。
(1)lr1=lr2=λg/4であるとき、ZL1=ZL2=0、すなわち、B=0である。
(2)lr1=3λg/8かつlr2=λg/8であるとき、ZL1=j50[Ω]かつZL2=−j50[Ω]、すなわち、B=50[Ω]である。
(3)lr1=λg/2かつlr2=0であるとき、ZL1=ZL2=+∞、すなわち、B=+∞である。
次に、可逆かつ非平衡型の右手/左手系複合伝送線路100を用いたときの、図11の零次共振器の共振特性及び電磁界分布についてのシミュレーション計算値及び実験測定値について以下に説明する。
(2)右手/左手系複合伝送線路100の線路幅Lfを1.7mmに設定し、右手/左手系複合伝送線路100に対して、1mmの幅Leと、15mmの長さLdとを有する短絡スタブ導体13を並列枝として接続し、直列枝に、2.4pFのキャパシタンスCのチップコンデンサ14を5mmの周期Lcで挿入した。
(3)ストリップ導体12P1及び12P2の線路幅Laを、特性インピーダンスが50[Ω]になるように2.1mmに設定した。
(4)零次共振器のインピーダンスを、給電線路導体12Fと裏面に接地導体11を有する誘電体基板10とを備えて構成される給電線路の特性インピーダンス(50[Ω]である。)に整合させるために、ストリップ導体12P1の開放端からの給電線路導体12Fの距離Lgbを16mmに固定した。
(5)動作周波数における半波長(λg/2)の長さを42mmに設定し、ストリップ導体12P1の長さlr1(図14の長さLb)及びストリップ導体12P2の長さlr2の総和が42mmになるように、長さlr1及び長さlr2を変化させた。
以上説明したように、本発明の実施形態に係る零次共振器(図7参照。)の終端条件を等価的に両端短絡から両端開放に変化させることにより、直列枝部分が支配的な共振形態から、並列枝部分が支配的な共振形態に変化させることが可能である。また逆に、両端開放から両端短絡へ変化させることにより、並列枝部分が支配的な共振形態から、直列枝部分が支配的な共振形態に変化させることが可能となる。この零次共振器をアンテナ装置として利用し、共振器の終端条件を機械的、あるいは電気的、あるいはその両方を兼ね備えた方法で変化させることにより、放射波あるいは受信電波の偏波特性を変化させる。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RAと、ポートP2に接続された反射用インピーダンス回路152RAとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300とを備えて構成される。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RBと、ポートP2に接続された反射用インピーダンス回路152RBとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300Aとを備えて構成される。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300Bとを備えて構成される。
図25を参照して説明したように、非平衡型右手/左手系複合伝送線路100を用いた場合、リアクタンスBを0から+∞まで連続的に変えるように変化させることにより、共振周波数を連続的に変化させることができる。このことを利用して、帯域阻止周波数を変化させることができるチューナブル帯域阻止フィルタ装置を実現できる。ここで、具体的には、帯域阻止周波数とは、阻止帯域の中心周波数を中心とする所定の幅を有する帯域阻止幅を表す。
(a)ポートP1及びP2を有する非平衡型の右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)コントローラ300Cと、
(c)入力ポート3及び出力ポート4を有する伝送線路100Fとを備えて構成される。
図25を参照して説明したように、非平衡型右手/左手系複合伝送線路100を用いた場合、リアクタンスBを0から+∞まで連続的に変えるように変化させることにより、共振周波数を連続的に変化させることができる。このことを利用して、帯域通過周波数を変化させることができるチューナブル帯域通過フィルタ装置を実現できる。ここで、具体的には、帯域通過周波数とは、通過帯域の中心周波数を中心とする所定の幅を有する帯域通過幅を表す。
(a)ポートP1及びP2を有する非平衡型の右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)コントローラ300Cと、
(c)入力ポート3を有する入力用の伝送線路100Faと、
(d)出力ポート4を有する出力用の伝送線路100Fbとを備えて構成される。
次に、非可逆右手/左手系複合伝送線路を用いた場合の図7の零次共振器の具体的構成例を説明する。図36は、零次共振器を構成する単位セルの数Nが10あり、かつ非可逆な右手/左手系複合伝送線路100を備えたときの、図7の零次共振器の具体的な構成を示す斜視図である。また、図37は、図36のA−A’ラインを横切る縦断面図である。なお、図36に示した例では、反射用インピーダンス素子151R及び152Rの長さはそれぞれλg/4に設定されている。
次に、図7の零次共振器によって送受信されるマイクロ波信号の主偏波方向の回転の原理及び測定結果を説明する。図39は、図7の零次共振器の直列枝に流れる電流Icenter及び並列枝に流れる電流Istubを示す回路図及び平面図(ただし、零次共振器を構成する単位セルの数Nは10である。)である。図39において、次式が成り立つ。
以上説明したように、本発明に係るマイクロ波共振器によれば、右手/左手系複合伝送線路100のポートP1に接続された反射用インピーダンス素子151Rと、ポートP2に接続された反射用インピーダンス素子152Rとを備え、ポートP1から反射用インピーダンス素子151Rを見た第1のインピーダンスの虚部とポートP2から反射用インピーダンス素子152Rを見た第2のインピーダンスの虚部とは互いに異符号である。さらに、第1のインピーダンスの虚部の大きさと第2のインピーダンスの虚部の大きさとは実質的に互いに等しい。好ましくは、第1のインピーダンスは純虚数(jB)であり、第2のインピーダンスが第1のインピーダンスと共役な純虚数(−jB)である。従って、本発明に係るマイクロ波共振器によれば、直列共振状態及び並列共振状態に加えて、両者が混在する二重共振の状態を実現できる新規の零次共振器を提供できる。
