JPWO2011086709A1 - 磁気ディスク装置のランプアンロードシーク制御装置 - Google Patents

磁気ディスク装置のランプアンロードシーク制御装置 Download PDF

Info

Publication number
JPWO2011086709A1
JPWO2011086709A1 JP2011549840A JP2011549840A JPWO2011086709A1 JP WO2011086709 A1 JPWO2011086709 A1 JP WO2011086709A1 JP 2011549840 A JP2011549840 A JP 2011549840A JP 2011549840 A JP2011549840 A JP 2011549840A JP WO2011086709 A1 JPWO2011086709 A1 JP WO2011086709A1
Authority
JP
Japan
Prior art keywords
speed
error
head
head speed
unload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011549840A
Other languages
English (en)
Inventor
義之 石原
義之 石原
晋司 高倉
晋司 高倉
志元 保中
志元 保中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2011086709A1 publication Critical patent/JPWO2011086709A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/12Raising and lowering; Back-spacing or forward-spacing along track; Returning to starting position otherwise than during transducing operation

Abstract

磁気ディスク装置のランプアンロードシーク制御において、ヘッド速度信号を補正する補正ゲインの算出方法を提供する。ボイスコイルモータの逆起電力から算出されるヘッド速度と、ボイスコイルモータへの指令電流を所定時間間隔で検出し、算出すべき補正ゲインから構成されるヘッド速度予測値を算出する差分方程式に、所定時間毎に検出したヘッド速度と指令電流を入力し、検出したヘッド速度と前記ヘッド予測値の誤差を最小化することで補正ゲインを算出する。補正ゲイン算出前は低ゲインのフィードバック制御器によってランプアンロードシーク制御系を安定化し、目標速度に擬似白色信号もしくは類似のランダム信号を与え補正ゲインを同定し、補正ゲイン算出後は、算出した補正ゲインを用いてヘッド速度を補正し、高ゲインのフィードバック制御によってランプアンロードシークの目標速度にヘッド速度を追従させ、ヘッドをランプ機構にアンロードさせる。

Description

本発明は、磁気ディスク装置のランプアンロードを行うためのシーク制御に関する。
磁気ディスク装置の記録情報の保全や信頼性の観点から、情報の記録再生を行うヘッドと記録媒体(ディスク)が外部衝撃等により接触し、破損することを防止する必要がある。このため、現在の磁気ディスク装置の大部分は、電源停止時や情報の記録再生を行っていないアイドリング時に、ヘッドをディスク上から退避場所(ランプ機構)に退避させておく機能(ランプロード/アンロード)を有する。上記、ランプロード/アンロードを実現するために必要となるのが、ランプ機構からメディア上にヘッドを移動させるロードシーク制御と、ディスク上からランプ機構に移動させるアンロードシーク制御である。
ロード/アンロードシーク制御では、ランプ機構上にヘッドが位置しているときには、ディスク上に設けられたサーボセクターからのヘッド位置情報を取得できない。このため、ヘッド支持部(キャリッジ)を駆動する、ボイスコイルモータの逆起電力からヘッドの速度を算出し、目標とする速度にヘッドの移動速度を追従させる速度制御系が一般的に用いられている。
ここで、ボイスコイルモータに生じる逆起電力は、ボイスコイル(以下単にコイルという)の抵抗、コイル間の端子電圧を用いて、
逆起電力 = コイルの端子間電圧 − コイル抵抗×コイル電流
の計算式によって算出される。しかしながら、上記計算式において、コイル抵抗になんらかの手段によって推定された値(例えば設計値)を用いた場合、コイル抵抗は外部温度や個体差などで変動するため、算出される逆起電力は不正確なものとなってしまう。従って、実際のコイル抵抗値と推定されたコイル抵抗値の差を補正(キャリブレーション)することが必要となる。
上記補正手段として、ロードシーク制御においては、ランプ機構の行き止まり方向にキャリッジを押し付けるように制御電流を与え、逆起電力を0としてコイル抵抗値の誤差(以下単に「抵抗誤差」と記載)の補正値を算出する方法が用いられる。アンロードシーク時には、例えばディスク内周方向押し付けによるキャリブレーションなどが考えられるが、ヘッドとディスクが接触する危険性や、騒音の問題が生じるため好ましくない。
この課題を解決するための従来技術として、キャリブレーションシークが挙げられる。これは、サーボ信号を用いた通常のシーク制御において、シーク動作の加速、または加速及び減速時に制御電流を強制的に飽和させる区間を設け、飽和区間内において測定したコイル電圧と、サーボセクターの位置信号から計算したヘッド速度を用いて、コイル抵抗を推定する方法である。また、サーボ信号読み間違えや観測ノイズなどを考慮して、ヘッド位置信号を用いず逆起電力信号を用いてキャリブレーションを行うことも考えられている。
特開2001−344918号公報 特開2008−123651号公報
上記、キャリブレーション手段は、飽和区間を設けた制御電流や、ボイスコイルモータのトルク定数等、変動が想定されるパラメータを用いる必要があった。また、サーボ信号を用いたキャリブレーションシークでは、サーボ信号読み間違えや観測ノイズによって補正値が不正確となり、ランプアンロードシーク制御系が不安定化する危険性がある。従って、サーボ信号を用いず、且つ、想定されるパラメータ変動を考慮した制御対象モデルに基づいてコイルの抵抗値の補正値を算出するキャリブレーション手段が求められる。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、サーボ信号を用いず、且つ、想定されるパラメータ変動を考慮した制御対象モデルに基づいてコイル抵抗の補正値(補正ゲイン)を算出するキャリブレーション手段を提供することにある。
本発明による磁気ディスク装置のランプアンロードシーク制御装置は、磁気ディスク装置のランプアンロードシーク制御装置であって、ボイスコイルモータの真の抵抗値と推定抵抗値との誤差を所定時間間隔で推定する同定機構が、
Figure 2011086709
Figure 2011086709
測誤差を最小化する機能を有し、かつ、前記同定機構が、前記ヘッド速度予測誤差を最
Figure 2011086709
抵抗値との誤差を補正するための補正ゲインとして用いる。ただし、数式(A)のy(k−1)は前記ヘッド速度算出手段によって所定時間間隔で算出されるヘッド速度のうち、現在の時間をkとした場合の、1所定時間前のヘッド速度を表し、u(k−1),u(k−2)は前記指令電流検出手段によって所定時間間隔で検出される指令電流のうち、現在の時間をkと
Figure 2011086709
差を最小化する手段によって前記予測誤差が最小化されることにより決定される未知変数である。
本発明による磁気ディスク装置のランプアンロードシーク制御装置において、数式(A)の計算は、逆起電力から計算されるヘッド速度と指令電流から構成されており、サーボ信号を必要とするキャリブレーションシークを必要としない。また、指令電流はPE性(計算に際して、u(k)が多数の周波数成分を含んでいる)を有すれば任意の信号で良く、飽和区間を設ける必要もない。また、数式(A)では、変動やばらつきが想定されるパラメータが、結果的に未知パラメータとして扱われるため、これらのパラメータも同時に同定されることになる。従って、従来のキャリブレーションよりもロバストな補正値の算出が可能になる。
図1は明の実施形態に係るランプアンロードシーク制御装置を概略的に示す斜視図である。
図2は1の実施形態に係るランプアンロードシーク制御系を示すブロック図である。
図3は制御対象の高周波帯域における特性を示す図である。
図4はランプアンロードシーク制御系の第1段階の動作で用いられる目標速度を示す図である。
図5はランプアンロードシーク制御系における補正ゲインの時刻暦を示す図である。
図6はランプアンロード制御系におけるヘッド速度時刻暦を示す図である。
図7は第2の実施形態に係るランプアンロードシーク制御系を示すブロック図である。
図8は制御対象モデルの周波数応答を表す図である。
図9は伝達関数部を制御対象モデルを用いて計算した結果を描いたベクトル軌跡を表す図である。
図10はコイル抵抗変動を変動させた場合のヘッド速度の応答を示す図である。
図11はコイル抵抗の推定に関する真の抵抗誤差と推定抵抗誤差を表す図である。
以下、図面を参照しながら、本発明の実施の形態について説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る磁気ディスク装置のランプアンロードシーク制御装置の概略構成を示す図である。このランプアンロードシーク制御装置は、磁気ディスク装置に設けられているマイクロプロセッサ(MPU:Micro Processor Unit)18を主構成要素として備えている。
ヘッド11はキャリッジ12に支持されている。キャリッジ12はボイスコイルモータ(VCM:Voice Coil Motor)13の駆動力によりヘッド11を、情報を磁気的に記録可能な磁気ディスク14の半径方向に移動させる。
ディスク14は一枚または複数枚設けられており、スピンドルモータ(図示せず)により高速回転させられる。
VCM13はマグネット15と駆動コイル16とを有し、VCM駆動回路17から供給される電流により駆動される。
VCM駆動回路17は、VCM13から得られるボイスコイルモータの電圧とボイスコイルモータの電流、及び予め記憶されている駆動コイル16の抵抗値から逆起電力を算出し、A/Dコンバータ19に供給する。すなわち、VCM駆動回路17は、ボイスコイルモータに与える指令電流を所定時間間隔で検出する逆起電力検出手段を含んでいる。
