JPWO2011145725A1 - Aim関連疾患の診断方法及び診断用キット - Google Patents

Aim関連疾患の診断方法及び診断用キット Download PDF

Info

Publication number
JPWO2011145725A1
JPWO2011145725A1 JP2012515945A JP2012515945A JPWO2011145725A1 JP WO2011145725 A1 JPWO2011145725 A1 JP WO2011145725A1 JP 2012515945 A JP2012515945 A JP 2012515945A JP 2012515945 A JP2012515945 A JP 2012515945A JP WO2011145725 A1 JPWO2011145725 A1 JP WO2011145725A1
Authority
JP
Japan
Prior art keywords
aim
disease
antibody
concentration
mice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012515945A
Other languages
English (en)
Inventor
宮崎 徹
徹 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Pharma Co Ltd
Original Assignee
Sumitomo Dainippon Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Dainippon Pharma Co Ltd filed Critical Sumitomo Dainippon Pharma Co Ltd
Publication of JPWO2011145725A1 publication Critical patent/JPWO2011145725A1/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/044Hyperlipemia or hypolipemia, e.g. dyslipidaemia, obesity

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

感度及び特異度が高く、簡便で患者の負担が少ないAIM関連疾患の診断又は検査方法を提供することを課題とする。本発明は、被検者から採取した試料中のAIM濃度を測定する工程を含む、AIM関連疾患の診断方法を提供するものである。

Description

本発明は、メタボリックシンドローム等、AIMが関連する疾患の診断方法及び診断用キットに関する。
従来、糖尿病、高脂血症、高血圧、肥満症といった生活習慣病は、一個人に重積して生じやすいことが知られていた。また、これらの疾患は個別にも動脈硬化症のリスクとなるが、重積するとそのリスクが非常に高くなることから、これらの疾患が重積した病態を表す名称が複数提唱されてきた。
現在では、糖尿病、高脂血症、高血圧症、肥満、インスリン抵抗性を基本的な構成要因とし、これらが一個人に重積しやすく、そのことが動脈硬化性疾患の高いリスクとなるという疾患概念が、メタボリックシンドロームという名称で統一されている。
一般に、メタボリックシンドロームにおいては、内臓脂肪型肥満、即ち腹腔内に中性脂肪が過剰に蓄積する肥満が病態の中核となり、肥満によって生じたインスリン抵抗性が高血圧、糖尿病、高脂血症などを順次発症し、その重積と連鎖によって動脈硬化性疾患が引き起こされる。このような現象をドミノ倒しにたとえ、近年「メタボリックドミノ」という概念が提唱されている。
つまり、一連の病態は、一度ドミノ倒しが進むと元に戻すのが難しいのと同様に一方向性に進展し、長期間慢性的に様々な疾患が持続的に発症するのである。
従って、メタボリックシンドロームの治療は、症状の緩和を目的とするのではなく、連鎖的に発症しうる様々な疾患の発症の予防が目標となる。上述のとおり、メタボリックドミノの概念の下では、一度進行したものを元通りに戻すのが難しいため、早い段階で予防を開始する必要があり、そのため早期にメタボリックシンドロームのリスクを評価できる診断方法が必要とされている。
これまでにも、様々なメタボリックシンドロームの診断基準が提唱されている。ウエスト径、血清トリグリセリド、HDLコレステロール、血圧、空腹時血糖値、耐糖能異常、インスリン抵抗性、尿中アルブミン量等が診断項目として挙げられ、このうちいくつかの項目に該当する場合にメタボリックシンドロームと診断する実務がとられている。
しかしながら、現行のメタボリックシンドロームの診断基準については種々の議論があり、各診断項目が必ずしもメタボリックシンドロームに関連する疾患のリスクと相関を示さないとの報告もある。これは、メタボリックシンドロームの病態が多様であることや、診断項目がメタボリックシンドロームの発症や進行のメカニズムに基づくものでないことなどによるものと考えられる。
ところで、本発明者は、Apoptosis Inhibitor of Macrophage(AIM)を胸腺のマクロファージから発見した(非特許文献1参照)。AIMは、可溶性タンパク質であり、スカベンジャー受容体システインリッチ(Scavenger Receptor Cysteine-Rich; SRCR)スーパーファミリーのメンバーである。AIMは当初、様々なアポトーシス誘導因子からマクロファージを守るアポトーシスインヒビターとして見出された(非特許文献1参照)。
AIMは、SRCRドメインを3つ有する構造がCD5の細胞外ドメインに似ていることから、CD5L(CD5-like)とも呼ばれている。
Miyazaki, T. et al., J. Exp. Med. 189, 413-422 (1999)
本発明は、感度及び特異度が高く、簡便で患者の負担が少ないメタボリックシンドローム等の診断方法を提供することを課題とする。
本発明者は、AIMについてさらに研究を進めていく中で、AIMがメタボリックシンドロームの成因に直接関与していることを見出した。
即ち、これまでにもマクロファージが脂肪組織に浸潤し、脂肪組織及び全身に慢性の炎症を生じることによってインスリン抵抗性が惹起され、メタボリックシンドロームにおける一連の疾患連鎖が引き起こされることは知られていたが、本発明者は、マクロファージの脂肪組織への遊走は、肥満に伴ってAIMの血中濃度が上昇することに起因することを見出した。
従って、AIMの血中濃度の上昇を検出すれば、メタボリックシンドロームにおける一連の疾患連鎖のリスクを、そのもっとも上流の段階で早期に診断できる。
本発明者はさらに、被検者の体液や組織におけるAIM濃度は、メタボリックシンドロームのみならず、AIMがその発症や抑制に関連する種々の疾患のリスクや進行度、予後等を表すことを見出し、本発明を完成するに至った。
即ち、本発明は、
〔1〕AIM関連疾患の診断又は検査方法であって、
被検者から採取した試料中のAIM濃度を測定する工程と、
前記AIM濃度と、健常者の試料中AIM濃度とを比較する工程と、
を含む方法;
〔2〕前記試料が、体液、臓器、又は組織である、上記〔1〕に記載の方法;
〔3〕前記体液が、血液である、上記〔2〕に記載の方法;
〔4〕前記組織が、脂肪組織である、上記〔2〕に記載の方法;
〔5〕前記AIM濃度を測定する工程は、イムノアッセイ、凝集法、比濁法、ウエスタンブロッティング法、及び表面プラズモン共鳴法からなる群より選択される方法で行う、上記〔1〕から〔4〕のいずれか1項に記載の方法;
〔6〕前記イムノアッセイは、抗AIM抗体を用いたエンザイムイムノアッセイ(EIA又はELISA)、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ(FIA)、蛍光偏光イムノアッセイ(FPIA)、及び化学発光イムノアッセイ(CLIA)からなる群より選択される、上記〔5〕に記載の方法;
〔7〕前記AIM関連疾患は、メタボリックシンドローム又はその関連疾患、癌、感染症、脳変性疾患、及び慢性炎症性疾患からなる群より選択される少なくとも一つの疾患である、上記〔1〕から〔6〕のいずれか1項に記載の方法;
〔8〕前記AIM関連疾患は、メタボリックシンドローム又はその関連疾患であって、
前記AIM濃度と、健常者の試料中AIM濃度とを比較する工程において、被検者の試料中のAIM濃度が、健常者の試料中のAIM濃度と有意に高い場合、該被検者はメタボリックシンドローム又はその関連疾患に罹患している、又は罹患するリスクが高いと判断する、上記〔7〕に記載の方法;
〔9〕前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、上記〔8〕に記載の方法;
〔10〕前記被検者は、ヒトである、上記〔1〕から〔9〕のいずれか1項に記載の方法;
〔11〕前記被検者は、非ヒト哺乳動物又は鳥類である、上記〔1〕から〔9〕のいずれか1項に記載の方法;
〔12〕前記被検者は、イヌ又はネコである、上記〔11〕に記載の方法;
〔13〕抗AIM抗体を含む、AIM関連疾患の診断又は検査用キット;
〔14〕前記AIM関連疾患は、メタボリックシンドローム、癌、感染症、脳変性疾患、及び慢性炎症性疾患からなる群より選択される少なくとも一つの疾患である、上記〔13〕に記載のキット;
〔15〕前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、上記〔14〕に記載のキット;
〔16〕前記抗AIM抗体がモノクローナル抗体である、上記〔13〕から〔15〕のいずれか1項に記載のキット;
〔17〕AIM関連疾患の診断又は検査に使用する、抗AIM抗体の使用方法;
〔18〕AIM関連疾患の診断薬又は検査薬を製造するために使用する、抗AIM抗体の使用方法;
〔19〕前記抗AIM抗体がモノクローナル抗体である、上記〔17〕又は〔18〕に記載の方法;
〔20〕AIM関連疾患の診断薬用又は検査薬用抗AIM抗体を製造するために使用する、AIM又はAIMフラグメントの使用方法;
〔21〕前記AIMフラグメントは、AIMタンパク質の機能ドメイン及び保存領域を含むフラグメントから選択される、上記〔20〕に記載の方法;
〔22〕AIM関連疾患の診断又は検査に使用する、CD36の使用方法;及び
〔23〕AIM関連疾患の診断薬又は検査薬を製造するために使用する、CD36の使用方法、
に関する。
本発明に係るAIM関連疾患の診断方法によれば、被検者から採取した試料中のAIM濃度を測定するという簡便な方法で、AIM関連疾患のリスク、進行、予後等を判定することができる。
特に、AIMはメタボリックシンドロームの成因に深く関与していることから、本発明に係る診断方法は、メタボリックシンドロームのリスクを早期に評価する方法として有用である。当該方法は、メタボリックシンドローム発症のメカニズムに基づく指標を利用するものであり、感度及び特異度が高い。
また、本発明に係るAIM関連疾患の診断用キットを用いれば、本発明に係るAIM関連疾患の診断方法を簡便に実施することができる。
図1は、肥満マウスと正常マウスの血中AIM濃度を測定した結果を示す。 図2は、肥満AIM+/+マウスと肥満AIM-/-マウスの内臓脂肪組織におけるマクロファージ浸潤を抗マクロファージモノクローナル抗体(F4/80)等によって検出した結果を示す。 図3は、AIM-/-マウスにrAIMを全身投与し、3週間後に内臓脂肪組織におけるマクロファージ浸潤を抗マクロファージモノクローナル抗体(F4/80)等によって検出した結果を示す。 図4は、マクロファージ遊走能を測定した結果を示す。 図5は、AIM+/+マウス及びAIM-/-マウスにHFDを12週間負荷後、解剖した結果を示す写真である。 図6は、AIM+/+マウス及びAIM-/-マウスにHFDを12週間負荷後、体重及び総脂肪量を測定した結果を示す。 図7は、HFD負荷前のAIM+/+マウス及びAIM-/-マウスに対し、グルコース負荷試験を行った結果を示す。 図8は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、グルコース負荷試験を行った結果を示す。 図9は、HFD負荷前のAIM+/+マウス及びAIM-/-マウスに対し、インスリン負荷試験を行った結果を示す。 図10は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、インスリン負荷試験を行った結果を示す。 図11は、HFD負荷後のAIM+/+マウス及びAIM-/-マウスに対し、インスリン感受性試験を行った結果を示す。 図12は、正常マウス(高脂肪食負荷を行っていないマウス)及び肥満マウスの内臓脂肪組織から作製した切片を、抗マクロファージモノクローナル抗体、抗マウスAIMポリクローナル抗体、及び抗IL-6抗体で染色した結果を示す。 図13は、3T3-L1細胞の培養におけるrAIM負荷のスケジュールを示す。 図14は、図13に示すスケジュールのday 12において、細胞をoil-red-Oで染色した結果を示す。 図15は、図13に示すスケジュールのday 12において、定量的リアルタイムPCRによって脂肪細胞マーカーの発現を測定した結果を示す。 図16Aは、成熟脂肪細胞にrAIM負荷を行い、oil-red-O染色した結果を示す。図16Bは脂肪滴のサイズ、図16Cは単位面積当たりの脂肪滴含有細胞の数を示す。 図17は、成熟脂肪細胞にrAIM負荷を行い、培養上清中のグリセロール及び遊離脂肪酸を測定した結果を示す。 図18は、成熟脂肪細胞のrAIM負荷を行い、定量的リアルタイムPCRによって脂肪滴形成関連遺伝子の発現を測定した結果を示す。 図19は、AIM+/+マウスとAIM-/-マウスに、HFDを20日間与えた後、脂肪組織の切片をHE染色した結果を示す。 図20Aは、分化した、又は未文化の3T3-L1細胞にrAIM負荷を行い、AIM、PPARγ2、及びDAPIを染色した結果を示す。図20Bは、図20Aの結果に基づいて、PPARγ2の発現量ごとに細胞を分類し、各細胞100個当たりのrAIM含有細胞の数を計測した結果を示す。図20Cは、3T3-L1細胞にrAIM負荷を行い、AIMとエンドソーム、又はAIMとリソソームを染色した結果を示す。 図21は、図20と同様のサンプルを使用して、AIMを金微粒子で標識し、電子顕微鏡で観察した結果を示す。 図22は、3T3-L1細胞をCD36中和抗体で処理し、rAIMのエンドサイトーシスへの効果を調べた結果である。 図23は、CD36+/+マウスとCD36-/-マウスにrAIMを静注し、脂肪組織から調製した切片においてAIMとマクロファージを染色した結果を示す。 図24は、AIM-/-マウスの脂肪組織に、HAタグを付けたrAIMを直接注射投与し、脂肪組織を用いて抗HA抗体を用いて共免疫沈降を行い、ウエスタンブロッティングで沈降物中のFASを検出した結果を示す。 図25は、HEK 293T細胞内において、HAタグを付けたrAIMと、FLAGタグを付けたFASとの結合を、抗Flag抗体又は抗HA抗体を用いて共免疫沈降によって確認した結果である。 図26は、FASの各ドメインをFlagタグで標識し、AIM-HAを安定的に発現するHEK 293T細胞内で発現させ、抗Flag抗体又は抗HA抗体を用いた共免疫沈降で、FASとAIMの結合を確認した結果である。 図27は、rAIM(5μg/ml)の存在下、非存在下、及びC75(25μM)存在下で6日間処理した3T3-L1細胞におけるFAS活性を測定した結果である。 図28は、AIM+/+マウス及びAIM-/-マウスの脂肪組織におけるFAS活性を測定した結果である。 図29は、脂肪内局所注射によってrAIM又はBSAを3時間前に投与したAIM-/-マウスの脂肪組織におけるFAS活性を測定した結果である。 図30は、ヒトAIMとマウスAIMのアミノ酸配列とコンセンサスを示す。 図31は、FASの構造を示す概念図である。 図32は、HFDを12週間与えたAIM+/+マウスと、AIM-/-マウスにおける内臓脂肪量及び皮下脂肪量の変化を測定した結果を示す。 図33は、AIM-/-マウスに、5週間、HFDを与えながらrAIM又はBSAを週2回投与し、体重の変化を測定した結果を示す。 図34、AIM-/-マウスに、5週間、HFDを与えながらrAIM又はBSAを週2回投与し、内臓脂肪量及び皮下脂肪量の変化を測定した結果を示す。 図35は、図33及び34に示す実験の後、AIM-/-マウスの内臓脂肪における、脂肪細胞マーカー等のmRNAレベルを測定した結果を示す。 図36は、イヌ、ネコ及びマウス血清中のAIMタンパク質をウエスタンブロッティングによって検出した結果を示す。 図37は、人間ドック受診者約550名の血中AIM濃度を測定した結果を示す。 図38は、血液提供者(外国人を含む)の中から、BMIが18〜25の人、及び35以上の人を無作為に選択し、血中AIM濃度を測定した結果を示す。
[AIM関連疾患の診断方法]
本発明に係るAIM関連疾患の診断又は検査方法は、被検者から採取した試料中のAIM濃度を測定する工程を含む。
本明細書において、「AIM」とは、上述のとおり、SRCRスーパーファミリーのメンバーである可溶性タンパク質であり、ヒト及びヒト以外の多くの哺乳類や鳥類においても発現していることが知られている。一例として、ヒトAIMのアミノ酸配列を配列番号:1に示す。当業者は、他の哺乳動物又は鳥類において、あるタンパク質がAIMの相同タンパク質であるか否か、配列類似性の高さや機能解析により判断することができる。例えば、マウスAIMとヒトAIMとではアミノ酸配列の相同性が80%程度と高い。また、マウスAIMとヒトAIMとでは、SRCRドメインにおけるコンセンサスなシーケンス(CD5、CD6など、SRCRドメインを有する他の分子においても保存されているアミノ酸配列)が完全に一致している。
また、本明細書において、AIMはその類縁体や変異体も含む。AIMの類縁体や変異体としては、例えば、AIMのアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換又は付加されたタンパク質であって、且つAIMの機能を保持するものが挙げられる。当業者は、あるタンパク質がAIMの類縁体又は変異体であるか否か、配列類似性の高さや機能解析によって判断することができる。
本明細書において、AIM関連疾患とは、AIMが生体内で発揮する機能が関連するあらゆる疾患を意味し、AIMによって発症や進行が促進される疾患と、AIMによって抑制又は予防される疾患の双方を含む。
AIMが生体内で発揮する機能としては、脂肪酸合成酵素(Fatty Acid Synthase; FAS)の活性を抑制する機能をはじめとし、AIMが直接的に又は間接的に発揮するあらゆる機能を含むものとし、例えば、AIMが直接的に又は間接的に発揮するあらゆる機能としては、例えば、脂肪細胞表面のCD36に結合する機能;エンドサイトーシスにより脂肪細胞に取り込まれる機能;脂肪細胞内でFASと結合する機能;FASの酵素活性を抑制する機能;脂肪滴融解を促進する機能;脂肪滴融解により、マクロファージ遊走を引き起こす機能、マクロファージのアポトーシスを抑制する機能等が挙げられる。
従って、AIMが生体内で発揮する機能が関連するあらゆる疾患としては、例えば、メタボリックシンドローム及び関連疾患、癌、感染症(結核等マイコバクテリウム感染症を含む)、脳変性疾患(アルツハイマー病を含む)、慢性炎症性疾患(自己免疫疾患)が挙げられる。被検者から採取した試料中のAIM濃度は、これらの疾患の発症、経過、予後等のリスクを反映し、その診断に有用であると理解される。
(メタボリックシンドローム)
本明細書において、メタボリックシンドロームとは、通常内臓脂肪型肥満(内臓脂肪の蓄積)を端緒とし、脂肪組織の慢性炎症、脂肪細胞からのアディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常等を経て、インスリン抵抗性を惹起し、その後糖尿病、高脂血症、高血圧等の生活習慣病を引き起こし、最終的には各種の動脈硬化性疾患の発症に至りうる一連の疾患連鎖を表す概念である。疾患連鎖の下流には、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患等が含まれうる。
本明細書において、メタボリックシンドローム及び関連疾患とは、メタボリックシンドロームの発症又は進行の機序、及びメタボリックシンドロームの発症又は進行の過程で生じる様々な異常に基づくあらゆる疾患、症状及び異常を含む。例えば、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常を含むがこれらに限定されない。
本発明者は、後述する参考例に示すとおり、内臓脂肪型肥満に伴って血中AIM濃度が上昇すること;その結果、AIMが脂肪細胞表面に発現するCD36に結合し、エンドサイトーシスによって脂肪細胞に取り込まれること;AIMが脂肪細胞内で脂肪酸合成酵素(Fatty Acid Synthase; FAS)に結合してその活性を抑制すること;それにより、脂肪細胞において脂肪滴融解を促進し、マクロファージ遊走を引き起こすこと;その結果、脂肪組織にマクロファージが浸潤して脂肪組織及び全身に慢性的な炎症を生じ、インスリン抵抗性が誘導されることを見出した。
従って、メタボリックシンドロームは、その成因にAIMが深く関与するAIM関連疾患といえ、被検者から採取した試料中のAIM濃度の上昇を検出すれば、メタボリックシンドローム及び関連疾患のリスクを早期に評価することができる。
後述する実施例に示すとおり、健常人の多くにおいて、血中AIM濃度は、5〜20μg/mlの範囲であった。また、BMI35以上の人は、BMI18〜25の人に比較して、血中AIM濃度が有意に高かった。
(癌)
AIMによるFAS活性抑制機能に基づけば、被検者の試料中のAIM濃度を測定することにより、癌の診断又は検査も行うことができるものと理解される。
癌としては、大腸癌、乳癌、肺癌、前立腺癌、食道癌、胃癌、肝臓癌、胆道癌、脾臓癌、腎癌、膀胱癌、子宮癌、卵巣癌、精巣癌、甲状腺癌、膵臓癌、脳腫瘍、血液腫瘍などが挙げられる。中でも本発明に係る診断方法は、乳癌、前立腺癌、肝臓癌の診断に適している。
(感染症)
AIMによるFAS活性抑制機能に基づけば、被検者の試料中のAIM濃度を測定することにより、感染症の診断又は検査も行うことができるものと理解される。
感染症の種類は特に限定されないが、例えば結核等マイコバクテリウム感染症が挙げられる。
(脳変性疾患)
AIMによるFAS活性抑制機能に基づけば、被検者の試料中のAIM濃度を測定することにより、脳変性疾患の診断又は検査も行うことができるものと理解される。
脳変性疾患の種類は特に限定されないが、例えばアルツハイマー病が挙げられる。
(慢性炎症性疾患)
AIMによるFAS活性抑制機能に基づけば、被検者の試料中のAIM濃度を測定することにより、慢性炎症性疾患の診断又は検査も行うことができるものと理解される。
慢性炎症性疾患の種類は特に限定されないが、例えば自己免疫疾患が挙げられる。
本明細書において試料は、被検者から採取可能な試料であれば特に限定されないが、例えば体液又は組織とすることができる。体液としては、例えば、血液、リンパ液、組織液、体腔液、消化液、鼻水、尿が挙げられるがこれらに限定されない。組織は、例えば脂肪組織が挙げられるがこれに限定されない。
これらの中で、採取及び処理の点から血液が好ましい。
血液サンプルは、常法に従って被検者から採取し、処理したものを用いることができる。
AIM関連疾患においては、被検者の試料中のAIM濃度が、健常者の対応する試料中のAIM濃度と有意差を有する。即ち、健常者の試料中のAIM濃度と、被検者の試料中のAIM濃度とに有意な差がある場合には、当該被検者はAIM関連疾患に罹患している可能性が高い、又は将来罹患する可能性が高いと判定される。
試料中のAIM濃度を測定する工程は、タンパク質を検出し測定するためのあらゆる方法を用いて行うことができ、かかる方法として例えば、イムノアッセイ、凝集法、比濁法、ウエスタンブロッティング法、表面プラズモン共鳴(SPR)法等が挙げられるが、これらに限定されない。
この中で、抗AIM抗体と、AIMとの抗原抗体反応を利用したイムノアッセイは、特に簡便で好ましく、抗AIM抗体はモノクローナル抗体であることが好ましい。
イムノアッセイは、検出可能に標識した抗AIM抗体、又は、検出可能に標識した抗AIM抗体に対する抗体(二次抗体)を用いる。抗体の標識法により、エンザイムイムノアッセイ(EIA又はELISA)、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ(FIA)、蛍光偏光イムノアッセイ(FPIA)、化学発光イムノアッセイ(CLIA)等に分類され、これらのいずれも本発明の方法に用いることができる。
ELISA法では、ペルオキシダーゼ、アルカリホスファターゼ等の酵素、RIA法では、125I、131I、35S、3H等の放射性物質、FPIA法では、フルオレセインイソチオシアネート、ローダミン、ダンシルクロリド、フィコエリスリン、テトラメチルローダミンイソチオシアネート、近赤外蛍光材料等の蛍光物質、CLIA法では、ルシフェラーゼ、ルシフェリン、エクオリン等の発光物質で標識した抗体が用いられる。その他、金コロイド、量子ドットなどのナノ粒子で標識した抗体を検出することもできる。
また、イムノアッセイでは、抗AIM抗体をビオチンで標識し、酵素等で標識したアビジンまたはストレプトアビジンを結合させて、AIMを検出、測定することもできる。
イムノアッセイの中でも、酵素標識を用いるELISA法は、簡便且つ迅速に抗原を測定することができて好ましい。
ELISA法では、例えばサンドイッチ法を用いることができる。固相担体に抗AIM抗体を固定し、適宜処理した血液サンプルを添加して反応させた後、さらに酵素で標識した別のエピトープを認識する抗AIM抗体を添加して反応させる。
洗浄後、酵素基質と反応、発色させ、吸光度を測定することにより、AIM濃度を求めることができる。また、固相担体に固定した抗AIM抗体と血液サンプル中のAIMを反応させた後、非標識AIM抗体(一次抗体)を添加し、この非標識抗体に対する抗体(二次抗体)を酵素標識してさらに添加してもよい。
酵素基質は、酵素がペルオキシダーゼの場合、3,3’-diaminobenzidine(DAB)、3,3’5,5’-tetramethylbenzidine(TMB)、o-phenylenediamine(OPD)等を用いることができ、アルカリホスファターゼの場合、p-nitropheny phosphate(NPP)等を用いることができる。
また、上記イムノアッセイの中で、微量のタンパク質を簡便に検出できる方法として凝集法も好ましい。凝集法としては、例えば、抗体にラテックス粒子を結合させたラテックス凝集法が挙げられる。
ラテックス粒子に抗AIM抗体を結合させて血液サンプルに混合すると、AIMが存在すれば、抗体結合ラテックス粒子が凝集する。そこで、サンプルに近赤外光を照射して、吸光度の測定(比濁法)又は散乱光の測定(比朧法)により凝集塊を定量し、抗原の濃度を求めることができる。
抗AIM抗体は、モノクローナル抗体及びポリクローナル抗体のいずれも公知の方法に従って作製することができる。モノクローナル抗体は、例えば、AIM又はAIMフラグメントで免疫した非ヒト哺乳動物から抗体産生細胞を単離し、これを骨髄腫細胞等と融合させてハイブリドーマを作製し、このハイブリドーマが産生した抗体を精製することによって得ることができる。また、ポリクローナル抗体は、AIM又はAIMフラグメントで免疫した動物の血清から得ることができる。
AIMフラグメントは、AIMの部分ペプチドであり、抗AIMフラグメント抗体は、AIMを認識する。
なお、本明細書において「抗体」とは、天然に存在するか、遺伝子組換え技術によって産生される、全長の免疫グロブリン分子、または抗体フラグメントのような免疫グロブリン分子の免疫学的に活性な断片をいう。特にことわりがない限り、本明細書の抗体はいずれのタイプ、クラス、サブクラスも含み、例えば、IgG、IgE、IgM、IgD、IgA、IgY、IgG1、IgG2、IgG3、IgG4、IgA1およびIgA2などが含まれる。これらの抗体は、慣用技術を用いて作製することができ、ポリクローナル抗体であっても、モノクローナル抗体であってもよい。抗体フラグメントとしては、F(ab’)2、F(ab)2、Fab’、Fab、Fv、scFvなどが挙げられる。抗体フラグメントは、例えば、これをコードする核酸を用いて遺伝子組み換え技術によって作製することもできるし、全長の抗体を酵素で切断して作製することもできる。
[検査方法]
本発明は、被検者から採取した試料中のAIMの濃度を測定する工程を含む、AIM関連疾患の検査方法も包含する。
本明細書において「検査」とは、診断に必要な情報を得るために、被検者から採取した試料を調べることを意味し、本発明の検査方法は、例えば検査会社等で実施され得る。
被検者から採取した血液中のAIMの濃度を測定する工程は、上述した本発明に係る死んだ方法と同一であるので説明を省略する。
[AIM関連疾患の診断用キット]
本発明に係るAIM関連疾患の診断用キットの第一の態様は、上述した本発明に係るAIM関連疾患の診断方法の第一の態様を行うためのキットであり、抗AIM抗体を含む。
当該診断用キットは、AIMと、抗AIM抗体との抗原抗体反応を利用するイムノアッセイによって、血液サンプル中のAIM濃度を測定するために必要な試薬及び装置を含む。
上記診断用キットの一態様は、サンドイッチELISA法によってAIM濃度を測定するためのものであり、マイクロタイタープレート;捕獲用の抗AIM抗体;アルカリホスファターゼ又はペルオキシダーゼで標識した抗AIM抗体;及び、アルカリホスファターゼ基質(NPP等)又はペルオキシダーゼの基質(DAB、TMB、マイクロタイタープレートOPD等)、を含む。
捕獲抗体と標識抗体は、異なるエピトープを認識する。
このようなキットの場合、まず、マイクロタイタープレートに捕獲抗体を固定し、ここに適宜処理し希釈した血液サンプルを添加した後インキュベートし、サンプルを除去して洗浄する。次に、標識抗体を添加した後インキュベートし、基質を加えて発色させる。マイクロタイタープレートリーダー等を用いて発色を測定することにより、AIM濃度を求めることができる。
診断用キットの別の態様は、二次抗体を使用したサンドイッチELISA法によりAIM濃度を測定するためのものであり、マイクロタイタープレート;捕捉用の抗AIM抗体;一次抗体として、抗AIM抗体;二次抗体として、アルカリホスファターゼ又はペルオキシダーゼで標識した、抗AIM抗体に対する抗体;及び、アルカリホスファターゼ(NPP等)又はペルオキシダーゼの基質(DAB、TMB、OPD等)、を含む。
捕獲抗体と一次抗体は、異なるエピトープを認識する。
このようなキットでは、まず、マイクロタイタープレートに捕獲抗体を固定し、ここに適宜処理し希釈した血液サンプルを添加した後インキュベートし、サンプルを除去して洗浄する。続いて、一次抗体を添加してインキュベート及び洗浄を行い、さらに酵素標識した二次抗体を添加してインキュベートを行った後、基質を加えて発色させる。マイクロタイタープレートリーダー等を用いて発色を測定することにより、AIM濃度を求めることができる。二次抗体を用いることにより、反応が増幅され検出感度を高めることができる。
各診断用キットは、さらに、必要な緩衝液、酵素反応停止液、マイクロプレートリーダー等を含むことも好ましい。
標識抗体は、酵素標識した抗体に限定されず、放射性物質(25I、131I、35S、3H等)、蛍光物質(フルオレセインイソチオシアネート、ローダミン、ダンシルクロリド、フィコエリスリン、テトラメチルローダミンイソチオシアネート、近赤外蛍光材料等)、発光物質(ルシフェラーゼ、ルシフェリン、エクオリン等)、ナノ粒子(金コロイド、量子ドット)等で標識した抗体であってもよい。また標識抗体としてビオチン化抗体を用い、キットに標識したアビジン又はストレプトアビジンを加えることもできる。
本発明の診断用キットのさらに別の態様として、ラテックス凝集法によってAIM濃度を測定するためのものも挙げられる。このキットは、抗AIM抗体感作ラテックスを含み、血液サンプルと抗AIM抗体とを混合し、光学的方法で集塊を定量する。キットに凝集反応を可視化する凝集反応板が含まれていることも好ましい。
また、本発明は、AIM関連疾患の診断若しくは検査、又は、AIM関連疾患の診断若しくは検査薬を製造するために使用するという、抗AIM抗体の新規な用途も提供する。
また、本発明は、AIM関連疾患の診断・検査薬用の抗AIM抗体を製造するために使用するという、AIM又はAIMフラグメントの新規な用途も提供する。
本発明は、AIM関連疾患の診断又は検査に有用な抗AIM抗体も包含する。
具体的には、独立行政法人 製品評価技術基盤機構 特許微生物寄託センターに寄託されたAIM-CL-6(受託番号:NITE BP-1092)及びAIM-CL-7(受託番号:NITE BP-1093)である。
また、AIMは、生体内においてCD36と結合するので、CD36の発現量の変化によっても、AIM量の変化と同等の効果が生じうるものと考えられる。従って、本発明は、AIM関連疾患の診断・検査に使用するという、CD36の新たな用途も提供する。
以下、本発明を実施例に基づいて具体的に説明するが何らこれらに限定されるものではない。
実施例1.肥満に伴う血中AIM濃度の上昇
C57BL・6(B6)マウスに高脂肪食(HFD, fat calorie: 60%)を20週間与えた肥満マウスと、正常マウスの血清中のAIM濃度を測定した。結果を図1に示す。
肥満マウス(obese)の血清AIM濃度は、正常マウス(lean)に比較して、4倍以上であった。
実施例2.AIMによる脂肪組織へのマクロファージ浸潤の誘導
HFDを与えて肥満させたAIM+/+マウス及びAIM-/-マウスから内臓脂肪組織を採取し、この脂肪組織から作製したパラフィン切片を、抗マクロファージモノクローナル抗体(F4/80)、抗マウスAIMポリクローナル抗体(SA-1)、抗IL-6抗体(MP520F3, R & D systems)にて染色した。
結果を図2に示す。図2に示すとおり、AIMを発現する正常なマウス(AIM+/+)においてはM1マクロファージが脂肪組織に浸潤したが、AIMノックアウトマウス(AIM-/-)においては、脂肪組織へのマクロファージの浸潤はほとんど見られなかった。
なお、上述のとおり、AIMはマクロファージのアポトーシス抑制機能を有する。従って、AIMノックアウトマウスの脂肪組織でマクロファージが検出されないのは、脂肪組織にマクロファージが浸潤した後、アポトーシスが生じたことによる可能性があった。この可能性を確認するため、肥満したAIMノックアウトマウスと肥満した正常マウスの脂肪組織中におけるマクロファージのアポトーシスを測定したところ、その程度に差はなかった(data not shown)。
従って、脂肪組織でマクロファージが検出されなかったのは、マクロファージが脂肪組織に浸潤しなかったためであることが確認された。
次に、AIMノックアウトマウスにrAIMを静脈注射により全身投与した(50μg/body/injection)。3週間投与後、内臓脂肪組織から作製した切片を、抗マクロファージモノクローナル抗体(F4/80)で染色した。
結果を図3に示す。図示されたとおり、AIMノックアウトマウスにrAIMを全身投与すると、脂肪組織にマクロファージが浸潤することが観察された。
以上の結果から、AIMが脂肪組織へのマクロファージ浸潤を誘導していること、従って、AIMを阻害すれば、内臓脂肪型肥満においても脂肪組織へのマクロファージ浸潤を抑制できることが示された。
実施例3.マクロファージ遊走のメカニズムの解明
マウスマクロファージ細胞株RAW264.8 1x105/wellの24時間での遊走能を解析した。
CELL BIOLABS社、CytoSelectTM 96-Well Cell Migration Assay (5 mm, Fluorometric format)を使用した。結果を図4に示す。それぞれのRFU値からバックグラウンド(medium only)を差し引いた値を示す。Fatty Acids CocktailはMyristoleic acid、Palmitic acid、Oleic acid、Linoleic acidからなる。
分化誘導8日目の成熟した3T3-L1脂肪細胞を6日間培養した細胞上清(3T3-L1 CM)、rAIMと共に培養した上清(3T3-L1+AIM CM)、C75と共に培養した上清(3T3-L1+C75 CM)を用いた。CM: conditioned medium, ND: not detected. **: p<0.01
後述する参考例に示すとおり、AIMは成熟脂肪細胞における脂肪滴融解を誘導する。その結果、培養上清中に脂肪滴由来の遊離脂肪酸とグリセロールが放出される。
マクロファージ遊走実験の結果と併せると、肥満に伴って血中濃度が上昇したAIMが脂肪組織において脂肪滴融解を誘導し、これによって脂肪組織へのマクロファージ浸潤が誘導されていることが強く示唆された。
実施例4.肥満したAIMノックアウトマウスにおける糖代謝の悪化の抑制
野生型マウスと、AIMノックアウトマウスについて、HFDを12週間負荷し、前(Lean)と後(Obese)において、グルコース負荷試験とインスリン負荷試験により、糖代謝を測定するとともに、インスリン感受性試験を行った。
グルコース負荷試験は、グルコース負荷(3g/kg body;腹腔内注射)後120分間、血糖値を30分ごとに測定し、インスリン負荷試験は、インスリン負荷(0.75U/kg body;腹腔内注射)後120分間、血糖値を30分ごとに測定した。
インスリン感受性試験は、HFD負荷後のAIM+/+マウスとAIM-/-マウスにインスリンを投与し(0.75U/kg body;静脈注射)、2時間後、組織(白色脂肪組織、腓腹筋、及び肝臓)を採取してタンパク質を精製し、ウエスタンブロッティングにより、リン酸化AKT及びリン酸化GSK3βを測定することにより行った。
また、それぞれのマウスについて、HFD負荷後の体重及び総脂肪量を測定した。
図5に負荷後の解剖の結果を、図6に体重及び総脂肪量の測定結果を、図7〜10に糖代謝の測定結果を、図11に、インスリン感受性試験の結果を示す。
図5及び6に示されるとおり、HFD負荷により、AIMノックアウトマウス(AIM-/-)及び正常マウス(AIM+/+)の双方において、内蔵型肥満を生じた。体重及び脂肪組織量の増加はAIMノックアウトマウスのほうが顕著していた。
しかしながら、図7〜10に示されるとおり、肥満した正常マウスにおいては糖代謝が著しく悪化していたところ、肥満したAIMノックアウトマウスにおいては、糖代謝の悪化が見られなかった。
さらに図11に示されるとおり、AIM-/-マウスは、インスリン投与後、リン酸化AKTとリン酸化GSK3βの発現が見られ、インスリン受容体を介したシグナル伝達が機能していること、即ちインスリン感受性が正常であることが確認された。一方、野生型マウスでは、リン酸化AKTとリン酸化GSK3βが検出されず、インスリン抵抗性を示すことが確認された。
また、正常血糖高インスリンクランプ法(hyperinsulinemic-euglycemic clamp test)によっても、AIM-/-マウスはインスリン感受性が正常であることを確認した(data not shown)。
以上の結果は、肥満したAIMノックアウトマウスにおいては脂肪組織にマクロファージが浸潤せず、従って脂肪組織及び全身の炎症反応が抑制され、インスリン感受性が低下しないという結果を裏付けるものであった。
なお、肥満したAIMノックアウトマウス又は正常マウスから、すい臓ランゲルハンス島を分離し、グルコース負荷によりインスリンの産生及び分泌を調べたところ、両者に差は見られなかった。従って、耐糖能の違いは、インスリン産生・分泌に基づくものではなく、インスリン感受性の差によるものであることが確認された。
参考例1. 脂肪組織中のマクロファージにおけるAIMの発現
野生型B6マウスに通常の餌を与えた痩せ型マウス(lean)と、高脂肪食(High Fat Diet:HFD、fat calorie 60%)を20週間与えた肥満マウス(obese)から、内臓脂肪組織を採取し、この脂肪組織から作製したパラフィン切片を抗マクロファージモノクローナル抗体(F4/80)、抗マウスAIMポリクローナル抗体(SA-1)、または抗IL-6抗体(MP520F3, R & D systems)にて二重染色した。
図12に、染色された切片を蛍光顕微鏡で観察した結果の一例を示す。
抗マクロファージ抗体で染色された肥満マウスの脂肪組織中のマクロファージは、AIM特異的な抗体によっても染色された(obese 左レーン)。AIM陽性マクロファージは、IL-6も陽性であったことから(obese 右レーン)、炎症性マクロファージ(M1)であるものと考えられた。
一方、痩せ型マウスから採取した脂肪組織内のマクロファージは、AIM、IL-6のいずれも陰性であった。
また、脂肪細胞でAIMが発現されていないことを確かめるため、肥満マウス由来の脂肪組織(内臓組織の代表として精巣上体脂肪組織を使用)をコラゲナーゼ処理後に分画し、RT-PCRでAIMの発現を調べたが、精製された脂肪細胞においてAIMの発現は見られなかった。さらに、3T3-L1細胞をインスリン、DEX及びIBMXで処理した後、AIMの発現を調べたが、やはり発現は見られなかった。
以上の結果から、脂肪組織に浸潤したマクロファージがAIMを強く発現していることが確認された。
参考例2. AIMによる脂肪前駆細胞から脂肪細胞への分化の抑制機能
[脂肪滴形成による評価]
脂肪組織に浸潤したマクロファージが産生するAIMが周辺の脂肪細胞に対してどのような働きをしているのかを調べるため、3T3-L1脂肪前駆細胞(preadipocyte)を成熟脂肪細胞に分化させる培養過程でAIMを負荷する実験を行った。
図13に示すように、4つのスケジュールA〜Dにて3T3-L1細胞の培養を行った。(A)はAIMを負荷せず、(B)は分化誘導刺激開始から10日間(day2-day12)AIMを負荷し、(C)は分化誘導刺激の初期のみ(day2-day4)AIMを負荷し、(D)は分化誘導前の増殖(clonal expansion)期間のみ(day(-2)-day2)AIMを負荷した。
AIMとしては、マウスの組換えAIMタンパク質(rAIM)を用いた。rAIMは、マウスAIMを発現するベクター(pCAGGS-mAIM-HAプラスミド)をトランスフェクションしたヒト由来HEK293T細胞を無血清培地(FreeStyleTM 293 Expression Medium; Invitrogen)で培養し、その培養上清から抗HA抗体カラムで単離精製することにより調製した。なお、以下に示す他の参考例においても、AIMとしては同様のrAIMタンパクを使用した。AIMの負荷は、培養液に5μg/mlの濃度でAIMを添加することにより行った。
また、3T3-L1細胞の分化誘導は、図13に示すように、まず3T3-L1細胞を4日間(day(-2)-day2)培養して増殖させ、その後、インスリン、デキサメタゾン(DEX)、イソブチルメチルキサンチン(IBMX)を含有する培養液で2日間(day2-day4)培養することで分化誘導刺激を開始し、さらにインスリンを含有する培養液で2日間(day4-day6)培養することにより行った。
分化誘導刺激期間(day2-day6)後は、これら分化誘導刺激因子を含有しない培養液にて培養を継続した。そして、分化誘導刺激開始から10日目(day12)の細胞をoil-red-Oにて染色し、3T3-L1細胞から成熟脂肪細胞への分化の状況を観察した。
図14に、4つのスケジュールA〜Dのそれぞれについて、染色後の細胞の顕微鏡写真を示す。
図14に示すように、スケジュールCにてAIMを分化誘導刺激の初期のみ(day2-day4)負荷した場合には、脂肪滴を有する細胞はほとんど観察されず、3T3-L1細胞の分化はほぼ完全に抑制されていた。すなわち、AIMは、上述の分化誘導因子の存在下で、3T3-L1細胞の分化を抑制した。
なお、分化誘導因子とAIMとを含有する培養液を調製後、当該培養液から精製カラムを用いてAIMを除去した場合であっても、当該分化誘導因子による3T3-L1細胞を分化させる能力は失われなかった(data not shown)。したがって、分化誘導因子とAIMとの間では実質的に化学的な相互作用はないと考えられた。
また、スケジュールBにてAIMを分化誘導刺激開始から10日間(day2-day12)負荷した場合も、脂肪滴を有する細胞はほとんど観察されず、3T3-L1細胞の分化はほぼ完全に抑制されていた。また、このようなAIMによる分化抑制効果は、AIMの濃度に依存することも確認された(data not shown)。3T3-L1細胞に負荷するAIMの濃度を1μg/ml、0.1μg/mlと減少させると、AIMによる分化抑制効果も低減された。
また、AIMの負荷による死細胞数の増加は認められなかった。したがって、AIMによる分化抑制は、細胞死を誘導することなく、成熟脂肪細胞に分化する3T3-L1細胞の数を減少させることによるものと考えられた。
一方、スケジュールDにてAIMを分化誘導前にのみ(day(-2)-day2)負荷した場合には、スケジュールAにてAIMを負荷しなかった場合と同様、ほとんどの細胞が脂肪滴を有しており、ほとんどの3T3-L1細胞が成熟脂肪細胞に分化していることが確認された。すなわち、AIMを分化誘導前のみに負荷しても、3T3-L1細胞の成熟脂肪細胞への分化は抑制されなかった。ただし、AIMを分化誘導前から分化誘導期間を経てその後も継続的に(day(-2)-day12)負荷した場合には、3T3-L1細胞の脂肪細胞への分化は完全に抑制された(data not shown)。
また、ヒトrAIMを用いてAIM負荷をいったところ、同様にマウス由来3T3-L1細胞の分化を抑制した。これにより、ヒトとマウスの間で、AIMの機能について互換性のあることが示された。
[脂肪細胞マーカーの発現による評価]
図13に示すスケジュールA〜Dにて培養された細胞を分化誘導刺激開始から10日目(day12)に回収し、脂肪細胞マーカー(C/EBPα, PPARγ1, PPARγ2, CD36, Glut4)のmRNAレベルの発現を、7500 Fast Real-Time PCR system (Invitrogen; CA, USA)を用いてΔΔCT法により測定した。使用したプライマーを表1に示す。
結果を図15に示す。スケジュールA及びDでは脂肪細胞マーカーが発現し、脂肪前駆細胞が脂肪細胞に分化していることが示された。一方、分化誘導刺激と同時にAIMを投与したスケジュールB及びDでは、脂肪細胞マーカーの発現が抑制されており、脂肪細胞への分化が抑制されていることが示唆された。この結果は、スケジュールA及びDでは脂肪滴が形成され、スケジュールB及びDでは形成されなかったことと一致する。
以上のとおり、AIMは脂肪前駆細胞から脂肪細胞への分化を抑制する。また、分化の程度は、脂肪滴の生成の観察、又は、脂肪細胞マーカー、脂肪前駆細胞マーカー、間葉系幹細胞マーカーの検出によって、容易に調べることができる。
従って、脂肪滴の生成やマーカーの検出の結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、分化の誘導効率が上昇している場合には、当該候補化合物はAIMの機能を抑制する化合物であり、分化の誘導効率が低下している場合には、当該候補化合物はAIMの機能を亢進させる化合物であると評価することができる。
参考例3. AIMによる脂肪細胞の脂肪滴の融解機能
[oil-red-Oによる評価]
分化した3T3-L1細胞に、図13のEに示すスケジュールでrAIM負荷(5μg/ml)を行った。rAIM負荷の前後でoil-red-O染色を行った。代表的な写真を図16Aに示す。細胞内の脂肪滴は、rAIM負荷を行って6日間培養した後、著しく減少した(rAIM(+))。
また、脂肪滴の相対サイズ(Relative droplet size)は、50個の脂肪滴の直径の平均から求めた。エラーバーは、標準誤差を示す。単位面積当たりの脂肪滴含有細胞の数は、5つの異なる視野において計測し、平均を求めた。それぞれの結果を図16B、Cに示す。
脂肪滴の相対サイズ、脂肪滴含有細胞の数のいずれも有意に減少した。
この結果は、rAIMが脂肪滴融解を引き起こし、脂肪滴に含まれるグリセロールや遊離脂肪酸が上清中に放出されたことを示唆する。
[培養上清中のグリセロール又は遊離脂肪酸量による評価]
3T3-L1脂肪細胞にrAIM負荷(5μg/ml)を開始した後、2日目、4日目、及び6日目における培養上清中のグリセロール又は遊離脂肪酸の放出量を測定した。rAIM負荷後、PBSで2回洗浄し、無血清培地(FreeStyleTM293 Expression Medium; Invitrogen)中で5時間インキュベートした。バッファーを回収し、グリセロールアッセイキット、脂肪酸アッセイキット(いずれもBio Vision Inc.)を使用して、取扱説明書に従って測定した。
結果を図17に示す。rAIMを加えて培養すると、培養上清中のグリセロール及び遊離脂肪酸のいずれの量も有意に増加した。
この結果は、rAIMが脂肪滴融解を引き起こし、脂肪滴に含まれるグリセロールや遊離脂肪酸が上清中に放出されたことを示唆する。
[脂肪滴形成関連遺伝子の発現による評価]
3T3-L1脂肪細胞にrAIM負荷(5μg/ml)を開始した後、2日目、4日目、及び6日目における脂肪滴形成関連遺伝子(FSP27、Perilipin、及びAdipophilin)のmRNAを、7500 Fast Real-Time PCR system (Invitrogen; CA, USA)を用いてΔΔCT法により測定した(それぞれにつきn=3)。
また、同様に、脂肪前駆細胞マーカーのPREF-1のmRNAも測定した。測定値はGAPDHで標準化した。使用したプライマーを表2に示す。
結果を図18に示す。0日目を1.0として相対的発現量を求めた。エラーバーは標準誤差を示す。
脂肪滴形成関連遺伝子の発現は、rAIM処理後2日目ですでに著しく低下していた。一方、脂肪前駆細胞マーカーの発現はrAIM処理の間増加しなかった。このことは、AIMが成熟脂肪細胞を脱分化させるものではないことを示唆する。
以上のとおり、AIMは成熟脂肪細胞において脂肪滴を融解させる。また、脂肪滴の融解の程度は、顕微鏡による観察、培養上清中のグリセロール又は遊離脂肪酸量の測定、脂肪滴形成関連遺伝子の発現の測定等によって、容易に調べることができる。
従って、培養上清中のグリセロール等を検出した結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、脂肪滴融解の効率が低下している場合には、当該候補化合物はAIMの機能を抑制する化合物であり、脂肪滴融解の効率が上昇している場合には、当該化合物はAIMの機能を亢進させる化合物であると評価することができる。
参考例4. AIMによる脂肪細胞の縮小機能
[HE染色による評価]
AIM+/+マウス(+/+)とAIM-/-マウス(-/-)(非特許文献1参照)に、高脂肪食(High Fat Diet; HFD)を20日間与え、脂肪組織の切片をHE染色した。顕微鏡の様々な視野において、50個の脂肪細胞の距離を測定し、平均±標準誤差を求めた。結果を図19Aに示し、代表的な写真を図19Bに示す。AIM-/-マウスの内臓脂肪細胞は、AIM+/+マウスと比較して有意に大きかった。
以上のとおり、AIMは脂肪細胞の大きさを縮小する。縮小の程度は、顕微鏡によって容易に調べることができる。
従って、脂肪細胞の大きさを測定した結果、AIMと候補化合物を加えたときに、AIMのみを加えたときに比較して、細胞の大きさが大きくなっている場合には、当該化合物はAIMの機能を抑制する化合物であり、細胞の大きさが小さくなっている場合には、当該化合物は、AIMの機能を亢進させる化合物であると評価することができる。
参考例5. 細胞表面のCD36を介した脂肪細胞へのAIMの取り込み
分化した3T3-L1細胞(ins/DEX/IBMX stimulation (+))と、未分化の3T3-L1細胞(ins/DEX/IBMX stimulation (−))を、rAIM(5μg/ml)と共に3時間インキュベートし、AIM、PPARγ2、及びDAPIを染色した。PPARγ2の染色にはウサギ抗PPARγ2ポリクローナル抗体(Abcam社)を用いた。結果を図20Aに示す。
上段にAIMとDAPIで核を染色した結果を、中段にAIMとPPARγ2を染色した結果を、下段にAIM、PPARγ2、DAPIを染色した結果の位相コントラスト像を示す。AIMが脂肪細胞の細胞質に散在していることが観察された。
下段からわかるように、PPARγ2が高発現している細胞は、多くの脂肪滴を含んでいる。PPARγ2を高発現している細胞、十分に分化した成熟脂肪細胞である。”pre”と表記された右のレーンは、分化誘導刺激を行っていない未分化の3T3-L1脂肪前駆細胞である。
また図20Bに、PPARγ2の発現量ごとに細胞を分類し、各細胞100個当たりのrAIMが含まれる細胞数を示す。図示されたとおり、PPARγ2が高発現している成熟脂肪細胞ではrAIMが効率よく取り込まれ、PPARγ2の発現が低く十分に分化していない細胞ではrAIMの取り込み効率が著しく低いことがわかった。分化誘導刺激を行わなかった脂肪前駆細胞(pre)は、rAIMを取り込まなかった。
また、3T3-L1脂肪細胞をrAIMで3時間処理し、AIMとエンドソーム(FM 1-43FX, Invitrogen社を使用)、AIMとリソソーム(Lyso Tracker Red DND-99, Invitrogen社を使用)を染色し、共焦点顕微鏡で観察した。結果を図20Cに示す。
脂肪細胞内に取り込まれたrAIMは、エンドソームと共局在化しており、リソソームとの共局在化は見られなかった。
同じサンプルを使って、AIMを金微粒子で標識し、電子顕微鏡で観察した。具体的には、正常ヤギ血清で30分前処理した細胞をパラホルムアルデヒドで固定し、SA-1ウサギ抗AIMポリクローナル抗体(1:600希釈)と共に一晩インキュベートした。続いて、1nm金微粒子(1:200; Nanoprobes社)を共有結合させたヤギ抗ウサギIgGと反応させた。HQ silver(Nanoprobes社)を使用して銀増感を行い、osmificateし、脱水し、Epon(Nisshin EM社)に直接埋め込んだ。極薄切片を調製し、酢酸ウラニルとクエン酸鉛で染色し、電子顕微鏡(H-7100; Hitachi Inc.)で観察した。
結果を図21に示す。Eはエンドソーム、Pはファゴソーム又はファゴリソソーム、Mはミトコンドリア、Nは核、LDは脂肪滴を示す。
金粒子で標識されたrAIMはエンドソーム様の構造をとり、その限界膜付近に特に集積していた(上段左)。細胞膜においては、rAIMのエンドサイトーシスが観察された(上段中央)。rAIMを含むいくつかの粒子は核付近に見られ、後期エンドソームと考えられた(上段右)。後期エンドソームは変性し、これに伴ってrAIMが細胞質に放出され得る。
大きな径を有する不規則な形状のファゴソーム及びファゴリソソーム、ミトコンドリア、脂肪滴では、AIMは検出されなかった(下段)。
以上の結果を総合すると、AIMは、エンドサイトーシスによって脂肪細胞内に取り込まれ、細胞内で機能を発揮することが示唆された。
次に、AIMの取り込みに関与する細胞表面分子を特定した。リポタンパク質や脂肪酸等の取り込みを促進すること、及び、AIMの機能のターゲットとなる脂肪細胞とマクロファージの双方で発現していることから、CD36に注目した。
CD36中和抗体(Abcam社;Clone JC63.1 マウスIgA)で3T3-L1脂肪細胞を処理し、rAIMのエンドサイトーシスを阻害した。図22に、中和抗体で処理した場合と処理しなかった場合の代表的な写真と、細胞100個当たりのrAIMを取り込んだ細胞数を示す。
図示されるとおり、CD36中和抗体で処理することにより、rAIMの取り込みは著しく抑制された。
次に、CD36+/+マウス(野生型)とCD36-/-マウス(Febbraio et al., J. Biol. Chem., 1999, 274:19055-19062)にrAIM(300μg/mouse in PBS)を静注し、16時間後に犠牲死させ、脂肪組織から切片を調製した。切片におけるAIM、マクロファージF4/80を染色した。結果を図23に示す。
図示されるとおり、AIMのシグナルはCD36-/-脂肪細胞において著しく低下しており、CD36-/-脂肪細胞ではrAIM取り込み能が失われることが示された。
これらの結果は、CD36がrAIMの取り込みの原因となっていることを強く示唆する。
以上のとおり、AIMは細胞表面のCD36を介して、脂肪細胞に取り込まれる。脂肪細胞によるAIMの取り込みの程度は、例えば、検出可能に標識した抗AIM抗体を用いて細胞内のAIMを可視化することによって、容易に調べることができる。
従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。
例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、細胞内へのAIMの取り込みが低下している場合には、当該化合物は、細胞内へのAIMの取り込みを阻害することによってAIMの機能を抑制していると考えられる。
参考例6. AIMとFASの結合
[免疫沈降による評価]
AIM-/-マウスの脂肪組織に、HAタグを付けたrAIMを直接注射した(数箇所に計100μg)。3時間後、rAIM-HAと内因性FASの結合を確認するため、脂肪組織を用いて抗HA抗体による共免疫沈降を行った。沈降物中のFASの存在を、ウエスタンブロッティングによって解析した(WB)。
結果を図24に示す。図示されるとおり、FASとrAIMは共沈し、取り込まれたAIMと細胞質のFASが結合することが確認された。
HEK 293T細胞内において、HAタグを付けたrAIMと、FLAGタグを付けたFASを共発現させ、rAIMとFASとの結合を抗Flag抗体又は抗HA抗体を用いた共免疫沈降によって確認した。
結果を図25に示す。rAIMとFASは共沈し、FASに対するAIMの結合能が示された。
次に、FASにおけるAIMの結合領域を調べた。FASは、ケトアシルシンターゼ(KS)、マロニル/アセチルトランスフェラーゼ(MAT)、デヒドラーゼ(DH)、セントラルコア(CC)、エノイルレダクターゼ(ER)、ケトレダクターゼ(KR)、アシルキャリアタンパク質(ACP)、チオエステラーゼ(TE)の8つのドメインを含む。
FASの構造を図31に示す。
FASの各ドメインのN末端をFlag配列で標識し、AIM-HAを安定的に発現するHEK293T細胞内で発現させた。AIM-HAとFASの各ドメインとの結合を、抗Flag抗体又は抗HA抗体を使った共免疫沈降で確認した。
結果を図26に示す。AIMと結合するドメインは、ER、DH、TE及びCCであることがわかった。
なお、FLAGタグを付けた全長FAS cDNA(ヌクレオチド:+1〜7515)をコードする配列は、Dr. Ohara(かずさDNA研究所)から提供を受けたcDNAクローンの一部と、RT-PCRでクローニングしたいくつかのフラグメントと、pFLAG-CMV2ベクター(Sigma社)を使用して構築した。
KS、MAT、DH、CC、ER、KR、ACP、又はTEをコードするcDNAフラグメントは、全長FAS cDNAをテンプレートとし、pFLAG-CMV2ベクターにサブクローニングして作製した。
[AIMによるFAS酵素活性の抑制]
脂肪細胞または脂肪組織のFAS活性に対するAIMの影響を調べた。FASの活性の測定は、Kelleyらの方法(Kelley et al., Biochem. J., 1986, 235:87-90)にわずかに修正を加えて行った。3T3-L1脂肪細胞、又は肥満マウスの脂肪組織のライゼートを、アセチル−CoA及びNADPH(0.4mM EDTAを含む0.2M リン酸カルシウムバッファー[pH 7.0]中)と混合し、分光光度計のキュベットに入れて、30℃に維持した。20μlのマロニル−CoA溶液(0.2mM)を加えて酵素反応を開始させ、ODの減少をチャートスピード2cm/minで測定した。その結果に基づき、酸化NADPHのモル吸光係数を6220としてFASの酵素活性を評価した。
まず、rAIM(5μg/ml)の存在下、非存在下、及びC75(25μM)存在下で6日間処理した3T3-L1細胞におけるFAS活性を測定した。結果を図27に示す。また、AIM+/+マウス及びAIM-/-マウスの脂肪組織におけるFAS活性、及び、脂肪内局所注射によってrAIM又はBSAを3時間前に投与したAIM-/-マウスの脂肪組織におけるFAS活性を、それぞれ図28及び29に示す。
すべてのマウスにはHFDを20週間与えた。サンプルは溶解(lyse)させてFAS活性を測定した。データは、同じサンプルを用いて行ったWBの結果に基づき、FASタンパク質当たりに換算した。各グループn=6とし、エラーバーは標準誤差を示す。
図27に示されるとおり、rAIM処理によって、3T3-L1脂肪細胞におけるFAS活性は著しく抑制された。抑制の程度は、FASを特異的に阻害するC75と同程度であった。
in vivoにおいては、AIM+/+マウスに比較して、AIM-/-マウスでは、脂肪組織が有意に増加していた(図28)。また、AIM-/-マウスの脂肪組織にrAIMを直接投与するとFAS活性は低下した。
以上のとおり、AIMはFASと結合し、その活性を抑制する。
AIMとFASとの結合の程度は、免疫沈降等により容易に調べることができる。従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、AIMとFASの結合が低下している場合には、当該化合物は、AIMとFASの結合を阻害することによって、AIMの機能を抑制していると考えられる。
また、活性抑制の程度は、FAS活性を測定する通常の方法で容易に調べることができる。従って、この方法を用いれば、AIMの機能を抑制する候補化合物の作用機序を明らかにし、当該化合物の効果を検証することができる。例えば、AIMとAIMの機能を抑制する候補化合物を加えたときに、AIMのみを加えたときと比較して、FAS活性の抑制が抑制されている場合には、当該化合物は、AIMのFAS活性抑制機能を阻害することによって、AIMの機能を抑制していると考えられる。
参考例7. AIMによる体重、脂肪量の変化(in vivo)
AIM+/+マウス(n=7)と、AIM-/-マウス(n=6)にHFDを12週間与え、内蔵脂肪及び皮下脂肪量の変化を測定した。結果を図32に示す。内臓脂肪(精巣上体脂肪)及び皮下脂肪のいずれも、AIM-/-マウスのほうが増加量が多かった。
次に、AIM-/-マウスに、5週間、HFDを与えながらrAIMを週2回腹腔内投与し(n=6; 300μg/injection/mouse)、体重及び脂肪組織量を測定した。結果を図33及び34に示す。rAIM投与群は、ウシ血清アルブミンを投与したコントロール(n=5; 300μg/injection/mouse)に比較して、体重、内臓脂肪、及び皮下脂肪のいずれの増加も有意に少なかった。
rAIM投与群及びBSA投与群のマウスの内臓脂肪組織から抽出したRNAにおける、脂肪細胞マーカー、脂肪前駆細胞マーカー、及び脂肪滴形成関連遺伝子のmRNAレベルをQPCRで測定した。結果を図35に示す。測定値は、GAPDHの測定値で標準化し、BSA投与した脂肪組織に対する相対的発現量で表した。
rAIM投与群においては、内臓脂肪におけるFSP27、Perilipin、及びAdipophilinのmRNAレベルも低かった。一方、PREF-1のmRNAレベルはrAIMの投与により上昇したが、PPARγ2、C/EBPα、GLUT4のmRNAは、rAIM投与群とBSA投与群で差が見られなかった。
参考例8. イヌ、ネコにおけるAIMの発現
イヌ、ネコ及びマウスの血清中のAIMタンパク質を、抗AIM抗体(SA-1)を用いたウエスタンブロッティング(還元状態)によって検出した。
結果を図36に示す。図示されるとおり、いずれの動物においてもAIMタンパク質が検出された。種間の分子量の違いは、糖鎖等の修飾によるものと考えられる。
実施例5. 診断用抗AIM抗体の作製
診断に使用可能な抗AIM抗体を作製した。
<動物感作>
抗原としてヒトrAIM(2mg/ml)を等量のTiterMaxGold(G-1フナコシ)と混合しエマルジョンを作製した。免疫動物にはJcl:Wistarラット(日本クレア(株))6週齢のメス2匹を用い、後ろ足底部へ50μLを投与した。2週間後に同様の投与を行い、更に2週間以上をおいて抗原溶液50μgを足底部へ投与し3日後の細胞融合に備えた。
<ミエローマ細胞>
ミエローマ細胞にはマウスP3U1を用い、増殖培養には、RPMI1640(11875-119 GIBCO)にグルタミンとピルビン酸を加えFBS(S1560 BWT社)を10%になるように添加した培地を用いた。抗生物質としてはペニシリン、ストレプトマイシンを適量加えた。
<細胞融合>
麻酔下にて心臓採血を行ったラットから無菌的に膝窩リンパ節を摘出し、#200メッシュ付ビーカーにのせシリコン棒で押しながら細胞浮遊液を調整した。細胞はRPMI1640にて2回の遠心洗浄を行った後、細胞数をカウントした。
対数増殖期の状態のミエローマ細胞を遠心により集め洗浄後、リンパ細胞に対して5対1となるように調整し、混合遠心を行った。
細胞融合はPEG1500(783641 ロシュ)を用いて行った。すなわち細胞ペレットへ1mLのPEG液を3分間かけて反応させ、その後段階的に希釈を行い遠心にて洗浄した後、培地を加え96ウェルプレート15枚へ200μLずつ入れ、1週間の培養を行った。培地にはミエローマ細胞用培地にHATサプリメント(21060-017 GIBCO)を加え、FBS濃度を15%にしたものを用いた。
<マウス腹水採取>
凍結保存された細胞を解凍し、増殖培養を行った後、1週間以上前に0.5mlのプリスタン(42-002 コスモバイオ)を腹腔内投与したヌードマウス(BALB/cAJcl-nu/nu 日本クレア)の腹腔へ1×10乗個を投与し、およそ2週間後に4〜12mlの腹水を得た。遠心処理にて固形物を除去した後、凍結保存を行った。
<電気泳動解析>
解凍し5μmのフィルターにて腹水を処理した後、セルロースアセテート膜電気泳動にて腹水中に含まれるモノクローナル抗体のバンドの確認を行った。
電気泳動条件は、0.05MBarbital Na Buffer pH8.6(020-13415 和光純薬)、SELECA-V(ADVANTEC)、1mA/cm、25min で行い、固定、染色には0.1%ニグロシン(2%酢酸)を用いた。
得られたクローンのうち、AIM-CL-6及びAIM-CL-7はブダペスト条約の規定に従って寄託した。受託番号は、それぞれNITE BP-1092、NITE BP-1093である。
受託機関:独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(NPMD:National Institute of Technology and Evaluation, Patent Microorganisms Depositary;日本国千葉県木更津市かずさ鎌足2-5-8)
受託日:2011年5月2日
実施例6. 人間ドック受診者の血中hAIM濃度の測定
実施例5で得られたAIM-CL-6及びAIM-CL-7を用いて、約550名の人間ドック受診者の血中hAIM濃度を測定した。具体的には、AIM-CL-6を捕捉用、AIM-CL-7を検出用とし、血清を50μL使用してduplicateで解析した。濃度は、ヒトrAIMを倍率希釈して定量線を設け、それによって決定した。
ヒトrAIMはHAタグをつけたヒトAIMタンパク質をHEK293T細胞で産生させ、培養上清から抗HA抗体を用いカラム精製したものである。
結果を図37に示す。健常人の多くで、血中AIM濃度は5μg/ml〜20μg/mlの範囲であった。
実施例7. BMIと血中AIM濃度との関係
血液提供者(外国人を含む)から、BMIが18〜25の人と35以上の人を無作為に選択し、図6と同様の方法で血中AIM濃度を測定した。一般に、BMIが高いほどメタボリックシンドロームのリスクは高くなるといわれる。
結果を図38に示す。BMI35以上の人は、BMI18〜25の人に比較して、血中AIM濃度が有意に高かった。このことは、AIMの血中濃度の測定結果が、メタボリックシンドローム及びその関連疾患の診断又は検査に使用可能であることを示す。
配列番号:1は、ヒトAIMのアミノ酸配列である。
配列番号:2は、定量的リアルタイムPCRによるPPARγ1発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:3は、定量的リアルタイムPCRによるPPARγ1発現解析に用いたリバースプライマーのDNA配列である。
配列番号:4は、定量的リアルタイムPCRによるPPARγ2発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:5は、定量的リアルタイムPCRによるPPARγ2発現解析に用いたリバースプライマーのDNA配列である。
配列番号:6は、定量的リアルタイムPCRによるC/EBPα発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:7は、定量的リアルタイムPCRによるC/EBPα発現解析に用いたリバースプライマーのDNA配列である。
配列番号:8は、定量的リアルタイムPCRによるCD36発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:9は、定量的リアルタイムPCRによるCD36発現解析に用いたリバースプライマーのDNA配列である。
配列番号:10は、定量的リアルタイムPCRによるGLUT4発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:11は、定量的リアルタイムPCRによるGLUT4発現解析に用いたリバースプライマーのDNA配列である。
配列番号:12は、定量的リアルタイムPCRによるFsp27発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:13は、定量的リアルタイムPCRによるFsp27発現解析に用いたリバースプライマーのDNA配列である。
配列番号:14は、定量的リアルタイムPCRによるPerilipin発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:15は、定量的リアルタイムPCRによるPerilipin発現解析に用いたリバースプライマーのDNA配列である。
配列番号:16は、定量的リアルタイムPCRによるAdipophilin発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:17は、定量的リアルタイムPCRによるAdipophilin発現解析に用いたリバースプライマーのDNA配列である。
配列番号:18は、定量的リアルタイムPCRによるGAPDH発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:19は、定量的リアルタイムPCRによるGAPDH発現解析に用いたリバースプライマーのDNA配列である。
配列番号:20は、定量的リアルタイムPCRによるPREF1発現解析に用いたフォワードプライマーのDNA配列である。
配列番号:21は、定量的リアルタイムPCRによるPREF1発現解析に用いたリバースプライマーのDNA配列である。
配列番号:22は、チンパンジーAIMのアミノ酸配列である。
配列番号:23は、イヌAIMのアミノ酸配列である。
配列番号:24は、マウスAIMのアミノ酸配列である。
配列番号:25は、ラットAIMのアミノ酸配列である。

Claims (21)

  1. AIM関連疾患の診断又は検査方法であって、
    被検者から採取した試料中のAIM濃度を測定する工程と、
    前記AIM濃度と、健常者の試料中AIM濃度とを比較する工程と、
    を含む方法。
  2. 前記試料が、体液、臓器、又は組織である、請求項1に記載の方法。
  3. 前記体液が、血液である、請求項2に記載の方法。
  4. 前記組織が、脂肪組織である、請求項2に記載の方法。
  5. 前記AIM濃度を測定する工程は、イムノアッセイ、凝集法、比濁法、ウエスタンブロッティング法、及び表面プラズモン共鳴法からなる群より選択される方法で行う、請求項1から4のいずれか1項に記載の方法。
  6. 前記イムノアッセイは、抗AIM抗体を用いたエンザイムイムノアッセイ(EIA又はELISA)、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ(FIA)、蛍光偏光イムノアッセイ(FPIA)、及び化学発光イムノアッセイ(CLIA)からなる群より選択される、請求項5に記載の方法。
  7. 前記抗AIM抗体として、AIM-CL-6(受託番号:NITE BP-1092)又はAIM-CL-7(受託番号:NITE BP 1093)を用いる、請求項6に記載の方法。
  8. 前記AIM関連疾患は、メタボリックシンドローム又はその関連疾患、癌、感染症、脳変性疾患、及び慢性炎症性疾患からなる群より選択される少なくとも一つの疾患である、請求項1から7のいずれか1項に記載の方法。
  9. 前記AIM関連疾患は、メタボリックシンドローム又はその関連疾患であって、
    前記AIM濃度と、健常者の試料中AIM濃度とを比較する工程において、被検者の試料中のAIM濃度が、健常者の試料中のAIM濃度と有意に高い場合、該被検者はメタボリックシンドローム又はその関連疾患に罹患している、又は罹患するリスクが高いと判断する、請求項8に記載の方法。
  10. 前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、請求項9に記載の方法。
  11. 前記被検者は、ヒトである、請求項1から10のいずれか1項に記載の方法。
  12. 前記被検者は、非ヒト哺乳動物又は鳥類である、請求項1から10のいずれか1項に記載の方法。
  13. 前記被検者は、イヌ又はネコである、請求項12に記載の方法。
  14. 抗AIM抗体を含む、AIM関連疾患の診断又は検査用キット。
  15. 前記AIM関連疾患は、メタボリックシンドローム、癌、感染症、脳変性疾患、及び慢性炎症性疾患からなる群より選択される少なくとも一つの疾患である、請求項14に記載のキット。
  16. 前記メタボリックシンドローム又はその関連疾患は、メタボリックシンドローム、肥満、インスリン抵抗性、糖尿病、高脂血症、高血圧、動脈硬化性疾患、脳血管障害、虚血性心疾患、心不全、認知症、脳卒中、神経症、腎疾患、アディポサイトカインの分泌異常、及び血中遊離脂肪酸量の異常からなる群より選択される少なくとも一つである、請求項15に記載のキット。
  17. 前記抗AIM抗体が、AIM-CL-6(受託番号:NITE BP-1092)又はAIM-CL-7(受託番号:NITE BP 1093)である、請求項14から16のいずれか1項に記載のキット。
  18. 前記AIM抗体が、AIMタンパク質の機能ドメイン及び保存領域を含むフラグメントである、請求項14から16のいずれか1項に記載の方法。
  19. AIM関連疾患の診断又は検査に使用する、CD36の使用方法。
  20. AIM関連疾患の診断薬又は検査薬を製造するために使用する、CD36の使用方法。
  21. AIM-CL-6(受託番号:NITE BP-1092)又はAIM-CL-7(受託番号:NITE BP 1093)である抗AIM抗体。
JP2012515945A 2010-05-20 2011-05-20 Aim関連疾患の診断方法及び診断用キット Withdrawn JPWO2011145725A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34681110P 2010-05-20 2010-05-20
US61/346,811 2010-05-20
PCT/JP2011/061657 WO2011145725A1 (ja) 2010-05-20 2011-05-20 Aim関連疾患の診断方法及び診断用キット

Publications (1)

Publication Number Publication Date
JPWO2011145725A1 true JPWO2011145725A1 (ja) 2013-07-22

Family

ID=44991811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012515945A Withdrawn JPWO2011145725A1 (ja) 2010-05-20 2011-05-20 Aim関連疾患の診断方法及び診断用キット

Country Status (3)

Country Link
EP (1) EP2573192A4 (ja)
JP (1) JPWO2011145725A1 (ja)
WO (1) WO2011145725A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145723A1 (ja) * 2010-05-20 2011-11-24 Miyazaki Toru メタボリックシンドロームの予防又は治療方法
CN103299192B (zh) * 2010-09-21 2016-05-11 普罗蒂阿米克斯国际有限公司 与糖尿病前期、糖尿病以及糖尿病相关病症相关的生物标记
CA2938944C (en) * 2014-02-07 2020-01-28 Toru Miyazaki Apoptosis inhibitor of macrophage (aim) as preventive or therapeutic agent for kidney disease
US10996217B2 (en) 2015-08-06 2021-05-04 Sekisui Medical Co., Ltd. Method for examining renal disease
JP6688307B2 (ja) * 2015-09-10 2020-04-28 積水メディカル株式会社 肝癌の検査方法
JP2020109355A (ja) * 2017-04-24 2020-07-16 明子 秦 Aimを指標とするメタボリック・シンドロームの発症予測方法
EP3681528A4 (en) * 2017-09-13 2021-07-21 Mayo Foundation for Medical Education and Research IDENTIFICATION AND MONITORING OF THE APOPTOSIS INHIBITOR OF MACROPHAGES
KR20210068104A (ko) * 2018-10-01 2021-06-08 토루 미야자키 신경변성 질환 치료제

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331244A1 (en) * 2009-06-01 2010-12-30 The University Of Tokyo Pharmaceutical composition, food or drink, and methods related thereto

Also Published As

Publication number Publication date
WO2011145725A1 (ja) 2011-11-24
EP2573192A4 (en) 2013-11-20
EP2573192A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011145725A1 (ja) Aim関連疾患の診断方法及び診断用キット
US20140206102A1 (en) Methods and materials for detecting c9orf72 hexanucleotide repeat expansion positive frontotemporal lobar degeneration or c9orf72 hexanucleotide repeat expansion positive amyotrophic lateral sclerosis
WO2011145723A1 (ja) メタボリックシンドロームの予防又は治療方法
JP4459299B2 (ja) 可溶性lr11の定量方法
US20110065199A1 (en) Atherosclerosis marker and use thereof
WO2010131704A1 (ja) 内臓脂肪型肥満の検査薬およびその利用
JP2008523394A (ja) 炎症及び肥満症における血清アミロイドaタンパク質
EP2274623B1 (fr) Procede de diagnostic d&#39;une hypertension arterielle pulmonaire
US20120219977A1 (en) Sequences, antibodies, methods and kits for detection and in vitro assay of periostin, in order to provide a diagnosis, follow-up or prognosis of diseases and biological phenomena involving periostin
JPWO2017159771A1 (ja) 肝細胞増殖因子(hgf)のpdマーカー
WO2009131852A1 (en) Pancreatic beta-cell mass biomarker
WO2011145722A1 (ja) Aimの機能を制御する化合物のスクリーニング方法
US20240118284A1 (en) Compositions and methods for detecting plxdc1 and plxcd2 in human tissues
AU2018276361A1 (en) A method for diagnosing or monitoring kidney function or diagnosing kidney dysfunction
JP2010536715A (ja) Nesfatin−1特異的抗体およびその用途、ならびにNesfatin特異的抗体およびその用途
WO2007063664A1 (ja) 血管老化の予知因子およびその利用
WO2022153907A1 (ja) ネフローゼ症候群の診断を補助するためのマーカー及びその使用
KR101567053B1 (ko) 방사선 피폭에 의한 간 손상 예측용 바이오마커 및 그 예측방법
JP2005015358A (ja) 摂食障害の治療に供される医薬組成物
CN102792163A (zh) 作为神经系统和内分泌疾病标记的外周蛋白特异性自身抗体
KR20150139231A (ko) Anks1a 단백질을 포함하는 뇌수종 진단용 바이오마커 조성물
JP2009145132A (ja) 大腸癌、動脈硬化症、又はメタボリックシンドロームの検出方法
US20120020955A1 (en) Detection of Neurological Disorders With Immune Reactions
JP2016114360A (ja) ヒトt細胞白血病ウイルスhbz蛋白質の検出方法
WO2017142055A1 (ja) 動脈硬化性疾患の発症の予測因子および検査方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805