11…接地導体、
12,12P1,12P1a,12P1b,12P2…ストリップ導体、
12A…マイクロストリップ線路、
12F…給電線路導体、
12S…ビア導体、
13…短絡スタブ導体、
14…キャパシタ、
15…方向性結合器、
15a,15b…マイクロストリップ線路、
21…可変容量ダイオード、
22,23,24…インダクタ、
31…可変容量ダイオード、
41…給電線、
41a,41b,51a,51b−1,51b−3,51b−4,52−2,52−3,52−4…マイクロストリップ線路、
61…伝送線路部分、
90…フェライト角棒、
100…右手/左手系複合伝送線路(CRLHTL)、
100F,100Fa,100Fb…伝送線路、
200…受信電力検出器、
300,300A,300B,300C…コントローラ、
151,152…終端負荷、
151R,152R…反射用インピーダンス素子、
151RA,151RB,151RC,152RA,152RB,152RC…反射用インピーダンス回路、
153,154…移相器、
200…受信電力検出器、
300,300A…コントローラ、
400…無線受信機、
P1,P2,P11,P12…ポート、
SW1,SW2,SW3…スイッチ、
UC1,UC2,…,UCN…単位セル。
(i)線路長に関係なく、単位セルの構造パラメータのみによって決まる共振周波数で共振すること、
(ii)共振時には、共振器内の電磁界分布の振幅及び位相が一様となることが挙げられる。
上記マイクロ波伝送線路の各単位セルは、上記マイクロ波伝送線路に入力されるマイクロ波信号の動作周波数と、上記マイクロ波伝送線路の位相定数との関係を示す分散曲線において上記マイクロ波伝送線路が所定の位相定数を有するように回路構成され、
上記マイクロ波伝送線路は第1のポートと第2のポートとを有し、
上記マイクロ波共振器は、
上記マイクロ波伝送線路の第1のポートに接続され、所定の動作周波数において、上記第1のポートから第1の反射用インピーダンス回路を見たインピーダンスが第1のインピーダンスとなるように動作する第1の反射用インピーダンス回路と、
上記マイクロ波伝送線路の第2のポートに接続され、上記動作周波数において、上記第2のポートから第2の反射用インピーダンス回路を見たインピーダンスが第2のインピーダンスとなるように動作する第2の反射用インピーダンス回路とを備え、
上記第1のインピーダンスの虚部と上記第2のインピーダンスの虚部とは互いに異符号であり、かつ上記第1のインピーダンスの虚部の大きさと上記第2のインピーダンスの虚部の大きさとは実質的に互いに等しいことを特徴とする。
上記第2のインピーダンスは、上記第1のインピーダンスと共役である純虚数であることを特徴とする。
裏面に接地導体を有する誘電体基板と、
上記誘電体基板上に形成されたマイクロストリップ線路と、
上記マイクロストリップ線路を複数の線路部に分断し、上記分断された複数の線路部のうちの互いに隣接する各線路部を接続する複数のキャパシタと、
上記各線路部をそれぞれ接地導体に接続する複数の誘導性スタブ導体とを備えたことを特徴とする。
上記第1の反射用インピーダンス回路又は上記第2の反射用インピーダンス回路に接続され、上記マイクロ波共振器によって受信されたマイクロ波信号を出力する給電回路をさらに備えたことを特徴とする。
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記アンテナ装置は、
上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
上記給電回路から出力されたマイクロ波信号の受信電力を検出する受信電力検出手段をさらに備え、
上記制御手段は、上記検出された受信電力に基づいて、上記受信電力が最大になるように上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させることを特徴とする。
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域通過フィルタ装置は、
当該帯域通過フィルタ装置の帯域通過周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域阻止フィルタ装置は、
当該帯域阻止フィルタ装置の帯域阻止周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする。
始めに、図1乃至図6を参照して、本発明の実施形態に係る伝送線路型マイクロ波共振器において用いる右手/左手系複合伝送線路100の基本構成を説明する。図1は、基本的な右手/左手系複合伝送線路100を用いた従来技術に係る伝送線路型マイクロ波共振器の等価回路モデルを示す回路図であり、図2は、図1の単位セルUCn(n=1,2,…,N)を簡略化して表した、従来技術に係る伝送線路型マイクロ波共振器の等価回路モデルを示す回路図である。図1の伝送線路型マイクロ波共振器は、有限の長さを有する右手/左手系複合伝送線路100と、右手/左手系複合伝送線路100の両端に伝送信号を反射するようにそれぞれ接続された終端負荷151及び152とを備えて構成される。さらに、右手/左手系複合伝送線路100の構成は、伝送信号の波長に比べて充分小さなサイズを有する複数N個の単位セルUC1,UC2,…,UCNを縦続接続した梯子型伝送線路構成である。ここで、図1及び図2に示すように、単位セルUCnは2端子対網の微小構成要素である。
次に、図7乃至図10を参照して、可逆右手/左手系複合伝送線路を備えた本発明の実施形態に係る伝送線路型マイクロ波共振器である零次共振器の共振条件を説明する。図7は、本発明の実施形態に係る伝送線路型マイクロ波共振器である零次共振器の等価回路モデルを示す回路図である。図7において、本実施形態に係るマイクロ波共振器は、ポートP1及びP2を有する有限長さl=Npの直線形状の右手/左手系複合伝送線路(CRLHTL)100(複数N個の基本セルUC1,UC2,…,UCNからなり、1個の基本セルの長さはpである。)と、ポートP1に接続された反射用インピーダンス素子151Rと、ポートP2に接続された反射用インピーダンス素子152Rとを備えて構成される。ここで、反射用インピーダンス素子151Rは、動作周波数において、ポートP1から見たインピーダンスがZL1となるように動作し、反射用インピーダンス素子152Rは、動作周波数において、ポートP2から見たインピーダンスがZL2となるように動作する。図7におけるパラメータβ+及びΔφ+はそれぞれポートP1からポートP2までの電力伝送に関する線路の位相定数及び位相遅延を示し、パラメータβ−及びΔφ−はそれぞれポートP2からポートP1までの電力伝送に関する線路の位相定数及び位相遅延を示し、xは、右手/左手系複合伝送線路100の長手方向の位置を示す。さらに、ポートP1及びP2における反射に起因する移相は、それぞれΔφ1及びΔφ2である。この事例では、共振条件は、次式の位相関係式が成り立つときに満たされる。