MPU(microprocessor unit)18は、A/Dコンバータ19において取り込んだ逆起電力からヘッド速度を算出し、得られたヘッド速度yと目標とすべきヘッドの目標速度とからVCM13に流すべき指令電流uを一定時間間隔で計算する。目標速度とは所謂ヘッドがランプにアンロードするための理想の速度を指し、例えば、ソフトウェア中のデータベース等から目標速度が与えられる。また実際のヘッド速度は、逆起電力に比例する値である。
MPU18は、計算により得た指令電流をD/Aコンバータ20によりアナログ信号に変換してVCM駆動回路17に与える。
すなわち、MPU18は、前記ヘッド移動手段であるボイスコイルモータに与える指令電流を所定時間間隔で検出する指令電流検出手段と、前記逆電力検出手段から検出される逆起電力から前記ヘッドの速度を所定時間間隔で算出するヘッド速度算出手段とを含んでいる。
さらにVCM駆動回路17はD/Aコンバータ20から与えられた指令電流を駆動電流に変換してVCM13に供給する。
ランプ機構21は、キャリッジ12先端の回転軌道の延長線上に、ディスク14に隣接するように設置される。VCM13によりキャリッジ12がディスク14の外周方向へ回転すると、キャリッジ12の先端に設けられたタブ22は、ランプ機構21に設けられたスロープ23に乗り上げる。以上の動作の結果、ヘッド11はディスク14上からランプ機構21に退避する。
図2は、本第1の実施形態による磁気ディスク装置のランプアンロードシーク装置におけるランプアンロードシーク制御系を示す。このランプアンロードシーク制御系は、制御対象204を除き、たとえばMPU18にソフトウェアとして実装することが出来る。また図2中の、指令電流u、ボイスコイルモータに与えられる電流値であり、ヘッド速度はボイスコイルモータに生じる逆起電力に対応し、前述のようにヘッド速度算出手段により与えられる。
このランプアンロードシーク制御系は、所定時間間隔すなわちサンプル時間Tのディジタル制御系で駆動されている。D/Aコンバータ20で与えられるVCM駆動回路17への指令電流uから、MPU18において算出されるヘッド速度yまでの伝達特性が、制御対象204として表されている。
誤差計算部(速度誤差検出手段)212は、加減算処理部211から出力される、補正されたヘッド速度を示す信号をサンプル時間毎に受け取り、一方、アンロードシーク速度に関連づけられた目標速度データをサンプル時間毎に参照して目標速度データを有する目標速度発生手段から目標速度を取得する。すなわち、サンプル時間毎の各時刻をサンプル時刻としたとき、各サンプル時刻に対応する目標速度を、アンロードシーク速度に関連づけられた目標速度データから読み出す。誤差計算部212は、ヘッド速度と、目標速度との誤差を表す速度誤差信号を生成し(速度誤差算出手段)、生成した速度誤差信号を切り替え処理部203に入力する。切り替え処理部203は、スイッチを含み、同定機構206から出力される切り替え指令信号に従い、スイッチを端子1または端子2に切り替えることで、高ゲイン制御器201および低ゲイン制御器202のいずれかに誤差計算部212で生成された速度誤差信号を入力する。ここで同定機構206は、ボイスコイルモータの抵抗誤差に補正ゲインを加えて、抵抗誤差を最小化することにより、ヘッドを確実にアンロードさせるためのものである。高ゲイン制御器201及び低ゲイン制御器202は、フィードバック制御器と指令手段とを含み、フィードバック制御器ゲインの大きさが異なる、つまりここで、高ゲイン制御器201は最終目標速度に近づける高感度の制御を行い、低ゲイン制御器202は、制御の初期の粗い低感度の制御を行う。すなわち、フィードバック制御器のゲインを2種類備えている。図2ではフィードバック制御器を2種類備えた例を示している。
高ゲイン制御器201もしくは低ゲイン制御器202は、切り替え処理部203から受け取った速度誤差信号から指令電流uを生成し、制御対象204、遅延要素208及び第2の切り替え処理部205に入力する。
第2の切り替え処理部205は、スイッチを含み、同定機構206から受け取った切り替え指令信号に従い、指令電流を同定機構206に入力、もしくは遮断するかを選択する。
遅延要素208は、サンプル時刻毎に受け取った指令電流uを記憶しておき、前サンプル時刻に受け取った指令電流を次回サンプル時刻において補正ゲイン209に入力する。
ボイスコイルモータの抵抗誤差は、その温度により変化し、各温度に適した補正ゲイン209も変るため、最適の補正ゲイン209を同定機構206が決定する。つまり、ヘッドをアンロードさせる際に、抵抗誤差があるとヘッドを正確にランプ上にアンロードさせることができない。そのため抵抗誤差に補正ゲイン209を加える必要があるが、その補正ゲイン209を同定機構206が決める。また、補正ゲイン209の値がまったく未知の制御初期には、低ゲイン制御器202側で粗く補正ゲイン209を決定し、その後、粗く見積もられた補正ゲイン209をもとに、フィードバック制御器を高ゲイン制御器201側に切り替えて、高ゲインの制御、つまりヘッドをランプ機構へアンロードさせるためのシーク制御を行う。
一方、制御対象204は、高ゲイン制御器201もしくは低ゲイン202から受け取った指令電流によって駆動され、制御対象204内のMPUによってヘッド速度が算出される。算出されたヘッド速度は、加減算処理部211及び第3の切り替え処理部207に入力される。加減算処理部211は、受け取ったヘッド速度を示す信号から、第4の切り替え処理部210から受け取るヘッド速度信号の補正信号を、各サンプル時刻において減算し、前述の誤差計算部212に入力する。
第3の切り替え処理部207は、スイッチを含み、同定機構206から受け取った切り替え指令信号に従い、制御対象204から受け取ったヘッド速度を示す信号を、同定機構206に入力、もしくは遮断するかを選択する。また、第4の切り替え処理部210はスイッチを含み、同定機構206から受け取った切り替え指令信号に従い、遅延要素208から受け取った前サンプル時刻における指令電流と、補正ゲイン209を乗算した信号を、加減算処理部211に入力、もしくは遮断するかを選択する。
一方、同定機構206は、第2の切り替え処理部205から受け取った指令電流uと、第3の切り替え処理部207から受け取ったヘッド速度を示す信号から、各サンプル時刻において、補正ゲイン209と、4つの切り替え処理部203、205、207、210に与える切り替え指令信号を生成する。
なお、図2における切り替え処理部205、同定機構206、切り替え処理部207、遅延要素208、補正ゲイン209および切り替え処理部210は、本第1の実施形態では図1に示されるMPU18にロードされているソフトウェア中にある。
図2に示した、本第1の実施形態によるランプアンロードシーク制御装置は、ヘッド速度を目標速度に追従させる速度制御系に、VCM13の駆動コイル16の抵抗値変動による制御対象204の特性変動を同定する、同定機構206を組み合わせた構成となっている。
図2のランプアンロードシーク制御系は、時間の推移に伴って第1段階の動作、第2段階の動作に分かれ、それぞれの動作は同定機構206から出力される切り替え指令信号に従って、切り替え処理部203、205、207、210をそれぞれ切り替えることによって実現される。
ここで、第1段階の動作とは、予測誤差が最小化される前の動作を指し、VCM13の駆動コイル16の抵抗変動によって制御対象204に生じる特性変動を、同定機構206によって同定し、この特性変動を補正する補正ゲイン209を算出する動作である。
また、第2段階の動作とは、第1段階の動作によって算出された補正ケイン209を用いて、ヘッド速度を示す信号を補正し、補正されたヘッド速度信号を用いて、目標速度として与えられるアンロードシーク速度にヘッド速度を追従させ、ヘッド11をランプ機構24上に退避させる動作である。
以下では、制御対象204に生じる特性変動について説明し、この特性変動を同定する同定機構206における本第1の実施形態のランプアンロードシーク制御系の第1段階の動作ついて詳細に説明する。
制御対象204において算出されるヘッド速度は、ヘッド速度とボイスコイルモータの駆動コイル(以下、単に「コイル」と記載)に生じる逆起電力に比例することから、前述のとおり、
逆起電力 = コイルの端子間電圧 − コイル抵抗×コイル電流
から求められる。コイル電流はコイルに流れる電流を表す。従って、ボイスコイルモータの抵抗値(コイル抵抗)が正確に把握されていれば、上記式によって算出される逆起電力、すなわちヘッド速度は正確なものとなる。しかしながら、なんらかの手段によって推定されたコイル抵抗と真のコイル抵抗には、ほとんどの場合誤差が生じる。「なんらかの手段によって推定されたコイル抵抗」、すなわち、ボイスコイルモータの推定抵抗値とは、例えば、ボイスコイルモータの設計上の抵抗値であったり、もしくは、設計上の抵抗値に温度センサにより測定されたボイスコイルモータの温度から推定されるその抵抗変動分を加えた抵抗値をいう。ボイスコイルモータの真の抵抗値を知ることはできないが、以下では、ボイスコイルモータの真の抵抗値と推定抵抗値との誤差を所定時間間隔で推定する手段について説明する。
ここで、この誤差を考慮した上で、VCM駆動回路17によって与えられる指令電流からヘッド速度までの伝達関数を求めると数式(1)となる。
Figure 2011086709
数式(1)において、Kはボイスコイルモータのトルク定数、Jはヘッドを支持するキャリッジの慣性モーメント、Lはコイルのインダクタンス、Rvcmは真のコイル抵抗、Restは推定されたコイル抵抗である。数式(1)においてRvcm−Restが、真の抵抗と推定抵抗との誤差を表す項である。
ここで、図2のランプアンロードシーク制御系のサンプル時間Tが、コイルインダクタンスLの時定数に比べて十分大きい場合、数式(1)をサンプル時間Tのゼロ次ホールドで離散化した伝達特性は、数式(2)で近似することが出来る。
Figure 2011086709
数式(2)に着目すると、右辺第1項目はゲインbの離散系積分となっている。また、右辺第2項目の係数θは、真の抵抗と推定抵抗の誤差によって生じる係数である。数式(2)は、真の抵抗と推定抵抗の誤差が0ならば、制御対象204がゲインbの離散系積分となることを示している。一方で、真の抵抗Rvcmと推定抵抗Restに誤差がある場合、数式(2)の伝達関数は、係数θの値によって図3に示す高周波帯域での周波数特性変動が生じる。なお、図3ではb=1、サンプル時間Ts=350[μs]として周波数応答の計算を行った。
図3に示した高周波帯域での周波数特性変動は、ヘッド速度を目標速度に追従させるランプアンロードシーク制御系の帯域向上を阻害するため、真の抵抗と推定抵抗の誤差、すなわち係数θを0にすることが望ましい。このため、従来の手段では、キャリブレーションシークなどを用いて補正値を算出し、間接的にθ→0とすることが試みられていた。
これに対し、本第1の実施形態においては、数式(2)における係数θを直接求めることを特徴とする。本第1の実施形態において、係数θを求める機構が図2における同定機構206である。以下では、同定機構206における係数θの推定手法(同定手法)について説明する。
まず、制御対象204を表す数式(2)を、未知係数θを考慮して数式(3)のように展開する。
Figure 2011086709
数式(3)において、y(k)はサンプル時間毎の逆起電力(ヘッド速度)を示し、u(k)は同じくサンプル時間毎の指令電流を示す。ここで、数式(3)の離散系積分特性1/(z−1)を、実際の制御対象の低域特性を考慮して、
Figure 2011086709
と置くと、制御対象の出力y(k)は、数式(5)に示す差分方程式で表される。
Figure 2011086709
よって、同定機構206において、サンプル時間(所定時間)間隔で算出される前記ヘ
Figure 2011086709
Figure 2011086709
差、
Figure 2011086709
最小化する手法)を用いて同定することが出来る。逐次同定手法としては、例えば、RLS(Recursive Least Square)や、LMS(Least Mean Square)を用いることが出来る。数式(6)、(7)の逐次同定が終了すれば、数式(3)から明らかなように、真
Figure 2011086709
る。
また、数式(6)では、変動やばらつきが想定されるパラメータである、キャリッジの慣性モーメントやトルク定数が、結果的に未知パラメータとして扱われるため、これらのパラメータも同時に同定されることになる。従って、従来のキャリブレーションよりもロバストな補正値の算出が可能になる。
以上の逐次同定を行うにあたっては、制御対象への入力信号u(k)が多数の周波数成分を含んでいる(PE性を満たす)ことが望ましい。そこで、本第1の実施形態のランプアンロードシーク制御系の第1段階動作(逐次同定動作)においては、誤差計算部212へ入力される目標速度rに、擬似白色雑音もしくは類似のランダム信号を与え、入力信号u(k)のPE性が満たされるようにする。
以下では、予測誤差が最小化される前と判断する信号が与えられる場合(第1段階の動作)は、前記目標速度信号に対して擬似白色雑音もしくは類似のランダム信号を与え、予測誤差が最小化された後と判断する信号が与えられる場合(第2段階の動作)は、前記目標速度信号に対して、任意のランプアンロードシークに必要なヘッド速度を与える。
第1段階動作中は係数θが未知、すなわち制御対象の高域周波数特性が未知の状態であるため、θの値によっては速度フィードバック制御器のゲインが高いと閉ループ系が不安定化する恐れがある。そこで、第1段階動作中においては、θの変動範囲を十分考慮し、フィードバック制御器のゲインを低めに設定することでランプアンロードシーク制御系の安定性を確保しておく。
以上の説明に従えば、予測誤差が最小化される前の第1段階の動作であると判定する信号が与えられると、第1段階の動作において同定機構206は、4つの切り替え処理部203、205、207、210が以下の動作を行うよう、切り替え指令信号を出力する。
切り替え処理部203のスイッチを端子1に接続する。
切り替え処理部205のスイッチを接続する。
切り替え処理部207のスイッチを接続する。
切り替え処理部210のスイッチを開放する。
次に、第1段階の動作終了後の、本第1の実施形態のランプアンロードシーク制御系の第2段階の動作ついて説明する。
Figure 2011086709
小化されたと判定されると、すなわち制御対象204の特性変動を補正する補正ゲイン209の算出が終了すると、予測誤差が最小化された後の第2段階の動作であると判定する信号が与えられ、同定機構206は、4つの切り替え処理部203、205、207、210が以下の動作を行うよう、切り替え指令信号を出力する。
切り替え処理部203のスイッチを端子2に接続する。
切り替え処理部205のスイッチを開放する。
切り替え処理部207のスイッチを開放する。
切り替え処理部210のスイッチを接続する。
第2段階動作においては、フィードバック制御器のゲインは高めに設定される。
以上の4つの切り替え処理部の動作が行われると、図2のランプアンロードシーク制御系は、制御対象204(数式(3))に対して、数式(9)の動作を行うこととなる。
Figure 2011086709
を用いた数式(9)の補正動作によって、制御対象204が理想的な離散系積分特性に近づくことを示している。
補正された制御対象(数式(10))は、図3に示した高域周波数での特性変動が無くなる。従って、第2段階の動作においては、切り替え処理部203のスイッチを端子2に接続し、高ゲイン制御器を用いて速度制御系の帯域を高く設定する。以上の動作によって、ランプアンロードシーク制御で与えられる目標速度に対して、ヘッド速度を良く追従させることが可能となる。
以上が、本第1の実施形態に係るランプアンロードシーク制御装置の基本的な動作である。
以下では、具体例として、本第1の実施形態に係るランプアンロードシーク制御装置の効果を2.5インチ磁気ディスク装置(実機)による実験で検証した結果を示す。
実験検証では、第1段階の動作における逐次同定手法としてRLSを用いた。RLSを使用するにあたり、数式(6)を数式(11)に示すベクトル表記に変換する。
Figure 2011086709
ここで、
Figure 2011086709
である。数式(11)に対するRLSによる未知パラメータベクトルΘの逐次同定は、数式(13)−(15)で与えられる。
Figure 2011086709
ここで、未知パラメータΘと共分散行列Γの初期値は、それぞれ数式(16)のように与えた。
Figure 2011086709
また、逐次同定中にあたえる目標速度rには、図4に示す擬似白色信号を用いた。図4では、擬似白色信号の振幅をaとして正規化し表示した。
数式(13)−(16)の逐次同定がサンプル時間毎に更新されていくと、数式(15)の共分散行列は0に収束し、右辺2項目の共分散更新量に対応する部分も0に収束していく。すなわち、ボイスコイルモータの抵抗値の予測誤差が最小化される。そこで、本第1の実施形態における第1段階の動作から第2段階の動作への切り替え、すなわち補正ゲイン209の同定終了判定は、数式(15)右辺第2項目の共分散行列の更新量が指定した閾値δより小さくなった場合、
Figure 2011086709
によって行うことにする。これが、同定機構206が出力する、切り替え指令信号に対応する。ここで示した実施例以外でも、例えば、未知パラメータΘのサンプル時間毎の変化率が設定した閾値以内に入った場合、数式(14)の予測誤差ε(k)が設定した閾値以内に入った場合など、様々な切り替え指令信号の選択が可能である。
高ゲイン制御器201と低ゲイン制御器202にはPI制御器を用いた。高ゲイン制御器201のPゲイン及びIゲインは、速度制御系の帯域が約250[Hz]、ゲイン余裕が約10[dB]、位相余裕が約40[deg]となるように設定した。また、低ゲイン制御器202は、高ゲイン制御器で設定したP、Iゲインの半分の値に設定した。
以上の設定のもと、ランプアンロードシーク制御を複数回試行し、サンプル時間毎のヘッド速度および第1段階の動作で同定される補正ゲイン209の値を取得した。
なお、本第1の実施形態のランプアンロードシーク制御系の第1段階の動作では、数式(1)のRestは予めなんらかの手段によって推定された値に設定されている。例えば、実際の磁気ディスク装置においては[背景技術]で述べたように、ロードシーク制御前にランプ機構の行き止まり方向にキャリッジを押し付け、逆起電力0として推定したコイル抵抗が設定される。ここでは、ランプアンロードシーク制御の試行回毎にRestに対
Figure 2011086709
ランダムに与えるRestの値域は、実際のコイル抵抗値変動をもとに決定した。
Figure 2011086709
(補正ゲイン209)が同定されることが分かる。また、図6から、第1段階の動作で
Figure 2011086709
制御の目標速度に対して安定に追従出来ており、結果的に第1段階の動作によって同定された補正ゲインが正確であることが確認出来る。
以上の検証結果より、本第1の実施形態のランプアンロードシーク制御系の効果が確認できた。
(第2の実施形態)
次に、本発明による第2の実施形態の磁気ディスク装置のランプアンロードシーク制御装置について説明する。
本発明による第1の実施形態において説明したとおり、本第1の実施形態の磁気ディスク装置のランプアンロードシーク制御装置のランプアンロードシーク制御系の伝達特性は数式(2)によって表され、コイル抵抗変動を表す未知係数θが正確に推定されれば、数式(9)の動作によってランプアンロードシーク制御系を安定に動作させることが出来る。本第1の実施形態においては、数式(1)を数式(5)に展開し、キャリッジの慣性モーメントやトルク定数を未知パラメータベクトルに含めた形式で同定を行った。これに対し、本第2の実施形態では、キャリッジの慣性モーメントやトルク定数は既知でその変動は十分小さいと見なし、数式(1)の未知係数θの推定のみを行う。これによって、本第1の実施形態で必要であった複数の切り替え処理部を減らすことが出来、且つ、推定すべき未知パラメータが1つとなるためパラメータ更新則の計算量も減らすことが出来る。従って、MPU18にソフトウェアとして実装する場合の計算負荷を低減することが出来る。
図7に、本第2の実施形態のランプアンロードシーク制御系を示す。誤差計算部(誤差検出手段)704は、制御対象703から出力される、ヘッド速度を示す信号をサンプル時間毎に受け取り、一方、ランプアンロードシーク速度に関連づけられた目標速度データをサンプル時間毎に参照して目標速度を取得する。すなわち、サンプル時間毎の各時刻をサンプル時刻としたとき、各サンプル時刻に対応する目標速度を、ランプアンロードシーク速度に関連づけられた目標速度データから読み出す。誤差計算部704は、ヘッド速度と、目標速度との誤差を表す速度誤差信号を生成し、生成した速度誤差信号を加算器701に入力する。加算器701は、誤差計算部704から受け取った速度誤差信号と補正ゲイン705から出力される補正信号とを加算して補正された速度誤差信号を生成し、制御器702に入力する。制御器702は、加算器701から受け取った補正された速度誤差信号から指令電流を生成し、制御対象704、遅延要素706に入力する。制御対象703は、制御器702から受け取った指令電流によって駆動され、制御対象703内のMPUによってヘッド速度が算出される。算出されたヘッド速度は、誤差計算部704に入力される。また、遅延要素706は、サンプル時刻毎に受け取った指令電流を記憶しておき、前サンプル時刻に受け取った指令電流を次回サンプル時刻において補正ゲイン705と誤差計算部710に入力する。
一方、モデル707は各サンプル時刻に対応する目標速度を読み出し、モデル出力を生成して誤差計算部710に入力する。誤差計算部710は、モデル707から受け取ったモデル出力と、遅延要素706から受け取った前サンプル時刻における指令電流の誤差信号を生成し、パラメータ調整機構709に入力する。パラメータ調整機構709は、誤差計算部710から受け取った誤差信号に基づき、補正ゲイン705の修正信号と切り替え処理部708への切り替え指令信号を生成し、それぞれを切り替え処理部708に入力する。切り替え処理部708は、パラメータ調整機構709から受け取った切り替え信号指令に基づいて、補正ゲイン修正信号を補正ゲイン705に入力、もしくは遮断するかを選択する。補正ゲイン705は、遅延要素706から受け取った前サンプル時刻における指令電流から補正信号を生成し、加算器701に入力する。ここで、モデル707、誤差計算部710、パラメータ調整機構709および切り替え処理部708は、図2に示したランプアンロードシーク制御系の構成1における「同定機構」を構成する。
図7のランプアンロードシーク制御系は、本第1の実施形態におけるランプアンロードシーク制御系と同様に、時間の推移に伴って第1段階、第2段階の動作に分かれ、それぞれの動作はパラメータ調整機構709から出力される切り替え指令信号に従って、切り替え処理部708を切り替えることによって実現される。
ここで、本第2の実施形態における第1段階の動作とは、本第1の実施形態における第1段階の動作と同様に、制御対象703に生じる特性変動を補正する補正ゲイン705を算出する動作であり、本第2の実施形態における第2段階の動作とは、前記の第1段階の動作によって算出された補正ゲインを用いて、目標速度とヘッド速度の速度誤差を示す信号を補正し、補正された速度誤差信号を用いて、目標速度として与えられるランプアンロードシーク速度にヘッド速度を追従させ、ヘッド11をランプ機構24上に退避させる動作である。ここで、制御対象703は本第1の実施形態のランプアンロードシーク制御系を示す図2の制御対象204と同様である。
以下では、図7のランプアンロードシーク制御系の第1段階の動作ついて詳細に説明する。まず、本第2の実施形態におけるパラメータ調整機構709の動作原理について説明する。
まず、制御対象が数式(2)と同様に、コイル抵抗変動による未知係数θを用いて数式(18)で表されるとする。ボイスコイルの抵抗値の変動が0の場合の前記指令電流から前記ヘッド速度までの制御対象の伝達特性P(z)は理想制御対象モデルとする。
Figure 2011086709
また、図7のモデルG(z)を以下の伝達関数とする。
Figure 2011086709
すなわち、図7に示すように、モデルG(z)は目標速度rから、次式に示すモデル出力zを生成する。つまり、次式が成り立つ。
Figure 2011086709
で計算される。従って、数式(18)−(21)より、図7の誤差計算部710の出力である誤差信号εを計算すると、
Figure 2011086709
となり、εについて変形し直すと、
Figure 2011086709
となる。ここで、z(k)は図7におけるモデル出力である。また、C(z)は、ヘッドの目標速度とヘッド速度の誤差から指令電流を算出するフィードバック制御器の伝達特性である。数式(23)は、所謂、モデル規範型適応制御における誤差方程式となっており、数式(23)の伝達関数部、
Figure 2011086709
が強正実(ベクトル軌跡が複素右半平面に留まる)であれば、適当なパラメータ調整則を用いて、k→∞で、
Figure 2011086709
すなわち、
Figure 2011086709
となり、コイル抵抗変動による未知係数θが推定出来る。
数式(24)の強正実性について考える。数式(24)において制御器C(z)をPI制御器、
Figure 2011086709
制御対象モデルP(z)をb/(z−1)と設定すると数式(24)は、
Figure 2011086709
となり、不安定零点1が生じてしまうため強正実とならない。そこで、制御対象モデルP(z)を高域でb/(z−1)と一致するようなローパス特性を持つ伝達関数、
Figure 2011086709
と選べば数式(24)に不安定零点は生じず強正実化が可能となる。
パラメータ調整則は、数式(24)が強正実であれば、一般的に以下の数式(30)を用いることが出来ることが知られている。
Figure 2011086709
従って、図7のランプアンロードシーク制御系におけるパラメータ調整機構709は、
● 前回のサンプル時間k−1における指令電流uとモデル出力zの誤差ε
● 前々回のサンプル時間k−2における指令電流u
● 調整則ゲインΓ
Figure 2011086709
する。ここで、サンプル時間k−2における指令電流uを式(30)のζ(k)とし、ε(k)として数式(22)を用いると、式(30)は、
Figure 2011086709
サンプル時間前k−1の前記抵抗値変動による真の抵抗値と推定した抵抗値の誤差の推定値を表している。
パラメータ調整機構709は、2段階の動作を行う。すなわち、第1段階の動作は、目標速度rに擬似白色信号を入力し補正ゲイン705を推定する動作であり、第2段階の動作は、補正ゲイン705の推定終了後、目標速度rに所望のランプアンロードシーク速度目標値を与えランプアンロードシーク動作を行う。それぞれの動作の切り替えは、切り替え処理部708によって行う。切り替え処理部708は、パラメータ調整機構709からの切り替え指令に従い、補正ゲイン705のパラメータ調整則のON・OFFを決定する。第1段階の動作では切り替え処理部708はパラメータ調整則をONにし、2段階目の動作ではOFFにする。パラメータ調整則のON・OFFは、サンプル時間k−1における指令電流uとモデル出力zの誤差εが十分小さくなった場合OFFにすれば良い。
以上が、本第2の実施形態のランプアンロードシーク制御系の動作原理である。
以下では、本第2の実施形態の具体例として、計算機シミュレーションによって検証した結果を示す。
まず、制御対象P(z)、コイル抵抗変動が無い場合の制御対象モデルP(z)、制御器C(z)を以下のように決定した。
Figure 2011086709
数式(32)の制御対象はコイル抵抗変動が−0.12〜0.12(Ω)の間で生じるものとし、計算機シミュレーションでは0.02(Ω)間隔で値を変動させた。数式(32)と数式(33)の周波数応答を図8に示す。図中実線は制御対象数式(32)、点線は制御対象モデル数式(33)の特性を示している。コイル抵抗変動が−0.12〜0.12(Ω)によって制御対象の特性は100[Hz]付近から変動していることが分かる。また、制御対象モデルは約10[Hz]から積分特性となっている。
誤差方程式の伝達関数部分である数式(24)を、数式(32)、(33)を用いて計算し、ベクトル軌跡を描くと図9となる。軌跡は複素平面の右半面に留まっており、数式(24)が強正実になっていることが分かる。よって、数式(30)のパラメータ調整則を用いることが出来る。
ランプアンロードシーク制御系のサンプル時間はT=350[μs]とし、調整則ゲインはΓ=3×10−6とした。また、実際の磁気ディスク装置の特性を考慮し、外乱として指令電流uにバイアス力、ヘッド速度yに正規分布のランダムノイズを与えた。
以上の設定の下、図7に示したランプアンロードシーク制御系の動作を、計算機シミュレーションで確認した。
図10は、コイル抵抗変動を−0.12〜0.12(Ω)の間で0.02(Ω)間隔ずつ変動させた場合それぞれのヘッド速度の応答を示している。図中、約10(ms)までの1段階目の動作(擬似ランダム信号を目標ヘッド速度に与える)によってコイル抵抗が推定され、2段階目の動作(目標ヘッド速度0.1(m/s)に追従)が安定に行われている。図11は、コイル抵抗推定の様子を示したものである。それぞれの真のコイル抵抗誤差(図中点線)に対して、推定値(実線)がパラメータ調整則によって調整され、追従していることが分かる。
以上の検証結果より、本第2の実施形態のランプアンロードシーク制御系の効果が確認できた。
11:ヘッド
12:キャリッジ
13:ボイスコイルモータ(VCM)
14:磁気ディスク
15:マグネット
16:駆動コイル
17:VCM駆動回路
18:MPU
19:A/Dコンバータ
20:D/Aコンバータ
21:ランプ機構
22:タブ
23:スロープ
201:高ゲイン制御器
202:低ゲイン制御器
203:第1の切り替え処理部
204:制御対象
205:第2の切り替え処理部
206:同定機構
207:第3の切り替え処理部
208:遅延要素
209:補正ゲイン
210:第4の切り替え処理部
211:加減算処理部
212:誤差計算部
701:加算器
702:制御器
703:制御対象
704:誤差計算部
705:補正ゲイン
706:遅延要素
707:モデル
708:切り替え処理部
709:パラメータ調整機構
710:誤差計算部

Claims (6)

  1. 情報が記録可能なディスクに対して情報の記録再生を行なうヘッドを移動させるボイスコイルモータと、
    前記ボイスコイルモータの逆起電力を所定時間間隔で検出する逆起電力検出手段と、
    前記ボイスコイルモータに与える指令電流を所定時間間隔で検出する指令電流検出手段と、
    前記逆電力検出手段から検出される逆起電力から前記ヘッドのヘッド速度を所定時間間隔で算出するヘッド速度算出手段と、
    前記指令電流検出手段から検出される指令電流と前記ヘッド速度算出手段から算出されるヘッド速度を用いて、前記ボイスコイルモータの真の抵抗値と推定抵抗値との誤差を所定時間間隔で推定する同定機構と、
    を有する磁気ディスク装置のランプアンロードシーク制御装置であって、
    前記同定機構が、
    Figure 2011086709
    Figure 2011086709
    速度予測誤差を最小化する機能を有し、
    かつ、
    Figure 2011086709
    を、前記ボイスコイルモータの真の抵抗値と推定抵抗値との誤差を補正するた
    めの補正ゲインとして用いること、
    を特徴とする磁気ディスク装置のランプアンロードシーク制御装置。
    ここで、数式(A)のy(k−1)は前記ヘッド速度算出手段によって所定時間間隔で算出されるヘッド速度のうち、現在の時間をkとした場合の、1所定時間前のヘッド速度を表し、u(k−1)、u(k−2)は前記指令電流検出手段によって所定時間間隔で検出される指令電流のうち、現在の時間をkとした場合の、1所定時間前および2所定時間前の指令
    Figure 2011086709
    ド速度予測誤差が最小化されることにより決定される未知変数である。
  2. 前記ヘッド速度に対する目標速度を与える目標速度発生手段と、
    Figure 2011086709
    算出する速度誤差算出手段と、
    前記速度誤差から前記指令電流を算出するフィードバック制御器と、
    をさらに備えることを特徴とする請求項1記載の磁気ディスク装置のランプアンロードシーク制御装置。
  3. 前記フィードバック制御器を2つ備える、もしくはフィードバック制御器のゲインを2種類備えることを特徴とする請求項2記載の磁気ディスク装置のランプアンロードシーク制御装置。
  4. Figure 2011086709
    を最小化する過程において、前記ヘッド速度予測誤差が最小化されたことを判断する予測誤差判定手段により、
    前記ヘッド速度予測誤差が最小化される前の第1段階の動作であると判定される場合は、前記2つのフィードバック制御器もしくは2種類のフィードバックゲインのうち、ゲインが低く設定されたフィードバック制御器に前記速度誤差の信号を与えることにより、そして、
    前記ヘッド速度予測誤差が最小化された後の第2段階の動作であると判定される場合は、ゲインが高く設定されたフィードバック制御器に前記速度誤差の信号を与えることにより、
    前記指令電流を算出することを特徴する請求項1記載の磁気ディスク装置のランプアンロードシーク制御装置。
  5. 前記予測誤差判定手段から、予測誤差が最小化される前と判断される場合は、前記目標速度信号に対して擬似白色雑音もしくは類似のランダム信号を与え、
    予測誤差が最小化された後と判断される場合は、前記目標速度信号に対して、任意のランプアンロードシークに必要なヘッド速度を与えることを特徴とする請求項4記載の磁気ディスク装置のランプアンロードシーク制御装置。
  6. 前記抵抗値変動によって生じる誤差を推定する同定機構において、抵抗値変動が0である場合の前記指令電流から前記ヘッド速度までの制御対象の伝達特性P(z)と、前記目標速度と前記ヘッド速度の誤差から前記指令電流を算出するフィードバック制御器の伝達特性C(z)から構成され、数式(B)で表されるモデルG(z)に、現在の時刻kにおける前記目標速度r(k)を入力することによって計算される現在の時刻kにおけるモデル出力z(k)と、1所定時間前の前記指令電流u(k−1)及び2所定時間前の前記指令電流u(k−2)とにより構成される数式(C)によって、前記ボイスコイルモータの抵抗値変動による真の抵抗値と推定した抵抗値の誤差の推定値を算出し、
    数式(C)によって算出された誤差の推定値を、前記逆起電力から前記ヘッド速度を算出する手段において生じる誤差を補正するための補正ゲインとして用いることを特徴とする請求項1記載の磁気ディスク装置のランプアンロードシーク制御装置。
    Figure 2011086709
    の前記抵抗値変動による真の抵抗値と推定した抵抗値の誤差の推定値を表し、Γは任意の正の係数を表し、数式(B)のzは遅延演算子を表す。
    Figure 2011086709
JP2011549840A 2010-01-18 2010-01-18 磁気ディスク装置のランプアンロードシーク制御装置 Pending JPWO2011086709A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050862 WO2011086709A1 (ja) 2010-01-18 2010-01-18 磁気ディスク装置のランプアンロードシーク制御装置

Publications (1)

Publication Number Publication Date
JPWO2011086709A1 true JPWO2011086709A1 (ja) 2013-05-16

Family

ID=44304012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011549840A Pending JPWO2011086709A1 (ja) 2010-01-18 2010-01-18 磁気ディスク装置のランプアンロードシーク制御装置

Country Status (4)

Country Link
US (1) US20120281311A1 (ja)
JP (1) JPWO2011086709A1 (ja)
CN (1) CN102714049A (ja)
WO (1) WO2011086709A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653773B2 (en) * 2012-02-02 2014-02-18 Lexmark Internatonal, Inc. Method for calibrating a drive motor for a toner metering device in an imaging apparatus
US9208808B1 (en) * 2014-04-22 2015-12-08 Western Digital Technologies, Inc. Electronic system with unload management mechanism and method of operation thereof
US9111560B1 (en) * 2015-01-26 2015-08-18 Seagate Technology Llc Dynamic configuration of seek recovery in a disk drive
JP2018156705A (ja) * 2017-03-16 2018-10-04 株式会社東芝 磁気ディスク装置
JP2018156706A (ja) * 2017-03-17 2018-10-04 株式会社東芝 磁気ディスク装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105203A (ja) * 1996-10-01 1998-04-24 Hitachi Ltd フィードフォワード制御システム
JP2009151866A (ja) * 2007-12-20 2009-07-09 Toshiba Corp 磁気ディスク装置、その磁気ディスク装置を用いた電子機器、ヘッドロード・アンロード方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651225B2 (ja) * 2001-05-23 2011-03-16 ルネサスエレクトロニクス株式会社 磁気ディスク記憶装置および磁気ディスク記憶装置の制御方法
JP4180357B2 (ja) * 2002-11-25 2008-11-12 株式会社ルネサステクノロジ 磁気ディスク記憶システム
JP2005304095A (ja) * 2004-04-06 2005-10-27 Renesas Technology Corp モータ駆動用半導体集積回路および磁気ディスク記憶装置
JP2008108291A (ja) * 2006-10-23 2008-05-08 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ装置及びそのヘッド退避方法
JP2009266301A (ja) * 2008-04-24 2009-11-12 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ装置及びディスク・ドライブ装置において落下検知に応じたアンロードを制御する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105203A (ja) * 1996-10-01 1998-04-24 Hitachi Ltd フィードフォワード制御システム
JP2009151866A (ja) * 2007-12-20 2009-07-09 Toshiba Corp 磁気ディスク装置、その磁気ディスク装置を用いた電子機器、ヘッドロード・アンロード方法

Also Published As

Publication number Publication date
US20120281311A1 (en) 2012-11-08
CN102714049A (zh) 2012-10-03
WO2011086709A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
KR100800480B1 (ko) 역기전력 캘리브레이션 방법과 이를 이용한 디스크드라이브의 언로딩 제어 방법 및 디스크 드라이브
US7869157B2 (en) Magnetic disk drive having dual actuator
JP4095839B2 (ja) 二段アクチュエータの位置決め制御装置
WO2011086709A1 (ja) 磁気ディスク装置のランプアンロードシーク制御装置
JP2005135186A (ja) 規範モデル追従型制御システム及び規範モデル追従型制御方法
JPH05266619A (ja) ディスク装置及びその制御方法
KR19980069983A (ko) 개선된 포화 모델링을 사용한 데이터 레코딩 디스크 파일용디지털 서보 제어 시스템
JP5038998B2 (ja) シーク制御装置、およびシーク制御のための制御データ生成方法
JP4807496B2 (ja) ハードディスクドライブのトラック探索制御方法,記録媒体,およびハードディスクドライブ
JP4287442B2 (ja) 磁気ディスク装置およびヘッド位置決め制御方法
KR100594243B1 (ko) 하드디스크 rro 외란 고속 보상 제어 방법 및 장치
US11175163B2 (en) Method and apparatus for calibrating an actuator system
JP4908378B2 (ja) 磁気ディスク装置及び磁気ヘッドの制御方法
US8149533B2 (en) Load/unload control method and apparatus for a magnetic disk drive
JP4864841B2 (ja) 位置決め制御システムおよび位置決め制御方法
US20120075742A1 (en) Magnetic disk device, electronic apparatus and, head control method
JP2006277833A (ja) 突発外乱推定装置及びトラッキング制御装置、並びに、トラッキング制御装置における突発外乱推定方法
JP2008211904A (ja) アクチュエータの電圧制御方法
US11875821B2 (en) Disk device
US8582230B2 (en) Hard disk drive, method for estimating back electromotive force, and method for controlling velocity of head
US20130070368A1 (en) Magnetic disk device and controlling method of head
JP4072138B2 (ja) ディスク装置及びヘッド位置決め制御方法
JPH1116308A (ja) 磁気ディスク装置
JP3668200B2 (ja) ディスク記憶装置及びヘッド位置決め制御方法
JP2004127410A (ja) ディスク記憶装置及びヘッド位置決め制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008