JPWO2011013167A1 - 耐エロージョン性機械部品及び機械部品の表面層形成方法並びに蒸気タービンの製造方法 - Google Patents
耐エロージョン性機械部品及び機械部品の表面層形成方法並びに蒸気タービンの製造方法 Download PDFInfo
- Publication number
- JPWO2011013167A1 JPWO2011013167A1 JP2011524539A JP2011524539A JPWO2011013167A1 JP WO2011013167 A1 JPWO2011013167 A1 JP WO2011013167A1 JP 2011524539 A JP2011524539 A JP 2011524539A JP 2011524539 A JP2011524539 A JP 2011524539A JP WO2011013167 A1 JPWO2011013167 A1 JP WO2011013167A1
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- electrode
- steam turbine
- discharge
- erosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002344 surface layer Substances 0.000 title claims abstract description 129
- 230000003628 erosive effect Effects 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 238000004381 surface treatment Methods 0.000 claims description 7
- 230000010354 integration Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 40
- 238000012545 processing Methods 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 238000012360 testing method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 229910001347 Stellite Inorganic materials 0.000 description 9
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 238000003754 machining Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000005211 surface analysis Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910001040 Beta-titanium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910021535 alpha-beta titanium Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/18—Electroplating using modulated, pulsed or reversing current
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
- C25D5/611—Smooth layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/615—Microstructure of the layers, e.g. mixed structure
- C25D5/617—Crystalline layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/615—Microstructure of the layers, e.g. mixed structure
- C25D5/619—Amorphous layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/625—Discontinuous layers, e.g. microcracked layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/28—Supporting or mounting arrangements, e.g. for turbine casing
- F01D25/285—Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/286—Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/31—Application in turbines in steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49321—Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
すなわち、溶接であれ、ろう付けであれ、部材に別の材料を付ける方法は過度の熱が入るため、部材の変形や強度の低下を避けられない。人手による方法であり、熟練作業が必要である。耐エロージョンの性能が十分には得られない。といった課題が存在する。
この原因としては大きく2点あると考えている。
1点目は、耐エロージョンに適した材料がどのようなものか理論的に未だ解明されていないことである。
水滴や異物の衝突が主原因で発生するエロージョンであるが、硬さが高ければ耐エロージョン性にすぐれているかというと、必ずしもそうとは限らない。いろいろな材料を試行錯誤し、現状、Stellite(登録商標)等の材料が広く使われるようになっている。
2点目は、耐エロージョン性に優れた材料があった場合にも、処理対象の部材につける方法が困難な場合が多いことである。
現在では、様々なコーティング技術が開発され硬質の材料でも表面につけることができるようになってきているが、処理そのものに制約があることが多い。たとえば、蒸気タービンの翼のように大きな部材の場合には、部材そのものを真空装置の中に入れて1つずつ処理を施すのは、工業的には極めて困難である。
具体的には、過度の入熱を避けるべく、材料を付けるときに使用するエネルギの単位を小さくすべく、微小なパルス放電を利用することで、部材への熱の影響を小さくし、変形や強度の低下をできるだけ減らすことができるようにする。
また、熟練に頼るのではなく、機械により自動的に部材への処理を実施できる方法を提供する。
また、蒸気タービン動翼、あるいは、配管部品、あるいは、燃料噴射部品などの耐エロージョン性向上を人手によらず、ばらつきなく行うことができる。
実施の形態1.