次に、図8乃至図10を参照して、可逆かつ平衡型の右手/左手系複合伝送線路100を用いたときの零次共振器の動作を説明する。
次に、可逆かつ非平衡型の右手/左手系複合伝送線路100を用いたときの零次共振器の動作を説明する。位相定数βがゼロになるときの直列共振角周波数ωse及び並列共振角周波数ωshにおいて、一方は実効透磁率μeffがゼロとなる角周波数であり、他方は実効誘電率εeffがゼロとなる角周波数である。さらに、この2つの角周波数に挟まれた領域は、右手/左手系複合伝送線路100に沿って電磁波の伝搬が許されない禁止帯であるが、実効誘電率εeff及び実効透磁率μeffのうち一方のみが負となるので、右手/左手系複合伝送線路100の特性インピーダンス(厳密には周期構造のブロッホインピーダンスZCRLHTL)Z0=(μeff/εeff)1/2は純虚数となる。以上のことから、右手/左手系複合伝送線路100のポートP1に反射器として挿入されたリアクタンスjBを有する反射用インピーダンス素子151Rが、インピーダンス整合の取れる負荷として動作する周波数が存在する。つまり、右手/左手系複合伝送線路100の特性インピーダンスZ0がインピーダンスjBと等しくなる角周波数が、直列共振角周波数ωseと、並列共振角周波数ωshとの間の禁止帯に必ず存在する。このとき、右手/左手系複合伝送線路100の他方のポートP2からこの反射用インピーダンス素子151R(負荷インピーダンスである。)を見たときの入力インピーダンスZinは線路長lに関係なく、常にjBとなる。従って、ポートP2にインピーダンス−jBを有する反射用インピーダンス素子152Rを接続することにより、共振条件は自動的に満たされる。
前節では、順方向の伝搬定数β+と逆方向の伝搬定数β−とが同一の値βである可逆位相特性を有する右手/左手系複合伝送線路100を用いたときの零次共振器の共振条件を説明した。本節では、順方向の位相定数β+と逆方向の位相定数β−とが互いに異なる非可逆位相特性を有する右手/左手系複合伝送線路100を用いたときの零次共振器の共振条件を説明する。
次に、可逆右手/左手系複合伝送線路を用いた場合の図7の零次共振器の具体的構成例について、図11乃至図14を参照して以下に説明する。図11は、零次共振器を構成する単位セルの数Nが10であり、かつ可逆な右手/左手系複合伝送線路100を備えたときの、図7の零次共振器の具体的な構成を示す平面図である。また、図12は、図11のA−A’ラインを横切る縦断面図であり、図13は、図11のB−B’ラインを横切る縦断面図である。さらに、図14は、放射角θ及びφの定義を示す図11の零次共振器の斜視図である。
(a)可逆な右手/左手系複合伝送線路100と、
(b)右手/左手系複合伝送線路100の一端に接続され、長さlr1を有する開放終端マイクロストリップ線路にてなる反射用インピーダンス素子151Rと、
(c)右手/左手系複合伝送線路100の他端に接続され、長さlr2を有する開放終端マイクロストリップ線路にてなる反射用インピーダンス素子152Rとを備えて構成される。
(a)裏面に接地導体11を有する誘電体基板10と、
(b)誘電体基板10の表面に形成された1本のストリップ導体を分断してなる複数のストリップ導体12と、
(c)複数のストリップ導体12のうちの互いに隣接する各ストリップ導体12を接続する複数のキャパシタ14と、
(d)上記各ストリップ導体12を、それぞれビア導体12Sを介して接地導体11に接続する複数の短絡スタブ導体13とを備えて構成される。
次に、可逆かつ平衡型の右手/左手系複合伝送線路100を用いたときの、図11の零次共振器の共振特性及び電磁界分布についてのシミュレーション計算値及び実験測定値について以下に説明する。
(2)右手/左手系複合伝送線路100の線路幅Lfを1.7mmに設定し、右手/左手系複合伝送線路100に対して、1mmの幅Leと、18mmの長さLdとを有する短絡スタブ導体13を並列枝として接続し、直列枝に、4.0pFのキャパシタンスCのチップコンデンサ14を5mmの周期Lcで挿入した。
(3)ストリップ導体12P1及び12P2の線路幅Laを、特性インピーダンスが50Ωになるように2.1mmに設定した。
(4)零次共振器のインピーダンスを、給電線路導体12Fと裏面に接地導体11を有する誘電体基板10とを備えて構成される給電線路の特性インピーダンス(50[Ω]である。)に整合させるために、ストリップ導体12P1の開放端からの給電線路導体12Fの距離Lgaを16.5mmに固定した。
(5)動作周波数における半波長(λg/2)の長さを46mmに設定し、ストリップ導体12P1の長さlr1(図14の長さLb)及びストリップ導体12P2の長さlr2の総和が46mmになるように、長さlr1及び長さlr2を変化させた。
(1)lr1=lr2=λg/4であるとき、ZL1=ZL2=0、すなわち、B=0である。
(2)lr1=3λg/8かつlr2=λg/8であるとき、ZL1=j50[Ω]かつZL2=−j50[Ω]、すなわち、B=50[Ω]である。
(3)lr1=λg/2かつlr2=0であるとき、ZL1=ZL2=+∞、すなわち、B=+∞である。
次に、可逆かつ非平衡型の右手/左手系複合伝送線路100を用いたときの、図11の零次共振器の共振特性及び電磁界分布についてのシミュレーション計算値及び実験測定値について以下に説明する。
(2)右手/左手系複合伝送線路100の線路幅Lfを1.7mmに設定し、右手/左手系複合伝送線路100に対して、1mmの幅Leと、15mmの長さLdとを有する短絡スタブ導体13を並列枝として接続し、直列枝に、2.4pFのキャパシタンスCのチップコンデンサ14を5mmの周期Lcで挿入した。
(3)ストリップ導体12P1及び12P2の線路幅Laを、特性インピーダンスが50[Ω]になるように2.1mmに設定した。
(4)零次共振器のインピーダンスを、給電線路導体12Fと裏面に接地導体11を有する誘電体基板10とを備えて構成される給電線路の特性インピーダンス(50[Ω]である。)に整合させるために、ストリップ導体12P1の開放端からの給電線路導体12Fの距離Lgbを16mmに固定した。
(5)動作周波数における半波長(λg/2)の長さを42mmに設定し、ストリップ導体12P1の長さlr1(図14の長さLb)及びストリップ導体12P2の長さlr2の総和が42mmになるように、長さlr1及び長さlr2を変化させた。
以上説明したように、本発明の実施形態に係る零次共振器(図7参照。)の終端条件を等価的に両端短絡から両端開放に変化させることにより、直列枝部分が支配的な共振形態から、並列枝部分が支配的な共振形態に変化させることが可能である。また逆に、両端開放から両端短絡へ変化させることにより、並列枝部分が支配的な共振形態から、直列枝部分が支配的な共振形態に変化させることが可能となる。この零次共振器をアンテナ装置として利用し、共振器の終端条件を機械的、あるいは電気的、あるいはその両方を兼ね備えた方法で変化させることにより、放射波あるいは受信電波の偏波特性を変化させる。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RAと、ポートP2に接続された反射用インピーダンス回路152RAとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300とを備えて構成される。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RBと、ポートP2に接続された反射用インピーダンス回路152RBとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300Aとを備えて構成される。
(a)ポートP1及びP2を有する右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)マイクロストリップ線路41a及び41bを備え、零次共振器によって受信されたマイクロ波信号を出力する給電線41(給電回路である。)と、
(c)マイクロストリップ線路41aと41bとの間に接続されたマイクロストリップ線路15aと、マイクロストリップ線路15aと電磁的に結合するように近接して配置されたマイクロストリップ線路15bとを備えて構成された方向性結合器15と、
(d)マイクロストリップ線路15aに流れる受信マイクロ波信号の電力の一部を、方向性結合器15を用いて検出する受信電力検出器200と、
(e)マイクロストリップ線路41bから出力される受信マイクロ波信号を入力する無線受信機400と、
(f)コントローラ300Bとを備えて構成される。
図25を参照して説明したように、非平衡型右手/左手系複合伝送線路100を用いた場合、リアクタンスBを0から+∞まで連続的に変えるように変化させることにより、共振周波数を連続的に変化させることができる。このことを利用して、帯域阻止周波数を変化させることができるチューナブル帯域阻止フィルタ装置を実現できる。ここで、具体的には、帯域阻止周波数とは、阻止帯域の中心周波数を中心とする所定の幅を有する帯域阻止幅を表す。
(a)ポートP1及びP2を有する非平衡型の右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)コントローラ300Cと、
(c)入力ポート3及び出力ポート4を有する伝送線路100Fとを備えて構成される。
図25を参照して説明したように、非平衡型右手/左手系複合伝送線路100を用いた場合、リアクタンスBを0から+∞まで連続的に変えるように変化させることにより、共振周波数を連続的に変化させることができる。このことを利用して、帯域通過周波数を変化させることができるチューナブル帯域通過フィルタ装置を実現できる。ここで、具体的には、帯域通過周波数とは、通過帯域の中心周波数を中心とする所定の幅を有する帯域通過幅を表す。
(a)ポートP1及びP2を有する非平衡型の右手/左手系複合伝送線路100と、ポートP1に接続された反射用インピーダンス回路151RCと、ポートP2に接続された反射用インピーダンス回路152RCとを備えた零次共振器と、
(b)コントローラ300Cと、
(c)入力ポート3を有する入力用の伝送線路100Faと、
(d)出力ポート4を有する出力用の伝送線路100Fbとを備えて構成される。
次に、非可逆右手/左手系複合伝送線路を用いた場合の図7の零次共振器の具体的構成例を説明する。図36は、零次共振器を構成する単位セルの数Nが10あり、かつ非可逆な右手/左手系複合伝送線路100を備えたときの、図7の零次共振器の具体的な構成を示す斜視図である。また、図37は、図36のA−A’ラインを横切る縦断面図である。なお、図36に示した例では、反射用インピーダンス素子151R及び152Rの長さはそれぞれλg/4に設定されている。
次に、図7の零次共振器によって送受信されるマイクロ波信号の主偏波方向の回転の原理及び測定結果を説明する。図39は、図7の零次共振器の直列枝に流れる電流Icenter及び並列枝に流れる電流Istubを示す回路図及び平面図(ただし、零次共振器を構成する単位セルの数Nは10である。)である。図39において、次式が成り立つ。
以上説明したように、本発明に係るマイクロ波共振器によれば、右手/左手系複合伝送線路100のポートP1に接続された反射用インピーダンス素子151Rと、ポートP2に接続された反射用インピーダンス素子152Rとを備え、ポートP1から反射用インピーダンス素子151Rを見た第1のインピーダンスの虚部とポートP2から反射用インピーダンス素子152Rを見た第2のインピーダンスの虚部とは互いに異符号である。さらに、第1のインピーダンスの虚部の大きさと第2のインピーダンスの虚部の大きさとは実質的に互いに等しい。好ましくは、第1のインピーダンスは純虚数(jB)であり、第2のインピーダンスが第1のインピーダンスと共役な純虚数(−jB)である。従って、本発明に係るマイクロ波共振器によれば、直列共振状態及び並列共振状態に加えて、両者が混在する二重共振の状態を実現できる新規の零次共振器を提供できる。
11…接地導体、
12,12P1,12P1a,12P1b,12P2…ストリップ導体、
12A…マイクロストリップ線路、
12F…給電線路導体、
12S…ビア導体、
13…短絡スタブ導体、
14…キャパシタ、
15…方向性結合器、
15a,15b…マイクロストリップ線路、
21…可変容量ダイオード、
22,23,24…インダクタ、
31…可変容量ダイオード、
41…給電線、
41a,41b,51a,51b−1,51b−3,51b−4,52−2,52−3,52−4…マイクロストリップ線路、
61…伝送線路部分、
90…フェライト角棒、
100…右手/左手系複合伝送線路(CRLHTL)、
100F,100Fa,100Fb…伝送線路、
200…受信電力検出器、
300,300A,300B,300C…コントローラ、
151,152…終端負荷、
151R,152R…反射用インピーダンス素子、
151RA,151RB,151RC,152RA,152RB,152RC…反射用インピーダンス回路、
153,154…移相器、
200…受信電力検出器、
300,300A…コントローラ、
400…無線受信機、
P1,P2,P11,P12…ポート、
SW1,SW2,SW3…スイッチ、
UC1,UC2,…,UCN…単位セル。
Claims (13)
- 容量性素子を等価的に含む直列枝の回路と、誘導性素子を等価的に含む並列枝の回路と、少なくとも1つの伝送線路部分とを有する少なくとも1つの単位セルを、第1と第2のポートの間で縦続接続して構成されたマイクロ波伝送線路を備えたマイクロ波共振器であって、
上記マイクロ波伝送線路の各単位セルは、上記マイクロ波伝送線路に入力されるマイクロ波信号の動作周波数と、上記マイクロ波伝送線路の位相定数との関係を示す分散曲線において上記マイクロ波伝送線路が所定の位相定数を有するように回路構成され、
上記マイクロ波伝送線路は第1のポートと第2のポートとを有し、
上記マイクロ波共振器は、
上記マイクロ波伝送線路の第1のポートに接続され、所定の動作周波数において、上記第1のポートから第1の反射用インピーダンス回路を見たインピーダンスが第1のインピーダンスとなるように動作する第1の反射用インピーダンス回路と、
上記マイクロ波伝送線路の第2のポートに接続され、上記動作周波数において、上記第1のポートから第2の反射用インピーダンス回路を見たインピーダンスが第2のインピーダンスとなるように動作する第2の反射用インピーダンス回路とを備え、
上記第1のインピーダンスの虚部と上記第2のインピーダンスの虚部とは互いに異符号であり、かつ上記第1のインピーダンスの虚部の大きさと上記第2のインピーダンスの虚部の大きさとは実質的に互いに等しいことを特徴とするマイクロ波共振器。 - 上記第1のインピーダンスは所定の純虚数であり、
上記第2のインピーダンスは、上記第1のインピーダンスと共役である純虚数であることを特徴とする請求項1記載のマイクロ波共振器。 - 上記マイクロ波伝送線路において、上記容量性素子は当該伝送線路を伝搬する電磁波モードの実効透磁率が負であるマイクロ波素子であり、上記誘導性素子は当該伝送線路を伝搬する電磁波モードの実効誘電率が負であるマイクロ波素子であることを特徴とする請求項1又は2記載のマイクロ波共振器。
- 上記マイクロ波伝送線路は、
裏面に接地導体を有する誘電体基板と、
上記誘電体基板上に形成されたマイクロストリップ線路と、
上記マイクロストリップ線路を複数の線路部に分断し、上記分断された複数の線路部のうちの互いに隣接する各線路部を接続する複数のキャパシタと、
上記各線路部をそれぞれ接地導体に接続する複数の誘導性スタブ導体とを備えたことを特徴とする請求項1乃至3のうちのいずれか1つに記載のマイクロ波共振器。 - 請求項1乃至4のうちのいずれか1つに記載のマイクロ波共振器を用いたアンテナ装置であって、
上記第1の反射用インピーダンス回路又は上記第2の反射用インピーダンス回路に接続され、上記マイクロ波共振器によって受信されたマイクロ波信号を出力する給電回路をさらに備えたことを特徴とするアンテナ装置。 - 上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記アンテナ装置は、
上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする請求項5記載のアンテナ装置。 - 上記アンテナ装置は、
上記給電回路から出力されたマイクロ波信号の受信電力を検出する受信電力検出手段をさらに備え、
上記制御手段は、上記検出された受信電力に基づいて、上記受信電力が最大になるように上記マイクロ波共振器によって受信されるマイクロ波信号の偏波方向を変化させることを特徴とする請求項6記載のアンテナ装置。 - 上記第1及び第2のインピーダンスは離散的に変化することを特徴とする請求項5乃至7のうちのいずれか1つに記載のアンテナ装置。
- 上記第1及び第2のインピーダンスは連続的に変化することを特徴とする請求項5乃至7のうちのいずれか1つに記載のアンテナ装置。
- 上記第1及び第2の反射用インピーダンス回路はそれぞれ、可変容量ダイオード及びインダクタを含むことを特徴とする請求項9記載のアンテナ装置。
- 上記第1及び第2の反射用インピーダンス回路のそれぞれは、移相器及び伝送線路を含むことを特徴とする請求項9記載のアンテナ装置。
- 請求項1乃至4のうちのいずれか1つに記載のマイクロ波共振器を備えた帯域通過フィルタ装置であって、
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域通過フィルタ装置は、
当該帯域通過フィルタ装置の帯域通過周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする帯域通過フィルタ装置。 - 請求項1乃至4のうちのいずれか1つに記載のマイクロ波共振器を備えた帯域阻止フィルタ装置であって、
上記マイクロ波伝送線路は非平衡型マイクロ波伝送線路であり、
上記第1の反射用インピーダンス回路は、上記第1のインピーダンスを変化させる第1のインピーダンス変化手段を備え、
上記第2の反射用インピーダンス回路は、上記第2のインピーダンスを変化させる第2のインピーダンス変化手段を備え、
上記帯域阻止フィルタ装置は、
当該帯域阻止フィルタ装置の帯域阻止周波数を変化させるように、上記第1及び第2のインピーダンス変化手段をそれぞれ制御する制御手段をさらに備えたことを特徴とする帯域阻止フィルタ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012526551A JP5747418B2 (ja) | 2010-07-28 | 2011-07-28 | マイクロ波共振器 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010168842 | 2010-07-28 | ||
JP2010168842 | 2010-07-28 | ||
JP2012526551A JP5747418B2 (ja) | 2010-07-28 | 2011-07-28 | マイクロ波共振器 |
PCT/JP2011/067284 WO2012014984A1 (ja) | 2010-07-28 | 2011-07-28 | マイクロ波共振器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012014984A1 true JPWO2012014984A1 (ja) | 2013-09-12 |
JP5747418B2 JP5747418B2 (ja) | 2015-07-15 |
Family
ID=45530184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012526551A Active JP5747418B2 (ja) | 2010-07-28 | 2011-07-28 | マイクロ波共振器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8947317B2 (ja) |
JP (1) | JP5747418B2 (ja) |
WO (1) | WO2012014984A1 (ja) |
Families Citing this family (191)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5747418B2 (ja) * | 2010-07-28 | 2015-07-15 | 国立大学法人京都工芸繊維大学 | マイクロ波共振器 |
JP5877193B2 (ja) | 2011-02-25 | 2016-03-02 | 国立研究開発法人科学技術振興機構 | 非可逆伝送線路装置 |
US9829526B2 (en) * | 2012-02-21 | 2017-11-28 | Texas Instruments Incorporated | Transmission line pulsing |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
US11082014B2 (en) * | 2013-09-12 | 2021-08-03 | Dockon Ag | Advanced amplifier system for ultra-wide band RF communication |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
JP6397563B2 (ja) * | 2015-02-19 | 2018-09-26 | 電気興業株式会社 | 漏れ波アンテナ |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10522384B2 (en) * | 2015-09-23 | 2019-12-31 | Tokyo Electron Limited | Electromagnetic wave treatment of a substrate at microwave frequencies using a wave resonator |
US9858532B2 (en) * | 2015-09-30 | 2018-01-02 | International Business Machines Corporation | Multimode josephson parametric converter: coupling josephson ring modulator to metamaterial |
US10734717B2 (en) * | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10116162B2 (en) | 2015-12-24 | 2018-10-30 | Energous Corporation | Near field transmitters with harmonic filters for wireless power charging |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10263476B2 (en) | 2015-12-29 | 2019-04-16 | Energous Corporation | Transmitter board allowing for modular antenna configurations in wireless power transmission systems |
KR101725721B1 (ko) * | 2016-03-11 | 2017-04-11 | 한양대학교 에리카산학협력단 | 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법 |
US10263572B2 (en) * | 2016-10-05 | 2019-04-16 | Futurewei Technologies, Inc. | Radio frequency apparatus and method with dual variable impedance components |
US9755608B1 (en) * | 2016-10-28 | 2017-09-05 | International Business Machines Corporation | Generating squeezed states of the microwave field left-handed transmission line resonator |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
KR102349607B1 (ko) | 2016-12-12 | 2022-01-12 | 에너저스 코포레이션 | 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법 |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US11011942B2 (en) | 2017-03-30 | 2021-05-18 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
WO2019044000A1 (ja) * | 2017-08-28 | 2019-03-07 | 国立大学法人京都工芸繊維大学 | メタマテリアル装置及びアンテナ装置 |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US10858240B2 (en) | 2018-03-05 | 2020-12-08 | California Institute Of Technology | Techniques for bidirectional transduction of quantum level signals between optical and microwave frequencies using a common acoustic intermediary |
US10916821B2 (en) | 2018-03-05 | 2021-02-09 | California Institute Of Technology | Metamaterial waveguides and shielded bridges for quantum circuits |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
CN108598652B (zh) * | 2018-07-02 | 2023-10-24 | 南京工业职业技术学院 | 一种基于磁表等离激元的微波功率分配器 |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
KR20210117283A (ko) | 2019-01-28 | 2021-09-28 | 에너저스 코포레이션 | 무선 전력 전송을 위한 소형 안테나에 대한 시스템들 및 방법들 |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
CN115104234A (zh) | 2019-09-20 | 2022-09-23 | 艾诺格思公司 | 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法 |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
EP4073905A4 (en) | 2019-12-13 | 2024-01-03 | Energous Corporation | CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
JP7442748B1 (ja) | 2023-07-05 | 2024-03-04 | 三菱電機株式会社 | アンテナ装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7330090B2 (en) * | 2004-03-26 | 2008-02-12 | The Regents Of The University Of California | Zeroeth-order resonator |
US7012484B2 (en) * | 2004-04-26 | 2006-03-14 | Integrated System Solution Corp. | Filter using multilayer ceramic technology and structure thereof |
US7593696B2 (en) * | 2005-02-10 | 2009-09-22 | Alcatel-Lucent Usa Inc. | Tunable radio frequency filter |
JP4541307B2 (ja) | 2006-02-28 | 2010-09-08 | 三菱電機株式会社 | 高周波共振器及び高周波発振器 |
JP5234667B2 (ja) | 2007-03-05 | 2013-07-10 | 国立大学法人京都工芸繊維大学 | 伝送線路マイクロ波装置 |
KR100973006B1 (ko) * | 2008-06-03 | 2010-07-30 | 삼성전기주식회사 | 발룬 |
US8115574B2 (en) * | 2008-11-21 | 2012-02-14 | Alcatel Lucent | Low pass filter with embedded resonator |
JP5453120B2 (ja) * | 2009-01-30 | 2014-03-26 | 株式会社Nttドコモ | マルチバンド整合回路、およびマルチバンド電力増幅器 |
WO2010100932A1 (ja) * | 2009-03-06 | 2010-09-10 | 日本電気株式会社 | 共振器アンテナ及び通信装置 |
WO2011024575A1 (ja) | 2009-08-31 | 2011-03-03 | 国立大学法人京都工芸繊維大学 | 漏れ波アンテナ装置 |
JP5747418B2 (ja) * | 2010-07-28 | 2015-07-15 | 国立大学法人京都工芸繊維大学 | マイクロ波共振器 |
-
2011
- 2011-07-28 JP JP2012526551A patent/JP5747418B2/ja active Active
- 2011-07-28 WO PCT/JP2011/067284 patent/WO2012014984A1/ja active Application Filing
- 2011-07-28 US US13/812,300 patent/US8947317B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8947317B2 (en) | 2015-02-03 |
JP5747418B2 (ja) | 2015-07-15 |
WO2012014984A1 (ja) | 2012-02-02 |
US20130120217A1 (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5747418B2 (ja) | マイクロ波共振器 | |
US8294538B2 (en) | Transmission line microwave apparatus including at least one non-reciprocal transmission line part between two parts | |
US9054406B2 (en) | Nonreciprocal transmission line apparatus having asymmetric structure of transmission line | |
US7839236B2 (en) | Power combiners and dividers based on composite right and left handed metamaterial structures | |
JP5655256B2 (ja) | 漏れ波アンテナ装置 | |
US9490511B2 (en) | Nonreciprocal transmission line apparatus whose propagation constants in forward and backward directions are different from each other | |
Shirkolaei et al. | Scannable leaky-wave antenna based on ferrite-blade waveguide operated below the cutoff frequency | |
US9768497B2 (en) | Power combiners and dividers based on composite right and left handed metamaterial structures | |
US10014903B2 (en) | Non-reciprocal transmission apparatus with different backward and forward propagation constants, provided for circularly polarized wave antenna apparatus | |
Ueda et al. | Pseudo-traveling-wave resonator based on nonreciprocal phase-shift composite right/left handed transmission lines | |
Sajin et al. | Ferrite supported steerable antenna on metamaterial CRLH transmission line | |
Jokanović et al. | Metamaterials: characteristics, design and microwave applications | |
Halim et al. | Design and improvement a novel microstrip antenna using array of composite right/left handed transmission line (CRLH-TL) technique for multiband applications | |
Ueda et al. | A coupled pair of anti-symmetrically nonreciprocal composite right/left-handed metamaterial lines | |
JP6998594B2 (ja) | 非相反伝送線路装置及びアンテナ装置 | |
Sajin et al. | CRLH CPW antenna on magnetically biased ferrite substrate | |
JP7233736B2 (ja) | 非相反伝送線路装置及びアンテナ装置 | |
JP2024142998A (ja) | 漏れ波アンテナ装置 | |
Eccleston | Beam forming transition based upon a zero-phase-shift metamaterial | |
Sajin et al. | Magnetic scanning of the radiation characteristic of a CRLH CPW antenna | |
Pradeep et al. | Spiral Embedded Electrically Small Reconfigurable Antenna | |
Sadi | Electromagnetic Bandgap Structures (EBGSs) Assisted Microstrip Bandpass Filter | |
Lheurette | Metamaterials for Non‐Radiative Microwave Functions and Antennas | |
Macháč et al. | A Dual Band SIW Leaky Wave Antenna | |
Lim | Design of multifunctional microstrip patch directional couplers and stepped-impedance slotline power dividers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5747418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |