JPWO2011093400A1 - 油圧作業機械の排気ガス浄化システム - Google Patents

油圧作業機械の排気ガス浄化システム Download PDF

Info

Publication number
JPWO2011093400A1
JPWO2011093400A1 JP2011551909A JP2011551909A JPWO2011093400A1 JP WO2011093400 A1 JPWO2011093400 A1 JP WO2011093400A1 JP 2011551909 A JP2011551909 A JP 2011551909A JP 2011551909 A JP2011551909 A JP 2011551909A JP WO2011093400 A1 JPWO2011093400 A1 JP WO2011093400A1
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
hydraulic
gas purification
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011551909A
Other languages
English (en)
Inventor
荒井 康
康 荒井
石川 広二
広二 石川
象平 神谷
象平 神谷
英信 束田
英信 束田
剛志 中村
剛志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Publication of JPWO2011093400A1 publication Critical patent/JPWO2011093400A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/08Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

コントローラ20は、排気抵抗センサ34の出力値が設定値ΔPa以上になったとき、排気温度センサ33の出力値である排気ガスの温度が予め定められた値Taになるよう、ポンプ吐出圧力増加装置(電磁比例弁)38を作動させ、排気温度上昇制御を行ってから、排気ガス浄化装置32のフィルタの再生制御を実施する。これによって、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留めることができる。

Description

本発明は油圧作業機械の排気ガス浄化システムに係わり、特に、油圧ショベル等の油圧作業機械において、排気ガス浄化装置のフィルタに蓄積された堆積物を燃焼除去し、フィルタを再生させる油圧作業機械の排気ガス浄化システムに関する。
従来のディーゼルエンジンの排気ガスを浄化する排気ガス浄化システムとして、例えば特許文献1及び特許文献2に記載のものがある。特許文献1記載の排気ガス浄化システムは、トラック等の運搬車両において、エンジンの排気系にパティキュレートフィルタ(DPF:Diesel Particulate Filter )と呼ばれるフィルタを内蔵した排気ガス浄化装置を配置し、フィルタで排気ガス中に含まれる粒子状物質(PM:パティキュレート・マター:以下PMとする)を捕集し、外部に排出するPM量を低減するものである。また、PMフィルタの目詰まりを防止するため、例えば、フィルタの上流側に酸化触媒を配置し、フィルタの前後差圧を検出してフィルタのPM堆積量を推定し、このPM堆積量が所定の値を超えると自動で排気ガスの温度を上昇させ、酸化触媒を活性化させてフィルタに堆積したPMを燃焼除去する自動再生制御と、PM堆積量が所定の値を超えると、ワーニングランプを点灯することで、車両を停車した状態での手動操作による再生制御の開始を促し、オペレータが手動再生スイッチをONすると、排気ガスの温度を上昇させ、酸化触媒を活性化させてフィルタに堆積したPMを燃焼除去する手動再生制御とが行われる。
特許文献2記載の排気ガス浄化システムは、油圧作業機械において、排気ガス処理装置に排気抵抗センサを設け、自動再生制御に際し、目詰まり程度を検知し焼損に至る目詰まりとなる前に油圧ポンプの吐出量と吐出圧力を同時に上昇させてエンジンに油圧的な負荷をかけることで、エンジンの出力を高くして排気ガス温度を上昇させ、フィルタ堆積物を燃焼させフィルタを再生している。
特開2005−120895号公報 特許第3073380号公報
トラック等の運搬車両においては、特許文献1に記載されるように排気ガス浄化装置を搭載し、排気ガスの浄化を行うことが広く行われている。近年、油圧ショベル等に代表される油圧作業機械においても、環境保全の見地から排気ガス規制が段階的に強化されてきており、特許文献2に記載されるように、排気ガス浄化システムに関する制御技術が種々検討されている。
特許文献2記載の技術では、排気ガス処理装置に排気抵抗センサを設け、目詰まり程度を検知し焼損に至る目詰まりとなる前に油圧ポンプの吐出量と吐出圧力を同時に上昇させてエンジン負荷を増大させ、排気ガス温度を上昇させ、フィルタの再生を行っている。
しかし、実際の油圧作業機械の稼動環境は、大気温が例えば約−30℃〜40℃であるため、大気温が高い場合はそれに応じて排気ガス温度も高くなる。したがって、特許文献1の技術では、排気ガス温度上昇制御により必要以上に排気ガス温度を上昇させてしまい、燃料を無駄に消費してしまう恐れがある。
また、特許文献2の技術では、排気ガス温度上昇制御を無操作時に行うことが望ましいとしているため、その場合は、作業の中断時間が必要となってしまう。
本発明の第1の目的は、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留めることができる油圧作業機械の排気ガス浄化システムを提供することである。
本発明の第2の目的は、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留めることができるとともに、機械の作業中断頻度を少なくする油圧作業機械の排気ガス浄化システムを提供することである。
(1)上記第1の目的を達成するために、請求項1記載の発明は、ディーゼルエンジンと、このエンジンの排気管に設けられた排気ガス浄化装置と、前記エンジンによって駆動される可変容量型の油圧ポンプと、この油圧ポンプの容量を制御するポンプ容量調整装置と、この油圧ポンプから吐出される圧油により駆動される少なくとも1つの油圧アクチュエータとを備えた油圧作業機械の排気ガス浄化システムにおいて、前記排気ガス浄化装置の排気抵抗を検出する排気抵抗センサと、前記排気ガス浄化装置内の排気ガスの温度を検出する排気温度センサと、前記油圧ポンプの吐出油が流れる油路に設けられ、前記油圧ポンプの吐出圧力を増加させるポンプ吐出圧力増加装置と、前記排気抵抗センサにより検出された排気抵抗が設定値以上になったときに、前記排気ガス浄化装置に蓄積した粒子状物質を燃焼除去し、前記排気ガス浄化装置の再生を行う再生制御装置とを備え、前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、前記排気温度センサにより検出された排気ガス温度が予め定められた値になるよう、前記ポンプ容量調整装置及び前記ポンプ吐出圧力増加装置のうち少なくとも前記ポンプ吐出圧力増加装置を作動させて前記油圧ポンプの吸収トルクを増加させ、前記排気ガス温度を上昇させる排気温度上昇制御装置を有するものとする。
このように構成した本発明においては、排気抵抗センサにより検出された排気抵抗が設定値以上になったとき、排気温度センサにより検出された排気ガス温度が予め定められた値になるよう少なくともポンプ吐出圧力増加装置を作動させて排気ガス温度を上昇させるため、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留め経済性を向上させることができる。
(2)また,上記第2の目的を達成するために、請求項2記載の発明は、請求項1記載の排気ガス浄化システムにおいて、前記排気温度上昇制御装置は、前記油圧ポンプの吸収トルクの増加量が前記エンジンの最大トルクの20〜30%となるように前記ポンプ容量調整装置及び前記ポンプ吐出圧力増加装置のうち少なくとも前記ポンプ吐出圧力増加装置の動作量を制御するものとする。
本発明者等は、ポンプ容量調整装置とポンプ吐出圧力増加装置により生み出す油圧吸収トルクがエンジンの最大トルクの20〜30%程度であれば、排気ガス温度を250〜350℃程度まで上昇させることができかつ油圧アクチュエータを駆動する油圧作業機械の操作に支障を生じないことを確認した。本発明はこの知見に基づいており、油圧ポンプの吸収トルクの増加量がエンジンの最大トルクの20〜30%となるよう少なくともポンプ吐出圧力増加装置の動作量を制御することにより、排気ガス温度を必要以上に上昇させてしまうことを回避でき、燃料消費量を必要最小限に留め経済性を向上させることができる。また、操作中であっても油圧作業機械の操作に支障を生じることなく、排気温度上昇制御により排気ガス温度を上昇させて排気ガス浄化装置の再生処理を行うことができ、その結果、再生制御時の作業性を向上させかつ油圧作業機械の作業中断頻度を少なくし作業効率を向上させることができる。
(3)請求項3記載の発明は、請求項1又は2記載の排気ガス浄化システムにおいて、前記排気温度上昇制御装置は、前記排気温度センサにより検出された排気ガス温度を前記予め定められた値になるまで上昇させた後、前記排気ガス温度が予め定められた所定範囲内に収まるよう、前記ポンプ容量調整装置の動作量、前記ポンプ吐出圧力増加装置の動作量、前記エンジン回転数の増加量の少なくとも1つを調整する排気温度調整装置を有するものとする。
これにより排気ガスの温度Tを所定の温度範囲内に確実に制御することができ、操作中の再生制御では、操作への影響を最小に留めることができる。また、非操作中の再生制御では、エンジン負荷の不要な増加を回避し、燃料消費量を必要最小限に留め経済性を向上させることができる。
(4)請求項4記載の発明は、請求項1〜3のいずれか1項記載の排気ガス浄化システムにおいて、前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、自動的に動作を開始する自動再生制御装置であるものとする。
これにより操作中でかつ低負荷作業であっても排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができる。
(5)請求項5記載の発明は、請求項4記載の排気ガス浄化システムにおいて、前記油圧アクチュエータが駆動されているかどうかを検出する操作検出手段を更に備え、前記排気温度上昇制御装置は、前記油圧アクチュエータが駆動されているときに、前記ポンプ容量調整装置及び前記ポンプ吐出圧力増加装置のうち少なくとも前記ポンプ吐出圧力増加装置を作動させて前記油圧ポンプの吸収トルクを増加させることにより、前記排気ガスの温度を上昇させるものとする。
これにより操作中でかつ低負荷作業であっても排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができる。
(6)請求項6記載の発明は、請求項5記載の排気ガス浄化システムにおいて、前記排気温度上昇制御装置は、前記油圧アクチュエータが駆動されていないときは、前記ポンプ容量調整装置及び前記ポンプ吐出圧力増加装置を作動させて前記油圧ポンプの吸収トルクを増加させるとともに、前記エンジンの回転数を予め定められた回転数に上昇させることにより、前記排気ガスの温度を上昇させるものとする。
これにより非操作中であっても、油圧ポンプの吸収トルク増加制御とエンジン回転数上昇制御の組み合わせで確実に排気ガス温度を上昇させて、排気ガス浄化装置の再生処理を確実に行うことができる。
(7)請求項7記載の発明は、請求項1〜3のいずれか1項記載の排気ガス浄化システムにおいて、 前記油圧作業機械が操作許可状態にあるかどうかを検出する操作許可状態検出手段と、手動再生指示手段とを更に備え、前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が第2設定値以上になったときに警告を発し、前記操作許可状態検出手段の検出結果が前記油圧作業機械が操作許可状態になく、かつ前記手動再生指示手段による指示があったときに動作を開始する手動再生制御装置であり、前記排気温度上昇制御装置は、前記ポンプ容量調整装置及び前記ポンプ吐出圧力増加装置を作動させて前記油圧ポンプの吸収トルクを増加させるとともに、前記エンジンの回転数を予め定められた回転数に上昇させることにより、前記排気ガスの温度を上昇させるものとする。
これにより手動再生制御においても、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留め経済性を向上させることができる。
(8)請求項8記載の発明は、請求項4〜6のいずれか1項記載の排気ガス浄化システムにおいて、前記排気温度上昇制御装置は、前記自動再生制御装置による前記排気ガス浄化装置の再生が必要であるかどうかを判定するための排気抵抗のしきい値をエンジン回転数とエンジン負荷の関数として記憶しておき、現在のエンジン回転数とエンジン負荷を前記関数に参照して前記排気抵抗のしきい値を求め、これを前記設定値として設定するものとする。
これにより設定値としてエンジンの運転状況を反映した適切な値を設定することができ、適切な再生制御を行うことができる。
(9)請求項9記載の発明は、請求項4記載の排気ガス浄化システムにおいて、前記自動再生制御装置は、前記油圧アクチュエータが駆動されているときよりも前記油圧アクチュエータが駆動されていないときの方が前記排気抵抗の設定値を小さな値に設定するものとする。
これにより排気ガス温度が比較的低く、粒子状物質(PM)が比較的蓄積しやすい非操作中(油圧アクチュエータが駆動されていないとき)に、操作中(油圧アクチュエータが駆動されているとき)よりも高頻度に排気ガス浄化装置に蓄積したPMを焼却することができ、排気ガス浄化装置を効率良く再生することができる。
(10)請求項10記載の発明は、請求項1〜3記載の油圧作業機械の排気ガス浄化システムにおいて、前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、自動的に動作を開始する自動再生制御装置(20,20A)と前記排気抵抗センサ(34)により検出された排気抵抗が前記設定値以上になったときに警告を発し、前記操作許可状態検出手段の検出結果が前記油圧作業機械が操作許可状態になく、かつ前記手動再生指示手段による指示があったときに動作を開始する手動再生制御装置(36,20,20A)とを含み、前記自動再生制御装置(20,20A)における前記設定値を前記手動再生制御装置(36,20,20A)における前記設定値よりも小さい値に設定したものとする。
このように自動再生制御装置の設定値を手動再生制御装置の設定値よりも小さい値に設定することにより、自動再生制御の動作頻度が増加して、排気抵抗センサの出力値が第2設定値まで増加する頻度が低下するため、手動再生制御の動作頻度が少なくなり、油圧作業機械の作業中断頻度を少なくすることができる。
本発明によれば、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留め経済性を向上させることができる。
また、本発明によれば、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留め経済性を向上させることができるとともに、再生制御時の作業性を向上させかつ機械の作業中断頻度を少なくし作業効率を向上させることができる。
本発明の第1の実施の形態における排気ガス浄化システムを備えた油圧作業機械の油圧駆動システムを示す図である。 コントローラのポジコン制御とポンプトルク制限制御の演算処理内容を示すフローチャートである。 ポンプトルク制限制御の結果得られる油圧ポンプの吸収トルク特性を示す図である。 図1に示した油圧駆動システムと排気ガス浄化システムを備えた油圧作業機械の一例である油圧ショベルの外観を示す図である。 油圧作業機械が操作許可状態にあるときの自動再生制御の処理内容の全体の流れを示すフローチャートである。 油圧作業機械が操作許可状態にありかつ操作中であるときの自動再生制御の処理内容を示すフローチャートである。 油圧作業機械が操作許可状態にありかつ非操作中であるときの自動再生制御の処理内容を示すフローチャートである。 油圧作業機械が操作禁止状態にあるときの手動再生制御の処理内容を示すフローチャートである。 定格エンジン回転数及び最大エンジン負荷における排気ガス浄化装置内のフィルタのPM堆積量とフィルタの排気抵抗(フィルタの前後差圧)との関係を示す図である。 図9に示したPM堆積量と排気抵抗の関係のエンジン回転数及びエンジン負荷による変化を示す図である。 図6のステップS312における排気ガス温度上昇制御の処理内容を示すフローチャートである。 図7のステップS412における排気ガス温度上昇制御を含む処理内容を示すフローチャートである。 本発明の第2の実施の形態における排気ガス浄化システムを備えた油圧作業機械の油圧駆動システムを示す図である。 コントローラが行う油圧ポンプに対するポジコン制御の演算処理内容を示すフローチャートである。 ポンプトルク制限制御の結果得られる油圧ポンプの吸収トルク特性を示す、図3と同様な図である。 操作中の自動再生制御に係わる図6のステップS312における排気ガス温度上昇制御の詳細を示すフローチャートである。 本発明の第3の実施の形態における排気ガス浄化システムによる操作中の自動再生制御の処理内容を示すフローチャートであり、第1の実施の形態の図6に対応する図である。 本発明の第3の実施の形態における排気ガス浄化システムによる非操作中の自動再生制御の処理内容を示すフローチャートであり、第1の実施の形態の図7に対応する図である。 本発明の第3の実施の形態における排気ガス浄化システムによる油圧作業機械が操作禁止状態にあるときの手動再生制御の処理内容を示すフローチャートであり、第1の実施の形態の図8に対応する図である。
本発明の実施の形態を図面を用いて説明する。
図1は本発明の第1の実施の形態における排気ガス浄化システムを備えた油圧作業機械の油圧駆動システムを示す図である。
図1において、油圧駆動システムは、ディーゼルエンジン(以下適宜エンジンという)1と、このエンジン1により駆動される可変容量型のメインの油圧ポンプ2及びパイロットポンプ3と、油圧ポンプ2からの吐出油により駆動される油圧アクチュエータ25と、油圧ポンプ2から油圧アクチュエータ25に供給される圧油の流量と方向を制御する流量方向制御弁4と、油圧ポンプ2から図示しないその他の油圧アクチュエータに供給される圧油の流量と方向を制御する流量方向制御弁5と、油圧アクチュエータ25を作動させるための操作レバー装置8と、油圧ポンプ2の吐出油路の最大圧力を規制するメインリリーフ弁9とを備えている。
操作レバー装置8はパイロット弁(減圧弁)8a,8bを内蔵しており、パイロットポンプ3はそのパイロット弁8a,8bに圧油を供給する。パイロットポンプ3の吐出圧はパイロットリリーフ弁10により一定に調圧され、操作レバー装置8の操作レバー8cが操作されると、その操作量と操作方向に応じてパイロット弁8a,8bのいずれかが作動して操作パイロット圧を生成し、この操作パイロット圧により流量方向制御弁4のスプールを摺動させ、油圧アクチュエータ25を作動させる。
油圧駆動システムは、また、パイロットポンプ3の吐出油路に設けられたパイロットカット弁11と、運転席の入口部分に設置されたゲートロックレバーと呼ばれる安全レバー12と、この安全レバー12に連動して作動するスイッチ13(操作許可状態検出手段)と、油圧ポンプ2の傾転角(容量或いは押しのけ容積)を調整するレギュレータ14(ポンプ容量調整装置)と、操作レバー装置8の操作量としてパイロット弁8a,8bが生成する操作パイロット圧を検出する圧力センサ16(操作検出手段)と、油圧ポンプ2の吐出圧を検出する圧力センサ17と、エンジン1の回転数を検出する回転センサ18と、エンジン1の目標回転数を指示する指令信号を出力するエンジンコントロールダイヤル19と、コントローラ20とを備えている。
圧力センサ16が操作パイロット圧を検出する信号経路にはシャトル弁21a,21bを含む複数のシャトル弁が配置され、パイロット弁8a,8bのいずれかに操作パイロット圧が生成されると、その操作パイロット圧はシャトル弁21a,21bを介して圧力センサ16に導かれ、圧力センサ16によって検出される。また、図示しない他のアクチュエータの操作レバー装置が操作され、操作パイロット圧が生成された場合も、その操作パイロット圧は図示しないシャトル弁とシャトル弁21bを介して圧力センサ16に導かれ、圧力センサ16によって検出される。
油圧アクチュエータ25を作動させるとき、コントローラ20は操作レバー装置8の操作量とそのときのエンジン回転数をそれぞれ圧力センサ16と回転センサ18により検知して、ポジコン制御とポンプトルク制限制御(ポンプ馬力制御ともいう)の演算処理により油圧ポンプ2の目標傾転角を演算し、その目標傾転角が得られるようレギュレータ14を制御し、油圧ポンプ2の傾転角を変化させる。
安全レバー12は操作許可位置と操作禁止位置とに操作可能であり、スイッチ13は安全レバー12が操作許可位置にあるときはON状態となり、安全レバー12が操作禁止位置にあるときはOFF状態となる。コントローラ20は、このように安全レバー12に連動して作動するスイッチ13のON,OFF状態を検知し、安全レバー12が操作許可位置にあり、スイッチ13がONになっている場合に限り、パイロットカット弁11を開き、操作レバー装置8のパイロット弁8a,8bに圧油が供給されるようにする。
更に、エンジンコントロールダイヤル19の指令信号はコントローラ20に入力され、コントローラ20はその指令信号と回転センサ18の検出値(現在のエンジン回転数)に基づいてエンジン1の燃料噴射量を制御する電子ガバナ1aを制御して、エンジン1の回転数とトルクを制御する。
コントローラ20が行う油圧ポンプ2に対するポジコン制御とポンプトルク制限制御の演算処理内容を図2を用いて説明する。図2は、コントローラ20のポジコン制御とポンプトルク制限制御の演算処理内容を示すフローチャートである。
まず、コントローラ20は、操作レバー装置8の操作量を圧力センサ16により検知して、ポジコン制御の要求流量Qrを計算する(ステップS10)。この計算は、例えば、圧力センサ16の検出値に所定の要求流量換算値を乗じることにより行う。次いで、コントローラ20は、その要求流量Qrを油圧ポンプ2が吐出するための油圧ポンプ2の目標傾転角qrを演算する(ステップS15)。この計算は、要求流量Qrを油圧ポンプ2の回転数で除し、所定の換算係数を乗じることにより行う。油圧ポンプ2の回転数は回転センサ18の検出値から求める。次いで、コントローラ20は、圧力センサ17から入力される油圧ポンプ2の吐出圧Ppに応じてポンプトルク制限制御の油圧ポンプ2の最大傾転角qmaxを演算する(ステップS20)。この計算は、油圧ポンプ2の最大吸収トルク一定特性を予め設定しておき、油圧ポンプ2の吐出圧Ppをその特性に参照させ、対応する傾転角(最大傾転角)を求めることにより行う。次いで、コントローラ20は、目標傾転角qrと最大傾転角qmaxを比較し(ステップS25)、目標傾転角qrが最大傾転角qmaxより小さい場合は、目標傾転角qrを得るための制御信号を計算し、その制御信号をレギュレータ14に出力する(ステップS30)。また、目標傾転角qrが最大傾転角qmax以上である場合は、最大傾転角qmaxを得るための制御信号を計算し、その制御信号をレギュレータ14に出力する(ステップS35)。これによりレギュレータ14は、油圧ポンプ2の目標傾転角qrが最大傾転角qmaxより小さいときは目標傾転角qrが得られるよう油圧ポンプ2の傾転角を変化させ(ポジコン制御)、油圧ポンプ2の目標傾転角qrが最大傾転角qmax以上になると油圧ポンプ2の傾転角を最大傾転角qmaxに制限するよう油圧ポンプ2の傾転角を変化させる(ポンプトルク制限制御或いはポンプ馬力制御)。
図3は、上記ポンプトルク制限制御の結果得られる油圧ポンプ2の吸収トルク特性を示す図である。横軸は油圧ポンプ2の吐出圧Ppを示し、縦軸は油圧ポンプ2の傾転角(容量)qを示している。
図3において、油圧ポンプ2の吸収トルク特性は、最大傾転角一定の特性線Tp0と最大吸収トルク一定の特性線Tp1とで構成されている。
油圧ポンプ2の吐出圧Pが、最大傾転角一定の特性線Tp0から最大吸収トルク一定の特性線Tp1に移行する折れ点(移行点)の圧力である第1の値P0以下にあるとき、油圧ポンプ2の吐出圧Pが上昇しても油圧ポンプ2の最大傾転角(最大容量)qmaxは油圧ポンプ2の機構で決まる値q0で一定である。このとき、油圧ポンプ2の吐出圧Pが上昇するにしたがって、ポンプ吐出圧とポンプ傾転角との積である油圧ポンプ2の最大吸収トルクは増加する。油圧ポンプ2の吐出圧Pが第1の値P0を超えて上昇すると、油圧ポンプ2の最大傾転角qmaxは最大吸収トルク一定の特性線Tp1に沿って減少し、油圧ポンプ2の吸収トルクは特性線Tp1によって決まる最大トルクTmaxに保たれる。これが、上記ステップS25及びステップS35の処理に対応する制御部分である。ここで、特性線Tp1は双曲線の一部であり、特性線Tp1が規定する最大トルクTmaxはエンジン1の制限トルクTELよりも少し小さく設定されている。これにより油圧ポンプ2の吐出圧Pが第1の値P0を超えて上昇するとき、油圧ポンプ2の最大傾転角qmaxを減らして、油圧ポンプ2の吸収トルク(入力トルク)を予め設定した最大トルクTmaxを超えないように制御し、油圧ポンプ2の吸収トルクがエンジン1の制限トルクTELを越えないように制御する。
本実施の形態における排気ガス浄化システムはこのような油圧駆動システムに設けられるものであり、エンジン1の排気系を構成する排気管路31に配置された排気ガス浄化装置32と、排気ガス浄化装置32の入口部に設けられ、排気ガス浄化装置内の排気ガスの温度を検出する排気温度センサ33と、排気ガス浄化装置32内のフィルタの排気抵抗を検出する排気抵抗センサ34と、手動再生制御の開始を指示する手動再生スイッチ36と、手動再生処理が必要であることをオペレータに知らせる警報ランプ37とを備え、それらの出力値はコントローラ20に入力される。また、排気ガス浄化システムは、油圧ポンプ2の吐出油路2aに設置された電磁比例弁38(ポンプ吐出圧力増加装置)を備えている。電磁比例弁38は、ソレノイドに付与される指令電流に応じて開口面積を変化させる可変絞り弁であり、指令電流が最小(OFF)のときは図示の全開位置にあり、指令電流が増大するにしたがって開口面積を減少させ、指令電流が最大になると開口面積を最小(全閉状態)とする。
排気ガス浄化装置32はフィルタを内蔵しており、このフィルタにより排気ガスに含まれる粒子状物質(PM)を捕集する。また、排気ガス浄化装置32は酸化触媒を備えており、排気ガス温度が所定温度以上になると酸化触媒が活性化し、排気ガス中に添加された未燃燃料を燃焼させることで排気ガス温度を上昇させ、フィルタに捕集され堆積したPMを燃焼処理するようにしている。
具体的には、排気ガス浄化装置32は、例えば、酸化触媒付きのフィルタと、このフィルタの上流側に配置した酸化触媒を備えている。この場合、酸化触媒を活性化させる所定温度(再生開始温度)は、例えば約250℃であり、排気ガス温度が約250℃以上になると酸化触媒が活性化し、フィルタに捕集され堆積したPMを燃焼処理する。なお、排気ガス浄化装置32は酸化触媒付きフィルタのみで構成してもよく、この場合、酸化触媒を活性化させる所定温度(再生開始温度)は、例えば約350℃である。
排気抵抗センサ34は、例えば、排気ガス浄化装置32のフィルタの上流側と下流側の前後差圧(フィルタの圧力損失)を検出する差圧検出装置である。
図4は、図1に示した油圧駆動システムと排気ガス浄化システムを備えた油圧作業機械の一例である油圧ショベルの外観を示す図である。
油圧ショベルは下部走行体100と上部旋回体101とフロント作業機102を備えている。下部走行体100は左右のクローラ式走行装置103a,103bを有し、左右の走行モータ104a,104bにより駆動される。上部旋回体101は旋回モータ105により下部走行体100上に旋回可能に搭載され、フロント作業機102は上部旋回体101の前部に俯仰可能に取り付けられている。上部旋回体101にはエンジンルーム106、運転室107が備えられ、エンジンルーム106にエンジン1が配置され、運転室107内の運転席の入り口に安全レバー(ゲートロックレバー)12が設けられ、運転席の左右に操作レバー装置が配置されている。
フロント作業機102はブーム111、アーム112、バケット113を有する多関節構造であり、ブーム111はブームシリンダ114の伸縮により上下方向に回動し、アーム112はアームシリンダ115の伸縮により上下、前後方向に回動し、バケット113はバケットシリンダ116の伸縮により上下、前後方向に回動する。
図1において、油圧アクチュエータ25は例えば旋回モータ105に対応し、操作レバー装置8は運転席の左右に操作レバー装置が配置された操作レバー装置の1つである。図1では、走行モータ104a,104b、ブームシリンダ114、アームシリンダ115、バケットシリンダ116等のその他の油圧アクチュエータや制御弁は、図示を省略している。
次に、図5〜図8を用いてコントローラ20の処理内容を説明しつつ、本実施の形態の排気ガス浄化システムの動作を説明する。
図5〜図8は、コントローラ20のフィルタ再生演算処理の内容を示すフローチャートであり、図5は、油圧作業機械(以下単に機械という)が操作許可状態にあるときの自動再生制御の処理内容の全体の流れを示し、図6は、機械が操作許可状態にありかつ操作中であるときの自動再生制御の処理内容を示し、図7は、機械が操作許可状態にありかつ非操作中であるときの自動再生制御の処理内容を示し、図8は、機械が操作禁止状態にあるときの手動再生制御の処理内容を示す。図5〜図8の処理はいずれも予め定められた制御サイクルタイムにて繰り返えして行われる。
まず、図5を用いて、機械が操作許可状態にあるときの自動再生制御の処理内容の全体の流れを説明する。
コントローラ20は、まず、安全レバー12に連動して作動するスイッチ13がON状態であるかどうかを検知して、安全レバー12が操作許可位置にあるかどうかを判定する(ステップS100)。スイッチ13がOFF状態にあり、安全レバー12が操作許可位置にない場合、すなわち安全レバー12が操作禁止位置にある場合は、機械が操作禁止状態にある場合であり、この場合は何もせず、今回の制御サイクルの処理を終了する。スイッチ13がON状態にあり、安全レバー12が操作許可位置にある場合は、機械が操作許可状態にある場合であり、この場合は次の処理に進む。
コントローラ20は、次の処理では、圧力センサ16の出力値に基づいて、操作レバー装置8を含め全ての操作レバー装置の出力圧を検知し、その出力圧が操作レバー装置が操作されたことを示すレベルにあるかどうかをみることで、いずれかの操作レバー装置が操作されているかどうかを判定する(ステップS200)。そして、いずれかの操作レバー装置が操作されている場合は機械の操作中であり、この場合は操作中の自動再生制御を実施する(ステップS300)。また、いずれの操作レバー装置も操作されていない場合は、機械の非操作中であり、この場合は、非操作中の自動再生制御を実施する(ステップS400)。
図6を用いて、操作中の自動再生制御の詳細を説明する。
コントローラ20は、まず、自動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値ΔPaを求め、これを第1設定値として設定する(ステップS305)。
ここで、自動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値ΔPaについて図9及び図10を用いて説明する。
図9は、定格エンジン回転数及び最大エンジン負荷における排気ガス浄化装置32内のフィルタのPM堆積量とフィルタの排気抵抗(フィルタの前後差圧)との関係を示す図であり、図10は、そのPM堆積量と排気抵抗の関係のエンジン回転数及びエンジン負荷による変化を示す図である。
図9において、フィルタのPM堆積量が増加するにしたがってフィルタの前後差圧は上昇する。図中、ΔPLIMITは、PMの限界堆積量WLIMITにおける排気抵抗(限界排気抵抗)である。限界堆積量WLIMITとは、これ以上フィルタにPMが堆積すると、異常燃焼を起こす可能性がある堆積量のことである。ΔPbは手動再生制御が必要であるかどうかを判定するためのPM堆積量Wbにおける排気抵抗のしきい値(第2設定値)であり、このしきい値はPMの排気抵抗ΔPLIMITにできるだけ近い値に設定される。ΔPcは再生制御を終了させるかどうかを判定するためのPM堆積量Wcにおける排気抵抗のしきい値である。自動再生制御が必要であるかどうかを判定するためのPM堆積量Waにおける排気抵抗のしきい値ΔPaは、手動再生制御のしきい値(第2設定値)ΔPbより低めの値、例えば、しきい値ΔPbの40〜60%程度の値に設定されている(ΔPa<ΔPb)。
図9に示したPM堆積量と排気抵抗との関係は、定格エンジン回転数及び最大エンジン負荷におけるものであり、その関係は、図10に示すようにエンジン回転数及びエンジン負荷に応じて変化する。すなわち、フィルタのPM堆積量が一定であっても、エンジン回転数或いはエンジン負荷が増大すれば、それに応じて電子ガバナ1aの燃料噴射量が増加して排気ガスの流量が増大するため、フィルタの排気抵抗は増加する。逆に、エンジン回転数或いはエンジン負荷が減少すれば、それに応じて電子ガバナ1aの燃料噴射量が減少して排気ガスの流量が減少するため、フィルタの排気抵抗は減少する。その結果PM堆積量と排気抵抗との関係も、図10に示すように、エンジン回転数或いはエンジン負荷の増減に応じて変化する。
コントローラ20は、図10に示すようなPM堆積量と排気抵抗との関係に基づいて、自動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値ΔPaをエンジン回転数とエンジン負荷の関数として記憶しておき、ステップS305では、その関数に現在のエンジン回転数とエンジン負荷を参照して排気抵抗のしきい値ΔPaを求める。現在のエンジン回転数としては回転センサの検出値を用いることができ、現在のエンジン負荷としては、電子ガバナ1aの内部値である目標燃料噴射量を用いることができる。なお、油圧ポンプ2の傾転角と吐出圧力から油圧ポンプ2の吸収トルクを演算し、これをエンジン負荷として用いてもよい。
このように自動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値ΔPaを演算で求め、第1設定値として設定することにより、エンジンの運転状況を反映した適切なしきい値ΔPaを設定することができ、適切に再生制御を開始させることができる。
コントローラ20は、次の処理では、排気抵抗センサ34の出力値に基づいて、排気ガス浄化装置32内のフィルタの排気抵抗ΔPを検知し、この排気抵抗ΔPが第1設定値ΔPa以上であるかどうかを判定する(ステップS310)。そして、排気抵抗ΔPが第1設定値ΔPa以上でない場合は、排気ガス浄化装置32のフィルタが自動再生制御による再生を必要とするほど蓄積されていないため、何もせず、今回の制御サイクルの処理を終了する。排気抵抗ΔPが第1設定値ΔPa以上である場合は、次の処理に進む。
コントローラ20は、次の処理で自動再生制御を開始する。
自動再生制御では、まず、排気ガス温度上昇制御を行う(ステップS312)。この排気ガス温度上昇制御では、油圧吸収トルク増加制御を行う。すなわち、電磁比例弁38を作動させて開口面積を小さくし、油圧ポンプ2の吐出圧力を増加させる。また、油圧ポンプ2の傾転角(容量)を増加させて油圧ポンプ2の吐出流量を増加させる。油圧ポンプ2の吐出圧力と傾転角(容量)を増大させることで、油圧ポンプ2の吸収トルク(油圧吸収トルク)を増加させ、エンジン負荷を増大させる。このときの油圧ポンプ2の吸収トルクの増加量はエンジン1の最大トルクの20〜30%、好ましくは30%程度である。これによりエンジン1はその分多めに燃料を噴射し、排気ガス温度を上昇させることができる。
油圧吸収トルク増加制御(ステップS312)の詳細を図11を用いて説明する。図11は油圧吸収トルク増加制御の処理内容を示すフローチャートである。
まず、コントローラ20は、図2のステップS15で計算した油圧ポンプ2の目標傾転角qrを取得する(ステップS50)。また、コントローラ20には、油圧吸収トルク増加制御の目標傾転角qcoと目標圧力Pcoが予め設定されており、コントローラ20は、ポジコン制御の目標傾転角qrと油圧吸収トルク増加制御の目標傾転角qcoを比較し(ステップS55)、ポジコン制御の目標傾転角qrが油圧吸収トルク増加制御の目標傾転角qco以下である場合は、図2のフローチャートにおけるポジコン制御とポンプトルク制限制御の演算処理を無効とする(ステップS60)。次いで、コントローラ20は、油圧吸収トルク増加制御の目標傾転角qcoを得るための制御信号と油圧吸収トルク増加制御の目標圧力Pcoを得るための制御信号を計算し、前者の制御信号をレギュレータ14に出力し、後者の制御信号を電磁比例弁38に出力する(ステップS65)。一方、ポジコン制御の目標傾転角qrが油圧吸収トルク増加制御の目標傾転角qcoより大きい場合は、コントローラ20は、図2のフローチャートにおけるポジコン制御とポンプトルク制限制御の演算処理を有効とする(ステップS70)。次いで、コントローラ20は、油圧吸収トルク増加制御の目標圧力Pcoを得るための制御信号を計算し、その制御信号を電磁比例弁38に出力する(ステップS75)。
図3において、A点は非操作中に油圧吸収トルク増加制御を行わないときの油圧ポンプ2の動作点である。いずれの操作レバー装置も操作されていない非操作時は、ポジコン制御の要求流量はゼロであり、油圧ポンプ2はA点の最小傾転角qminに保持されている。また、いずれの操作レバー装置も操作されていない非操作時は、全ての流量方向制御弁4,5は図示の中立位置にあり、油圧ポンプ2はA点の最小吐出圧Ppminにある。図3において、B点は非操作中に油圧吸収トルク増加制御を行うとき(後述)の油圧ポンプ2の動作点であり、非操作中及び操作中のいずれの場合も油圧吸収トルク増加制御の目標傾転角はqcoに設定され、目標圧力はPcoに設定される。すなわち、図11のステップS65及びステップS75では、B点の目標傾転角qco及び目標圧力Pcoを用いて油圧吸収トルク増加制御を行う。
ここで、コントローラ20は、油圧吸収トルク増加制御による油圧ポンプ2の吸収トルクの増加量がエンジン1の最大トルクの20〜30%、好ましくは30%程度となるように目標傾転角qco及び目標圧力Pcoを設定し、レギュレータ14と電磁比例弁38の動作量を制御する。本発明者等の検討によれば、低負荷作業時であっても、油圧吸収トルクをエンジン最大トルクの20%程度増加させた場合は排気ガス温度を250℃程度まで上昇させることができ、油圧吸収トルクをエンジン最大トルクの30%程度増加させた場合は排気ガス温度を350℃程度まで上昇させることができることを確認した。また、エンジン最大トルクの30%程度であれば、電磁比例弁38により油圧吸収トルクを生み出した状態で機械を操作しても、操作上何ら問題無いことを確認した。
次いで、コントローラ20は、排気温度センサ33の出力値に基づいて、排気ガス浄化装置32内の排気ガスの温度Tが予め定められたしきい値Ta以上であるかどうかを判定する(ステップS315)。そして、排気ガスの温度Tがしきい値Ta以上でなければ、その判定が繰り返され、排気ガスの温度Tがしきい値Ta以上になると、再生制御を開始する(ステップS320)。しきい値Taは、例えば、排気ガス浄化装置32が上流側に酸化触媒を配置する方式とした場合は、その触媒の活性化温度である約250℃であり、酸化触媒付きフィルタのみを配置する方式とした場合は、その触媒の活性化温度である約350℃である。
また、ステップS320の再生制御では、エンジン1の電子ガバナ1aを制御して、エンジン主噴射後の膨張行程におけるポスト噴射(追加噴射)を行い、このポスト噴射により排気ガス中に未燃燃料を供給し、この未燃燃料を活性化した酸化触媒によって燃焼することによって排気ガスの温度を上昇させ、その高温の排気ガスによりフィルタに堆積したPMを燃焼除去する。
コントローラ20は、次いで、再生制御を終了させるかどうかを判定するための排気抵抗のしきい値ΔPcを求め、これを設定する(ステップS340)。このしきい値ΔPcの計算の考え方は、しきい値ΔPaの計算と同様である。すなわち、コントローラ20は、図10に示すようなPM堆積量と排気抵抗との関係に基づいて、自動再生制御を終了させるかどうかを判定するための排気抵抗のしきい値ΔPcをエンジン回転数とエンジン負荷の関数として記憶しておき、ステップS340では、その関数に現在のエンジン回転数とエンジン負荷を参照して排気抵抗のしきい値ΔPcを求める。これによりエンジンの運転状況を反映した適切なしきい値ΔPcを設定することができ、適切に再生制御を終了させることができる。
排気ガス温度上昇制御(油圧吸収トルク増加制御)と再生制御(燃料の追加噴射)は、排気ガス浄化装置32の排気抵抗ΔPがしきい値ΔPcを下回るまで行われ、排気ガス浄化装置32の排気抵抗ΔPがしきい値ΔPcを下回ると、自動再生制御を終了させるとともに、電磁比例弁38の作動を停止して全開状態とし、排気ガス温度上昇制御(油圧吸収トルク増加制御)と再生制御(燃料の追加噴射)を終了する(ステップS320,S340、S345,S350)。
次に、図7を用いて、非操作中の自動再生制御の詳細を説明する。
油圧作業機械(油圧ショベル)は通常オートアイドル機能を備えている。オートアイドル機能とは、操作レバー装置8の操作レバー8cを操作位置から中立位置に戻したときに、所定時間(例えば5秒)経過すると、エンジン回転数をアイドル回転数に低下させる技術である。このため非操作中は、エンジン1はアイドル回転状態にある場合が多い。そこで、非操作中の自動再生制御では、排気ガス温度上昇制御において油圧吸収トルク増加制御とエンジン回転数上昇制御を行う(ステップS412)。油圧吸収トルク増加制御における油圧ポンプ2の吸収トルクの増加量は,操作中の場合と同様、エンジン1の最大トルクの20〜30%、好ましくは30%程度である。また、エンジン回転数上昇制御では、例えば、エンジン回転数を1700rpm程度まで上昇させる。
図12は図7のステップS412における油圧吸収トルク増加制御とエンジン回転数上昇制御を含む処理内容を示すフローチャートである。
コントローラ20は、前述した油圧吸収トルク増加制御の目標傾転角qcoを得るための制御信号と油圧吸収トルク増加制御の目標圧力Pcoを得るための制御信号を計算し、前者の制御信号をレギュレータ14に出力し、後者の制御信号を電磁比例弁38に出力する(ステップS80)。これにより油圧ポンプ2は図3に示す動作点Bで動作する。また、コントローラ20は、エンジン回転数を1700rpm程度まで上昇させるエンジン回転数上昇制御を行う(ステップS85)。
図7に戻り、図7におけるステップS405,S410,S415,S420,S440,S445,S450の処理内容は、図6のステップS305,S310,S315,S320,S340。S345,S350の処理内容と同じである。
なお、非操作中に自動再生制御を開始するための排気抵抗のしきい値(第1設定値)は、操作中に自動再生制御を開始するためのしきい値ΔPaより小さくてもよく、図7のステップS405,S410では、その場合のしきい値をかっこ書きでΔPdで示している(ΔPd<ΔPa)。しきい値ΔPdは、図9において、PM堆積量Wdにおける排気抵抗として示されている。これにより排気ガス温度が比較的低く、PMが比較的蓄積しやすい非操作中に、操作中よりも高頻度にフィルタに蓄積したPMを焼却することができ、フィルタを効率良く再生することができる。
また、非操作中は、油圧ポンプ2の吸収トルクを大きく増大させても何ら問題はないので、ステップS412の油圧吸収トルク増加制御における油圧ポンプ2の吸収トルク(油圧吸収トルク)の増加量は、操作中の増加量であるエンジン最大トルクの30%よりも大きくても良い。これにより非操作中の排気ガスの温度上昇を早め、迅速にフィルタの再生処理を行うことができる。
次に、図8を用いて、機械が操作禁止状態にあるときに行われる手動再生制御について説明する。
コントローラ20は、まず、排気抵抗センサ34の出力値に基づいて排気ガス浄化装置32の排気抵抗ΔPを検知し、この排気抵抗ΔPが、手動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値として予め設定された第2設定値ΔPb以上であるかどうかを判定する(ステップS500)。手動再生制御では、エンジン回転数及びエンジン負荷がほぼ一定に制御されるので(後述)、手動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値としては、その値をその一定のエンジン回転数及びエンジン負荷に応じた排気抵抗として事前に求めておき、その値を固定値として設定すれよい。後述する再生制御を終了させるかどうかを判定するための排気抵抗のしきい値ΔPcも同様である。
なお、第2設定値ΔPbは、図9を用いて説明したように、第1設定値ΔPaに対してΔPa<ΔPbの関係にあり、PMの限界堆積量WLIMITにおける排気抵抗ΔPLIMITにできるだけ近い値に設定されている。
そして、排気抵抗ΔPが第2設定値ΔPb以上でない場合は、排気ガス浄化装置32のフィルタにPMが手動再生制御による再生を必要とするほどが蓄積されていないため、何もせず、今回の制御サイクルの処理を終了する。排気抵抗ΔPが第2設定値ΔPb以上である場合は、次の処理に進む。
コントローラ20は、次の処理では、警報ランプ37を点灯させ、オペレータに手動再生処理が必要であることを知らせる(ステップS510)。
次いで、コントローラ20は、安全レバー12に連動して作動するスイッチ13がOFF状態であるかどうかを検知して、安全レバー12が操作禁止位置にあるかどうかを判定する(ステップS520)。スイッチ13がON状態にあり、安全レバー12が操作禁止位置にない場合、すなわち安全レバー12が操作許可位置にある場合は、機械が操作許可状態にある場合であり、機械が手動再生制御に適しない状態であるため、この場合は何もせず、今回の制御サイクルの処理を終了する。スイッチ13がOFF状態にあり、安全レバー12が操作禁止位置にある場合は、機械が操作禁止状態にある場合であり、この場合は次の処理に進む。
コントローラ20は、次の処理では、手動再生スイッチ36がON操作されたかどうかを判定し(ステップS530)、手動再生スイッチ36がON操作されなかった場合は、何もせず、今回の制御サイクルの処理を終了する。手動再生スイッチ36がON操作された場合は、次の処理に進む。
コントローラ20は、次の処理では、警報ランプ37を消灯し(ステップS540)、更に図7に示した自動再生制御の場合と同様、油圧吸収トルク増加制御とエンジン回転数上昇制御による排気ガス温度上昇制御を行う(ステップS545)。
すなわち、手動再生制御の場合は、安全レバーが操作禁止位置にあって、パイロットカット弁11が閉じられ、機械が操作不能な状態にあるため、エンジン1は必ずアイドル回転状態にある。そこで、ステップS545では、図7に示す非操作中の自動再生制御におけるステップS412と同様、油圧吸収トルク増加制御(エンジン1の最大トルクの20〜30%、好ましくは30%程度)とエンジン回転数上昇制御を行い(例えば1700rpm程度)、排気ガスの温度上昇を促進させる。
なお、機械が操作不能な状態にある場合も、油圧ポンプ2の吸収トルクを大きく増大させても何ら問題はない。そこで、図7に示す非操作中の自動再生制御におけるステップS412の場合と同様、ステップS545の油圧吸収トルク増加制御における油圧ポンプ2の吸収トルク(油圧吸収トルク)の増加量を、操作中の増加量であるエンジン最大トルクの30%よりも多くしても良い。これにより機械が操作不能な状態にある場合の排気ガスの温度上昇を早め、効率の良いフィルタの再生制御が可能となる。
以上において、電磁比例弁38は、油圧ポンプ2の吐出油が流れる油路2aに設けられ、油圧ポンプ2の吐出圧力を増加させるポンプ吐出圧力増加装置を構成し、コントローラ20の図6のステップS305〜S350、図7のステップS405〜450及び図8のステップS500〜S610のそれぞれの処理機能は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPa又はΔPb以上になったときに、排気ガス浄化装置32に蓄積した粒子状物質を燃焼除去し、排気ガス浄化装置32の再生を行う再生制御装置を構成する。
コントローラ20の図6のステップS312,S315、コントローラ20の図7のステップS412,S415及び図8のステップS545及びS550のそれぞれの処理機能は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPa又はΔPb以上になったときに、排気温度センサ33により検出された排気ガス温度が予め定められた値になるよう、レギュレータ14(ポンプ容量調整装置)及び電磁比例弁38(ポンプ吐出圧力増加装置)のうち少なくとも電磁比例弁38を作動させて油圧ポンプ2の吸収トルクを増加させ、排気ガス温度を上昇させる排気温度上昇制御装置を構成する。ここで、排気温度上昇制御装置は、油圧ポンプ2の吸収トルクの増加量がエンジン1の最大トルクの20〜30%となるように少なくとも電磁比例弁38の動作量を制御す。
コントローラ20の図6のステップS305〜S350及び図7のステップS405〜450は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPa以上になったときに、自動的に動作を開始する自動再生制御装置を構成する。
スイッチ13は、油圧作業機械が操作許可状態にあるかどうかを検出する操作許可状態検出手段を構成し、手動再生スイッチ36は手動再生指示手段を構成し、この手動再生指示手段とコントローラ20の図8のステップS500〜S610の処理機能は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPb以上になったときに警告を発し、スイッチ13(操作許可状態検出手段)の検出結果が油圧作業機械が操作許可状態になく、かつ手動再生スイッチ36(手動再生指示手段)による指示があったときに動作を開始する手動再生制御装置を構成する。
以上のように構成した本実施の形態においては、油圧作業機械の稼動環境である大気温が例えば約−30℃〜40℃と変化し、それに応じて排気ガス温度が変化しても、排気温度センサ33出力値である排気ガス温度が予め定められた値Taとなるよう電磁比例弁38を作動させて排気ガス温度を上昇させるため、稼働環境に係わらず、排気ガス温度を上昇させて排気ガス浄化装置の再生処理を確実に行うことができ、かつ燃料消費量を必要最小限に留め経済性を向上させることができる。
また、本発明者等は、油圧吸収トルク増加装置により生み出す油圧吸収トルクが前記エンジンの最大トルクの20〜30%程度であれば、排気ガス温度を250〜350℃程度まで上昇させることができかつ油圧アクチュエータを駆動する油圧作業機械の操作に支障を生じないことを確認しており、油圧ポンプ2の吸収トルクの増加量がエンジン1の最大トルクの20〜30%となるよう電磁比例弁38の動作量を制御することにより、排気ガス温度を必要以上に上昇させてしまうことを回避でき、燃料消費量を必要最小限に留め経済性を向上させることができる。また、操作中であっても機械の操作に支障を生じることなく排気ガス温度を上昇させてフィルタの再生処理を行うことができ、その結果、再生制御時の作業性を向上させかつ機械の作業中断頻度を少なくし作業効率を向上させることができる。
また、操作中の自動再生制御、非操作中の自動再生制御、手動再生制御のいずれにおいても、排気ガス温度を上昇させてフィルタの再生処理を確実に行うことができ、かつ稼働環境に係わらず、燃料消費量を必要最小限に留めることができるという効果を得ることができる。
また、自動再生制御において、油圧アクチュエータ25が駆動されていないときの排気抵抗の設定値を油圧アクチュエータ25が駆動されているときの排気抵抗の設定値ΔPaよりも小さな値ΔPdに設定した場合は、排気ガス温度が比較的低く、粒子状物質(PM)が比較的蓄積しやすい非操作中(油圧アクチュエータが駆動されていないとき)に、操作中(油圧アクチュエータが駆動されているとき)よりも高頻度に排気ガス浄化装置32のフィルタに蓄積したPMを焼却することができ、排気ガス浄化装置32のフィルタを効率良く再生することができる。
更に、自動再生制御の設定値ΔPaを手動再生制御の設定値ΔPbよりも小さい値に設定したので、自動再生制御の動作頻度が増加して、排気抵抗センサ34の出力値が設定値ΔPbまで増加する頻度が低下するため、手動再生制御の頻度が少なくなり、この点でも油圧作業機械の作業中断頻度を少なくすることができる。
また、操作中の自動再生制御では、自動再生制御が必要であるかどうかを判定するための排気抵抗のしきい値ΔPa及び再生制御を終了させるかどうかを判定するための排気抵抗のしきい値ΔPcを演算で求め、設定するため、エンジンの運転状況を反映した適切なしきい値ΔPa,ΔPcを設定することができ、適切に再生制御を行うことができる。
本発明の第2の実施の形態を図13〜図16を用いて説明する。本実施の形態は、ポンプトルク制御を、コントローラを用いずにレギュレータにおいて直接行う場合のものである。
図13は、第2の実施の形態における排気ガス浄化システムを備えた油圧作業機械の油圧駆動システムを示す図であり、図1に示す要素と同等のものには同じ符号を付している。この図13において、本実施の形態の油圧駆動システムは、油圧ポンプ2の吐出圧が油路41を介して導かれるレギュレータ14Aと、コントローラ20Aと、コントローラ20Aの制御信号により作動し、レギュレータ14Aに油圧ポンプ2の目標傾転角qrを指示する制御圧力を出力する電磁比例弁42とを備えている。
油圧アクチュエータ25を作動させるとき、コントローラ20Aは操作レバー装置8の操作量とそのときのエンジン回転数をそれぞれ圧力センサ16と回転センサ18により検知して、ポジコン制御の演算処理により油圧ポンプ2の目標傾転角を演算し、その目標傾転角が得られるよう電磁比例弁42に制御信号を出力する。電磁比例弁42はその制御信号に対応する制御圧力を出力し、レギュレータ14Aはその制御圧力により油圧ポンプ2の傾転角を変化させる。
図14は、コントローラ20Aが行う油圧ポンプ2に対するポジコン制御の演算処理内容を示すフローチャートである。図中、図2と同じ手順には同じ符号を付している。図2と図14の比較から分かるように、本実施の形態では、コントローラ20Aは、ポジコン制御に係わるステップS10,ステップS15、ステップS30のみの処理を行うように構成されている。ステップS30では、目標傾転角qrを得るための制御信号を電磁比例弁42に出力する。
レギュレータ14Aは、電磁比例弁42の出力圧力(制御圧力)に基づくポジコン制御を行うとともに、油路41を介して導かれる油圧ポンプ2の吐出圧に基づいて自身でポンプトルク制限制御を行う構成となっている。すなわち、レギュレータ14Aは、電磁比例弁42が出力する制御圧力が変化すると、その制御圧力が指示する目標傾転角qrが得られるよう油圧ポンプ2の傾転角を制御する(ポジコン制御)。また、レギュレータ14Aは、油圧ポンプ2の吐出圧が上昇し、制御圧力が指示する目標傾転角qrがポンプトルク制限制御の最大傾転角qmax以上になると、油圧ポンプ2の傾転角をその最大傾転角qmaxに制限するよう油圧ポンプ2の傾転角を制御する(ポンプトルク制限制御或いはポンプ馬力制御)。このようなレギュレータ14Aは公知である。
図15は、上記ポンプトルク制限制御の結果得られる油圧ポンプ2の吸収トルク特性を示す、図3と同様な図である。横軸は油圧ポンプ2の吐出圧Ppを示し、縦軸は油圧ポンプ2の傾転角(容量)qを示している。
図15において、油圧ポンプ2の吸収トルク特性は、最大傾転角一定の特性線Tp0と最大吸収トルク一定の特性線Tp2,Tp3とで構成されている。油圧ポンプ2の吐出圧Pが第1の値P0以下の最大傾転角一定の特性線Tp0上にあるときの油圧ポンプ2の傾転角の制御は、図3の場合と同じである。油圧ポンプ2の吐出圧Pが第1の値P0を超えて上昇すると、油圧ポンプ2の最大傾転角qmaxは最大吸収トルク一定の特性線Tp2,Tp3に沿って減少し、油圧ポンプ2の吸収トルクは特性線Tp2,Tp3によって決まる最大トルクTmaxに保たれる。最大吸収トルク一定の特性線Tp2,Tp3はレギュレータ14Aに内蔵されている2つのバネによって設定されたものである。ここで、特性線Tp2,Tp3は双曲線を模擬した形状をしており、特性線Tp2,Tp3が規定する最大トルクTmaxはエンジン1の制限トルクTELよりも少し小さく設定されている。これにより油圧ポンプ2の吐出圧Pが第1の値P0を超えて上昇するとき、油圧ポンプ2の最大傾転角qmaxを減らして、油圧ポンプ2の吸収トルク(入力トルク)を予め設定した最大トルクTmaxを超えないように制御し、油圧ポンプ2の吸収トルクがエンジン1の制限トルクTELを越えないように制御する。
図16は、操作中の自動再生制御に係わる図6のステップS312における油圧吸収トルク増加制御の詳細を示すフローチャートである。図中、図11と同じ手順には同じ符号を付している。図11と図16の比較から分かるように、本実施の形態では、コントローラ20Aはポジコン制御の演算処理のみを行うため、ステップS60Aではコントローラ20Aのポジコン制御の演算処理を無効とし、ステップS70Aではコントローラ20Aのポジコン制御の演算処理を有効とする。非操作中の自動再生制御に係わる図7のステップS412における油圧吸収トルク増加制御の詳細及び機械が操作禁止状態にあるときに行われる手動再生制御に係わる図8のステップS545における油圧吸収トルク増加制御の詳細は、第1の実施の形態の図12から変更はない。
本実施の形態によれば、ポンプトルク制御をレギュレータ14Aにおいて直接行う油圧作業機械において、第1の実施の形態と同様の効果が得られる。
本発明の第3の実施の形態を図17〜図19を用いて説明する。本実施の形態は排気ガス温度上昇制御の他の例を示すものである。図17は操作中の自動再生制御の処理内容を示すフローチャートであり、図18は非操作中の自動再生制御の処理内容を示すフローチャートであり、図19は油圧作業機械が操作禁止状態にあるときの手動再生制御の処理内容を示すフローチャートであり、それぞれ、第1の実施の形態の図6〜図8に対応する図である。
第1及び第2の実施の形態では、排気ガス温度上昇制御により排気ガスの温度Tがしきい値Taになった後は、再生制御(燃料の追加噴射)を行うだけであり、排気ガスの温度Tの微調整は行っていない。本実施の形態は、排気ガス温度上昇制御により排気ガスの温度Tがしきい値Ta以上になった後も、油圧吸収トルク増加制御かつ/またはエンジン回転数上昇制御をきめ細かく行い、排気ガスの温度Tがしきい値Taに対して所定の温度範囲内に収まるよう調整できるようにしたものである。
すなわち、図17において、ステップS312で排気ガス温度上昇制御(油圧吸収トルク増加制御)を行った後、排気温度センサ33の出力値に基づいて、排気ガス浄化装置32内の排気ガスの温度Tが予め定められた所定の温度範囲である基準温度Ta1とTa2の範囲内にあるかどうかを判定し(ステップS365)、排気ガスの温度Tが所定の温度範囲内にあれば、再生制御(燃料の追加噴射)を開始する(ステップS320)。排気ガスの温度Tが所定の温度範囲内にない場合は、油圧吸収トルク増加制御のトルク増加量を調整し(ステップS370)、排気ガスの温度Tが所定の温度範囲内に収まるまでトルク増加量を調整を繰り返す(ステップS365→S370)。
ここで、所定の温度範囲である基準温度Ta1とTa2は、Ta1<Ta2の関係にあり、Ta1は、例えば、第1及び第2の実施の形態におけるしきい値Taに等しく設定し、Ta2はTa1よりも少し高い温度、例えばTa1よりも5〜50℃、好ましくは10〜30℃程度高い温度に設定する。
また、油圧吸収トルク増加制御におけるトルク増加量の調整は、ポジコン制御の目標傾転角qrが油圧吸収トルク増加制御の目標傾転角qco以下である場合は、油圧吸収トルク増加制御の目標傾転角qco及び目標圧力Pcoの少なくとも一方を所定量増減することで行い、ポジコン制御の目標傾転角qrが油圧吸収トルク増加制御の目標傾転角qcoより大きい場合は、ポジコン制御への影響を避けるため、油圧吸収トルク増加制御の目標圧力Pcoを所定量増減することで行う。目標傾転角qcoを所定量増減することでレギュレータ14の動作量が制御され、油圧ポンプ2の傾転角(容量)が制御される。目標圧力Pcoを所定量増減することで電磁比例弁38の動作量(開口面積)が制御され、油圧ポンプ2の吐出圧力が制御される。したがって、目標傾転角qco及び目標圧力Pcoの少なくとも一方を所定量増減することで、油圧ポンプ2の吸収トルクが制御され、エンジン負荷が増減し、排気ガス温度を調整することができる。
図18及び図19のステップS465,S470(図18)及びステップS665,S670(図19)においても、図17のステップS365,S370と実質的に同様の処理がなされる。ただし、図18及び図19の場合は、いずれも非操作中の制御であるため、ポジコン制御への影響は考える必要はなく、ステップS470,S670において、常に油圧吸収トルク増加制御におけるトルク増加量の調整を、油圧吸収トルク増加制御の目標傾転角qco及び目標圧力Pcoの少なくとも一方を所定量増減することで行えばよい。また、油圧吸収トルク増加制御におけるトルク増加量の調整と組み合わせ、或いはその代わりに、エンジン回転数上昇制御におけるエンジン回転数の増減を行うことで、排気ガス温度を調整してもよい。
以上において、コントローラ20Aの図17のステップS305〜S350、S365及びS370、図18のステップS405〜450、S465及びS470及び図19のステップS500〜S610、S665及びS670のそれぞれの処理機能は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPa又はΔPb以上になったときに、排気ガス浄化装置32に蓄積した粒子状物質を燃焼除去し、排気ガス浄化装置32の再生を行う再生制御装置を構成する。
コントローラ20Aの図17のステップS312、S365及びS370、図18のステップS412、S465及びS470、図19のステップS545,S665及びS670のそれぞれの処理機能は、排気抵抗センサ34により検出された排気抵抗が設定値ΔPa又はΔPb以上になったときに、排気温度センサ33により検出された排気ガス温度が予め定められた値になるよう、レギュレータ14(ポンプ容量調整装置)及び電磁比例弁38(ポンプ吐出圧力増加装置)のうち少なくとも電磁比例弁38を作動させて油圧ポンプ2の吸収トルクを増加させ、排気ガス温度を上昇させる排気温度上昇制御装置を構成する。
また、ステップS365,S370(図17),ステップS465,S470(図18)及びステップS665,S670(図19)は、排気温度センサ33により検出された排気ガス温度を予め定められた値Ta1になるまで上昇させた後、排気ガス温度が予め定められた所定範囲内Ta1〜Ta2に収まるよう、レギュレータ14又は14A(ポンプ容量調整装置)の動作量、電磁比例弁38(ポンプ吐出圧力増加装置)の動作量、エンジン回転数の増加量の少なくとも1つを調整する排気温度調整装置を構成する。
以上のように構成した本実施の形態では、排気ガスの温度Tが所定の温度範囲内に収まるように油圧吸収トルク増加制御におけるトルク増加量かつ/またはエンジン回転数上昇制御におけるエンジン回転数の増加量を微調整するため、排気ガスの温度Tを所定の温度範囲内に確実に制御することができる。その結果、操作中の再生制御では、操作への影響を最小に留めることができる。また、非操作中の再生制御では、エンジン負荷の不要な増加を回避し、稼働環境に係わらず燃料消費量を必要最小限に留め経済性を更に向上することができる。
なお、上記実施の形態では、再生制御のための燃料噴射をエンジン主噴射後の膨張行程におけるポスト噴射(追加噴射)により行ったが、排気管に再生制御用の燃料噴射装置を設け、この燃料噴射装置を作動させることにより再生制御のための燃料噴射を行ってもよい。
また、再生制御でエンジンに排気ガス温度上昇のための負荷をかけるのに油圧ポンプ2の吐出油路2aに電磁比例弁38を設け、この電磁比例弁38の動作量(開口面積)を制御することで油圧吸収トルク増加制御を行ったが、電磁比例弁38は流量方向制御弁4を貫通するセンタバイパス油路の最下流に設けてもよい。また、他の手段によりエンジンに負荷をかけてもよい。
更に、上記実施の形態では、油圧作業機械として油圧ショベルに本発明を適用した場合について説明したが、油圧ショベル以外の油圧作業機械に本発明を適用してもよい。油圧ショベル以外の油圧作業機械としては、例えば、ホイールショベル、クレーン車等があり、この場合も上記実施の形態と同様の効果が得られる。
1 エンジン
1a 電子ガバナ
2 メインの油圧ポンプ
2a 吐出油路
3 パイロットポンプ
4,5 流量方向制御弁
8 操作レバー装置
8a,8b パイロット弁
9 メインリリーフ弁
10 パイロットリリーフ弁
11 パイロットカット弁
12 安全レバー(ゲートロックレバー)
13 スイッチ
14,14A レギュレータ
16 圧力センサ
17 圧力センサ
18 回転センサ
19 エンジンコントロールダイヤル
20,20A コントローラ
21a,21b シャトル弁
25 油圧アクチュエータ
31 排気管
32 排気ガス浄化装置
33 排気温度センサ
34 排気抵抗センサ
36 手動再生スイッチ
37 警報ランプ
38 電磁比例弁(油圧吸収トルク増加装置)
41 油路
42 電磁比例弁

Claims (10)

  1. ディーゼルエンジン(1)と、このエンジンの排気管(31)に設けられた排気ガス浄化装置(32)と、前記エンジンによって駆動される可変容量型の油圧ポンプ(2)と、この油圧ポンプの容量を制御するポンプ容量調整装置(14,14A)と、この油圧ポンプから吐出される圧油により駆動される少なくとも1つの油圧アクチュエータ(25)とを備えた油圧作業機械の排気ガス浄化システムにおいて、
    前記排気ガス浄化装置(32)の排気抵抗を検出する排気抵抗センサ(34)と、
    前記排気ガス浄化装置内の排気ガスの温度を検出する排気温度センサ(33)と、
    前記油圧ポンプ(2)の吐出油が流れる油路(2a)に設けられ、前記油圧ポンプの吐出圧力を増加させるポンプ吐出圧力増加装置(38)と、
    前記排気抵抗センサにより検出された排気抵抗が設定値以上になったときに、前記排気ガス浄化装置に蓄積した粒子状物質を燃焼除去し、前記排気ガス浄化装置の再生を行う再生制御装置(20,20A)とを備え、
    前記再生制御装置は、
    前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、前記排気温度センサにより検出された排気ガス温度が予め定められた値になるよう、前記ポンプ容量調整装置(14,14A)及び前記ポンプ吐出圧力増加装置(38)のうち少なくとも前記ポンプ吐出圧力増加装置(38)を作動させて前記油圧ポンプの吸収トルクを増加させ、前記排気ガス温度を上昇させる排気温度上昇制御装置(20,20A)を有することを特徴とする油圧作業機械の排気ガス浄化システム。
  2. 請求項1記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記排気温度上昇制御装置(20,20A)は、前記油圧ポンプ(2)の吸収トルクの増加量が前記エンジン(1)の最大トルクの20〜30%となるように前記ポンプ容量調整装置(14,14A)及び前記ポンプ吐出圧力増加装置(38)のうち少なくとも前記ポンプ吐出圧力増加装置の動作量を制御することを特徴とする油圧作業機械の排気ガス浄化システム。
  3. 請求項1又は2記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記排気温度上昇制御装置(20,20A)は、
    前記排気温度センサ(33)により検出された排気ガス温度を前記予め定められた値になるまで上昇させた後、前記排気ガス温度が予め定められた所定範囲内に収まるよう、前記ポンプ容量調整装置(14,14A)の動作量、前記ポンプ吐出圧力増加装置(38)の動作量、前記エンジン回転数の増加量の少なくとも1つを調整する排気温度調整装置を有することを特徴とする油圧作業機械の排気ガス浄化システム。
  4. 請求項1〜3のいずれか1項記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、自動的に動作を開始する自動再生制御装置(20,20A)であることを特徴とする油圧作業機械の排気ガス浄化システム。
  5. 請求項4記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記油圧アクチュエータ(25)が駆動されているかどうかを検出する操作検出手段(16)を更に備え、
    前記排気温度上昇制御装置(20,20A)は、
    前記油圧アクチュエータ(25)が駆動されているときに、前記ポンプ容量調整装置(14,14A)及び前記ポンプ吐出圧力増加装置(38)のうち少なくとも前記ポンプ吐出圧力増加装置(38)を作動させて前記油圧ポンプの吸収トルクを増加させることにより、前記排気ガスの温度を上昇させることを特徴とする油圧作業機械の排気ガス浄化システム。
  6. 請求項5記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記排気温度上昇制御装置(20,20A)は、
    前記油圧アクチュエータ(25)が駆動されていないときは、
    前記ポンプ容量調整装置(14、14A)及び前記ポンプ吐出圧力増加装置(38)を作動させて前記油圧ポンプ(2)の吸収トルクを増加させるとともに、前記エンジンの回転数を予め定められた回転数に上昇させることにより、前記排気ガスの温度を上昇させることを特徴とする油圧作業機械の排気ガス浄化システム。
  7. 請求項1〜3のいずれか1項記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記油圧作業機械が操作許可状態にあるかどうかを検出する操作許可状態検出手段(13)と、
    手動再生指示手段(36)とを更に備え、
    前記再生制御装置は、前記排気抵抗センサ(34)により検出された排気抵抗が前記設定値以上になったときに警告を発し、前記操作許可状態検出手段の検出結果が前記油圧作業機械が操作許可状態になく、かつ前記手動再生指示手段による指示があったときに動作を開始する手動再生制御装置(36,20,20A)であり、
    前記排気温度上昇制御装置(20,20A)は、
    前記ポンプ容量調整装置(14,14A)及び前記ポンプ吐出圧力増加装置(38)を作動させて前記油圧ポンプ(2)の吸収トルクを増加させるとともに、前記エンジンの回転数を予め定められた回転数に上昇させることにより、前記排気ガスの温度を上昇させることを特徴とする油圧作業機械の排気ガス浄化システム。
  8. 請求項4〜6のいずれか1項記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記排気温度上昇制御装置(20,20A)は、前記自動再生制御装置(20,20A)による前記排気ガス浄化装置の再生が必要であるかどうかを判定するための排気抵抗のしきい値をエンジン回転数とエンジン負荷の関数として記憶しておき、現在のエンジン回転数とエンジン負荷を前記関数に参照して前記排気抵抗のしきい値を求め、これを前記設定値として設定することを特徴とする油圧作業機械の排気ガス浄化システム。
  9. 請求項4記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記自動再生制御装置(20,20A)は、前記油圧アクチュエータが駆動されているときよりも前記油圧アクチュエータが駆動されていないときの方が前記排気抵抗の設定値を小さな値に設定することを特徴とする油圧作業機械の排気ガス浄化システム。
  10. 請求項1〜3記載の油圧作業機械の排気ガス浄化システムにおいて、
    前記再生制御装置は、前記排気抵抗センサにより検出された排気抵抗が前記設定値以上になったときに、自動的に動作を開始する自動再生制御装置(20,20A)と前記排気抵抗センサ(34)により検出された排気抵抗が前記設定値以上になったときに警告を発し、前記操作許可状態検出手段の検出結果が前記油圧作業機械が操作許可状態になく、かつ前記手動再生指示手段による指示があったときに動作を開始する手動再生制御装置(36,20,20A)とを含み、
    前記自動再生制御装置(20,20A)における前記設定値を前記手動再生制御装置(36,20,20A)における前記設定値よりも小さい値に設定したことを特徴とする油圧作業機械の排気ガス浄化システム。
JP2011551909A 2010-01-28 2011-01-27 油圧作業機械の排気ガス浄化システム Pending JPWO2011093400A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010017447 2010-01-28
JP2010017447 2010-01-28
PCT/JP2011/051647 WO2011093400A1 (ja) 2010-01-28 2011-01-27 油圧作業機械の排気ガス浄化システム

Publications (1)

Publication Number Publication Date
JPWO2011093400A1 true JPWO2011093400A1 (ja) 2013-06-06

Family

ID=44319383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551909A Pending JPWO2011093400A1 (ja) 2010-01-28 2011-01-27 油圧作業機械の排気ガス浄化システム

Country Status (7)

Country Link
US (1) US20120279203A1 (ja)
EP (1) EP2530266A1 (ja)
JP (1) JPWO2011093400A1 (ja)
KR (1) KR20120117975A (ja)
CN (1) CN102667081A (ja)
IN (1) IN2012DN01607A (ja)
WO (1) WO2011093400A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523028B2 (ja) * 2009-09-04 2014-06-18 日立建機株式会社 油圧作業機械の油圧駆動装置
CN102383905B (zh) * 2011-11-08 2012-12-26 上海三一重机有限公司 一种工程机械用发动机后处理再生的智能控制方法
JP5809549B2 (ja) * 2011-12-08 2015-11-11 株式会社Kcm 油圧駆動装置
KR101955533B1 (ko) 2012-10-16 2019-03-07 주식회사 두산 Dpf의 다단 재생장치 및 재생방법
JP6013888B2 (ja) * 2012-11-20 2016-10-25 株式会社Kcm 液圧駆動システム、及びそれを備える建設機械
KR101958026B1 (ko) 2012-12-26 2019-03-13 두산인프라코어 주식회사 배기가스 후처리장치 강제재생의 유압회로 시스템
JP6001162B2 (ja) * 2013-03-25 2016-10-05 日立建機株式会社 作業機械のエンジン回転数制御装置
JP2014238050A (ja) * 2013-06-07 2014-12-18 ヤンマー株式会社 エンジン装置
WO2016133226A1 (ko) * 2015-02-16 2016-08-25 볼보 컨스트럭션 이큅먼트 에이비 Dpf 재생 토크 제어 시스템
CN106149792B (zh) * 2015-03-31 2020-10-30 斗山工程机械(中国)有限公司 液压油路及挖掘机、挖掘机启动控制方法
DE102015208077A1 (de) * 2015-04-30 2016-11-03 Deere & Company Generatoreinheit
KR102130188B1 (ko) * 2016-12-28 2020-08-05 주식회사 두산 엔진식 지게차의 운전 중 dpf 재생 시스템 및 그 방법
US10821982B2 (en) * 2017-09-21 2020-11-03 Cnh Industrial America Llc System and method for adjusting torque limits for a work vehicle
JP7087530B2 (ja) * 2018-03-23 2022-06-21 コベルコ建機株式会社 排ガス異常検出装置
JP6824921B2 (ja) * 2018-03-27 2021-02-03 日立建機株式会社 建設機械
CN114458463A (zh) * 2022-01-29 2022-05-10 徐州徐工挖掘机械有限公司 一种工程机械排放的热管理系统、方法及工程机械
JP2023117580A (ja) * 2022-02-14 2023-08-24 コベルコ建機株式会社 油圧駆動装置及びこれを備えた建設機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166840A (ja) * 1993-12-17 1995-06-27 Hitachi Constr Mach Co Ltd 排ガス浄化装置を備えた油圧作業機械
JP2002242660A (ja) * 2001-02-21 2002-08-28 Isuzu Motors Ltd ディーゼルパティキュレートフィルタ装置とその再生制御方法
WO2009060719A1 (ja) * 2007-11-06 2009-05-14 Hitachi Construction Machinery Co., Ltd. 作業車両の排気ガス浄化システム
JP2009150278A (ja) * 2007-12-19 2009-07-09 Mitsubishi Fuso Truck & Bus Corp パティキュレートフィルタ自動再生時の吸気制御方法及び装置
JP2009264315A (ja) * 2008-04-28 2009-11-12 Yanmar Co Ltd 排気ガス浄化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251110A (ja) 1986-04-25 1987-10-31 Eagle Ind Co Ltd フロ−テイングシ−ルの摺動環のワツクス原型成形方法
EP1203869B1 (de) * 2000-11-03 2002-08-21 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Regelungsanordnung und Verfahren zur Unterbrechung der Regeneration eines Partikelfilters eines Dieselmotors
JP2004211638A (ja) * 2003-01-07 2004-07-29 Nissan Motor Co Ltd ディーゼルエンジンのフィルタ再生制御装置
JP2005069148A (ja) * 2003-08-26 2005-03-17 Toyota Industries Corp ディーゼルエンジン用排気ガス浄化フィルタの再生装置及びディーゼルエンジンシステム
JP3952000B2 (ja) 2003-10-16 2007-08-01 マツダ株式会社 エンジンの排気浄化装置
US8316636B2 (en) * 2006-06-01 2012-11-27 Hitachi Construction Machinery Co., Ltd. Exhaust gas purifier of construction machine
JP5053015B2 (ja) * 2007-09-25 2012-10-17 日立建機株式会社 建設機械の排気ガス浄化システム
JP5101436B2 (ja) * 2008-08-26 2012-12-19 ヤンマー株式会社 ディーゼルエンジン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166840A (ja) * 1993-12-17 1995-06-27 Hitachi Constr Mach Co Ltd 排ガス浄化装置を備えた油圧作業機械
JP2002242660A (ja) * 2001-02-21 2002-08-28 Isuzu Motors Ltd ディーゼルパティキュレートフィルタ装置とその再生制御方法
WO2009060719A1 (ja) * 2007-11-06 2009-05-14 Hitachi Construction Machinery Co., Ltd. 作業車両の排気ガス浄化システム
JP2009150278A (ja) * 2007-12-19 2009-07-09 Mitsubishi Fuso Truck & Bus Corp パティキュレートフィルタ自動再生時の吸気制御方法及び装置
JP2009264315A (ja) * 2008-04-28 2009-11-12 Yanmar Co Ltd 排気ガス浄化装置

Also Published As

Publication number Publication date
KR20120117975A (ko) 2012-10-25
WO2011093400A1 (ja) 2011-08-04
CN102667081A (zh) 2012-09-12
EP2530266A1 (en) 2012-12-05
US20120279203A1 (en) 2012-11-08
IN2012DN01607A (ja) 2015-06-05

Similar Documents

Publication Publication Date Title
WO2011093400A1 (ja) 油圧作業機械の排気ガス浄化システム
JP5053015B2 (ja) 建設機械の排気ガス浄化システム
JP5122896B2 (ja) 建設機械の排気ガス浄化システム
JP5658075B2 (ja) 作業機の排気浄化システム
JP4990860B2 (ja) 作業機のエンジン制御システム
JP4774096B2 (ja) 作業機械の排気ガス浄化システム
JP5941054B2 (ja) 排気ガス浄化装置を備えた建設機械用油圧駆動システム
JP5368414B2 (ja) 排気ガス浄化装置を備えた建設機械用油圧駆動システム
US8869928B2 (en) Construction machine
KR101810692B1 (ko) 작업 차량의 배기 가스 정화 시스템
JP5132662B2 (ja) 建設機械のdpf強制再生回路
WO2013111489A1 (ja) 建設機械
JP5940473B2 (ja) 建設機械の油圧駆動装置
KR101850807B1 (ko) 건설 기계
JP5572826B2 (ja) 排気ガス浄化システム
JP4944152B2 (ja) 建設機械のdpf強制再生回路
JP2012145083A (ja) 排気ガス浄化システム
JP5650631B2 (ja) 作業機
JP6484188B2 (ja) 建設機械の油圧駆動システム
JP6207937B2 (ja) ショベル及びショベルの管理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224