Si電極と部材との間にパルス状の放電を発生させ、部材表面に耐エロージョン性の機能を有する組織を形成する放電表面処理方法の概略を図1に示す。
図において、1は固体形状の金属シリコン(Si)電極、2は蒸気タービン翼などの処理対象である部材、3は加工液である油、4は直流電源、5は直流電源4の電圧をSi電極1と部材2との間に印加する(あるいは停止する)ためのスイッチング素子、6は電流値を制御するための電流制限抵抗、7はスイッチング素子5のオンオフを制御するための制御回路、8はSi電極1と部材2の間の電圧を検出し放電が発生したことを検出するための放電検出回路である。
制御回路7によりスイッチング素子5をオンすることで、Si電極1と部材2との間に電圧が印加される。図示しない電極送り機構により、Si電極1と部材2との間の極間距離は適切な距離(放電が発生する距離)に制御されており、しばらくするとSi電極1と部材2との間に放電が発生する。予め電流パルスの電流値ieやパルス幅te(放電持続時間)や放電休止時間t0(電圧を印加しない時間)は設定しておき、制御回路7及び電流制限抵抗6により決定される。
放電が発生すると、放電検出回路8により、Si電極1と部材2との間の電圧の低下とタイミングから放電の発生を検出し、放電発生と検出された時から所定の時間(パルス幅te)後に制御回路7によりスイッチング素子5をオフする。
スイッチング素子5をオフした時から所定の時間(休止時間to)後に再び制御回路7によりスイッチング素子5をオンする。
以上の動作を繰り返し行うことで連続して設定した電流波形の放電を発生させることができる。
また、図1の説明では、電流パルスの波形を矩形波としているが、他の波形でももちろんよい。電流パルスの形により電極をより多く消耗させてSi材料を多く供給したり、電極の消耗を減らすことで材料を有効に使用するなどのことができるが、本明細書の中では詳細は論じない。
しかし安定して本目的にかなう良質のSi含有層を形成するためにはどのようなSiでもよいわけではなく、また、図1の回路にも必要な条件がある。このことについて、後ほど詳細に説明する。
シリコンを放電加工の電極として用い、被加工物表面にアモルファス合金層若しくは微細な結晶構造をもつ高耐蝕、高耐熱特性の表面層を形成する手法が日本国特公平5-13765号公報に開示されている。
そのため、電圧を印加している3μsの期間において、放電が電圧パルスのどこで発生するかは全て異なり、実際の放電継続時間である電流が流れる電流パルス幅が逐次変化し、安定した皮膜形成は難しくなる。
なお、図では、放電の電圧は一定、電流も一定としているが、実際には電圧は変動するし、電流も変動する。また、Siのような高抵抗の材料を電極とした場合には、Siでの電圧降下分も含んだ電圧になるため、電圧は高く、また、変動も大きくなる。
該公報では、固有抵抗値0.01Ωcm程度の高抵抗材料であるシリコンを用い、非常に小さな電流パルスの条件を使用している。
そのため、放電のアーク電位を検出することで放電発生を検出する従来の制御方式では、電極が高抵抗材料である場合の放電発生時には、Si電極に電流が流れた場合の電圧降下の電圧が放電のアーク電位に加わった値となり、電圧降下の電圧が高い場合には、放電が発生しているにもかかわらず、回路は放電が発生したと認識できないからである。
この問題もSiが高抵抗であることに起因している。
例えば、図4に示すように電極の抵抗値Rは抵抗率をρ、面積をS、長さをLとすると、R=ρ・L/Sとあらわされる。
しかし電極への給電の方法、すなわち、電極の保持方法により、ρが大きい場合にはRの値は大きくばらつくことになってしまう。
従来では、ρ=0.01Ωcmのシリコンを電極として使用しているが、これくらいの高抵抗の材料の場合には、無条件で処理ができるわけではない。例えば、Si電極が長く、一方の端をつかんで給電する場合には、電極が長い場合には、電極の抵抗が高く、短くなるに従い抵抗が低くなる。電極が長く抵抗が高い場合には、上述のように放電を検出できず、異常なパルスが発生する確率も高くなるし、異常が発生しない場合でも抵抗が高いため、放電の電流値が低くなる。
また、このような異常な放電が起きる条件は、ほぼ、給電位置と放電の位置、すなわち、電極の長さによって決まり、電極の面積(太さ)にはあまり関係ないことがわかった。
これは、電流が電極内を流れる際に電極の断面全体を均一に流れるのではなく、ある細い経路を流れるからであると推測できる。したがって、0.01Ωcm以上の抵抗率のシリコンを電極として用いても放電が発生する位置と給電点を近くすれば安定した放電を発生させることは可能になる。例えば、1mm程度の板状のシリコンを金属に接合して給電すれば、抵抗値が0.05Ωcm程度でも安定した放電は可能であった。しかし、0.01Ωcmの電極でも数10mm程度以上、例えば100mm程度の長さになると、異常な放電が発生する場合があり、安定した処理は困難であった。
・シリコンを電極として油中でのパルス放電を利用して部材の表面にSiを含む表面層を、工業的に使用に耐えるように10μm程度の厚みで高速に形成するためには、抵抗の低いSiを用い、図1、図2に示したような放電のパルス幅(放電電流パルス)を制御(ほぼ同じパルス幅にそろえる)する方式の回路を使用しなければならない。
すなわち、極間に印加する電圧が低下したことにより放電が発生したと認識し、その放電が発生したと認識した時点から所定の時間(パルス幅te)経過した後に電圧の印加を停止(すなわち放電を停止)させる電源により、Siを電極として部材表面にSiを含む表面層を形成する際に、放電が発生した際の抵抗体であるSi電極での電圧降下を含んだ極間電圧が、放電検出レベルよりも低くなる状態で処理を行えばよい。
放電検出レベルを高く設定すれば、Siの抵抗がやや高くても放電が発生した場合には放電検出レベルを下回りやすくなる。すなわち、Siの抵抗値が低い場合には、電極が長くともよく、Siの抵抗値が高い場合には、Siの長さを短くして、放電が発生した場合の極間電圧が放電検出レベルよりも低くなるようにすればよい。放電検出レベルは、電源電圧よりも低く、アークの電位よりも高く設定すればよいが、以上の説明から、電源電圧よりもわずかに低いレベルに設定するのがよい。
発明者らの実験では、電源電圧よりも10V〜30V程度低い値に設定することが実用上もっとも汎用性があることがわかった。より厳密には、10V〜20V程度電源電圧よりも低い値とするのが使用できるSiにも幅ができて都合がよかった。
図6はSiを含む表面層の分析結果である。上段左写真がSi表面層断面のSEM写真、上段中がSiの面分析結果、上段右はCrの面分析結果、下段左はFeの面分析結果、下段右(中)はNiの面分析結果である。
また、この結果からある程度の厚みがある表面層になっているが、Si表面層はSiが母材の上にのっているのではなく、Siが母材と一体化しており、母材にSiが高濃度で浸透したような状態の表面層になっていることがわかる。この表面層はSiの含有量を増した鉄基金属組織であり、被膜という表現は適切ではないため、以下簡単のため、Si表面層と呼ぶことにする。
なお、この表面層は、成分分析により母材よりわずかでもSi量が増加した部分を、表面層と定義することとする
このような状態であるので、表面層は他の表面処理方法とは異なり被膜が剥離することはない。この表面層について調べた結果、ある条件を満たす場合には極めて高い耐エロージョン性があることがわかった。エロージョンとは、部材に水などがあたり浸食する現象であり、水や蒸気の通る配管部品、あるいは、蒸気タービンの動翼などの故障の原因となる現象である。耐エロージョンのための技術としては、前述のように様々な先行技術があるが、それぞれが問題を有している。
本実施の形態の耐エロージョン性能について以下に試験結果を説明する。
図7は耐エロージョンの評価として試験片にウォータージェットを当てて浸食の様子を比較した試験の概略である。
ウォータージェットは200MPaの圧力で当てた。試験片としては、1)ステンレス基材、2)ステライト(一般的に、耐エロージョン用途に使用される材料)、3)放電によるTiC皮膜、4)本発明によるSiの多い表面層をステンレスに形成したもの、の4種類を使用した。
3)の皮膜は、国際公開番号WO01/005545に開示されている方法により形成したTiC皮膜であり、高い硬さを持っている被膜である。
それぞれの試験片に10秒間ウォータージェットを当て、試験片の浸食をレーザー顕微鏡により測定した。
図8に示される如く、ステンレス基材では10秒間ウォータージェットを当てた場合に約100μmの深さまで浸食されている。
それに対し、図9に示される如く、ステライト材では、浸食の様子が異なるものの、深さは60〜70μm程度であり、ステライト材での耐エロージョン性がある程度確認できた。
図10は、硬さの非常に高いTiC被膜の結果であるが、約100μmの深さまで浸食されており、耐エロージョンが表面の硬さだけによるのではないことがわかる結果となった。
この表面層の硬さは約800HV程度(表面層の厚みが薄いため荷重10gとしてマイクロビッカース硬さ計で測定した。硬さの範囲は、おおよそ600〜1100HVの範囲であった)であり、1)に示されるステンレス基材(350HV程度)や、2)に示されるステライト材(420HV程度)に比べると高いものの、3)に示されるTiC皮膜(約1500HV)に比べると硬さは低い。
すなわち、耐エロージョン性は硬さだけでなく、他の性質も合わせた複合的な効果であることがわかる。
それに対して本実施の形態における4)の被膜は別の試験により靭性があり、変形にも耐えられる表面になっており、その点が高い耐エロージョン性を示す原因であると推察している。実験的には、薄板表面にTiC皮膜とSi表面層を形成し、折り曲げ試験を行なった場合、TiCにはクラックがすぐに入るが、Si表面層には入りにくかった。
先行技術である日本国特公平5-13765号公報では、Siの被膜について研究され、高い耐食性は明らかとされたにもかかわらず耐エロージョン性については発見できなかったのは表面層を厚くできなかったことが大きな原因の1つであると推察できる。
耐エロージョンの場合には、水などのエロージョンの原因となる物質の衝突する速度にもよるが、5μm以上の表面層のあることが望ましい。もちろん衝突する物質の速度が遅い場合には2〜3μm以上であれば十分効果を発揮する場合もある。
ウォータージェットが当たった場所が少し磨かれた状態になり判別はできるが、ほとんど磨耗はしていないことがわかる。
以上より、本実施の形態の表面層の高い耐エロージョン性が確認できた。
図13には、各処理条件に対し、その条件の放電パルスのエネルギーに相当する値である放電パルスの電流値の時間積分の値(A・μs)(矩形波であれば、電流値ie×パルス幅te)、その処理条件でのSi表面層の厚み、Si表面層のクラックの有無を示している。
処理条件は、横軸に電流値ie、縦軸にパルス幅teとして、その値の矩形波の電流パルスを使用した。この試験に使用した基材はSUS630である。
また、Si電極はρ=0.01Ωcmのものを使用し、放電パルスが正常に発生する範囲のサイズの電極を作成し、試験を行なった。
例えばステンレス鋼と呼ばれる材料の中でも、SUS304のような固溶体である材料は比較的クラックが入りにくく、SUS630のような析出硬化型の材料では若干クラックが入りやすい傾向がある。蒸気タービンには一般的にSUS630等の析出硬化型のステンレス鋼が用いられるので、クラックの入らない望ましい範囲はSUS304のようなオーステナイト系のステンレス鋼よりは狭くなる。
図13からわかるように、Si表面層の厚みも放電パルスのエネルギー相当量である放電電流の時間積分値と相関があり、放電電流の時間積分値が小さいと厚みが小さくなり、放電電流の時間積分値が大きいと厚みも大きくなることがわかる。
ここで言うところの厚みはすなわち放電のエネルギーで溶融し、電極成分であるSiが進入した範囲のことを言っている。
熱の影響の範囲は放電パルスのエネルギーの大きさ相当量である放電電流の時間積分値の大きさで決まるが、進入するSiの量は放電の発生回数も影響する。放電が少ない場合には当然のことながらSiが十分に進入できないので、Si表面層のSiの量は少なくなる。逆に十分以上に放電が発生してもSi表面層のSi量はある値で飽和し、それ以上は増加しなくなる。
Si量が少ない場合には、後述するようなSi表面層の効果は十分に得られなくなる場合がある。Si量は十分にSi表面層にSiが入った場合で、3〜11wt%であった。より安定して形成したSi表面層では6〜9wt%であった。ここで言うSi量は、エネルギー分散型X線分光分析法(EDX)により測定した値であり、測定条件は、加速電圧15.0kV、照射電流1.0nAである。またSi量は、表面層の中でほぼ最大の値を示した部分の数値である。
逆にSi量を多くするには、パルス幅teを長くすることが必要になり、パルス幅が長くなるとその条件により面の凹凸がやはり大きくなることがわかった。
Si量を11wt%以上にしようとすると面の凹凸が大きくやはりダメージの起点になる部分が増えることがわかった。
以上より、Si表面層のSi量は、3〜11wt%より望ましくは6〜9wt%であることがわかった。以上のような効果が得られる範囲のSi表面層では硬さが、600HV〜1100HVであった。
Si電極での同一処理条件での処理を時間毎に変えて行い、Si表面層の表面(図14)、及び、Si表面層の断面(図15)の様子を観察したものである。
すべての処理を処理条件一定で行なっているので、処理条件はすなわち発生した放電の回数の比とほぼ同じと考えてよい。すなわち、処理時間が短い場合には放電回数が少なく、処理時間が長い場合には放電の回数が多いことになる。(ただし、処理時間は休止時間などの条件により変わるため、同一放電パルス数を発生させるためには、休止時間が変化すれば必要な処理時間はかわる。)
図に示したSi表面層の処理時間は3分、4分、6分、8分である。図から以下のことが言える。
処理時間が短い場合(3分)ではまだ面の凹凸が多く、表面に小さな突起状の部分が存在するのが観察される。(図示は省略するが、より短いとさらに突起状の部分が多く、処理時間3分が突起が目立たなくなってきている境界である)
処理時間を増していくと、これらの凹凸、突起が少なくなり平滑になっていく様子がわかる。
一方断面写真を見ると、処理時間3分から8分までの断面で、Si表面層の厚みはほとんど変化のないことがわかる。それぞれの被膜のSi量を分析すると、処理時間3分の被膜が約3wt%、処理時間4分の被膜が約6wt%、処理時間6分の被膜が約8wt%、処理時間8分の被膜が約6wt%であった。処理時間が短い場合にはSiが十分に表面層に入っていないが、ある程度処理時間が経過(この条件では4分)するとSiがほぼ十分に入り、面が平滑になることがわかった。以上より、Siが少ないと面の平滑性が悪く、3wt%以上は必要であり、より望ましくは6wt%以上必要なことがわかる。
なお、エロージョンには大きく2つのモードがあり、1つは水の衝撃で大きく抉り取られるモード、もう1つは水が強く当たり表面を流れる際に表面を引っかき削りとるモードである。
図16は厚さ3μmのSi表面層にウォータージェットを200MPaで60秒当てたときにSi表面層が破壊された結果である。細かく剥ぎ取られたような痕は見えないものの、大きく抉り取られるように破壊されていることがわかる。これは、水の衝突により擦り取られた傷ではなく、ウォータージェットで大量の水を当てているための衝撃にSi表面層が耐えられずに破壊された結果であると考えられる。すなわち、Si表面層が4μm以下と薄い場合には、水が強く当たり表面を流れる際に表面を引っかき削りとるモードに対しては効果があるが、水の衝撃で大きく抉り取られるモードに対しては、効果が少ないということを示している。
また、図17は耐エロージョン性が高いとされる材料であるステライトNo6単体であり、90MPaのウォータージェットを60秒当てた場合の結果である。図では、水が強く当たり表面を流れる際に表面を引っかき削りとるモードを示している。
図に示されるように、Si表面層の厚さが4μm以下では蒸気タービンで水滴がタービン翼に衝突する速度相当である音速程度の速度でウォータージェットを当てた場合には、Si表面層が薄いと被膜が耐えられず、表面が破壊される現象が高い確率で発生することがわかった。
Si表面層の厚みが薄いと衝撃に弱く、厚いと衝撃に強い理由は以下のように推察している。すなわち、Si表面層が薄い場合には、衝撃を受けていると歪が基材に徐々に蓄積され最後に母材の粒界から破壊が発生するが、Si表面層が厚い場合には、歪が母材に達しにくく基材が守られる一方で、Si表面層は非晶質に近い組織であるため粒界がなく粒界での破壊に至らないということである。
この観点で、Si表面層を厚くするためには、放電パルスのエネルギーを大きくする必要があり、5μm以上にするためには、放電パルスのエネルギーは30A・μs以上である必要があることがわかった。
表面にクラックが入ると耐エロージョン性が著しく低下することがわかった。図19はウォータージェットを当てることでクラックが進展した様子を示している。さらに継続するとある範囲で大きく被膜が破壊される。80A・μsのエネルギーのパルス条件で処理した場合に膜厚は10μm程度になり、これが事実上の耐エロージョン用途のSi表面層の上限値になることがわかった。
クラックの観点で、Si表面層の膜厚と耐エロージョン性との関係を図示すると、図20のようになる。図18と図20をあわせると、Si表面層の膜厚と耐エロージョン性との関係は図21のようになることがわかった。
一方で、表面のクラックを防止するためには、放電パルスのエネルギーは80A・μs以下であることが必要であり、そのためSi表面層は10μm以下となる。
すなわち、耐エロージョン性を有するSi表面層を形成するための条件は被膜厚さが5μm〜10μmの厚みの被膜であり、そのための放電パルスのエネルギーが30A・μs〜80A・μsである。そのときの被膜硬さは、600HV〜1100HVの範囲である。
さらに、Si表面層は、通常の高い被膜(例えば前述のTiC被膜やPVD、CVDなどによる硬質被膜)が靭性が低く、わずかな変形により被膜が破壊されてしまうのに対し、Si表面層は靭性が高く変形を加えてもクラックなどが入りにくい性質を持っていることも高い耐エロージョン性の原因の1つであると考えている。さらに、Si表面層の結晶構造にも影響していると考えている。本発明の範囲の条件で形成したSi表面層のX線回折結果を図22に示す。図では基材のSUS630とその上にSi表面層を形成した場合の回折像を示している。Si表面層の回折像を見るとわかるように基材のピークは見えるものの、非晶質(アモルファス)組織の形成が認められる幅広いバックグラウンドが観察される。すなわちSi表面層は非晶質になっており、そのため通常の材料で発生しやすい結晶粒界での破壊がおきにくいと考えることができる。
なお、これ以降のアプリケーション技術では、これまで述べてきた基本技術を実際の用途に適用する技術について述べるので、以後の説明の中では繰り返さないが、今まで説明した技術を使用することが前提であることを断っておく。
図において、11はSi電極、12は被処理部材である蒸気タービン動翼、13は蒸気タービン動翼12の表面に形成されたSiを含む表面層である。蒸気タービン動翼12は図示しない治具により位置決めされ、固定される。
実際の加工に際しては、根元のツリー部分を固定すれば安定して固定することができる。
放電による表面層形成の際には、放電する部分は油中に浸漬する必要があるので、図示しない治具も油を貯めるための加工槽内に設置するのが実用上は便利である。
蒸気タービンの場合エロージョンが起きるのは前述の特許文献にも説明があるように動翼の前縁部などの部分である。
Siは長時間放電しても相手部材(タービン動翼)にダメージを与えないので、放電により形状をならわせてもよい。従来の溶接や溶射あるいはろう付けによる別の材料の付着処理では入熱が大きく部材が変形してしまうが、本放電表面処理による方法では、変形がほとんどないため、部材の形状に合わせた電極ができればそのまま繰り返し使用することができる。
よって、従来の方法が人手による熟練の必要な方法であったのに対し、本実施の形態では、作業を機械が行うため、人によらず安定した処理ができる。
そのような場合には、図24のように薄い電極を作り、電極を処理進行に従い走査することで必要な部分全体に処理を行うこともできる。
蒸気タービン動翼の前縁部は湾曲しているため、同一の形状の電極で走査するだけでは電極形状が動翼断面の形状に合わないが、電極の厚みを薄くすることで電極の消耗を促進させ、形状にならいやすくすることができる。
電極と電極の間の隙間は電極を電極間の間隙部分以上、わずかに移動させながら処理することで、隙間なく被膜を形成することができる。
例えば、配管内部の流体が強く当たる部分やキャビテーションを生じやすい形状の部分などには、同様の方法で処理することができる。このような用途には、他に燃料の噴射部品などがある。
Claims (10)
- 加工液中に耐エロージョン性機械部品を配置し、所定間隔離間したSi電極との間で放電を発生させることで前記Si電極からSi成分を部材側に供給することで形成された表面層を有する耐エロージョン性機械部品であって、
該表面層は、Siの含有量を3〜11wt%とした鉄基金属組織を5〜10μmの厚さで形成されたことを特徴とする耐エロージョン性機械部品。 - Si含有の鉄基金属組織が、600HV〜1100HVの範囲の硬さで、非晶質である部分を含むことを特徴とする請求項1記載の耐エロージョン性機械部品。
- 耐エロージョン性機械部品は、翼の前縁部分、あるいは、エロージョンが発生しやすい部分の表面に表面層が形成された蒸気タービン部品であることを特徴とする請求項1または2に記載の耐エロージョン性機械部品。
- 加工液中に部材を配置する工程と、該部材に対し、Si電極を所定間隙離間して配置し、所定の電圧を印加して放電を発生させることで前記Si電極からSi成分を部材側に供給し、Si含有表面層を形成する工程からなる表面層形成方法であって、
放電パルスの電流値の時間積分の値が30A・μs〜80A・μsの範囲である放電パルスを繰り返し発生させることで、被処理部分にSiの含有量が3〜11wt%となる鉄基金属組織を5〜10μmの厚さで形成することを特徴とする機械部品の表面層形成方法。 - 表面層形成に使用するSi電極は、0.01Ωcm以下の比抵抗を有する部材を選定することを特徴とする請求項4に記載の機械部品の表面層形成方法。
- 加工液中に蒸気タービンを配置する工程と、該蒸気タービンの耐エロージョン性処理部分に対し、Si電極を所定間隙離間して配置し、所定の電圧を印加して放電を発生させることで前記Si電極からSi成分を前記蒸気タービンの耐ロージョン性処理部分側に供給し、Si含有表面層を形成する工程からなる表面層形成方法であって、
放電パルスの電流値の時間積分の値が30A・μs〜80A・μsの範囲である放電パルスを繰り返し発生させることで、被処理部分にSiの含有量が3〜11wt%となる鉄基金属組織を5〜10μmの厚さで形成することを特徴とする蒸気タービンの製造方法。 - 蒸気タービンの耐エロージョン性処理部分は、翼の前縁部分であることを特徴とする請求項6に記載の蒸気タービンの製造方法。
- 前記Si電極は、蒸気タービン翼の被処理部分にあわせ、走査しつつ放電表面処理工程を行うことで、前記蒸気タービン翼の被処理部分表面にSiを含む表面層を形成することを特徴とする請求項6に記載の蒸気タービンの製造方法。
- 前記Si電極は、蒸気タービン翼の被処理部分を分割した複数の電極で形成され、それぞれに独立して電圧を印加するとともに、該Si電極をわずかに移動させながら処理することで前記蒸気タービン翼の表面にSiを含む表面層を形成することを特徴とする請求項6に記載の蒸気タービンの製造方法。
- 表面層形成に使用するSi電極は、0.01Ωcm以下の比抵抗を有する部材を選定することを特徴とする請求項6乃至9の何れかに記載の蒸気タービンの製造方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/003543 WO2011013167A1 (ja) | 2009-07-28 | 2009-07-28 | 耐エロージョン性機械部品及び機械部品の表面層形成方法並びに蒸気タービンの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011013167A1 true JPWO2011013167A1 (ja) | 2013-01-07 |
JP5423795B2 JP5423795B2 (ja) | 2014-02-19 |
Family
ID=43528850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011524539A Active JP5423795B2 (ja) | 2009-07-28 | 2009-07-28 | 耐エロージョン性機械部品及び機械部品の表面層形成方法並びに蒸気タービンの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120128502A1 (ja) |
JP (1) | JP5423795B2 (ja) |
CN (1) | CN102471893B (ja) |
DE (1) | DE112009005100T5 (ja) |
WO (1) | WO2011013167A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012035581A1 (ja) * | 2010-09-16 | 2012-03-22 | 三菱電機株式会社 | 放電加工による表面層形成方法及び該表面層 |
CN113275847B (zh) * | 2021-05-27 | 2022-06-24 | 中国科学院工程热物理研究所 | 一种船用螺旋桨及其多合金复合制造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6224916A (ja) | 1985-07-22 | 1987-02-02 | Masahiko Suzuki | 放電加工による表面層の形成方法 |
JPH031592A (ja) | 1989-05-29 | 1991-01-08 | Nec Ibaraki Ltd | はんだ付着防止用カバーの取付方法 |
JP3001592B2 (ja) | 1989-10-30 | 2000-01-24 | 中部電力株式会社 | タービン部品 |
US4965139A (en) * | 1990-03-01 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Corrosion resistant metallic glass coatings |
JPH10280907A (ja) * | 1997-04-07 | 1998-10-20 | Mitsubishi Heavy Ind Ltd | 蒸気タービン動翼 |
CH695188A5 (de) | 1998-05-13 | 2006-01-13 | Mitsubishi Electric Corp | Elektrode fur Funkenerosionsoberflochenbehanlung, Verfahren zur Herstellung derselben, Verfahren zur Funkenerosionsoberflochenbehandlung und Vorrichtung hierfur. |
WO2001005545A1 (fr) | 1999-07-16 | 2001-01-25 | Mitsubishi Denki Kabushiki Kaisha | Electrode pour traitement de surface par decharge et procede de production de celle-ci |
US6808604B1 (en) | 1999-09-30 | 2004-10-26 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment electrode, manufacturing method thereof and discharge surface treating method |
WO2001055481A1 (fr) | 2000-01-24 | 2001-08-02 | Mitsubishi Denki Kabushiki Kaisha | Alimentation electrique pour traitement de surface par decharge et procede de traitement de surface par decharge |
DE10126896A1 (de) * | 2000-12-23 | 2002-07-11 | Alstom Switzerland Ltd | Schutzbeschichtigung für ein thermisch belastetes Bauteil, insbesondere Turbinenbauteil |
CA2483528C (en) | 2002-10-09 | 2015-07-21 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Rotating member and method for coating the same |
WO2004113587A1 (ja) | 2003-06-10 | 2004-12-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | 金属部品、タービン部品、ガスタービンエンジン、表面処理方法、及び蒸気タービンエンジン |
CA2676135C (en) | 2003-06-10 | 2011-08-02 | Mitsubishi Denki Kabushiki Kaisha | Turbine component, gas turbine engine, production method of turbine component, surface treatment method thereof, blade component, metal component and steam turbine engine |
JP2005214147A (ja) * | 2004-01-30 | 2005-08-11 | Ishikawajima Harima Heavy Ind Co Ltd | ノーズコーン、ファン・モジュール、及びコーティング方法 |
JP2006070297A (ja) | 2004-08-31 | 2006-03-16 | Toshiba Corp | 蒸気タービン部材の耐食、耐摩耗コーティング方法及びこの方法によりコーティングされた蒸気タービン部材 |
US7575418B2 (en) | 2004-09-30 | 2009-08-18 | General Electric Company | Erosion and wear resistant protective structures for turbine components |
JP5059448B2 (ja) * | 2007-02-28 | 2012-10-24 | 三菱電機株式会社 | 燃料電池用セパレータおよび燃料電池 |
JP5240168B2 (ja) * | 2009-11-11 | 2013-07-17 | 三菱電機株式会社 | 蒸気タービン及び蒸気タービンの表面層形成方法、並びに蒸気タービンの表面層補修方法 |
JP5177121B2 (ja) * | 2009-11-11 | 2013-04-03 | 三菱電機株式会社 | 機械部品の補修方法 |
-
2009
- 2009-07-28 DE DE112009005100T patent/DE112009005100T5/de not_active Withdrawn
- 2009-07-28 JP JP2011524539A patent/JP5423795B2/ja active Active
- 2009-07-28 US US13/387,493 patent/US20120128502A1/en not_active Abandoned
- 2009-07-28 WO PCT/JP2009/003543 patent/WO2011013167A1/ja active Application Filing
- 2009-07-28 CN CN200980160703.8A patent/CN102471893B/zh active Active
-
2015
- 2015-04-06 US US14/679,098 patent/US9359682B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE112009005100T5 (de) | 2012-09-13 |
CN102471893B (zh) | 2014-03-12 |
CN102471893A (zh) | 2012-05-23 |
US20150211137A1 (en) | 2015-07-30 |
US9359682B2 (en) | 2016-06-07 |
JP5423795B2 (ja) | 2014-02-19 |
US20120128502A1 (en) | 2012-05-24 |
WO2011013167A1 (ja) | 2011-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nguyen et al. | Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining | |
Kumar et al. | An experimental study on trim cutting operation using metal powder mixed dielectric in WEDM of Nimonic-90 | |
JP5423795B2 (ja) | 耐エロージョン性機械部品及び機械部品の表面層形成方法並びに蒸気タービンの製造方法 | |
Rao et al. | Influence of machining parameters on electric discharge machining of maraging steels–An experimental investigation | |
Reddy et al. | Experimental investigation and optimization of WEDM process parameters for Ti50Ni48Co2 shape memory alloy | |
Mardi et al. | Studies on non-traditional machining of metal matrix composites | |
Özdemir et al. | An investigation on machinability of nodular cast iron by WEDM | |
JP5240168B2 (ja) | 蒸気タービン及び蒸気タービンの表面層形成方法、並びに蒸気タービンの表面層補修方法 | |
JP5177121B2 (ja) | 機械部品の補修方法 | |
Rao et al. | Surface modification by electro-discharge machining using powder metallurgy electrode: a review | |
JP4816832B1 (ja) | 放電加工による表面層形成方法及び該表面層 | |
WO2010134129A1 (ja) | 表面層形成方法及び耐エロージョン部品の製造方法並びに蒸気タービン翼 | |
JP4900539B1 (ja) | 放電表面処理方法 | |
Gholipoor et al. | Experimental investigation of recast layer, heat affected zone and corrosion resistance in WEDM of Inconel 617 | |
De Silva et al. | Surface effects on alloys drilled by electrochemical are machining | |
Radek et al. | Investigations of the Cu-Mo and Cu-Ti electrospark coatings after laser treatment | |
Parshad et al. | THE COMPARATIVE EFFECT OF WIRE ELECTRODES ON WIRE BREAKAGE FREQUENCY AND CUTTING RATE IN WEDM OF INCONEL 706. | |
Yu et al. | Surface integrity in electrical discharge machining of Ti-6Al-4V | |
UA127313C2 (uk) | Спосіб імпульсного плазмово-іскрового легування поверхні деталей з формуванням наноструктурних шарів | |
Kovalenko et al. | Erosion of Co-Cr-W alloy and coating on its basis under the action of cavitation | |
Verbiţchi | New variants of the overlaying processes | |
Houriyeh | Enhancing electrical discharge machining performance through employment of titanium nanopowder mixed dielectric and severe plastic deformation of electrode/Houriyeh Marashi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131111 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5423795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |