JPWO2010053097A1 - 成形品 - Google Patents

成形品 Download PDF

Info

Publication number
JPWO2010053097A1
JPWO2010053097A1 JP2010510601A JP2010510601A JPWO2010053097A1 JP WO2010053097 A1 JPWO2010053097 A1 JP WO2010053097A1 JP 2010510601 A JP2010510601 A JP 2010510601A JP 2010510601 A JP2010510601 A JP 2010510601A JP WO2010053097 A1 JPWO2010053097 A1 JP WO2010053097A1
Authority
JP
Japan
Prior art keywords
layer
laminate
gas barrier
compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010510601A
Other languages
English (en)
Other versions
JP4554726B2 (ja
Inventor
柴田 学
学 柴田
尾下 竜也
竜也 尾下
航 廣瀬
航 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Application granted granted Critical
Publication of JP4554726B2 publication Critical patent/JP4554726B2/ja
Publication of JPWO2010053097A1 publication Critical patent/JPWO2010053097A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D29/00Sacks or like containers made of fabrics; Flexible containers of open-work, e.g. net-like construction
    • B65D29/02Sacks with laminated or multiple walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • C09D183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Bag Frames (AREA)
  • Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Closures For Containers (AREA)

Abstract

本発明の成形品は、縦製袋充填シール袋、容器用蓋材および真空包装袋からなる群より選ばれるいずれか1つの成形品である。その成形品は、ガスバリア性積層体を用いて形成されている。ガスバリア性積層体は、基材と基材に積層された少なくとも1つのガスバリア性を有する層とを含む。その層は、化合物(L)の加水分解縮合物と、カルボキシル基またはカルボン酸無水物基を含有する重合体(X)の中和物とを含む組成物からなる。化合物(L)は、加水分解性を有する特性基が結合したM1(Al、Ti、またはZr)を含有する化合物(A)と、加水分解性を有する特性基が結合したSiを含有する化合物(B)とを含む。重合体(X)の−COO−基の少なくとも一部は2価以上の金属イオンで中和されている。化合物(B)の80モル%以上は、所定の式で表される化合物である。[化合物(A)のM1のモル数]/[化合物(B)のSiのモル数]の比は、0.1/99.9〜35.0/65.0の範囲にある。

Description

本発明は、縦製袋充填シール袋(たとえば、液体、粘稠体、粉体、固形バラ物、またはこれらを組み合せた食品や飲料物などを包装するための縦製袋充填シール袋など)、容器用蓋材(たとえば、カップ状容器やトレー状容器に適した蓋材など)、および真空包装袋(たとえば、軸付きコーン(とうもろこし)、豆類、筍、芋、栗などの固形分を含む食品を包装する真空包装袋など)から選ばれるいずれか1つの成形品に関する。
現在、様々な物品を輸送したり保存したりするために、袋や容器が用いられている。それらの袋や容器においては、それらの袋や容器を構成する材料の特性が、輸送のしやすさや内容物の保存性に大きな影響を与える。
縦型製袋充填機は、包装材(多層体)からの製袋と、袋への内容物の充填とを行う機械である。縦型製袋充填機は、色々な食品や飲料の充填に対応できるという利点を有する。また、縦型製袋充填機は、包装材の取り扱いに人手が関与する機会が少ないため、衛生的で且つ省力化が可能である。そのため、縦型製袋充填機は広く使用されている。縦型製袋充填機においては、多層体(包装材)のロールから供給された多層体がセーラー部で筒状にされたのち、袋の胴体部がシールされ、続いて袋の底部がシールされる。次に、計量された内容物が袋の上方から落とされて袋に充填される。次に、袋の上部がシールされ、上部シール部の上方がカットされたのち、袋は排出コンベアに導かれる。このように、製袋充填機は、製袋の工程から、内容物が充填された袋を排出する工程までの一連の工程を行う装置である。
内容物が酸素ガスによって劣化するものである場合、縦製袋充填シール袋用の包装材料には、酸素バリア性を有するものが用いられる。たとえば、アルミ箔、バリア性共押出ポリアミドフィルム、ポリ塩化ビニリデン系樹脂フィルム、エチレン−ビニルアルコール共重合体(以下、「EVOH」という場合がある)からなるフィルム、アルミ蒸着フィルム、無機蒸着フィルム等のバリア性フィルムを含む多層体が使用される。しかしながら、いずれのバリア性フィルムも、以下のように課題を有している。
アルミ箔を含む包装材料を用いた場合、金属探知機または目視によって内容物内の異物を見つけることが難しい。また、その包装材料は、電子レンジで使用できない。さらに、廃棄後の焼却処理において、アルミニウムの塊が残存するという課題もある。
ポリ塩化ビニリデン系樹脂フィルムを用いた包装材料は、内容物によっては酸素バリア性が充分な場合があるが、酸素ガスによる劣化が大きい内容物に対しては酸素バリア性が不充分な場合がある。また、焼却処理をすると、ダイオキシンなどの有毒ガスが発生して環境を汚染する場合がある。
EVOHフィルムを用いた包装材料は、湿度の低い雰囲気では優れた酸素バリア性を示すが、EVOHフィルムが吸湿すると酸素バリア性が低下するという課題を有する。
また、酸素バリア性に優れるガスバリア性フィルムとして、アルミ蒸着フィルムや、酸化ケイ素や酸化アルミニウムなどが蒸着された透明な無機蒸着フィルムがある。しかし、これらのフィルムを縦型製袋充填に用いた場合、ガスバリア層(無機蒸着層)にクラックやピンホールが発生し、バリア性能が劣化するという課題がある。
上記課題を解決する包装材料として、基材と基体フィルムとシーラント層とを含み、基材と基体フィルムとの間に熱可塑性樹脂層が配置されている包装材料が提案されている(特開平5−318550号公報)。特開平5−318550号公報には、酸素バリア性および水蒸気バリア性の低下が熱可塑性樹脂層によって抑制されることが記載されているが、バリア性能の劣化の抑制は充分ではない。
縦型製袋充填機では、包装材料がセーラー部で筒状にされる際に包装材料がセーラー部の端部に接触した状態で曲げられながら引っ張られる。また、内容物が充填される際に、包装材料が変形することがある。また、袋のヘッドスペースの空気を追い出すために包装材料がしごかれることがある。このため、縦型製袋充填機に用いられる包装材料には、上記の工程による特性の劣化が少ないことが求められる。
また、近年、東南アジアや南米などで充填包装された食品が、欧米や日本などに輸送される等、製袋充填/加熱殺菌から消費地に届くまでの条件(時間、温度、湿度など)が厳しい場合が増えている。そのため、輸送などの条件が過酷な場合でも安定して高度な酸素バリア性を示す縦製袋充填シール袋が求められている。
また、近年、食料品などの内容物を保存するための容器として、フランジ部を有するカップや、トレーと蓋材とからなる蓋付き容器が多用されている。これらの蓋付き容器では、内容物の種類によっては、カップやトレーなどの容器だけでなく蓋材にも酸素ガスバリア性をもたせることが必要となる。このため、蓋材として、酸素ガスバリア性に優れるフィルムを含む積層体を使用することが従来から提案されている。酸素ガスバリア性に優れるフィルムとしては、たとえば、ポリ塩化ビニリデン系樹脂フィルム、EVOHフィルム、基材フィルム上にシリカ、アルミナ、アルミニウムといった無機物蒸着層が形成された蒸着フィルム(以下「蒸着フィルム」と記載することがある)が用いられてきた。例えば、ポリ塩化ビニリデン系樹脂フィルムを含む蓋材(特公昭57−30745号公報)、EVOHフィルムを含む蓋材(特開平9−239911号公報)が提案されている。
また、無機蒸着層を含む蓋材も提案されてきた(特開2005−8160号公報)。しかし、そのような蓋材には、無機蒸着層に割れが発生してガスバリア性が低下し易いという問題があった。これに対して、基材フィルム上に、アンカーコート剤層と、無機酸化物の蒸着膜と、ゾルゲル法によって得られるガスバリア性塗布膜とが積層されたボイル・レトルト容器用蓋材が提案されている(特開2008−044617号公報)。また、ポリエステルフィルム上に、無機酸化物からなる透明ガスバリア性蒸着層と、ガスバリア性被膜層と、ヒートシール性樹脂フィルムとが積層された蓋材が提案されている(特開2006−027695号公報)。また、二軸延伸ポリアミドフィルム上に、アンカーコート層と、無機酸化物の蒸着薄膜層と、ガスバリア性被膜層と、シーラント層とが積層された蓋材が提案されている(特開2005−231701号公報)。これらの蓋材では、ガスバリア性被膜層によって、無機蒸着層の割れを防止できる。しかし、これらの蓋材では無機蒸着層の割れを完全に防止することは難しく、用途によっては、無機蒸着層が割れる場合がある。例えば、内容物が空気を含む場合、大気圧下で行われるボイル殺菌処理では蓋材が大きく膨らむことがあり、蓋材がダメージを受けやすい。また、高温でのレトルト殺菌処理では蓋材がより収縮しやすくなり、フランジ部分で固定されている蓋材は、フランジ部周辺で特に伸長され易くダメージを受け易い。
本発明者らは、加工時や輸送時の物理的な衝撃や変形などによる酸素バリア性の低下が少ない容器用蓋材を提案している(特開2006−306083号公報)。
ところで、過酷な加熱殺菌条件、例えば蓋付き容器の内容物が空気を含み、大気圧下で高温でボイル殺菌処理する条件や、高温で長時間レトルト殺菌処理する条件では、蓋材の変形によって酸素バリア性能がより低下しやすくなる。また、近年、東南アジアや南米などで充填包装された食品が、欧米や日本などに輸送される等、充填包装/加熱殺菌から消費地に届くまでの条件(時間、温度、湿度など)が厳しい場合が増えている。そのため、ボイル殺菌処理、レトルト殺菌処理、輸送などの条件が苛酷な場合でも安定して高度な酸素バリア性を示す蓋材が求められている。また、過酷な条件で処理されても外観を維持できる蓋材が求められている。
さらに、従来から、軸付きコーン(とうもろこし)、豆類、筍、芋、栗、茶葉、肉、魚、菓子等の内容物の化学的変化および微生物的変化を抑制し、長期保存するための有効な方法として、真空包装が広く採用されている。多くの場合、真空包装後に加熱殺菌処理が行われるが、無菌状態で内容物を真空包装し加熱殺菌処理をしない場合もある。加熱殺菌処理を施す場合も施さない場合も、真空包装後に長期間にわたって、微生物的変化および化学的変化を抑制するためには、包装材の内部の酸素濃度が低いことが必要である。そのため、真空包装には、酸素バリア性の高い袋が使用される。
酸素バリア性の高い真空包装袋は、酸素バリア性フィルムを含む多層体を用いて形成される。酸素バリア性フィルムとして、ポリ塩化ビニリデン系樹脂フィルム、EVOHフィルム、アルミニウム箔、酸化ケイ素や酸化アルミニウムといった無機酸化物からなる蒸着層を有するフィルムが使用されてきた。しかし、いずれの酸素バリア性フィルムも以下に記述する課題を有しており、真空包装袋用の酸素バリア性フィルムとして満足のいくものではない。
近年、環境への配慮が一段と高まっており、ポリ塩化ビニリデン系樹脂フィルムを含む多層体やアルミニウム箔を含む多層体の使用量が低下してきている。アルミニウム箔を含む多層体は、使用後に焼却するとアルミニウム箔が残渣として残る、という課題を有する。また、ポリ塩化ビニリデン系樹脂フィルムを含む多層体は、使用後に焼却すると、塩素を含む有害化合物を発生する可能性がある、という課題をそれぞれ有する。さらに、アルミニウム箔を含む多層体は、不透明であるため内容物の状態を確認することができない、金属探知機によって内容物を検査することができない、問題点も指摘されている。
酸化ケイ素や酸化アルミニウムといった無機酸化物の蒸着層を含む多層体は、透明でガスバリア性に優れる。しかし、この多層体は、真空包装時の変形によって、無機酸化物層にクラックやピンホールが発生し、ガスバリア性が低下する場合がある。即ち、内容物の凹凸に応じた包装袋の変形や、内容物と接触する部分とヒートシール部分との境界における折れ曲がりによって、無機酸化物層にクラックやピンホールが発生する場合がある。さらに、加熱殺菌処理中の包装袋の伸縮、輸送やハンドリング時に受ける振動や落下によって、無機酸化物層にクラックやピンホールが発生する場合もある。このように、無機酸化物の蒸着層を含む多層体は、クラックやピンホールの発生によって酸素バリア性が低下する、という課題を有している。
EVOHの層を含む積層体は、酸素バリア性に優れる。しかし、その積層体は、真空包装に続いて施される加熱殺菌処理の直後に酸素バリア性が一時的に低下する、という問題を有している。
ガスバリア性に優れる真空包装用容器として、熱可塑性フィルム等の基材層とヒートシール性フィルムとの間に、無機層状化合物を含む樹脂組成物層を備える積層体で形成された容器が提案されている(特開平11−314675号公報)。しかし、この容器は、酸素バリア性能が充分ではないという課題を有している。
また、固くて突起部を有する内容物を真空包装するための包装材が提案されている(特開2005−119063号公報)。この包装材は、基材層、直鎖状低密度ポリエチレン樹脂層、ガスバリア層、およびシーラント層の積層体である。ガスバリア層としては、無機物(アルミニウム金属、酸化アルミニウムまたは酸化ケイ素)を蒸着した蒸着ポリエステルフィルムや蒸着ナイロンフィルム、塩化ビニリデンフィルム、エチレン・ビニルアルコールフィルム、アルミニウム箔等が挙げられている。しかし、ガスバリア層に使用される材料は上述したような課題を有している。また、上記構成では、耐ピンホール性は充分ではない。
また、特開2006−036272号公報に、アルミ箔と、無機化合物が蒸着されたプラスチックフィルムとを含む真空包装材が開示されている。無機化合物が蒸着されたプラスチックフィルムは、アルミ箔にクラックやピンホールが発生したときでも、バリア性を維持するために用いられている。しかし、この真空包装材はアルミ箔を使用しているため、上述した課題を有している。さらに、無機化合物が蒸着されたプラスチックフィルムは、クラックやピンホールが発生しやすいという課題を有する。
上記課題を解決するため、本発明者らは、特定のガスバリア性積層体を用いた真空包装袋を提案した(特開2007−008148号公報)。
ところで、上述のように現在、東南アジアや南米などで充填包装された食品が、欧米や日本などに輸送される等、充填包装/加熱殺菌から消費されるまでの条件(時間、温度、湿度など)が厳しい場合が増えている。そのため、真空包装/加熱殺菌後に、従来よりもより高い酸素バリア性を維持する真空包装袋が求められている。さらに、より過酷な条件での加熱殺菌処理に耐えることができる真空包装袋が求められている。
特開平5−318550号公報 特公昭57−30745号公報 特開平9−239911号公報 特開2005−8160号公報 特開2008−044617号公報 特開2006−027695号公報 特開2005−231701号公報 特開2006−306083号公報 特開平11−314675号公報 特開2005−119063号公報 特開2006−036272号公報 特開2007−008148号公報
このような状況において、本発明は、縦型製袋充填機における製袋充填による特性の劣化が少なく、且つ、過酷な条件下でも酸素バリア性および外観を維持できる縦製袋充填シール袋を提供することを目的とする。また本発明は、過酷な条件下でも、酸素バリア性および外観を維持できる容器用蓋材を提供することを目的とする。さらに本発明は、過酷な条件下でも、内容物の品質を保持でき、且つ、外観を維持できる真空包装袋を提供することを目的とする。
上記目的を達成すべく検討した結果、本発明者らは、特定のガスバリア層を用いることによって、ガスバリア性を低下させることなくガスバリア層を薄膜化、強靭化することができ、過酷な条件での加熱殺菌処理、真空包装処理、輸送などによるガスバリア性の低下が抑制され、上記目的を達成できることを見出した。本発明は、この新たな知見に基づくものである。
本発明の成形品は、縦製袋充填シール袋、容器用蓋材および真空包装袋からなる群より選ばれるいずれか1つの成形品である。前記成形品は、ガスバリア性積層体を用いて形成されている。前記ガスバリア性積層体は、基材と前記基材に積層された少なくとも1つのガスバリア性を有する層とを含む。前記層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)の中和物とを含む組成物からなる。前記化合物(L)は、化合物(A)と、加水分解性を有する特性基が結合したSiを含有する化合物(B)とを含む。前記化合物(A)は、以下の式(I)で表される少なくとも1種の化合物である。
11 m1 n-m・・・(I)
[式(I)中、M1はAl、Ti、およびZrから選ばれるいずれか1つを表す。X1は、F、Cl、Br、I、OR1、R2COO、R3COCHCOR4、およびNO3から選ばれるいずれか1つを表す。Y1は、F、Cl、Br、I、OR5、R6COO、R7COCHCOR8、NO3およびR9から選ばれるいずれか1つを表す。R1、R2、R5およびR6は、それぞれ独立に、水素原子またはアルキル基を表す。R3、R4、R7、R8およびR9は、それぞれ独立にアルキル基を表す。nはM1の原子価と等しい。mは1〜nの整数を表す。]
前記化合物(B)は、以下の式(II)で表される少なくとも1種の化合物を含む。
Si(OR10p11 4-p-q2 q・・・(II)
[式(II)中、R10はアルキル基を表す。R11はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X2はハロゲン原子を表す。pおよびqは、それぞれ独立に0〜4の整数を表す。1≦p+q≦4である。]
前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されている。前記化合物(B)に占める前記式(II)で表される化合物の割合が80モル%以上である。前記組成物において、[前記化合物(A)に由来する前記M1原子のモル数]/[前記化合物(B)に由来するSi原子のモル数]の比が0.1/99.9〜35.0/65.0の範囲にある。
本発明の縦製袋充填シール袋は、酸素バリア性に優れ、さらに屈曲や伸長などの変形による酸素バリア性の低下が少ない。そのため、本発明の縦製袋充填シール袋は、内容物(たとえば食品)の品質劣化を長期間にわたって抑制できる。また、本発明の縦製袋充填シール袋は、縦型製袋充填機における製袋・充填工程でも酸素バリア性の低下が少ないため、縦製袋充填シール袋として好適に使用できる。
本発明の蓋材は、過酷な条件下でも、酸素バリア性および外観を維持できる。
本発明の真空包装袋は、屈曲や伸長などの変形による酸素バリア性の低下が少ない。そのため、本発明の真空包装袋は、真空包装・加熱殺菌処理時における変形による酸素バリア性の低下はほとんどない。本発明の真空包装袋は柔軟であり、固形分を含む食品に容易に密着するため、真空包装時の脱気が容易である。そのため、本発明の真空包装袋は、真空包装体内の残存酸素を少なくでき、食品の長期保存性に優れる。また、真空包装後に、角張ったり、折り曲がったりした部分が生じにくいため、ピンホールやクラックなどの欠陥が発生しにくい。また、本発明の真空包装袋によれば、真空包装袋同士や、真空包装袋とダンボールとの擦れによってピンホールが発生することを抑制できる。また、本発明の真空包装袋は、酸素バリア性に優れるため、内容物(たとえば食品)の品質劣化を長期間にわたって抑制できる。また、本発明の真空包装袋は、レトルト処理による外観の劣化が少ない。
以下、本発明の実施の形態について説明する。なお、以下の説明において特定の機能を発現する物質として具体的な化合物を例示する場合があるが、本発明はこれに限定されない。また、例示される材料は、特に記載がない限り、単独で用いてもよいし、組み合わせて用いてもよい。
本発明の成形品は、縦製袋充填シール袋、容器用蓋材および真空包装袋からなる群より選ばれるいずれか1つの成形品である。その成形品は、特定の積層体(以下、「ガスバリア性積層体」という場合がある)を用いて形成されている。すなわち、成形品の少なくとも一部は、ガスバリア性積層体からなる。
本発明の縦製袋充填シール袋(Vertical form fill seal pouch)は、特定の積層体(ガスバリア性積層体)を用いて形成される。すなわち、本発明の縦製袋充填シール袋はガスバリア性積層体を含む。なお、袋(pouch)のすべてがガスバリア性積層体を用いて形成されてもよいし、一部がガスバリア性積層体以外の材料によって形成されていてもよい。袋を展開したときに、袋の面積のたとえば50%以上、60%以上、70%以上、80%以上、90%以上、または100%には、ガスバリア性積層体が用いられる。
本発明の縦製袋充填シール袋は、縦型製袋充填機によって製袋される。以下に、典型的な製袋・充填工程について説明する。
材料であるガスバリア性積層体は、ロール状に巻かれて製袋充填機にセットされる。ロールから繰り出された積層体は、セーラー部に供給され、セーラー部で筒状にされる。筒状に形成された積層体は上方から下方に導かれる。次に、袋の胴体部がシールされ、続いて底部がシールされる。次に、計量された内容物が上方から落とされて袋に充填される。次に、袋の上部がシールされ、上部シール部の上方がカットされる。内容物が充填された袋は、排出コンベアに導かれる。過酸化水素水によって積層体を殺菌する場合は、ロールから繰り出された積層体は、ロールとセーラー部との間に設置されている過酸化水素水の浴槽および乾燥器を通過したのち、セーラー部に導かれる。
本発明の容器用蓋材は、特定の積層体(ガスバリア性積層体)を用いて形成される。すなわち、本発明の容器用蓋材はガスバリア性積層体を含む。なお、蓋材のすべてがガスバリア性積層体を用いて形成されてもよいし、一部がガスバリア性積層体以外の材料によって形成されていてもよい。蓋材の面積のたとえば50%以上、60%以上、70%以上、80%以上、90%以上、または100%には、ガスバリア性積層体が用いられる。
本発明の蓋材は、一例では、ツバ部を有する容器の蓋に用いられる。容器の一例は、内容物を収納するための凹部(収納部)と、その凹部の開口部の端から外側に向かってフランジ状に延びるツバ部とを有する。この容器は、真空成形や圧空成形などによって形成できる。本発明の蓋材は、この容器の凹部を覆って凹部の内部を密閉するように、ツバ部に接着される。接着の方法の好ましい例は、ヒートシールによる接着である。内容物を容器に封入する際には、容器の凹部に内容物を充填したのち、蓋材で凹部を覆い、ツバ部と蓋材とをヒートシールすればよい。
本発明の真空包装袋は、特定の積層体(ガスバリア性積層体)を用いて形成される。すなわち、本発明の真空包装袋はガスバリア性積層体を含む。なお、真空包装袋のすべてがガスバリア性積層体を用いて形成されてもよいし、一部がガスバリア性積層体以外の材料によって形成されていてもよい。真空包装袋を展開したときの面積のたとえば50%以上、60%以上、70%以上、80%以上、90%以上、または100%には、ガスバリア性積層体が用いられる。
本発明の真空包装袋は、たとえば、2枚のガスバリア性積層体を重ね合わせ、外縁の3辺をヒートシールした状態で使用に供せられる。使用時には、包装袋に内容物を充填したのち、包装袋内部を脱気して、最後の1辺をヒートシールすればよい。
以下、本発明に用いられるガスバリア性積層体について詳細に説明する。
[ガスバリア性積層体]
本発明で用いられるガスバリア性積層体は、基材と、基材に積層された少なくとも1つのガスバリア性を有する層とを含む。その層(以下、「ガスバリア層」という場合がある)は、特定の組成物からなる。その組成物は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)の中和物とを含む。化合物(L)は、加水分解性を有する特性基を含有する少なくとも1種の化合物であり、典型的には、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物である。化合物(L)は、化合物(A)と、加水分解性を有する特性基が結合したSiを含有する化合物(B)とを含む。以下、重合体(X)に含まれる、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を「官能基(F)」という場合がある。官能基(F)に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されている。別の観点では、官能基(F)に含まれる−COO−基が、2価以上の金属イオンと塩を構成している。
ガスバリア層は、基材の少なくとも一方の面に積層されている。ガスバリア層は、基材の片面のみに積層されてもよいし、基材の両面に積層されてもよい。本発明で用いられるガスバリア性積層体は、ガスバリア層以外の層を含んでもよい。なお、「基材に積層されている層」には、基材に直接積層されている層、および、他の部材(層)を介して基材に積層されている層が含まれる。
化合物(L)の加水分解縮合物および重合体(X)の中和物が組成物に占める割合は、たとえば50重量%以上、70重量%以上、80重量%以上、90重量%以上、95重量%以上、または98重量%以上である。
[加水分解縮合物]
ガスバリア層を構成する組成物は、化合物(L)の加水分解縮合物を含む。化合物(L)が加水分解されることによって、化合物(L)の特性基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属原子が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物が形成される。ここで、この加水分解・縮合が起こるためには、化合物(L)が加水分解性を有する特性基(官能基)を含有していることが重要である。それらの基が結合していない場合、加水分解・縮合反応が起こらないか極めて緩慢になるため、本発明の効果を得ることは困難である。なお、Siは、半金属元素に分類される場合があるが、この明細書では、Siを金属として説明する。
該加水分解縮合物は、たとえば、公知のゾルゲル法で用いられる手法を用いて特定の原料から製造できる。該原料には、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解・縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものが用いられる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2〜10個程度の分子が加水分解・縮合することによって得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解・縮合させて、2〜10量体の線状縮合物としたものを原料として用いることができる。
化合物(A)は、以下の式(I)で表される少なくとも1種の化合物である。
11 m1 n-m・・・(I)
[式(I)中、M1はAl、Ti、およびZrから選ばれるいずれか1つを表す。X1は、F、Cl、Br、I、OR1、R2COO、R3COCHCOR4、およびNO3から選ばれるいずれか1つを表す。Y1は、F、Cl、Br、I、OR5、R6COO、R7COCHCOR8、NO3およびR9から選ばれるいずれか1つを表す。R1、R2、R5およびR6は、それぞれ独立に、水素原子またはアルキル基を表す。R3、R4、R7、R8およびR9は、それぞれ独立にアルキル基を表す。nはM1の原子価と等しい。mは1〜nの整数を表す。]
1とY1とは、同じであってもよいし異なってもよい。M1は、得られるガスバリア性積層体のレトルト処理を施す前後の酸素バリア性、透明性などの外観に変化が特に少なくなる観点から、Alであることが好ましい。X1、およびR9を除くY1は、加水分解性を有する基である。X1は、好ましくはCl、OR1、およびNO3から選ばれるいずれか1つであり、より好ましくはOR1である。Y1は、好ましくはCl、OR5、およびNO3から選ばれるいずれか1つであり、より好ましくはOR5である。
1、R2、R5およびR6に用いられるアルキル基の炭素数は、好ましくは1以上20以下であり、より好ましくは1以上10以下であり、たとえば1以上4以下である。R1およびR5は、好ましくはメチル基、エチル基、iso−プロピル基、n−ブチル基、t−ブチル基であり、特に好ましくはiso−プロピル基またはn−ブチル基である。R3、R4、R7、R8およびR9に用いられるアルキル基の炭素数は、好ましくは1以上4以下であり、より好ましくは1以上2以下である。R3、R4、R7およびR8は、好ましくはメチル基、エチル基である。R3COCHCOR4およびR7COCHCOR8は、そのカルボニル基の部分で原子M1に配位結合することができる。R9は、好ましくはメチル基、エチル基である。なお、R9は通常、官能基を有さない。式(I)において、(n−m)は、たとえば0または1であってもよい。
化合物(A)の具体例には、塩化アルミニウム、アルミニウムトリエトキシド、アルミニウムトリノルマルプロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリノルマルブトキシド、アルミニウムトリt−ブトキシド、アルミニウムトリアセテート、アルミニウムアセチルアセトネート、硝酸アルミニウム等のアルミニウム化合物;チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ(2−エチルヘキソキシド)、チタンテトラメトキシド、チタンアセチルアセトネート、チタンエチルアセトアセテート等のチタン化合物;ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトラアセチルアセトネート、等のジルコニウム化合物が含まれる。化合物(A)の好ましい例には、アルミニウムトリイソプロポキシドおよびアルミニウムトリノルマルブトキシドが含まれる。
化合物(B)は、加水分解性を有する特性基が結合したSiを含有する少なくとも1種のSi化合物である。化合物(B)は、以下の式(II)で表される少なくとも1種の化合物を含む。
Si(OR10p11 4-p-q2 q・・・(II)
[式(II)中、R10はアルキル基を表す。R11はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X2はハロゲン原子を表す。pおよびqは、それぞれ独立に0〜4の整数を表す。1≦p+q≦4である。]
OR10およびX2は、加水分解性を有する基である。R10が表すアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などが挙げられ、好ましくは、メチル基またはエチル基である。X2が表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。R11が表すアルキル基としては、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基、n−オクチル基などが挙げられ、アラルキル基としては、例えばベンジル基、フェネチル基、トリチル基などが挙げられる。また、R11が表すアリール基としては、例えばフェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられ、アルケニル基としては、例えばビニル基、アリル基などが挙げられる。
式(II)で表される化合物(B)の具体例には、テトラクロロシラン、テトラブロモシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン、およびビニルトリクロロシランが含まれる。式(II)で表される化合物(B)の好ましい例には、テトラメトキシシランおよびテトラエトキシシランが含まれる。
化合物(B)は、式(II)で表される化合物に加えて、以下の式(III)で表される少なくとも1種の化合物を更に含んでもよい。式(III)で表される化合物を含有させることによって、ボイル処理前後やレトルト処理前後における、酸素バリア性の変化、および透明性などの外観の変化が、更に少なくなる。
Si(OR12r3 s3 4-r-s・・・(III)
[式(III)中、R12はアルキル基を表す。X3はハロゲン原子を表す。Z3は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。rおよびsは、それぞれ独立に0〜3の整数を表す。1≦r+s≦3である。]
OR12およびX3は、加水分解性を有する基である。R12が表すアルキル基としては例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、t−ブチル基などが挙げられ、好ましくは、メチル基またはエチル基である。X3が表すハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。Z3が有する、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基またはカルボジイミド基などが挙げられる。これらの中でも、得られるガスバリア性積層体のレトルト処理を施す前後の酸素バリア性、透明性などの外観の変化が特に少なくなる観点から、エポキシ基、アミノ基、イソシアネート基、ウレイド基またはハロゲン原子が好ましく、例えばエポキシ基、アミノ基およびイソシアネート基から選ばれる少なくとも1種を用いてもよい。このような官能基で置換されるアルキル基としては、R12について例示したものが挙げられる。
式(III)で表される化合物の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリクロロシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリクロロシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリクロロシラン、γ−ブロモプロピルトリメトキシシラン、γ−ブロモプロピルトリエトキシシラン、γ−ブロモプロピルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルトリクロロシラン、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルトリクロロシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリクロロシランが含まれる。式(III)で表される化合物の好ましい例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシランが含まれる。
本発明者らは、化合物(A)と化合物(B)とを含む化合物(L)の加水分解縮合物を用いることによって、得られるガスバリア性積層体が、優れたガスバリア性、および耐ボイル性や耐レトルト性などの耐熱水性を示すことを見出した。すなわち、ガスバリア性積層体はガスバリア性に優れるのみならず、ボイル処理やレトルト処理を施した後でも優れたガスバリア性を維持し、外観の変化もないことが見出された。更に驚くべきことに、ガスバリア性積層体において、前記したように、従来はガスバリア層を薄くするとガスバリア性が指数関数的に低下して優れたガスバリア性を維持することができなかったが、化合物(L)の加水分解縮合物を用いることによって、ガスバリア層を薄くしても高いガスバリア性を維持することが新たに見出された。
化合物(B)が式(II)の化合物のみからなる場合、および化合物(B)が式(III)の化合物を含む場合のいずれの場合においても、[化合物(A)に由来するM1原子のモル数]/[化合物(B)に由来するSi原子のモル数]の比は、0.1/99.9〜35.0/65.0(たとえば0.1/99.9〜30.0/70.0、さらには0.1/99.9〜29.9/70.1)の範囲にある必要がある。上記モル比がこの範囲にある場合に前記したような優れたガスバリア性および耐ボイル性、耐レトルト性などの耐熱水性を示すガスバリア性積層体が得られる。M1とSiとの合計に占めるM1の比が0.1モル%より低いと耐熱水性が低下し、レトルト処理後のガスバリア性が低下し、また、外観不良が発生することがある。また、その比が35モル%より高いと、レトルト処理前後のガスバリア性が低下するという問題がある。更にガスバリア性および耐レトルト性がより良好となる観点から、[化合物(A)に由来するM1原子のモル数]/[化合物(B)に由来するSi原子のモル数]の比は、好ましくは1.2/98.8〜30.0/70.0の範囲にあり、より好ましくは1.9/98.1〜30.0/70.0の範囲にあり、さらに好ましくは2.8/97.2〜30.0/70.0の範囲にある。上記比は、0.5/99.5〜30.0/70.0の範囲、1.5/98.5〜20.0/80.0の範囲、または2.5/97.5〜10.0/90.0の範囲にあってもよい。
本発明者らは、化合物(A)および式(II)で表される化合物に加えて、式(III)で表される化合物を更に含む化合物(L)の加水分解縮合物を用いることによって、ガスバリア性積層体が更に優れたガスバリア性、および耐ボイル性や耐レトルト性などの耐熱水性を示すことを見出した。
化合物(B)が式(III)で表される化合物を含む場合は更に以下の条件を満たすことが好ましい。すなわち[式(II)で表される化合物に由来するSiのモル数]/[式(III)で表される化合物に由来するSiのモル数]の比が、99.5/0.5〜80.0/20.0の範囲にあることが好ましい。この比が、99.5/0.5よりも大きいと、得られるガスバリア性積層体の、ボイル処理、レトルト処理前後でガスバリア性、および透明性などの外観が変化しない特性、すなわち耐熱水性が低下する場合がある。また、この比が80/20よりも小さいと、得られるガスバリア性積層体のガスバリア性が低下する場合がある。また、この比は、ガスバリア性積層体の耐熱水性およびガスバリア性がより良好となる観点から、98.0/2.0〜89.9/10.1の範囲にあることがより好ましい。
化合物(L)に占める、化合物(A)および化合物(B)の割合の合計は、たとえば80モル%以上100モル%以下であり、90モル%以上、95モル%以上、98モル%以上、99モル%以上、または100モル%であってもよい。
化合物(B)(化合物(L)であるSi化合物)に占める式(II)で表される化合物の割合は、80モル%以上100モル%以下であり、たとえば90モル%以上、95モル%以上、98モル%以上、または100モル%であってもよい。一例では、化合物(B)は、式(II)で表される化合物のみからなり、他の一例では、化合物(B)は、式(II)で表される化合物および式(III)で表される化合物のみからなる。
化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解・縮合を行う際の条件によって制御できる。たとえば、縮合される分子の数は、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。
ガスバリア層を構成する組成物は、ガスバリア性積層体のガスバリア性がより良好となるため、[化合物(L)に由来する無機成分の重量]/[化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計]の比が20.0/80.0〜80.0/20.0の範囲にあることが好ましく、30.5/69.5〜70/30の範囲にあることがより好ましい。
化合物(L)に由来する無機成分の重量は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を化合物(L)に由来する無機成分の重量とみなす。
金属酸化物の重量の算出をより具体的に説明すると、式(I)で表される化合物(A)がR9を含まない場合、それが完全に加水分解・縮合したときには、組成式が、M1n/2で表される化合物となる。また、式(I)で表される化合物(A)がR9を含む場合、それが完全に加水分解・縮合したときには、組成式が、M1m/29 n-mで表される化合物となる。この化合物のうちM1m/2の部分が金属酸化物である。R9については、化合物(L)に由来する有機成分とする。また、化合物(B)についても同様に算出する。このとき、R11、Z3については、化合物(L)に由来する有機成分とする。上記金属酸化物の重量を、後述する工程(i)の終了までに加えた有効成分の重量で割り、その値を100倍した値が、この明細書における加水分解縮合物の含有率(%)である。ここで、有効成分の重量とは、後述する工程(i)の終了までに加えた全ての成分の重量から、上述した化合物(L)が金属酸化物に変化する過程で発生する化合物や溶剤といった揮発成分の重量を除いた重量である。
なお、金属イオンを含まないイオン(たとえばアンモニウムイオン)によって重合体(X)が中和されている場合、そのイオン(たとえばアンモニウムイオン)の重量も、重合体(X)に由来する有機成分の重量に加えられる。
[カルボン酸含有重合体(重合体(X))]
ガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む。その重合体を、以下、「カルボン酸含有重合体」という場合がある。カルボン酸含有重合体の中和物は、カルボン酸含有重合体の官能基に含まれる−COO−基の少なくとも一部を2価以上の金属イオンで中和することによって得られる。カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構成単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構成単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構成単位および/またはカルボン酸無水物の構造を有する構成単位(以下、両者をまとめて「カルボン酸含有単位(G)」という場合がある)は、1種類または2種類以上がカルボン酸含有重合体に含まれていてもよい。
また、カルボン酸含有重合体の全構成単位に占めるカルボン酸含有単位(G)の含有率を10モル%以上とすることによって、ガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構成単位と、カルボン酸無水物の構造を有する構成単位の両方を含む場合、両者の合計が上記の範囲であればよい。
カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(G)以外の他の構成単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構成単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構成単位;スチレン単位、p−スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構成単位などから選ばれる1種類以上の構成単位を挙げることができる。カルボン酸含有重合体が、2種以上の構成単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。
カルボン酸含有重合体の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)を挙げることができる。カルボン酸含有重合体は、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体であってもよい。また、上記したカルボン酸含有単位(G)以外の他の構成単位を含有する場合の具体例としては、エチレン−無水マレイン酸共重合体、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸交互共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体のケン化物などが挙げられる。
カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリア性積層体のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の数平均分子量の上限は特に制限がないが、一般的には1,500,000以下である。
また、カルボン酸含有重合体の分子量分布も特に制限されない。ガスバリア性積層体のヘイズなどの表面外観、および後述する溶液(U)の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1〜6の範囲にあることが好ましく、1〜5の範囲にあることがより好ましく、1〜4の範囲にあることがさらに好ましい。
[中和(イオン化)]
カルボン酸含有重合体の中和物は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(官能基(F))の少なくとも一部を2価以上の金属イオンで中和することによって得られる。換言すれば、この重合体は、2価以上の金属イオンで中和されたカルボキシル基を含む。
官能基(F)を中和する金属イオンは2価以上であることが重要である。官能基(F)が未中和または1価のイオンのみによって中和されている場合には、良好なガスバリア性を有する積層体が得られない。2価以上の金属イオンの具体例としてはカルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンとして、カルシウムイオン、マグネシウムイオン、バリウムイオン、亜鉛イオン、鉄イオンおよびアルミニウムイオンからなる群より選ばれる少なくとも1つのイオンであってもよい。
カルボン酸含有重合体の官能基(F)に含まれる−COO−基は、たとえば10モル%以上(たとえば15モル%以上)が2価以上の金属イオンで中和されている。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、ガスバリア性積層体が良好なガスバリア性を示す。
なお、カルボン酸無水物基は、−COO−基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる−COO−基は、全体で(a+2b)モルである。官能基(F)に含まれる−COO−基のうち、2価以上の金属イオンで中和されている割合は、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上である。中和されている割合を高めることによって、より高いガスバリア性を実現できる。
官能基(F)の中和度(イオン化度)は、ガスバリア性積層体の赤外吸収スペクトルをATR法(全反射測定法)で測定するか、または、ガスバリア性積層体からガスバリア層をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。また、蛍光X線測定によるイオン化に用いた金属元素の蛍光X線強度の値によっても求めることが出来る。
赤外吸収スペクトルでは中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1〜1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いてガスバリア性積層体におけるガスバリア層を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。
ガスバリア層の厚さが1μm以下であり、かつ基材がエステル結合を含む場合、ATR法による赤外吸収スペクトルでは基材のエステル結合のピークが検出され、ガスバリア層を構成するカルボン酸含有重合体(=重合体(X))の−COO−のピークと重なるため、イオン化度を正確に求めることができない。そこで、厚さ1μm以下のガスバリア層を構成する重合体(X)のイオン化度は、蛍光X線測定の結果に基づいて算出する。
具体的には、エステル結合を含まない基材上に積層したガスバリア層を構成する重合体(X)のイオン化度を、赤外吸収スペクトルによって測定する。次に、イオン化度が測定された積層体について、蛍光X線測定によって、イオン化に用いた金属元素の蛍光X線強度を求める。続いて、イオン化度のみが異なる積層体について同様の測定を実施する。イオン化度と、イオン化に用いた金属元素の蛍光X線強度との相関を求め、検量線を作成する。そして、エステル結合を含む基材を用いたガスバリア性積層体について蛍光X線測定を行い、イオン化に用いた金属元素の蛍光X線強度から、上記検量線に基づいてイオン化度を求める。
[化合物(P)]
ガスバリア層を構成する組成物は、2つ以上のアミノ基を含有する化合物(P)を含んでもよい。化合物(P)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(P)をさらに含む場合、前記重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が、化合物(P)によって中和および/または反応されている状態となる。化合物(P)として、アルキレンジアミン類、ポリアルキレンポリアミン類、脂環族ポリアミン類、芳香族ポリアミン類、ポリビニルアミン類等を用いることができるが、ガスバリア性積層体のガスバリア性がより良好となる観点から、アルキレンジアミンが好ましい。
化合物(P)の具体例としては、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、1,3−ジアミノシクロヘキサン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、キシリレンジアミン、キトサン、ポリアリルアミン、ポリビニルアミン等が挙げられる。ガスバリア性積層体のガスバリア性がより良好となる観点から、好ましくはエチレンジアミン、プロピレンジアミン、キトサンである。
[化合物(P)に含まれるアミノ基]/[カルボン酸含有重合体の官能基に含まれる−COO−基]のモル比は、ガスバリア性積層体の耐熱水性がより良好となる観点から、0.2/100〜20/100の範囲にあることが好ましく、0.5/100〜15/100の範囲にあることがより好ましく、1/100〜10/100の範囲にあることが特に好ましい。
化合物(P)をカルボン酸含有重合体に添加する際に、化合物(P)を予め酸で中和しておいてもよい。中和に用いられる酸としては、塩酸、硝酸、硫酸、酢酸、炭酸などが挙げられる。得られるガスバリア性積層体のガスバリア性がより良好となる観点から、塩酸、酢酸、炭酸を用いるのが好ましい。
[化合物Q]
ガスバリア層を構成する組成物は、2つ以上の水酸基を含有する化合物(Q)を含んでもよい。化合物(Q)をさらに含む場合、前記重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が、化合物(Q)によって反応してエステル結合を形成している状態となる。この構成によれば、ガスバリア性積層体の、伸長後のガスバリア性が向上する。より具体的には、化合物(Q)を添加することによって、ガスバリア性積層体が伸長されてもガスバリア層がダメージを受けにくくなる。その結果、伸長された後でも高いガスバリア性が保持される。たとえば、印刷やラミネートなどの加工時のテンションによる伸長や、食品が充填された成形品が落下した時の伸長などが起きた後の状態においても、ガスバリア性積層体のガスバリア性が低下しにくくなる。
化合物(Q)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(Q)には、低分子量の化合物および高分子量の化合物が含まれる。化合物(Q)の好ましい例には、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン−ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体、といった高分子化合物が含まれる。
また、ガスバリア層を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、金属酸化物の微粉末やシリカ微粉末などを含有していてもよい。
[基材]
ガスバリア性積層体で用いられる基材としては、熱可塑性樹脂フィルムや熱硬化性樹脂フィルム等の様々な材料からなる基材を用いることができる。たとえば、熱可塑性樹脂フィルムや熱硬化性樹脂フィルムといったフィルム;布帛や紙類等の繊維集合体;木材;金属酸化物などからなる所定形状のフィルムを用いることができる。中でも、熱可塑性樹脂フィルムは、食品包装材料に用いられるガスバリア性積層体の基材として特に有用である。また、基材は紙層を含んでもよい。
熱可塑性樹脂フィルムとしては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ナイロン6、ナイロン66、ナイロン12などのポリアミド系樹脂;ポリスチレン、ポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリカーボネート、ポリアリレート、再生セルロース、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、アイオノマー樹脂等を成形加工したフィルムを挙げることができる。食品包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン6、またはナイロン66からなるフィルムが好ましい。食品包装材料に用いられる積層体の基材としては、ポリアミドフィルム(ナイロンフィルム)が好ましく、ナイロン6およびナイロン66が最も好ましい。ナイロン6およびナイロン66は力学的物性に優れている。そのため、[基材であるナイロン6またはナイロン66とガスバリア層とを含む多層膜]/接着材層/シーラント層、という構成を有する積層体であれば、力学的物性の観点においては実用的に問題ない。この構成であればラミネート工程が1回で済むため、環境負荷も少なくなり、かつラミネート工程の生産量も増える。さらに減量化も可能である。力学的物性の観点から、基材であるポリアミドフィルムの厚さは、好ましくは15μm以上であり、より好ましくは20μm以上である。ポリアミドフィルムの厚さは、たとえば50μm以下である。
ガスバリア層がなくポリアミドフィルムが積層体の最表面に配置されている場合、レトルト殺菌処理などの高温加熱処理によってポリアミドフィルムが劣化し、ポリアミドフィルムの力学的物性が著しく低下する。しかし、ガスバリア層がポリアミドフィルムの外側に存在する場合、ガスバリア層がポリアミドフィルムの劣化を防止するため、レトルト殺菌処理後でもポリアミドフィルム本来の力学的物性が維持される。この観点からも、基材としてポリアミドフィルムを用いることが好ましい。
前記熱可塑性樹脂フィルムは、延伸フィルムであっても無延伸フィルムであってもよい。ガスバリア性積層体の印刷、ラミネートなどの加工適性が優れることから、熱可塑性樹脂フィルムは、延伸フィルム、特に二軸延伸フィルムであることが好ましい。二軸延伸フィルムとしては、同時二軸延伸法、逐次二軸延伸法、チューブラ延伸法のいずれの方法で製造された二軸延伸フィルムであってもよい。
また、ガスバリア性積層体は、基材とガスバリア層との間に配置された接着層(H)をさらに含んでもよい。この構成によれば、基材とガスバリア層との接着性を高めることができる。接着性樹脂からなる接着層(H)は、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗工することで形成できる。様々な接着性樹脂について検討した結果、ウレタン結合を含有し、窒素原子(ウレタン結合の窒素原子)が樹脂全体に占める割合が0.5〜12重量%の範囲にある接着性樹脂が好ましいことが見出された。そのような接着性樹脂を用いることによって、基材とガスバリア層との接着性を特に高めることができる。基材とガスバリア層とを接着層(H)を介して強く接着することによって、ガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制できる。接着性樹脂に含まれる窒素原子(ウレタン結合の窒素原子)の含有率は、2〜11重量%の範囲にあることがより好ましく、3〜8重量%の範囲にあることがさらに好ましい。
ウレタン結合を含有する接着性樹脂としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリウレタン系接着剤が好ましい。
接着層(H)を厚くすることによってガスバリア性積層体の強度を高めることができる。しかし、接着層(H)を厚くしすぎると、外観が悪化する。接着層(H)の厚さは、0.03μm〜0.18μmの範囲にあることが好ましい。この構成によれば、ガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制でき、さらに、ガスバリア性積層体を用いた包装材の落下強度を高めることができる。接着層(H)の厚さは、0.04μm〜0.14μmの範囲にあることがより好ましく、0.05μm〜0.10μmの範囲にあることがさらに好ましい。
本発明で用いられるガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下であることが好ましく、たとえば0.9μm以下である。ガスバリア層を薄くすることによって、印刷、ラミネートなどの加工時におけるガスバリア性積層体の寸法変化を低く抑えることができ、さらにガスバリア性積層体の柔軟性が増し、その力学的特性を、基材に用いているフィルム自体の力学的特性に近づけることができる。本発明で用いられるガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下(たとえば0.9μm以下)の場合でも、20℃で85%RH雰囲気における酸素透過度を、1.1cm3/(m2・day・atm)以下(たとえば1.0cm3/(m2・day・atm)以下)とすることが可能である。ガスバリア層の1層の厚さは、ガスバリア性積層体のガスバリア性が良好となる観点から、0.05μm以上(たとえば0.15μm以上)であることが好ましい。また、ガスバリア層の合計の厚さは0.1μm以上(たとえば0.2μm以上)であることがさらに好ましい。ガスバリア層の厚さは、ガスバリア層の形成に用いられる溶液の濃度や、塗工方法によって制御できる。
また、本発明の積層体は、基材とガスバリア層との間に、無機物からなる層(以下、「無機層」という場合がある)を含んでもよい。無機層は、無機酸化物などの無機物で形成できる。無機層は、蒸着法などの気相成膜法で形成できる。
無機層を構成する無機物は、酸素や水蒸気などに対するガスバリア性を有するものであればよく、好ましくは透明性を有するものである。たとえば、酸化アルミニウム、酸化珪素、酸窒化珪素、酸化マグネシウム、酸化錫、またはそれらの混合物といった無機酸化物で無機層を形成できる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウムは、酸素や水蒸気などのガスに対するバリア性が優れる観点から好ましく用いることができる。
無機層の好ましい厚さは、無機層を構成する無機酸化物の種類によって異なるが、通常、2nm〜500nmの範囲にある。この範囲で、ガスバリア性積層体のガスバリア性や機械的物性が良好となる厚さを選択すればよい。無機層の厚さが2nm未満である場合、酸素や水蒸気などのガスに対する無機層のバリア性の発現に再現性がなく、無機層が充分なガスバリア性を発現しない場合がある。無機層の厚さが500nmを超える場合は、ガスバリア性積層体を引っ張ったり屈曲させたりした場合に無機層のガスバリア性が低下し易くなる。無機層の厚さは、好ましくは5〜200nmの範囲にあり、さらに好ましくは10〜100nmの範囲にある。
無機層は、基材上に無機酸化物を堆積させることによって形成できる。形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、真空蒸着法が、生産性の観点から好ましく用いられる。真空蒸着を行う際の加熱方法としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機層と基材との密着性および無機層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、無機層の透明性を上げるために、蒸着の際、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。
ガスバリア層の微細構造は特に限定されるものではないが、ガスバリア層が以下に記載する微細構造を有する場合には、ガスバリア性積層体を伸長した際におけるガスバリア性の低下などが抑えられるため好ましい。好ましい微細構造としては、海相(α)および島相(β)からなる海島構造である。島相(β)は、海相(α)に比べて、化合物(L)の加水分解縮合物の割合が高い領域である。
海相(α)と島相(β)とは、それぞれ、さらに微細構造を有することが好ましい。たとえば、海相(α)は、主にカルボン酸含有重合体の中和物からなる海相(α1)と、主に化合物(L)の加水分解縮合物からなる島相(α2)とによって構成される海島構造をさらに形成していてもよい。また、島相(β)は、主にカルボン酸含有重合体の中和物からなる海相(β1)と、主に化合物(L)の加水分解縮合物からなる島相(β2)とによって構成される海島構造をさらに形成していてもよい。島相(β)中における[島相(β2)/海相(β1)]の比率(体積比)は、海相(α)中における[島相(α2)/海相(α1)]の比率よりも大きいことが好ましい。島相(β)の径は、好ましくは30nm〜1200nmの範囲にあり、より好ましくは50nm〜500nmの範囲にあり、さらに好ましくは50nm〜400nmの範囲にある。島相(α2)および島相(β2)の径は、好ましくは50nm以下であり、より好ましくは30nm以下であり、さらに好ましくは20nm以下である。
上記のような構造を得るためには、化合物(L)とカルボン酸含有重合体との架橋反応に優先して、化合物(L)の適切な加水分解縮合が起こる必要がある。そのために、特定の化合物(L)をカルボン酸含有重合体と適切な比率で使用する、化合物(L)をカルボン酸含有重合体と混合する前に予め加水分解縮合させておく、適切な加水分解縮合触媒を使用する、などの方法を採用できる。
また、特定の製造条件を選択すると、化合物(L)の加水分解縮合物の割合が高い領域がガスバリア層の表面に層状に形成されることが見出された。以下、ガスバリア層表面に形成された化合物(L)の加水分解縮合物の層を「スキン層」ということがある。スキン層が形成されることによって、ガスバリア層表面の耐水性が向上する。化合物(L)の加水分解縮合物からなるスキン層は、疎水的な特性をガスバリア層表面に付与し、水に濡れた状態のガスバリア層同士を重ねてもそれらが膠着しない特性をガスバリア性積層体に付与する。さらに驚くことに、疎水的な特性を有するスキン層がガスバリア層の表面に形成されても、その表面に対する印刷用インクなどの濡れ性は良好である。製造条件によって、ガスバリア層のスキン層の有無、あるいは形成されるスキン層の状態が異なる。鋭意検討した結果、本発明者らは、ガスバリア層と水との接触角と、好ましいスキン層との間に相関があり、その接触角が以下の条件を満たすときに、好ましいスキン層が形成されることを見出した。ガスバリア層と水との接触角が20°未満のときはスキン層の形成が不充分なことがある。この場合、ガスバリア層の表面が水によって膨潤しやすくなり、水に濡れた状態で積層体同士を重ねておくと、まれにそれらが膠着する場合がある。また、接触角が20°以上のときはスキン層形成が充分であり、ガスバリア層の表面は水によって膨潤しないため、膠着は起きない。ガスバリア層と水との接触角は好ましくは、24°以上であり、さらに好ましくは26°以上である。また、接触角が65゜より大きいとスキン層が厚くなりすぎ、ガスバリア性積層体の透明性が低下する。したがって、接触角は65゜以下であることが好ましく、60゜以下であることがより好ましく、58゜以下であることがさらに好ましい。
本発明の縦製袋充填シール袋では、通常、熱シールが行われる。そのため、本発明の縦製袋充填シール袋を構成する積層体では、通常、袋の内側となる側、あるいは袋の内側となる側および外側となる側の両方に、熱シール可能な層を配置することが必要である。熱シール可能な層が袋の内側となる側にのみある場合は、通常、胴体部のシールは合掌貼りシールとなる。熱シール可能な層が袋の内側となる側および外側となる側の両方にある場合は、通常、胴体部のシールは封筒貼りシールとなる。熱シール可能な層としては、ポリオレフィン層(以下、「PO層」と記載することがある)が好ましい。
また、本発明の蓋材を構成するガスバリア性積層体は、基材上に積層されたポリオレフィン層をさらに含んでもよい。たとえば、ガスバリア性積層体を構成する層のうち容器側となる層には、熱シール性を付与するために、ポリオレフィン層を用いてもよい。
さらに、本発明の真空包装袋を構成するガスバリア性積層体は、基材上に積層されたポリオレフィン層をさらに含んでもよい。たとえば、ガスバリア性積層体を構成する層のうち内容物側となる層には、熱シール性を付与するために、ポリオレフィン層を用いてもよい。
なお、上記「基材上に積層」とは、基材に直接積層されている場合に加え、他の層を介して基材に積層されている場合を含む。
以下では、基材と基材上に形成されたガスバリア層とを含む多層膜を、ガスバリア性多層膜という場合がある。このガスバリア性多層膜も、本発明で用いられるガスバリア性積層体の1種である。ガスバリア性多層膜には、様々な特性(たとえば熱シール性)を付与するための層が積層されていてもよい。たとえば、ガスバリア性積層体は、ガスバリア性多層膜/接着層/ポリオレフィン層、または、ポリオレフィン層/接着層/ガスバリア性多層膜/接着層/ポリオレフィン層、といった構成を有してもよい。すなわち、ガスバリア性積層体は、一方の最表面に配置されたポリオレフィン層を含んでもよい。また、ガスバリア性積層体は、一方の最表面に配置された第1のポリオレフィン層と、他方の最表面に配置された第2のポリオレフィン層とを含んでもよい。第1のポリオレフィン層と第2のポリオレフィン層とは同じでもよいし、異なってもよい。
縦製袋充填シール袋を構成するガスバリア性積層体は、たとえば、縦製袋充填シール袋の外側となる層から内側となる層に向かって、以下の構成を有していてもよい。
(1)ガスバリア性多層膜/PO層、
(2)無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(3)ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(4)ガスバリア性多層膜/ポリアミド層/PO層、
(5)無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(6)ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(7)ポリアミド層/ガスバリア性多層膜/PO層、
(8)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(9)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(10)ポリアミド層/ガスバリア性多層膜/ポリアミド層/PO層、
(11)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(12)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(13)ポリエステル層/ガスバリア性多層膜/PO層、
(14)ポリエステル層/ガスバリア性多層膜/ポリアミド層/PO層、
(15)ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(16)ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(17)ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(18)ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(19)ガスバリア性多層膜/EVOH層/PO層、
(20)ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(21)PO層/ガスバリア性多層膜/PO層、
(22)PO層/ガスバリア性多層膜/ポリアミド層/PO層、
(23)PO層/ポリアミド層/ガスバリア性多層膜/PO層、
(24)PO層/ポリエステル層/ガスバリア性多層膜/PO層、
(25)PO層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(26)PO層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(27)PO層/ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(28)PO層/ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(29)PO層/ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(30)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(31)PO層/ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(32)PO層/ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(33)PO層/ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(34)PO層/ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(35)PO層/EVOH層/ガスバリア性多層膜/PO層、
(36)PO層/EVOH層/ガスバリア性多層膜/ポリアミド層/PO層、
(37)PO層/ガスバリア性多層膜/EVOH層/PO層、
(38)PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(39)ガスバリア性多層膜/ポリアミド層/EVOH層/PO層、
(40)ポリアミド層/ガスバリア性多層膜/EVOH層/PO層、
(41)ポリアミド層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(42)ポリアミド層/ガスバリア性多層膜/ポリアミド層/EVOH層/PO層、
(43)紙層/PO層/ガスバリア性多層膜/PO層、
(44)紙層/PO層/ガスバリア性多層膜/ポリアミド層/PO層、
(45)紙層/PO層/ポリアミド層/ガスバリア性多層膜/PO層、
(46)紙層/PO層/ガスバリア性多層膜/EVOH層/PO層、
(47)紙層/PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(48)PO層/紙層/PO層/ガスバリア性多層膜/PO層、
(49)PO層/紙層/PO層/ガスバリア性多層膜/ポリアミド層/PO層、
(50)PO層/紙層/PO層/ポリアミド層/ガスバリア性多層膜/PO層、
(51)PO層/紙層/PO層/ガスバリア性多層膜/EVOH層/PO層、
(52)PO層/紙層/PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層。
縦製袋充填シール袋を構成するガスバリア性積層体の好ましい構成は、ガスバリア性多層膜/PO層、および、PO層/ガスバリア性多層膜/PO層である。これらの積層体において、ガスバリア性多層膜の基材がポリアミドフィルムであることが好ましい。そのような構成を有する縦製袋充填シール袋は、製袋後、加熱殺菌後、加熱殺菌/輸送後の酸素バリア性に特に優れる。
蓋材を構成するガスバリア性積層体は、たとえば、容器の外側となる層から容器の内側となる層に向かって、以下の構成を有していてもよい。
(1)ガスバリア性多層膜/PO層、
(2)無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(3)ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(4)ガスバリア性多層膜/ポリアミド層/PO層、
(5)無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(6)ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(7)ポリアミド層/ガスバリア性多層膜/PO層、
(8)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(9)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(10)ポリアミド層/ガスバリア性多層膜/ポリアミド層/PO層、
(11)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(12)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(13)ポリエステル層/ガスバリア性多層膜/PO層、
(14)ポリエステル層/ガスバリア性多層膜/ポリアミド層/PO層、
(15)ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(16)ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(17)ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(18)ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(19)ガスバリア性多層膜/EVOH層/PO層、
(20)ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(21)PO層/EVOH層/ガスバリア性多層膜/PO層、
(22)PO層/EVOH層/ガスバリア性多層膜/ポリアミド層/PO層、
(23)PO層/ガスバリア性多層膜/EVOH層/PO層、
(24)PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(25)ガスバリア性多層膜/ポリアミド層/EVOH層/PO層、
(26)ガスバリア性多層膜/ポリアミド層/PO層、
(27)ポリアミド層/ガスバリア性多層膜/EVOH層/PO層、
(28)ポリアミド層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(29)ポリアミド層/ガスバリア性多層膜/ポリアミド層/EVOH層/PO層、
(30)紙層/PO層/ガスバリア性多層膜/PO層、
(31)紙層/PO層/ガスバリア性多層膜/ポリアミド層/PO層、
(32)紙層/PO層/ポリアミド層/ガスバリア性多層膜/PO層、
(33)紙層/PO層/ガスバリア性多層膜/EVOH層/PO層、
(34)紙層/PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(35)PO層/紙層/PO層/ガスバリア性多層膜/PO層、
(36)PO層/紙層/PO層/ガスバリア性多層膜/ポリアミド層/PO層、
(37)PO層/紙層/PO層/ポリアミド層/ガスバリア性多層膜/PO層、
(38)PO層/紙層/PO層/ガスバリア性多層膜/EVOH層/PO層、
(39)PO層/紙層/PO層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層。
蓋材を構成するガスバリア性積層体の特に好ましい構成は、ガスバリア性多層膜/PO層という構成である。この構成において、ガスバリア性多層膜の基材として、たとえばポリアミドフィルムを用いることができる。このような構成を有する蓋材は、加熱殺菌後や、加熱殺菌/輸送後の酸素バリア性に特に優れる。
真空包装袋を構成するガスバリア性積層体は、たとえば、真空包装袋として使用される際に外側となる層から内側となる層に向かって、以下の構成を有していてもよい。
(1)ガスバリア性多層膜/PO層、
(2)無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(3)ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(4)PO層/ガスバリア性多層膜/PO層、
(5)ガスバリア性多層膜/ポリアミド層/PO層、
(6)無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(7)ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(8)ポリアミド層/ガスバリア性多層膜/PO層、
(9)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(10)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(11)ポリアミド層/ガスバリア性多層膜/ポリアミド層/PO層、
(12)ポリアミド層/無機蒸着フィルム層/ガスバリア性多層膜/ポリアミド層/PO層、
(13)ポリアミド層/ガスバリア性多層膜/無機蒸着フィルム層/ポリアミド層/PO層、
(14)ポリエステル層/ガスバリア性多層膜/PO層、
(15)ポリエステル層/無機蒸着フィルム層/ガスバリア性多層膜/PO層、
(16)ポリエステル層/ガスバリア性多層膜/無機蒸着フィルム層/PO層、
(17)ガスバリア性多層膜/EVOH層/PO層、
(18)PO層/EVOH層/ガスバリア性多層膜/PO層、
(19)PO層/ガスバリア性多層膜/EVOH層/PO層、
(20)ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(21)ガスバリア性多層膜/ポリアミド層/EVOH層/PO層、
(22)ガスバリア性多層膜/ポリアミド層/PO層、
(23)ポリアミド層/ガスバリア性多層膜/EVOH層/PO層、
(24)ポリアミド層/ガスバリア性多層膜/EVOH層/ポリアミド層/PO層、
(25)ポリアミド層/ガスバリア性多層膜/ポリアミド層/EVOH層/PO層。
真空包装袋を構成する積層体の特に好ましい構成としては、ガスバリア性多層膜/ポリアミド層/PO層、および、ポリアミド層/ガスバリア性多層膜/PO層、という構成が挙げられる。これらの構成において、ガスバリア性多層膜の基材として、たとえばポリアミドフィルムを用いることができる。このようなガスバリア性積層体を用いた真空包装袋は、真空包装後や、真空包装・加熱殺菌後のガスバリア性に特に優れる。
ガスバリア性積層体を構成する各層の層と層の間には、接着層を設けてもよい。また、ガスバリア性積層体のガスバリア層が基材の片面のみに形成されている場合、ガスバリア層は、基材のいずれの面上に積層されていてもよい。すなわち、縦製袋充填シール袋および真空包装袋においては、ガスバリア層は、袋の外側および内側のいずれの方向を向いていてもよく、蓋材においては、ガスバリア層は、基材よりも内側(容器側)にあっても外側にあってもよい。ポリオレフィン層、ポリアミド層、ポリエステル層、無機蒸着フィルム層、EVOH層、および紙層について、以下に説明する。
上記ポリオレフィン(PO)層としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−αオレフィン共重合体、アイオノマー、エチレン−アクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸共重合体、エチレン−プロピレン共重合体等から選ばれる少なくとも1種の樹脂からなる層を用いることができる。また、上記少なくとも1種の樹脂を押し出して得られるフィルムを用いることができる。これらのポリオレフィン層は、延伸または無延伸のいずれでもよい。好ましいポリオレフィン層としては、低密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、またはポリプロピレンからなる層、またはこれらの樹脂をフィルム化したシートが挙げられる。直鎖状(線状)低密度ポリエチレンまたはポリプロピレンからなる層またはシートがより好ましい。成型加工の容易さ、耐熱性などの観点から、上記積層体を構成するいずれのPO層も、無延伸低密度ポリエチレン、無延伸直鎖状(線状)低密度ポリエチレン、または無延伸ポリプロピレンからなることが好ましく、無延伸直鎖状(線状)低密度ポリエチレン、または無延伸ポリプロピレンからなることがさらに好ましい。
ガスバリア性積層体を構成する層のうち内容物側の最表面(すなわち、縦製袋充填シール袋および真空包装袋においては袋の最内層で、蓋材においては、最も容器側の層)に配置されるPO層は、無延伸低密度ポリエチレン、無延伸直鎖状(線状)低密度ポリエチレン、または無延伸ポリプロピレンからなることが好ましい。
また、特に蓋材において、上記PO層は、イージーピール性のポリオレフィンからなるものであってもよい。イージーピール性のポリオレフィンとしては既知ものを使用することができる。例えば、ポリオレフィンからなるベース樹脂に、そのベース樹脂に対して非相溶系あるいは部分相溶系の熱可塑性樹脂をポリマーブレンドすることによって得られる混合樹脂を使用できる。ベース樹脂として使用できるポリオレフィンとしては、PO層の材料として上述した樹脂を使用できる。
ベース樹脂の種類にもよるが、ベース樹脂に対して非相溶系あるいは部分相溶系の熱可塑性樹脂としては、例えば低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン樹脂、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体、エチレン−αオレフィン共重合体、ポリエチレンテレフタレート、ポリアミド、エチレン−アクリル酸共重合体やエチレン−メタクリル酸共重合体のような酸共重合物やエチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸メチル共重合体のようなエステル化物、エチレン−酢酸ビニル共重合体またはその鹸化物、ポリスチレン、ポリメチルメタクリレートなどを用いることができる。また、上述した熱可塑性樹脂以外にも、酸変性物など様々な樹脂の使用が可能である。これらの樹脂は、ベース樹脂と同様に単体で用いてもよいし、複数の樹脂をブレンドして用いてもよい。
ベース樹脂と、ベース樹脂に対して非相溶系あるいは部分相溶系の熱可塑性樹脂との好ましい組合せとしては、ポリプロピレン/ポリスチレン、および、ポリプロピレン/ポリエチレンを挙げることができる。
上記PO層の厚さは特に限定されないが、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、10μm〜200μmの範囲にあることが好ましく、20μm〜150μmの範囲にあることがより好ましい。
上記ポリアミド層としては、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、およびナイロンMXD6樹脂から選ばれる少なくとも1種の樹脂を押し出して得られるフィルムを用いることができる。これらのポリアミド層は、延伸または無延伸のいずれであってもよい。好ましいポリアミド層としては、ナイロン6またはナイロン66からなるフィルム(たとえば一軸または二軸延伸フィルム)が挙げられる。
上記ポリアミド層の厚さは特に限定されないが、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、5μm〜200μmの範囲にあることが好ましく、5μm〜100μmの範囲にあることがより好ましい。
上記ポリエステル層としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、およびポリブチレンナフタレートから選ばれる少なくとも1種の樹脂を押し出して得られるフィルムを用いることができる。これらのポリエステル層は、延伸または無延伸のいずれでもよい。好ましいポリエステル層は、ポリエチレンテレフタレート、ポリエチレンナフタレートをフィルム化、または延伸して得られるシートである。
上記ポリエステル層の厚さは特に限定されないが、機械的強靱性、耐衝撃性、耐突き刺し性等の観点から、5μm〜200μmの範囲にあることが好ましく、5μm〜100μmの範囲にあることがより好ましい。
上記無機蒸着フィルム層としては、延伸フィルム上に、無機層を蒸着したフィルムを用いることができる。延伸フィルムとしては、一軸あるいは二軸延伸された、ポリエステルフィルム、ポリアミドフィルム、ポリオレフィンフィルム等を用いることができる。無機層には、上述した無機層を用いることができる。
上記EVOH層としては、エチレン−酢酸ビニル共重合体を鹸化した樹脂を押し出して得られるフィルムを用いることができる。EVOH層は、一軸延伸フィルム、二軸延伸フィルム、または無延伸フィルムのいずれでもよいが、二軸延伸フィルムが好ましい。EVOH層の厚さは特に限定されないが、ガスバリア性、機械的強靭性、加工適性等の観点から、5μm〜200μmの範囲にあることが好ましく、5μm〜100μmの範囲にあることがより好ましい。
上記紙層に用いられる紙としては、クラフト紙、上質紙、模造紙、グラシン紙、パーチメント紙、合成紙、白板紙、マニラボール、ミルクカートン原紙、カップ原紙、アイボリー紙等が挙げられる。
ポリオレフィン層、ポリアミド層、ポリエステル層、無機蒸着フィルム層、EVOH層、および紙層は、ドライラミネーション法、ウエットラミネーション法、ホットメルトラミネーション法等の周知の方法によって他の層と貼り合わせてもよい。たとえば、無延伸ポリオレフィンフィルム、延伸ポリオレフィンフィルム、無延伸ポリアミドフィルム、延伸ポリアミドフィルムと他の層(フィルム)とを貼り合わせてもよい。また、周知のTダイ押出し法等によって、他の層(フィルム)上に、ポリオレフィン層やポリアミド層を形成してもよい。ポリオレフィン層と他の層との間に、接着層を配置してもよい。接着層は、アンカーコート剤、接着剤、および接着性樹脂などを用いて形成できる。
[ガスバリア性積層体の製造方法]
以下、本発明で用いられるガスバリア性積層体を製造するための方法について説明する。この方法によれば、ガスバリア性積層体を容易に製造できる。本発明の製造方法に用いられる材料、および積層体の構成は、上述したものと同様であるので、重複する部分については説明を省略する場合がある。
本発明の製造方法は、工程(i)および(ii)を含む。
工程(i)は、加水分解性を有する特性基を含有する化合物(L)の加水分解縮合物と、重合体(X)とを含む組成物からなる層を基材上に形成する工程である。その層は、基材上に直接形成されるか、または他の層を介して基材上に形成される。化合物(L)は、化合物(A)と化合物(B)とを含む。なお、化合物(L)に、カルボキシル基を含有する分子量が100以下の化合物(D)を添加することによって、化合物(L)の加水分解、縮合の反応性を制御でき、これから得られるガスバリア性積層体のガスバリア性、耐熱水性は良好となる。化合物(D)の詳細は後述する。
化合物(A)および化合物(B)、およびそれらの化合物の割合については、ガスバリア層を構成する組成物について説明したものと同様である。
次の工程(ii)は、2価以上の金属イオンを含む溶液に、工程(i)で形成された層を接触させる工程である(以下、この工程を「イオン化工程」という場合がある)。たとえば、形成した層に2価以上の金属イオンを含む溶液を吹きつけたり、基材と基材上の層とをともに2価以上の金属イオンを含む溶液に浸漬したりすることによって行うことができる。工程(ii)によって、重合体(X)の官能基(F)に含まれる−COO−基の少なくとも一部が中和される。
以下、工程(i)について詳細に説明する。なお、加水分解縮合していない化合物(L)とカルボン酸含有重合体とを混合すると、両者が反応してしまって溶液(U)の塗布が困難になることがある。そのため、工程(i)は、
(i−a)化合物(A)および化合物(A)の部分加水分解縮合物から選ばれる少なくとも1種の化合物と、カルボキシル基を含有し分子量が100以下である化合物(D)と、を含む溶液(S)を調製する工程と、
(i−b)化合物(B)および化合物(B)の部分加水分解縮合物から選ばれる少なくとも1種の化合物と溶液(S)とを混合することによって溶液(T)を調製する工程と、
(i−c)溶液(T)中において、化合物(A)と化合物(B)とを含む複数の化合物(L)の加水分解縮合物(オリゴマー(V))を形成する工程と、
(i−d)上記(i−c)の工程を経た溶液(T)と重合体(X)とを混合することによって溶液(U)を調製する工程と、
(i−e)溶液(U)を基材に塗工して乾燥させることによって層を形成する工程と、を含むことが極めて好ましい。
化合物(L)を加水分解縮合させたオリゴマー(V)は、より具体的には、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および化合物(L)が完全に加水分解しその一部が縮合したものから選ばれる少なくとも1つの金属元素含有化合物である。以下、そのような金属元素含有化合物を、「化合物(L)系成分」という場合がある。以下、工程(i−a)、工程(i−b)、工程(i−c)、工程(i−d)および工程(i−e)について、より具体的に説明する。
工程(i−a)は、化合物(L)を構成する化合物(A)を特定の条件下で加水分解、縮合させる工程である。化合物(A)、酸触媒、水および必要に応じて有機溶媒を含む反応系中において、化合物(A)を加水分解、縮合させることが好ましい。具体的には、公知のゾルゲル法で用いられている手法を適用できる。加水分解、縮合をさせる際には反応を制御するためにカルボキシル基を含有し分子量が100以下である化合物(D)(以下、単に化合物(D)と称する場合がある)を添加することが極めて好ましく、かかる化合物(D)を添加することによって、化合物(A)を加水分解、縮合させる工程でゲル化を抑制することができる。
化合物(D)は、化合物(A)、化合物(A)が部分的に加水分解したもの、化合物(A)が完全に加水分解したもの、化合物(A)が部分的に加水分解縮合したもの、および化合物(A)が完全に加水分解しその一部が縮合したものから選ばれる少なくとも1つが含まれる金属元素含有化合物(以下、この金属元素含有化合物を、「化合物(A)系成分」という場合がある。)に添加し、化合物(D)が化合物(A)系成分に作用することで、前記効果が発現する。化合物(D)の添加方法としては、化合物(A)系成分が加水分解縮合反応によってゲル化する前に添加する方法であれば特に制限されるものではないが、好ましい方法として以下の方法を挙げることができる。まず、化合物(D)と水、必要に応じて有機溶媒を混合し化合物(D)の水溶液を調製し、続いて前記化合物(D)の水溶液を化合物(A)系成分に添加することによって、化合物(A)系成分に化合物(D)が作用した溶液(S)を得ることができる。化合物(D)と混合する水の使用量には制限はないが、高濃度で均一な溶液(S)を得る観点から、[水のモル数]/[化合物(D)のモル数]の比は、25/1〜300/1の範囲にあることが好ましく、50/1〜200/1の範囲にあることがより好ましく、75/1〜150/1の範囲にあることがさらに好ましい。
化合物(D)の使用量に関して、化合物(A)の反応制御およびガスバリア性積層体のガスバリア性がより良好となる観点から、[化合物(D)のモル数]/[化合物(A)のモル数]の比は、0.25/1〜30/1の範囲にあることが好ましく、0.5/1〜20/1の範囲にあることがより好ましく、0.75/1〜10/1の範囲にあることがさらに好ましい。
化合物(D)は、カルボキシル基を含有し分子量が100以下である化合物であれば特に制限されない。化合物(A)と重合体(X)の官能基(F)との反応率が高まり、ガスバリア性積層体の耐熱水性およびガスバリア性が良好となる観点から、化合物(D)として、酢酸、プロピオン酸、ヘキサン酸などを挙げることができ、酢酸が最も好ましい。
工程(i−b)では、溶液(T)を調製する。具体的には、例えば、化合物(L)の構成成分である化合物(B)に、溶液(S)および必要に応じて有機溶媒を加え、その後、酸触媒、水および必要に応じて有機溶媒を添加する方法により溶液(T)を調製することができる。
工程(i−c)では、たとえば、化合物(A)系成分、化合物(B)、酸触媒、水、および必要に応じて有機溶媒を含む反応系中において、加水分解、縮合反応を行わせる。この手法には、公知のゾルゲル法で用いられている手法を適用できる。これにより、化合物(A)系成分、化合物(B)、化合物(B)が部分的に加水分解したもの、化合物(B)が完全に加水分解したもの、化合物(B)が部分的に加水分解縮合したもの、および化合物(B)が完全に加水分解しその一部が縮合したものから選ばれる少なくとも1つが含まれる金属元素含有化合物の溶液を得ることができる。
このような工程で反応を行うことによって、オリゴマー(V)調製時のゲルの発生を防止でき、更に、オリゴマー(V)の反応性を制御できる。そのため、オリゴマー(V)と重合体(X)とを混合した際のゲル化を防ぐことができる。
工程(i−a)および工程(i−b)で用いる酸触媒としては、公知の酸を用いることができ、例えば、塩酸、硫酸、硝酸、p−トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸等を用いることができる。その中でも塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が特に好ましい。酸触媒の好ましい使用量は、使用する酸の種類によって異なるが、化合物(L)の金属原子1モルに対して、1×10-5〜10モルの範囲にあることが好ましく、1×10-4〜5モルの範囲にあることがより好ましく、5×10-4〜1モルの範囲にあることがさらに好ましい。酸触媒の使用量がこの範囲にある場合、ガスバリア性が高いガスバリア性積層体が得られる。
また、工程(i−a)および工程(i−b)で用いる水の使用量は、化合物(L)の種類によって異なるが、化合物(L)の加水分解性を有する特性基1当量に対して、0.05〜10当量の範囲にあることが好ましく、0.1〜5当量の範囲にあることがより好ましく、0.2〜3当量の範囲にあることがさらに好ましい。水の使用量がこの範囲にある場合、得られるガスバリア性積層体のガスバリア性が特に優れる。なお、工程(i−a)および工程(i−b)において、塩酸のように水を含有する成分を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。
さらに、工程(i−a)および工程(i−b)においては、必要に応じて有機溶媒を使用してもよい。使用される有機溶媒は化合物(L)が溶解する溶媒であれば特に限定されない。たとえば、有機溶媒として、メタノール、エタノール、イソプロパノール、ノルマルプロパノール等のアルコール類が好適に用いられ、化合物(L)が含有するアルコキシ基と同種の分子構造(アルコキシ成分)を有するアルコールがより好適に用いられる。具体的には、テトラメトキシシランに対してはメタノールが好ましく、テトラエトキシシランに対してはエタノールが好ましい。有機溶媒の使用量は、特に限定されないが、化合物(L)の濃度が1〜90重量%、より好ましくは10〜80重量%、さらに好ましくは10〜60重量%となる量であることが好ましい。
工程(i−a)、工程(i−b)および工程(i−c)において、反応系中において化合物(L)の加水分解、縮合を行う際に、反応系の温度は必ずしも限定されるものではないが、通常2〜100℃の範囲にあり、好ましくは4〜60℃の範囲にあり、さらに好ましくは6〜50℃の範囲にある。反応時間は酸触媒の量、種類等の反応条件に応じて相違するが、通常0.01〜60時間の範囲にあり、好ましくは0.1〜12時間の範囲にあり、より好ましくは0.1〜6時間の範囲にある。また、反応は、空気、二酸化炭素、窒素、アルゴンなどの各種気体の雰囲気下で行うことができる。
工程(i−d)は、工程(i−c)で得られたオリゴマー(V)を含む溶液(T)と、カルボン酸含有重合体(=重合体(X))と混合して溶液(U)を調製する工程である。溶液(U)は、溶液(T)、カルボン酸含有重合体、ならびに必要に応じて水および有機溶剤を用いて調製することができる。たとえば、カルボン酸含有重合体を溶解させた溶液に、溶液(T)を添加して混合する方法を採用できる。また、溶液(T)に、カルボン酸含有重合体を水または有機溶媒に溶解させた溶液を添加して混合する方法も採用できる。いずれの方法においても、添加する溶液(T)またはカルボン酸含有重合体を溶解させた溶液は、一度に添加してもよいし、分割して添加してもよい。
工程(i−d)におけるカルボン酸含有重合体を溶解させた溶液は以下の方法により調整できる。使用する溶媒は、カルボン酸含有重合体の種類に応じて選択すればよい。たとえば、ポリアクリル酸やポリメタクリル酸などの水溶性の重合体の場合には、水が好適である。イソブチレン−無水マレイン酸共重合体やスチレン−無水マレイン酸共重合体などの重合体の場合には、アンモニア、水酸化ナトリウムや水酸化カリウムなどのアルカリ性物質を含有する水が好適である。また、カルボン酸含有重合体の溶解の妨げにならない限り、メタノール、エタノール等のアルコール類;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、プロピレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどを併用することも可能である。
溶液(U)に含まれるカルボン酸含有重合体においては、官能基(F)に含まれる−COO−基の一部(たとえば0.1〜10モル%)が1価のイオンによって中和されていてもよい。1価イオンによる官能基(F)の中和度は、得られるガスバリア性積層体の透明性が良好となる観点から、0.5〜5モル%の範囲にあることがより好ましく、0.7〜3モル%の範囲にあることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。
溶液(U)の固形分濃度は、溶液(U)の保存安定性、および溶液(U)の基材に対する塗工性の観点から、3重量%〜20重量%の範囲にあることが好ましく、4重量%〜15重量%の範囲にあることがより好ましく、5重量%〜12重量%の範囲にあることがさらに好ましい。
溶液(U)の保存安定性、および得られるガスバリア性積層体のガスバリア性の観点から、溶液(U)のpHは1.0〜7.0の範囲にあることが好ましく、1.0〜6.0の範囲にあることがより好ましく、1.5〜4.0の範囲にあることがさらに好ましい。
溶液(U)のpHは、公知の方法で調整でき、たとえば、塩酸、硝酸、硫酸、リン酸、酢酸、酪酸、硫酸アンモニウム等の酸性化合物や、水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、酢酸ナトリウム等の塩基性化合物を添加することによって調整できる。このとき、溶液中に1価の陽イオンをもたらす塩基性化合物を用いると、カルボン酸含有重合体のカルボキシル基および/またはカルボン酸無水物基の一部を1価のイオンで中和することができる。
工程(i−e)について説明する。工程(i−d)で調製される溶液(U)は、時間の経過とともに状態が変化し、最終的にはゲル状の組成物となる。溶液(U)がゲル状になるまでの時間は、溶液(U)の組成に依存する。基材に溶液(U)を安定的に塗工するためには、溶液(U)は、長時間にわたってその粘度が安定し、その後、徐々に粘度上昇するようなものであることが好ましい。溶液(U)は、化合物(L)系成分の全量を添加した時を基準として、25℃で2日間静置した後においても、ブルックフィールド粘度計(B型粘度計:60rpm)で測定した粘度が1N・s/m2以下(より好ましくは0.5N・s/m2以下で、特に好ましくは0.2N・s/m2以下)となるように組成を調整することが好ましい。また、溶液(U)は、25℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがより好ましい。また、溶液(U)は、50℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがさらに好ましい。溶液(U)の粘度が上記の範囲にある場合、貯蔵安定性に優れるとともに、得られるガスバリア性積層体のガスバリア性がより良好になることが多い。
溶液(U)の粘度が上記範囲内になるように調整するには、例えば、固形分の濃度を調整する、pHを調整する、カルボキシメチルセルロース、でんぷん、ベントナイト、トラガカントゴム、ステアリン酸塩、アルギン酸塩、メタノール、エタノール、n−プロパノール、イソプロパノールなどの粘度調節剤を添加するといった方法を用いることができる。
また、基材への溶液(U)の塗工を容易にするために、溶液(U)の安定性が阻害されない範囲で、溶液(U)に均一に混合することができる有機溶剤を添加してもよい。添加可能な有機溶剤としては、たとえば、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどが挙げられる。
また、溶液(U)は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、上述したアミノ基を二つ以上含む化合物(P)、上述した水酸基を二つ以上含む化合物(Q)、及びそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含んでいてもよい。また、溶液(U)は、金属酸化物の微粉末やシリカ微粉末などを含んでいてもよい。
工程(i−d)で調製された溶液(U)は、工程(i−e)において基材の少なくとも一方の面に塗工される。溶液(U)を塗工する前に、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布してもよい。溶液(U)を基材に塗工する方法は、特に限定されず、公知の方法を用いることができる。好ましい方法としては、たとえば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。
工程(i−e)で溶液(U)を基材上に塗工した後、溶液(U)に含まれる溶媒を除去することによって、イオン化工程前の積層体(積層体(I))が得られる。溶媒の除去の方法は特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの方法を単独で、または組み合わせて適用できる。乾燥温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、70〜200℃の範囲にあることが好ましく、80〜180℃の範囲にあることがより好ましく、90〜160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
本発明で用いられるガスバリア性積層体では、ガスバリア層の表面に、化合物(L)の加水分解縮合物からなるスキン層が形成されていることが好ましい。また、前記したように、スキン層が厚くなりすぎることは、ガスバリア性積層体の透明性が低下するために好ましくない。適度の厚さを有するスキン層を形成する方法について、以下に記載する。本発明者らが鋭意検討した結果によれば、スキン層の形成の有無、およびスキン層の形成の状態は、化合物(L)の加水分解縮合物の反応度、化合物(L)の組成、溶液(U)に使用されている溶媒、溶液(U)を基材に塗工した後の溶液(U)の乾燥される速度などに依存する。例えば、ガスバリア層表面に対する水の接触角を測定し、接触角が前記した所定の範囲より小さい場合には、工程(i−a)、工程(i−c)の反応時間を長くすることで、接触角を大きくすること(すなわち適切なスキン層を形成すること)が可能である。逆に接触角が前記した所定の範囲より大きい場合には、工程(i−a)、工程(i−c)の反応時間を短くすることによって、接触角を小さくすることが可能である。
工程(ii)によって、上記の工程によって得られる積層体(I)を2価以上の金属イオンを含む溶液(以下、「溶液(IW)」という場合がある)に接触させること(イオン化工程)によって、ガスバリア性積層体(積層体(II))が得られる。なお、イオン化工程は、本発明の効果を損なわない限り、どのような段階で行ってもよい。たとえば、イオン化工程は、積層体を所定の形状に加工する前あるいは加工した後に行ってもよいし、さらに積層体を所定の形状に加工したものの中に内容物を充填して密封した後に行ってもよい。
溶液(IW)は、溶解によって2価以上の金属イオンを放出する化合物(多価金属化合物)を、溶媒に溶解させることによって調製できる。溶液(IW)を調製する際に使用する溶媒としては、水を使用することが望ましいが、水と混和しうる有機溶媒と水との混合物であってもよい。そのような有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n−ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタン等の有機溶媒を挙げることができる。
多価金属化合物としては、本発明で用いられるガスバリア性積層体に関して例示した金属イオン(すなわち2価以上の金属イオン)を放出する化合物を用いることができる。たとえば、酢酸カルシウム、水酸化カルシウム、水酸化バリウム、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、炭酸マグネシム、酢酸鉄(II)、塩化鉄(II)、酢酸鉄(III)、塩化鉄(III)、酢酸亜鉛、塩化亜鉛、酢酸銅(II)、酢酸銅(III)、酢酸鉛、酢酸水銀(II)、酢酸バリウム、酢酸ジルコニウム、塩化バリウム、硫酸バリウム、硫酸ニッケル、硫酸鉛、塩化ジルコニウム、硝酸ジルコニウム、硫酸アルミニウム、カリウムミョウバン(KAl(SO42)、硫酸チタン(IV)などを用いることができる。多価金属化合物は、1種類のみを用いても、2種類以上を組み合わせて用いてもよい。好ましい多価金属化合物としては、酢酸カルシウム、水酸化カルシウム、酢酸マグネシウム、酢酸亜鉛が挙げられる。なお、これらの多価金属化合物は、水和物の形態で用いてもよい。
溶液(IW)における多価金属化合物の濃度は、特に制限されないが、好ましくは5×10-4重量%〜50重量%の範囲にあり、より好ましくは1×10-2重量%〜30重量%の範囲にあり、さらに好ましくは1重量%〜20重量%の範囲にある。
溶液(IW)に積層体(I)を接触させる際において、溶液(IW)の温度は、特に制限されないが、温度が高いほどカルボキシル基含有重合体のイオン化速度が速い。その温度は、たとえば30〜140℃の範囲にあり、好ましくは40〜120℃の範囲にあり、さらに好ましくは50〜100℃の範囲にある。
溶液(IW)に積層体(I)を接触させた後、その積層体に残留した溶媒を除去することが望ましい。溶媒の除去の方法は、特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法といった乾燥法を単独で、または2種以上を組み合わせて適用できる。溶媒の除去を行う温度は、基材の流動開始温度よりも15〜20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15〜20℃以上低い温度であれば特に制限されない。乾燥温度は、好ましくは40〜200℃の範囲にあり、より好ましくは60〜150℃の範囲にあり、さらに好ましくは80〜130℃の範囲にある。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
また、ガスバリア性積層体の表面の外観を損なわないためには、溶媒の除去を行う前または後に、積層体の表面に付着した過剰の多価金属化合物を除去することが好ましい。多価金属化合物を除去する方法としては、多価金属化合物が溶解していく溶剤を用いた洗浄が好ましい。多価金属化合物が溶解していく溶剤としては、溶液(IW)に用いることができる溶媒を用いることができ、溶液(IW)の溶媒と同一のものを用いることが好ましい。
本発明の製造方法では、工程(i)ののちであって工程(ii)の前および/または後に、工程(i)で形成された層を120〜240℃の温度で熱処理する工程をさらに含んでもよい。すなわち、積層体(I)または(II)に対して熱処理を施してもよい。熱処理は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、どの段階で行ってもよいが、イオン化工程を行う前の積層体(すなわち積層体(I))を熱処理することによって、表面の外観が良好なガスバリア性積層体が得られる。熱処理の温度は、好ましくは120℃〜240℃の範囲にあり、より好ましくは140℃〜240℃の範囲にあり、さらに好ましくは160℃〜220℃の範囲にある。熱処理は、空気中、窒素雰囲気下、アルゴン雰囲気下などで実施することができる。
また、本発明の製造方法では、積層体(I)または(II)に、紫外線を照射してもよい。紫外線照射は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、いつ行ってもよい。その方法は、特に限定されず、公知の方法を適用できる。照射する紫外線の波長は、170〜250nmの範囲にあることが好ましく、170〜190nmの範囲及び/又は230〜250nmの範囲にあることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。
熱処理と紫外線照射は、どちらか一方のみを行ってもよいし、両者を併用してもよい。熱処理及び/又は紫外線照射を行うことによって、積層体のガスバリア性能がより高度に発現する場合がある。
基材とガスバリア層との間に接着層(H)を配置するために、溶液(U)の塗工前に、基材の表面に処理(アンカーコーティング剤による処理、または接着剤の塗布)を施してもよい。その場合、工程(i)(溶液(U)の塗工)の後であって上記熱処理および工程(ii)(イオン化工程)の前に、溶液(U)が塗工された基材を、比較的低温下に長時間放置する熟成処理を行うことが好ましい。熟成処理の温度は、30〜200℃の範囲にあることが好ましく、30〜150℃の範囲にあることがより好ましく、30〜120℃の範囲にあることがさらに好ましい。熟成処理の時間は、0.5〜10日の範囲にあることが好ましく、1〜7日の範囲にあることがより好ましく、1〜5日の範囲にあることがさらに好ましい。このような熟成処理を行うことによって、基材とガスバリア層との間の接着力がより強固となる。この熟成処理ののちに、さらに上記熱処理(120℃〜240℃の熱処理)を行うことが好ましい。
本発明の縦製袋充填シール袋は、たとえば、上記ガスバリア性積層体を縦型製袋充填機で製袋することによって形成できる。
本発明の縦製袋充填シール袋は高い酸素バリア性を有する。また、本発明の縦製袋充填シール袋の酸素バリア性は、ボイル殺菌処理やレトルト殺菌処理などの加熱殺菌処理、および輸送による劣化が少ない。また、本発明の縦製袋充填シール袋は、廃棄時に環境に悪影響を与えない。また、本発明の縦製袋充填シール袋は、内容物の検査も容易である。
本発明の縦製袋充填シール袋の内容物としては、トマトソース、ミートソース等のソース類、カレールー、スープなどの加工食品、ケチャップ、マヨネーズ、わさび、からし、ドレッシング、乳幼児用等の流動食、ペットフード、米飯、ヨーグルト、フルーツのシロップ漬け、フルーツゼリー、味噌、ぜんざいなどが挙げられる。なかでも、本発明の縦製袋充填シール袋は、高温で長時間レトルト殺菌処理が行われる粘稠体であって、重量が1kg以上であるものの包装に好ましく用いられる。
本発明の縦製袋充填シール袋は、ガスバリア層の厚さの合計が1μm以下であり、且つ、レトルト処理前の酸素透過度が1.0cm3/(m2・day・atm)以下であってもよい。また、本発明の縦製袋充填シール袋は、ガスバリア層の厚さの合計が1μm以下であり、且つ、135℃で60分間レトルト処理を行った後の酸素透過度が1.5cm3/(m2・day・atm)以下であってもよい。酸素透過度の測定条件については、実施例で説明する。
本発明の蓋材は、たとえば、上記ガスバリア性積層体を所定の形に切り取ることによって形成できる。
本発明の蓋材は、高い酸素バリア性を有し、その酸素バリア性は湿度に依存しない。また、ボイル殺菌処理やレトルト殺菌処理などの加熱殺菌処理、輸送などによる酸素バリア性の低下が少ない。さらに、本発明の蓋材は、環境への悪影響が少ない。本発明の蓋材は、ミートボールやハンバーグ等の畜肉加工品、筍や豆の水煮等の野菜加工品、山菜、水産物の加工品、乳幼児用等の流動食、ペットフード、米飯、ヨーグルト、フルーツのシロップ漬け、フルーツゼリー、プリン、味噌、ぜんざいなどを内容物とする蓋付き容器の蓋材として使用することができる。本発明の蓋材によれば、内容物の変質を長期間にわたって防ぐことができる。本発明の蓋材は、レトルト殺菌処理が高温で長時間行われることがある畜肉加工品、ペットフードなどの蓋付き容器の蓋材として好適に使用できる。
本発明の容器用蓋材は、ガスバリア層の厚さの合計が1μm以下であり、且つ、レトルト処理前の酸素透過度が0.7cm3/(m2・day・atm)以下であってもよい。また、本発明の容器用蓋材は、ガスバリア層の厚さの合計が1μm以下であり、且つ、135℃で60分間レトルト処理を行った後の酸素透過度が1.1cm3/(m2・day・atm)以下であってもよい。酸素透過度の測定条件については、実施例で説明する。
本発明の真空包装袋は、通常行われている製袋方法によって上記ガスバリア性積層体を袋状にすることによって製造できる。真空包装袋の形状および大きさは、使用目的に応じて選択される。典型的な一例では、まず、矩形のガスバリア性積層体を2枚重ね合わせたのち、それらの外縁の3辺をヒートシールして袋状とする。次に、その中に内容物を充填したのち、包装袋内部を脱気し、最後の1辺をヒートシールする。このようにして、真空包装袋が得られる。
本発明の真空包装袋は、真空包装時の折り曲げ、屈曲、伸縮などの包装袋の変形によるガスバリア性の低下が少ない。また、本発明の真空包装袋は、真空包装に続いて施される加熱殺菌処理時の伸縮や屈曲などの変形によるガスバリア性の低下が少ない。そのため、本発明の真空包装袋は、真空包装後や加熱殺菌処理後も酸素バリア性に優れる。さらに、本発明の真空包装袋を使用した場合、内容物の状態を確認することができる。従来のバリア材料に対する本発明の真空包装袋の有利な効果は、内容物が固形分を含む場合に顕著である。そのような内容物としては、軸付きコーン、筍、芋、漬物、茶葉、落花生、豆類、コーヒー豆、チーズ、肉、ハンバーグ、ソーセージ、魚、菓子類等が挙げられる。本発明の真空包装袋は、固形分を含む食品を真空包装して加熱殺菌処理される用途に使用されてもよい。
本発明の真空包装袋は、ガスバリア層の厚さの合計が1μm以下であり、且つ、レトルト処理前の酸素透過度が0.8cm3/(m2・day・atm)以下であってもよい。また、本発明の真空包装袋は、ガスバリア層の厚さの合計が1μm以下であり、且つ、135℃で60分間レトルト処理を行った後の酸素透過度が1.0cm3/(m2・day・atm)以下であってもよい。酸素透過度の測定条件については、実施例で説明する。
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されない。なお、以下の実施例において積層体の層構成を表記する際に、物質名のみを表記し、「層」の表記を省略することがある。
[ガスバリア性積層体およびラミネート体の作製および評価]
以下で述べるガスバリア性積層体およびラミネート体を作製して評価した。評価は、以下の(1)〜(9)の方法で行った。
(1)レトルト処理前の酸素バリア性
酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて酸素透過度を測定した。温度20℃、酸素圧1気圧、キャリアガス圧力1気圧の条件下で、酸素透過度(cm3/(m2・day・atm))を測定した。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。このとき、湿度を85%RHとし、酸素供給側とキャリアガス側とを同一の湿度とした。基材の片面のみにガスバリア層を形成した積層体については、酸素供給側にガスバリア層が向きキャリアガス側に基材が向くように積層体をセットした。
(2)10%伸長後でレトルト処理前の酸素バリア性
まず、積層体を30cm×21cmに切り出した。次に、切り出した積層体を、23℃、50%RHの条件で手動伸長装置を用いて10%伸長し、伸長状態で5分間保持した。その後、上記と同様の手法で酸素透過度を測定した。
(3)接触角
積層体を温度20℃、湿度65%RHの条件下で24時間調湿を行った。その後、自動接触角計(協和界面科学製、DM500)を用いて、温度20℃、湿度65%RHの条件で2μLの水をガスバリア層上に滴下した。そして、日本工業規格(JIS)−R3257に準拠した方法で、ガスバリア層と水との接触角を測定した。
(4)引っ張り強伸度、ヤング率
積層体を温度23℃、湿度50%RHの条件下で24時間調湿を行った。その後、積層体を、MD方向およびTD方向に対して15cm×15mmに切り出した。切り出した積層体について、温度23℃、湿度50%RHの条件で、JIS−K7127に準拠した方法によって、引っ張り強伸度およびヤング率を測定した。
(5)乾熱収縮率
積層体を10cm×10cmに切り出し、MDおよびTDにおける長さをノギスで測定した。この積層体を、乾燥機中において80℃で5分間加熱し、加熱後のMDおよびTDにおける長さを測定した。そして、以下の式から乾熱収縮率を測定した。
乾熱収縮率(%)=100×(lb−la)/lb
[式中、lbは加熱前の長さを表す。laは加熱後の長さを表す。]
(6)金属イオンによるカルボキシル基の中和度(イオン化度)
[FT−IRによるイオン化度の算出]
数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、基材上に、イオン化度の測定の対象となる積層体のガスバリア層と同じ厚さになるようにコートし、乾燥させた。基材には、2液型のアンカーコート剤(三井武田ケミカル株式会社製、タケラック626(商品名)およびタケネートA50(商品名)、以下「AC」と略記することがある)を表面にコートした延伸ポリアミドフィルム(ユニチカ株式会社製、エンブレム ON−BC(商品名)、厚さ15μm、以下「OPA」と略記することがある)を用いた。このようにして、カルボキシル基の中和度が、0、25、50、75、80、90モル%の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/AC/OPA)]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1600cm-1〜1850cm-1の範囲に観察されるピークと1500cm-1〜1600cm-1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線1を作成した。
基材として延伸ポリアミドフィルム(OPA)を用いた積層体について、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、ガスバリア層に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは、1600cm-1〜1850cm-1の範囲に観察された。また、イオン化された後のカルボキシル基のC=O伸縮振動は1500cm-1〜1600cm-1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と上記検量線1とを用いてイオン化度を求めた。
[蛍光X線によるイオン化度の算出]
基材として前述したOPAを用いた積層体について、FT−IRの測定よりイオン化度の異なる標準サンプルを作製した。具体的には、イオン化度(イオン:カルシウムイオン)が0〜100モル%間で約10モル%ずつ異なる11種類の標準サンプルを作製した。各々のサンプルについて、波長分散型蛍光X線装置(株式会社リガク製、ZSXminiII)を用いて、カルシウム元素の蛍光X線強度を測定し、予めFT−IRで測定したイオン化度から検量線2を作成した。得られた検量線2を用いて、各種条件で作製した積層体のカルシウムイオン化度を算出した。
他の金属イオン(マグネシウムイオンや亜鉛イオン等)でイオン化する場合に関しても、上記と同様の方法で検量線2を作成し、イオン化度を算出した。
OPA以外の基材を用いた積層体(PETなど)についても、蛍光X線強度測定により得られた検量線2を用いて、イオン化度を算出した。
(7)加水分解縮合物および重合体(X)の重量
上述した方法によって、化合物(L)に由来する無機成分の重量、および、化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計を算出した。
(8)レトルト処理後の酸素バリア性
ラミネート体(サイズ:12cm×12cm)を2枚作製した。そして、その2枚を、無延伸ポリプロピレンフィルム(トーセロ株式会社製、RXC−18(商品名)、厚さ50μm、以下「CPP」と略記することがある)が内側になるように重ねあわせたのち、ラミネート体の3辺をその端から5mmまでヒートシールした。ヒートシールされた2枚のラミネート体の間に蒸留水80gを注入したのち、残された第4辺を同様にヒートシールした。このようにして、蒸留水が中に入ったパウチを作製した。
次に、そのパウチをレトルト処理装置(日阪製作所製、フレーバーエース RCS−60)に入れ、120℃、30分、0.15MPaの条件でレトルト処理を施した。レトルト処理後、加熱を停止し、レトルト処理装置の内部温度が60℃になった時点で、レトルト処理装置からパウチを取り出した。そして、20℃、65%RHの室内でパウチを1時間放置した。その後、ヒートシールされた部分をはさみで切り取り、ラミネート体の表面に付着した水を、紙タオルを軽く押し付けることによって拭き取った。その後、20℃、85%RHに調整したデシケータ内にパウチを1日以上放置した。このようなレトルト処理がされたラミネート体の酸素透過度を測定することによって、レトルト処理後の酸素バリア性を評価した。
酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、酸素供給側にガスバリア層が向きキャリアガス側にCPPが向くように積層体をセットし、温度20℃、酸素供給側の湿度85%RH、キャリアガス側の湿度85%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(cm3/(m2・day・atm))を測定した。
(9)レトルト処理後外観
まず、レトルト処理後の酸素バリア性の測定で用いたパウチと同様のパウチを作製した。このパウチを、135℃、60分、0.25MPaの条件でレトルト処理を行った。レトルト処理後、加熱を停止し、内部温度が60℃になった時点で、レトルト処理装置からパウチを取り出し、20℃、65%RHの室内でパウチを1時間放置した。その後外観観察を行い、レトルト前と同様に曇りがない場合を「非常に良好(S)」、やや曇りがあるが実用上問題がない場合は「良好(A)」、レトルト前と比べ明らかに曇りがある場合については「不良(B)」と判定した。
<積層体(1)>
数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、水溶液中の固形分濃度が13重量%であるPAA水溶液を得た。続いて、このPAA水溶液に、13%アンモニア水溶液を加え、PAAのカルボキシル基の1モル%を中和して、PAAの部分中和物水溶液を得た。
また酢酸60重量部と蒸留水1800重量部を混合し、この酢酸水溶液にアルミニウムイソプロポキシド(AIP)204重量部(AIP/酢酸/蒸留水=1/1/100(モル比))を撹拌しながら加え、その後80℃で1時間加熱することで濃度が9.88重量%のAIP水溶液(S1)を得た。
続いて、Al/Siのモル比が1.2/98.8、[テトラメトキシシラン(TMOS)およびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が40.2/59.8となるように混合液(U1)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに上記9.88重量%のAIP水溶液(S1)を8.5重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部を加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T1)を得た。続いて、混合液(T1)を、蒸留水425重量部およびメタノール222重量部で希釈した後、攪拌しながら上記PAAの部分中和物の水溶液(濃度13重量%)228重量部を速やかに添加し、固形分濃度5重量%の混合液(U1)を得た。
一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA−626(商品名)1重量部およびタケネートA−50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーP60(商品名)、厚さ12μm、以下「PET」と略記することがある)上に塗工し、乾燥させることによってアンカーコート層を有する基材(AC(0.1μm)/PET(12μm))を作製した。この基材のアンカーコート層上に、乾燥後の厚さが0.4μmとなるようにバーコータによって混合液(U1)をコートし120℃で5分間乾燥した。続いて、同様の手順で基材の反対側の面にも塗工を行った。得られた積層体を、40℃で3日間エージングを行った。次に、乾燥機を用い180℃で5分間、積層体に熱処理を施した。次に、積層体を、2重量%の酢酸カルシウム水溶液(85℃)に12秒浸漬し、その後、110℃で1分乾燥を行った。このようにして、ガスバリア層(0.4μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(0.4μm)という構造を有する積層体(1)を得た。
<積層体(2)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そして、Al/Siのモル比が30.1/69.9、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が25.5/74.5となるように混合液(U2)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%のAIP水溶液(S2)を293重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T2)を得た。続いて、得られた混合液(T2)を蒸留水850重量部、メタノール405重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)607重量部を速やかに添加し、固形分濃度5重量%の混合液(U2)を得た。
混合液(U2)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(2)を得た。
<積層体(3)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そして、反応時間のみを変えて、混合液(U3)を調製した。
具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%のAIP水溶液(S3)を8.5重量部加えた。続いて、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部を加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T3)を得た。続いて、混合液(T3)を、蒸留水425重量部およびメタノール222重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)228重量部を速やかに添加し、固形分濃度5重量%の混合液(U3)を得た。混合液(U3)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い積層体(3)を得た。
<積層体(4)>
AIPをチタンテトライソプロポキシド(TIP)に変更し、混合液(U4)を調製した。具体的には、酢酸1200重量部と蒸留水1800重量部を混合し、この酢酸水溶液にTIP284重量部(TIP/酢酸/蒸留水=1/20/100(モル比))を撹拌しながら加え、その後80℃で1時間加熱することで濃度が8.6重量%のTIP水溶液(S4)を得た。続いて、TMOS50重量部をメタノール50重量部に溶解し、これにTIP水溶液(S4)を13.5重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T4)を得た。続いて、積層体(1)と同様の組成および方法で、固形分濃度5重量%の混合液(U4)を得た。
混合液(U4)を用いて、積層体(1)と同様にコート、熱処理、イオン化、および乾燥を行い、積層体(4)を得た。
<積層体(5)>
AIPをジルコニウムテトライソプロポキシド(ZIP)に変更し、混合液(U5)を調製した。具体的には、酢酸1200重量部と蒸留水1800重量部を混合し、この酢酸水溶液にZIP327重量部(ZIP/酢酸/蒸留水=1/20/100(モル比))を撹拌しながら加え、その後80℃で1時間加熱することで濃度が9.8重量%のZIP水溶液(S5)を得た。次に、TMOS50重量部をメタノール50重量部に溶解し、これに上記9.8重量%ZIP水溶液(S5)を13.6重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T5)を得た。続いて、積層体(1)と同様の組成および方法で固形分濃度5重量%の混合液(U5)を得た。
混合液(U5)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(5)を得た。
<積層体(6)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そして[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が30.2/69.8となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U6)を調製した。具体的には、まず、積層体(3)で得られた混合液(T3)と同様の組成および方法で混合液(T6)を調製した。この混合液(T6)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、固形分濃度が5重量%の混合液(U6)を得た。
混合液(U6)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(6)を得た。
<積層体(7)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が1.9/98.1となるようにした以外は積層体(6)と同様の仕込み比で混合液(U7)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S7)を13.2重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T7)を得た。続いて、積層体(6)と同様の組成および方法で固形分濃度が5重量%の混合液(U7)を得た。
混合液(U7)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(7)を得た。
<積層体(8)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が2.8/97.2となるようにした以外は積層体(6)と同様の仕込み比で混合液(U8)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S8)を19.8重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T8)を得た。続いて、積層体(6)と同様の組成、方法で固形分濃度が5重量%の混合液(U8)を得た。
混合液(U8)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(8)を得た。
<積層体(9)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そして積層体(2)と同様の仕込み比、すなわちAl/Siのモル比が30/70、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が25.5/74.5となるように混合液(U9)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S9)を293重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T9)を得た。続いて、得られた混合液(T9)を蒸留水850重量部、メタノール405重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)607重量部を速やかに添加し、固形分濃度が5重量%の混合液(U9)を得た。
混合液(U9)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(9)を得た。
<積層体(10)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が0.1/99.9、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が80.0/20.0となるように混合液(U10)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S10)を0.7重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T10)を得た。続いて、混合液(T10)を、蒸留水212重量部およびメタノール131重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)38重量部を速やかに添加し、固形分濃度が5重量%の混合液(U10)を得た。
混合液(U10)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(10)を得た。
<積層体(11)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が29.9/70.1、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が36.9/63.1となるように混合液(U11)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S11)を290重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T11)を得た。続いて、混合液(T11)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、固形分濃度が5重量%の混合液(U11)を得た。
混合液(U11)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(11)を得た。
<積層体(12)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が0.1/99.9、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が70.0/30.0となるように混合液(U12)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S12)を0.7重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T12)を得た。続いて、混合液(T12)を、蒸留水243重量部およびメタノール144重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)65重量部を速やかに添加し、固形分濃度が5重量%の混合液(U12)を得た。
混合液(U12)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(12)を得た。
<積層体(13)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が3.0/97.0、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が20.0/80.0となるように混合液(U13)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S13)20.8重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T13)を得た。続いて、混合液(T13)を、蒸留水868重量部およびメタノール412重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)623重量部を速やかに添加し、固形分濃度が5重量%の混合液(U13)を得た。
混合液(U13)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(13)を得た。
<積層体(14)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が3.0/97.0、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が80.0/20.0となるように混合液(U14)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S14)21.0重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T14)を得た。続いて、混合液(T14)を、蒸留水214重量部およびメタノール132重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)39重量部を速やかに添加し、固形分濃度が5重量%の混合液(U14)を得た。
混合液(U14)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(14)を得た。
<積層体(15)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が3.0/97.0、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が70.0/30.0となるように混合液(U15)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S15)21.1重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T15)を得た。続いて、混合液(T15)を、蒸留水245重量部およびメタノール145重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)67重量部を速やかに添加し、固形分濃度が5重量%の混合液(U15)を得た。
混合液(U15)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(15)を得た。
<積層体(16)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が2.9/97.1、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が10.2/89.8となるように混合液(U16)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S16)20.3重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T16)を得た。続いて、混合液(T16)を、蒸留水1700重量部およびメタノール769重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)1366重量部を速やかに添加し、固形分濃度が5重量%の混合液(U13)を得た。
混合液(U16)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(16)を得た。
<積層体(17)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。そしてAl/Siのモル比が3.0/97.0、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が90.2/9.8となるように混合液(U17)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S17)21.3重量部加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T17)を得た。続いて、混合液(T17)を、蒸留水189重量部およびメタノール121重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)17重量部を速やかに添加し、固形分濃度が5重量%の混合液(U17)を得た。
混合液(U17)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(17)を得た。
<積層体(18)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。続いて、TMOS/γ−グリシドキシプロピルトリメトキシシラン(GPTMOS)のモル比が99.5/0.5、Al/Siのモル比が2.8/97.2、[TMOS、AIPおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が30.5/69.5となるように混合液(U18)を調製した。具体的には、まず、TMOS49.6重量部、GPTMOS0.4重量部をメタノール50重量部に溶解し、これに積層体(1)と同様の方法で調製した9.88重量%AIP水溶液(S18)を19.6重量部加えた。さらに、TMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T18)を得た。続いて、混合液(T18)を、蒸留水566重量部およびメタノール283重量部で希釈した後、攪拌しながら、PAAの部分中和物の水溶液(濃度13重量%)352重量部を速やかに添加し、固形分濃度が5重量%の混合液(U18)を得た。
混合液(U18)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(18)を得た。
<積層体(19)>
TMOS/GPTMOSのモル比が80.0/20.0となるようにした以外は積層体(18)と同様の仕込み比で混合液(U19)を得た。具体的には、まず、TMOS36.0重量部、GPTMOS14.0重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S19)を19.8重量部加えた。さらに、TMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.0重量部と0.1Nの塩酸7.4重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T19)を得た。続いて、混合液(T19)を、蒸留水520重量部およびメタノール302重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)267重量部を速やかに添加し、固形分濃度が5重量%の混合液(U19)を得た。
混合液(U19)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(19)を得た。
<積層体(20)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。続いて、TMOS/GPTMOSのモル比が89.9/10.1、Al/Siのモル比が3.1/96.9、[TMOS、AIPおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が31.5/68.5となるように混合液(U20)を調製した。具体的には、まず、TMOS42.6重量部、GPTMOS7.4重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S20)を20.6重量部加えた。さらに、TMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T20)を得た。続いて、混合液(T20)を、蒸留水542重量部およびメタノール302重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)293重量部を速やかに添加し、固形分濃度が5重量%の混合液(U20)を得た。
混合液(U20)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(20)を得た。
<積層体(21)>
TMOSとGPTMOSのモル比が98.0/2.0となるようにした以外は積層体(18)と同様の仕込み比で混合液(U21)を得た。具体的には、まず、TMOS48.5重量部、GPTMOS1.5重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S21)を19.2重量部加えた。さらに、TMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.1重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T21)を得た。続いて、混合液(T21)を、蒸留水562重量部およびメタノール285重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)345重量部を速やかに添加し、固形分濃度が5重量%の混合液(U21)を得た。
混合液(U21)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(21)を得た。
<積層体(22)>
TMOS/GPTMOSのモル比が99.9/0.1となるようにした以外は積層体(18)と同様の仕込み比で混合液(U22)を得た。具体的には、まず、TMOS49.9重量部、GPTMOS0.1重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S22)を21.0重量部加えた。さらに、TMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.1重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T22)を得た。続いて、混合液(T22)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)354重量部を速やかに添加し、固形分濃度が5重量%の混合液(U22)を得た。
混合液(U22)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(22)を得た。
<積層体(23)>
TMOS/GPTMOSのモル比が70.0/30.0となるようにした以外は積層体(18)と同様の仕込み比で混合液(U23)を得た。具体的には、まず、TMOS30.0重量部、GPTMOS20.0重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S23)を17.9重量部加えた。さらにTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を2.9重量部と0.1Nの塩酸7.0重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T23)を得た。続いて、混合液(T23)を、蒸留水500重量部およびメタノール310重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)229重量部を速やかに添加し、固形分濃度5重量%の混合液(U23)を得た。
混合液(U23)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(23)を得た。
<積層体(24)>
積層体(24)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U24)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体を作製した。この積層体を、0.1重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬してイオン化した後、積層体(1)と同様に乾燥を行い、積層体(24)を得た。
<積層体(25)>
積層体(25)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U25)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体を作製した。この積層体を、0.2重量%の酢酸カルシウム水溶液(85℃)に6秒間浸漬してイオン化した後、積層体(1)と同様に乾燥を行い、積層体(25)を得た。
<積層体(26)>
積層体(26)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U26)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体を作製した。この積層体を、0.2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬してイオン化した後、積層体(1)と同様に乾燥を行い、積層体(26)を得た。
<積層体(27)>
積層体(27)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U27)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体を作製した。この積層体を、2重量%の酢酸マグネシウム水溶液(85℃)に12秒間浸漬してイオン化した後、積層体(1)と同様に乾燥を行い、積層体(27)を得た。
<積層体(28)>
積層体(28)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U28)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体を得た。この積層体を、2重量%の酢酸亜鉛水溶液(85℃)に12秒間浸漬してイオン化した後、積層体(1)と同様に乾燥を行い、積層体(28)を得た。
<積層体(29)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。一方、エチレンジアミン(EDA)/HClのモル比が1/2となるようにEDAを1N塩酸に溶解させ、EDA塩酸塩水溶液を得た。[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が1.9/100となるようにEDA塩酸塩水溶液を加えた以外は、積層体(7)と同様の仕込み比で、混合液(U29)を調製した。具体的には、まず、積層体(7)の混合液(T7)と同様の組成および方法で調製した混合液(T29)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、更にEDA塩酸塩水溶液12.7重量部を加え、固形分濃度5重量%の混合液(U29)を得た。
混合液(U29)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(29)を得た。
<積層体(30)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。一方、濃度が10重量%となるようにポリビニルアルコール(株式会社クラレ製、PVA117、以下「PVA」と略記する場合がある)を蒸留水に加え、85℃で3時間加熱することによってPVA水溶液を得た。
そのPVA水溶液を、[PVAの水酸基]/[PAAのカルボキシル基]の当量比が18.2/100となるように加えた以外は積層体(7)と同様の仕込み比で、混合液(U27)を得た。具体的には、まず、積層体(7)の混合液(T7)と同様の組成および方法で調製した混合液(T30)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、更に上記10重量%PVA水溶液51重量部を加え、固形分濃度5重量%の混合液(U30)を得た。
混合液(U30)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(30)を得た。
<積層体(31)>
AIP水溶液調製時の酸をプロピオン酸にした以外は、積層体(21)と同様の仕込み比で混合液(U31)を調製した。具体的には、プロピオン酸74重量部と蒸留水1800重量部を混合した後、このプロピオン酸水溶液にAIP204重量部(AIP/プロピオン酸/蒸留水=1/1/100(モル比))を撹拌しながら加え、その後80℃で1時間加熱することで濃度が9.82重量%のAIP水溶液(S31)を得た。このAIP水溶液(S31)を用いた以外は積層体(18)の混合液(U21)と同様の組成および方法で、混合液(U31)を得た。
混合液(U31)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(31)を得た。
<積層体(32)>
AIP水溶液調製時の酸をヘキサン酸にした以外は、積層体(21)と同様の仕込み比で混合液(U32)を調製した。具体的には、ヘキサン酸116重量部と蒸留水1800重量部を混合した後、このヘキサン酸水溶液にAIP204重量部(AIP/ヘキサン酸/蒸留水=1/1/100(モル比))を撹拌しながら加え、その後80℃で1時間加熱することで濃度が9.62重量%のAIP水溶液(S32)を得た。このAIP水溶液(S32)を用いた以外は積層体(21)の混合液(U21)と同様の組成および方法で、混合液(U32)を得た。
混合液(U32)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(32)を得た。
<積層体(33)>
積層体(33)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U33)を使用した。基材の片面のみにガスバリア層を形成したこと以外は積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(33)を得た。
<積層体(34)>
積層体(34)の作製には、積層体(8)で得られた混合液(U8)と同様の組成および方法で得た混合液(U34)を使用した。また、基材を延伸ポリアミドフィルム(OPA)にした以外は積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(34)を得た。
<積層体(35)>
積層体(35)では、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U35)を使用した。また、積層体(34)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(35)を得た。
<積層体(36)>
積層体(36)では、積層体(8)で得られた混合液(U8)と同様の組成および方法で得た混合液(U36)を使用した。また、積層体(34)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(36)を得た。
<積層体(37)>
積層体(37)は、基材を変えたことを除いて積層体(35)と同様の条件で作製した。積層体(37)の作製では、基材として、延伸ポリアミドフィルム(ユニチカ株式会社製、エンブレムON(商品名)、厚さ25μm、以下「OPA25」と略記することがある)を用いた。
<積層体(38)>
積層体(38)では、積層体(21)で得られた混合液(U21)と同様の組成、方法で得た混合液(U38)を使用した。また、基材の片面のみにガスバリア層を形成したこと以外は積層体(34)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(38)を得た。
<積層体(39)>
積層体(39)の作製では、TMOS/GPTMOSのモル比が89.9/10.1、[TMOSとGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が31.5/68.5となるように、混合液(T39)を調製した。具体的には、まず、TMOS46重量部およびGPTMOS8重量部を、メタノール50重量部に溶解した。これにTMOSとGPTMOSの合計に対する水の割合が1.95モル当量でpHが2以下となるよう、蒸留水3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T39)を得た。
続いて、PAAの部分中和物水溶液を、積層体(1)と同様に調製した。次に、混合液(T36)を蒸留水61重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度13重量%の混合液(U39)を得た。
一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA−626(商品名)1重量部およびタケネートA−50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(上述した「PET」)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC(0.1μm)/PET(12μm))を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1.0μmとなるようにバーコータによって混合液(U39)をコートし120℃で5分間乾燥した。同様の手順で、基材の両面にコートを行い、積層体を得た。この積層体を、40℃で3日間エージングを行った。続いて、積層体に対して、乾燥機を用い180℃で5分間熱処理を施した。次に、積層体を、2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬した後、50℃で5分乾燥を行った。このようにして、ガスバリア層(1.0μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(1.0μm)という構造を有する積層体(39)を得た。
<積層体(40)>
積層体(40)の作製には、積層体(39)で得られた混合液(U39)と同様の組成および方法で得た混合液(U40)を使用した。また、基材をOPAにした以外は、積層体(1)と同様にコート、熱処理、イオン化乾燥を行い、積層体(40)を得た。
<積層体(41)>
固形分濃度を5重量%にした以外は、積層体(39)と同様に混合液(U41)を得た。まず、積層体(39)の混合液(T39)と同様の組成および方法で調製した混合液(T41)を蒸留水542重量部、メタノール293重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度5重量%の混合液(U41)を得た。
混合液(U41)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い積層体(41)を得た。
<積層体(42)>
積層体(42)の作製には、積層体(41)で得られた混合液(U41)と同様の組成および方法で得た混合液(U42)を使用した。また、積層体(34)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(42)を得た。
<積層体(43)>
PAAの部分中和物水溶液およびAIP水溶液は、積層体(1)と同様に調製した。TMOS、GPTMOSは加えずに[AIPに由来する無機成分]/[PAAの部分中和物]の重量比が1.0/99.0となるように、混合液(U43)を調製した。具体的には、9.88重量%AIP水溶液(S43)2.1重量部に、PAAの部分中和物水溶液(濃度5重量%)100重量部を速やかに添加し、混合液(U43)を得た。
混合液(U43)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(43)を得た。
<積層体(44)>
PAAの部分中和物水溶液は、積層体(1)と同様に調製した。[チタンラクテートに由来する無機成分]/[PAAの部分中和物]の重量比が0.9/99.1となるように混合液(U44)を調製した。具体的には、チタンラクテートのイソプロピルアルコール溶液(濃度10重量%)1.6重量部を、PAAの部分中和物の水溶液(濃度5重量%)100重量部に添加し、混合液(U44)を得た。
混合液(U44)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い、積層体(44)を得た。
<積層体(45)>
Al/Siのモル比が40.4/59.6、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が40.3/59.7となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U45)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S45)461重量部を加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T45)を得た。続いて、混合液(T45)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、固形分濃度5重量%の混合液(U45)を得た。
混合液(U45)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い積層体(45)を得た。
<積層体(46)>
Al/Siのモル比が0.06/99.94、[TMOSおよびAIPに由来する無機成分]/[PAAの部分中和物]の重量比が70.0/30.0となるようにした以外は積層体(3)と同様の仕込み比で、混合液(U46)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液(S46)0.4重量部を加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T46)を得た。続いて、混合液(T46)を蒸留水243重量部、メタノール144重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)65重量部を速やかに添加し、固形分濃度5重量%の混合液(U46)を得た。
混合液(U46)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い積層体(46)を得た。
<積層体(47)>
積層体(46)と同様の仕込み比で、反応時間のみを変えて、混合液(U47)を調製した。
具体的には、まず、TMOS50重量部をメタノール50重量部に溶解し、これに9.88重量%AIP水溶液0.4重量部(S47)を加えた。さらに、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T47)を得た。続いて、混合液(T47)を蒸留水243重量部、メタノール144重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)65重量部を速やかに添加し、固形分濃度が5重量%の混合液(U47)を得た。
混合液(U47)を用い、積層体(1)と同様にコート、熱処理、イオン化、乾燥を行い積層体(47)を得た。
<積層体(48)>
積層体(48)の作製には、積層体(21)で得られた混合液(U21)と同様の組成および方法で得た混合液(U48)を使用した。また、積層体(1)と同様にコートおよび熱処理を行って積層体(48)を作製した。
[積層体の評価結果]
作製した積層体を、上述した方法によって評価した。なお、積層体(37)についての評価は行わなかった。また、積層体の基材として用いた、延伸ポリエチレンテレフタレートフィルム(PET)および延伸ポリアミドフィルム(OPA)について、積層体と同様の評価を行った。積層体の作製条件を表1に示す。
Figure 2010053097
積層体および基材の評価結果を表2に示す。
Figure 2010053097
積層体(39)のガスバリア層の合計の厚さは2.0μmである。このようにガスバリア層の合計の厚さが厚い(たとえば1.0μmより大きい)と、積層体の物理的特性が、基材(PET)の物理的特性とは大きく異なり、加工性が低下してしまう。そのため、ガスバリア層を厚くすると、生産性が低下してしまうという問題が生じる。一方、積層体(1)〜(33)のように、ガスバリア層の合計の厚さが薄い積層体は、基材(PET)に近い物理的特性を示し、加工性が良好である。そのため、生産性よく成形品を製造するためには、ガスバリア層の合計の厚さを薄く(たとえば1.0μm以下)することが重要である。
[ラミネート体の作製]
積層体(1)を用いてラミネート体を作製した。まず、延伸ポリアミドフィルム(OPA)、及び無延伸ポリプロピレンフィルム(CPP)のそれぞれの上に、2液型の接着剤(三井武田ケミカル株式会社製、A−385(商品名)およびA−50(商品名))をコートして乾燥させた。そして、これらと積層体(1)とをラミネートした。このようにして、積層体(1)/接着剤/OPA/接着剤/CPPという構造を有するラミネート体(1)を得た。また、他の積層体についても、ラミネート体(1)と同様にラミネート体を作製して評価した。ラミネート体の作製に用いた積層体と、ラミネート体の評価結果について、表3に示す。
Figure 2010053097
[縦製袋充填シール袋の作製および評価]
上述した積層体を用いて縦製袋充填シール袋を作製して評価した。縦製袋充填シール袋の評価は、以下の方法(1)〜(4)によって実施した。
(1)酸素透過度
実施例および比較例で得られた縦製袋充填シール袋について、レトルト殺菌処理前後、および輸送試験後において、縦製袋充填シール袋から酸素透過度測定用のサンプルを切り取った。なお、レトルト処理後の縦製袋充填シール袋は、室温雰囲気下(20℃、65%RH)に24時間以上放置した後、酸素透過度測定用のサンプルを切り取った。酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)を用いて測定した。具体的には、縦製袋充填シール袋を構成する積層体の外層が酸素供給側に向き、積層体の内層がキャリアガス側に向くように積層体を装置にセットした。そして、温度20℃、酸素供給側の湿度85%RH、キャリアガス側の湿度100%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(単位:cm3/(m2・day・atm))を測定した。
(2)外観変化
実施例および比較例で得られた縦製袋充填シール袋について、水を充填してレトルト殺菌処理を行い、レトルト殺菌処理前後の外観を目視で観察した。そして、レトルト殺菌処理前後の外観の変化について、以下の基準で評価した。
評価5:レトルト殺菌処理前後で全く変化がない。
評価4:実用上問題のないレベルであるが、よく観ればわずかに白化している。
評価3:実用上問題のないレベルであるが、わずかに白化している。
評価2:少し白化しており、実用上問題になる可能性がある。
評価1:完全に白化しており、実用上問題になる。
(3)レトルト試験
実施例および比較例で得られた縦製袋充填シール袋をレトルト殺菌装置(株式会社日阪製作所製 RCS−60−10RSTXG−FAM)の棚に載せた。そして、縦製袋充填シール袋が完全に熱水に浸漬する熱水式レトルト殺菌処理を、以下の条件で実施した。
(a)レトルト処理温度、時間、圧力:135℃、60分、0.25MPa
(4)輸送試験
実施例および比較例で得られた縦製袋充填シール袋を上記(a)の条件でレトルト殺菌処理した。レトルト殺菌処理後の縦製袋充填シール袋10個をダンボール箱(15×35×45cm)に入れた。縦製袋充填シール袋とダンボール箱との隙間には、緩衝材を詰めた。そして、縦製袋充填シール袋が入ったダンボール箱をトラックに積み、岡山県と東京都の間(約700km)を10往復させる輸送試験を実施した。
<実施例1>
積層体(9)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと延伸ポリアミドフィルム(OPA)とをラミネートしてラミネート体を得た。続いて、そのラミネート体のOPA上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(トーセロ株式会社製、RXC−21(商品名)、厚さ70μm、以下「CPP70」と略記することがある)とをラミネートした。このようにして、積層体(9)/接着剤/OPA/接着剤/CPP70、という構成を有するラミネート体(A1)を得た。ラミネート体(A1)を幅400mmに切断して、縦型製袋充填包装機(オリヒロ株式会社製)に供給した。そして、製袋充填包装機によって、ラミネート体(A1)を用いて、合掌貼りタイプの縦製袋充填シール袋(幅160mm、長さ470mm)を作製した。製袋充填包装機において、ラミネート体(A1)からなる縦製袋充填シール袋には水2kgを充填した(以下の実施例および比較例においても同様である)。このようにして、実施例1の縦製袋充填シール袋を得た。得られた縦製袋充填シール袋の外観には、皺や筋のような欠点は見られなかった。製袋充填包装機におけるラミネート体(A1)の加工性は良好であった。以下の実施例で作製した縦製袋充填シール袋の外観にも、皺や筋のような欠点は見られなかった。また、以下の実施例におけるラミネート体も、製袋充填包装機における加工性は良好であった。
<実施例2〜4>
積層体(9)の代わりに積層体(8)、(21)または(35)を使用したことを除いて実施例1と同様にして、積層体/接着剤/OPA/接着剤/CPP70、という構成を有するラミネート体(A2)、(A3)および(A4)を得た。ラミネート体(A1)の代わりにラミネート体(A2)、(A3)または(A4)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例2〜4の縦製袋充填シール袋を作製した。得られた縦製袋充填シール袋の外観に、皺や筋のような欠点は見られなかった。
<実施例5>
積層体(35)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(CPP70)とをラミネートした。このようにして、積層体(35)/接着剤/CPP70、という構成を有するラミネート体(A5)を得た。ラミネート体(A1)の代わりにラミネート体(A5)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例5の縦製袋充填シール袋を作製した。
<実施例6>
積層体(35)の代わりに積層体(37)を使用したことを除いて実施例5と同様にして、積層体(37)/接着剤/CPP70、という構成を有するラミネート体(A6)を得た。ラミネート体(A1)の代わりにラミネート体(A6)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例6の縦製袋充填シール袋を作製した。
<実施例7>
積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(トーセロ株式会社製、RXC−21(商品名)、厚さ50μm、以下「CPP50」と略記することがある)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPP50とをラミネートした。このようにして、CPP50/接着剤/積層体(21)/接着剤/CPP50、という構成を有するラミネート体(A7)を得た。
ラミネート体(A7)を幅400mmに切断して、縦型製袋充填包装機(オリヒロ株式会社製)に供給した。そして、製袋充填包装機によって、ラミネート体(A7)を用いて封筒貼りタイプの縦製袋充填シール袋(幅160mm、長さ470mm)を作製した。製袋充填包装機において、縦製袋充填シール袋に水2kgを充填した。このようにして、封筒貼りタイプの実施例7の縦製袋充填シール袋を得た。
<実施例8>
積層体(21)の代わりに積層体(35)を使用したことを除いて実施例7と同様にして、CPP50/接着剤/積層体(35)/接着剤/CPP50、という構成を有するラミネート体(A8)を得た。ラミネート体(A7)の代わりにラミネート体(A8)を用いることを除いて実施例7と同様にして、封筒貼りタイプの実施例8の縦製袋充填シール袋を得た。
<実施例9>
CPP70の代わりにCPP50を使用したことを除いて実施例3と同様にして、積層体(21)/接着剤/OPA/接着剤/CPP50、という構成を有するラミネート体を作製した。続いて、そのラミネート体の積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPP50とをラミネートした。このようにして、CPP50/接着剤/積層体(21)/接着剤/OPA/接着剤/CPP50、という構成を有するラミネート体(A9)を得た。ラミネート体(A7)の代わりにラミネート体(A9)を用いることを除いて実施例7と同様にして、封筒貼りタイプの実施例9の縦製袋充填シール袋を得た。
<実施例10>
無機蒸着フィルム(三菱樹脂株式会社製、テックバリアTXR(商品名))の無機蒸着面上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(35)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(35)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPP70とをラミネートした。このようにして、無機蒸着フィルム/接着剤/積層体(35)/接着剤/CPP70、という構成を有するラミネート体(A10)を得た。ラミネート体(A1)の代わりにラミネート体(A10)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例10の縦製袋充填シール袋を作製した。
実施例10の縦製袋充填シール袋について、レトルト処理後の袋からサンプルを切り取り、水蒸気透過度を水蒸気透過度測定装置(モダンコントロール社製「PERMATRAN C−IV」)を用いて測定した。具体的には、水蒸気供給側にCPP層が向くように積層体を装置にセットし、温度40℃、水蒸気供給側の湿度90%RH、キャリアガス側の湿度0%RHの条件下で水蒸気透過度(単位:g/(m2・day))を測定した。水蒸気透過度は1.8g/(m2・day)であり、良好な結果が得られた。
<実施例11>
延伸ポリエチレンテレフタレートフィルム(PET)の面上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(35)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(35)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPP70とをラミネートした。このようにして、PET/接着剤/積層体(35)/接着剤/CPP70、という構成を有するラミネート体(A11)を得た。ラミネート体(A1)の代わりにラミネート体(A11)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例11の縦製袋充填シール袋を作製した。
<実施例12〜18>
積層体(9)の代わりに積層体(12)〜(18)を使用したことを除いて実施例1と同様にして、積層体/接着剤/OPA/接着剤/CPP70、という構成を有するラミネート体(A12)〜(A18)を得た。ラミネート体(A1)の代わりにラミネート体(A12)〜(A18)を用いることを除いて実施例1と同様に、合掌貼りタイプの実施例12〜18の縦製袋充填シール袋を作製した。
<比較例1、2、4〜6>
積層体(9)の代わりに積層体(39)、(40)または(45)〜(47)を使用したことを除いて実施例1と同様にして、積層体/接着剤/OPA/接着剤/CPP70、という構成を有するラミネート体(C1)、(C2)および(C4)〜(C6)を得た。ミネート体(A1)の代わりにラミネート体(C1)、(C2)または(C4)〜(C6)を用いることを除いて実施例1と同様に、合掌貼りタイプの比較例1、2および4〜6の縦製袋充填シール袋を作製した。
複数の比較例1の縦製袋充填シール袋の中には、僅かに線状の筋が発生しているものがあった。複数の比較例2の縦製袋充填シール袋の中には、比較例1と比べると頻度は低いが、線状の筋が発生しているものがあった。
<比較例3>
積層体(35)の代わりに積層体(40)を使用したことを除いて実施例5と同様にして、積層体(40)/接着剤/CPP70、という構成を有するラミネート体(C3)を得た。ラミネート体(A1)の代わりにラミネート体(C3)を用いることを除いて実施例1と同様に、合掌貼りタイプの比較例3の縦製袋充填シール袋を作製した。得られた縦製袋充填シール袋の外観に、皺や筋のような欠点は見られなかった。製袋充填包装機におけるラミネート体(C3)の加工性は良好であった。
実施例および比較例の縦製袋充填シール袋の構成を、表4に示す。
Figure 2010053097
実施例および比較例の縦製袋充填シール袋の評価結果を表5に示す。
Figure 2010053097
実施例の縦製袋充填シール袋は、レトルト処理後および輸送試験後における酸素バリア性が高かった。特に、実施例3〜11の縦製袋充填シール袋は、他の実施例に比べて、レトルト処理後および輸送試験後における酸素バリア性が高かった。また、実施例の縦製袋充填シール袋は、レトルト処理後の外観が良好であった。
実施例5で用いたラミネート体はそれを構成する層の数が少ないにも拘らず、実施例5の縦製袋充填シール袋は実施例4のそれと同等の酸素バリア性を示した。実施例5のラミネート体は実施例4のラミネート体と比較して減量化されており、さらに製造過程で発生する廃棄物の量も少ないため、環境の観点から好ましい。また、実施例5のラミネート体の製造では、ラミネート工程の工程数が少ないため、生産性が高い。
実施例5と同様に、実施例6の縦製袋充填シール袋は、環境および生産性の観点から好ましい。さらに、実施例5と比較して、実施例6の縦製袋充填シール袋は、突刺し強度や衝撃強度などの力学的物性が優れていた。
ガスバリア性積層体単独の評価と同様に、所定のガスバリア層を用いた縦製袋充填シール袋は、優れた特性を示した。
[容器用蓋材の作製および評価]
上述した積層体を用いて容器用蓋材を作製して評価した。容器用蓋材の評価は、以下の方法(1)〜(4)によって実施した。
(1)酸素透過度
実施例および比較例で得られたレトルト殺菌処理前後の蓋材、および輸送試験後の蓋材の酸素透過度を評価した。レトルト処理後の蓋付き容器は室温雰囲気下(20℃、65%RH)に24時間以上放置した。その後、容器(東洋製罐株式会社製、ハイレトフレックス HR78−84)の底部に穴を開けて水を抜き、さらに48時間以上室温雰囲気下(20℃、65%RH)に放置した。その後、キャリアガス用の金属パイプ2本が接続された金属治具を、上記容器に空けた穴にセットし、エポキシ接着剤を使用して、金属治具と容器の隙間からガスが漏れないように金属治具を容器に固定した。キャリアガス用金属パイプの反対の末端は酸素透過度測定装置(モダンコントロール社製「MOCON OX−TRAN2/20」)に接続した。金属パイプが取り付けられた蓋材付き容器の周囲はポリエステル層/接着層/EVOH層/PO層の構成からなるラミネートフィルムをヒートシールしてできた袋で覆い、この袋を2本の金属パイプに紐で固定した。その袋と金属パイプとの隙間はエポキシ樹脂で埋めて、気密性を高めた。次に、袋の1ヶ所に穴を開け、窒素ガスおよび酸素ガスを供給するためのパイプをその穴に挿入した。穴から外気が流入しないように、粘着テープを使用して気密性を高めた。
まず、キャリアガスとして、調湿された窒素ガスをパイプを通じて袋内に流入させた。袋の中に流入された窒素ガスのうち、一部は蓋材を透過して蓋材付き容器の中に移動し、一部は袋を透過し外部へ移動し、一部は2ヶ所の接続部分から外部へ漏れた。キャリアガス中に含まれる酸素ガスは、キャリアガスによってセンサー部に運ばれ、その酸素濃度が測定された。窒素ガスは、酸素濃度が低下して一定値になるまで流し続けた。酸素濃度が一定となった時点の酸素濃度を酸素透過度のゼロ点として設定した。酸素濃度が一定値になった後、袋に挿入されたパイプに流すガスを、調湿された窒素ガスから調湿された酸素ガスに切り替え、これによって蓋付き容器の外部に酸素を供給した。そして、蓋材を透過してキャリアガスによってセンサー部に運ばれた酸素の濃度を測定した。酸素透過度(単位:cm3/(m2・day・atm))は、温度20℃、酸素供給側の湿度65%RH、キャリアガス側の湿度65%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で測定した。
(2)外観変化
実施例および比較例で得られた蓋付き容器について、レトルト殺菌処理前後の蓋材の外観を観察した。そして、レトルト殺菌処理前後の外観変化について、以下の基準で評価した。蓋材の外観は、水が充填された状態の蓋付き容器の蓋材部を目視によって観察した。
評価5:レトルト殺菌処理前後で全く変化がない。
評価4:実用上問題のないレベルであるが、よく観ればわずかに白化している。
評価3:実用上問題のないレベルであるが、わずかに白化している。
評価2:少し白化しており、実用上問題になる可能性がある。
評価1:完全に白化しており、実用上問題になる。
(3)レトルト試験
実施例および比較例で得られた蓋付き容器をレトルト殺菌装置(株式会社日阪製作所製、RCS−60−10RSTXG−FAM)の棚に載せた。そして、蓋付き容器が完全に熱水に浸漬する熱水式レトルト殺菌処理を以下の条件で実施した。
(a)レトルト処理温度、時間、圧力:135℃、60分、0.25MPa
(4)輸送試験
実施例および比較例で得られた蓋付き容器を、上記(a)の条件でレトルト殺菌処理した。レトルト殺菌処理後の容器各々50個をダンボール箱(15×35×45cm)に入れた。蓋付き容器とダンボール箱の隙間には、緩衝材を詰めた。そして、蓋付き容器が入ったダンボール箱をトラックに積み、岡山県と東京都の間を10往復させる輸送試験を実施した。
<実施例19>
積層体(9)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと延伸ポリアミドフィルム(OPA)とをラミネートすることによってラミネート体を得た。続いて、そのラミネート体のOPA上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(トーセロ株式会社製、RXC−21(商品名)、厚さ70μm、以下「CPP」と略記することがある)とをラミネートした。このようにして、積層体(9)/接着剤層/OPA層/接着剤層/CPP層、という構成を有するラミネート体(A19)を得た。
ラミネート体(A19)から、容器用蓋材として、直径88mmの円形の積層体を切り取った。また、直径が78mmで、フランジ部の幅が6.5mmで、高さが30mmの円柱状の容器(東洋製罐株式会社製 ハイレトフレックス HR78−84)を準備した。この容器は、オレフィン層/スチール層/オレフィン層の3層で構成される。この容器に水をほぼ満杯に充填し、ラミネート体(A19)からなる蓋材を、フランジ部にヒートシールした。このようにして、実施例19の蓋付き容器を得た。
<実施例20〜22>
積層体(9)の代わりに積層体(8)、(21)または(35)を使用したことを除いて実施例19と同様にして、実施例20、21および22の蓋付き容器を作製した。
<実施例23>
延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーP60、厚さ12μm(上記PET))上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(21)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(CPP)とをラミネートした。このようにして、PET層/接着剤層/積層体(21)/接着剤層/CPP層、という構成を有するラミネート体(A23)を得た。ラミネート体(A19)の代わりにラミネート体(A23)を用いることを除いて実施例19と同様に、実施例23の蓋付き容器を作製した。
<実施例24>
積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(CPP)とをラミネートした。このようにして、積層体(21)/接着剤層/CPP層、という構成を有するラミネート体(A24)を得た。ラミネート体(A19)の代わりにラミネート体(A24)を用いることを除いて実施例19と同様に、実施例24の蓋付き容器を作製した。
<実施例25、26>
積層体(21)の代わりに積層体(35)または(37)を使用したことを除いて実施例24と同様にして、実施例25および26の蓋付き容器を作製した。
<実施例27>
積層体(21)の代わりに積層体(35)を使用したことを除いて実施例23と同様にして、実施例27の蓋付き容器を作製した。
<実施例28>
無機蒸着フィルム(三菱樹脂株式会社製、テックバリアTXR(商品名))の無機蒸着面上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(35)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(35)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(CPP)とをラミネートした。このようにして、無機蒸着フィルム層/接着剤層/積層体(35)/接着剤層/CPP層、という構成を有するラミネート体(A28)を得た。ラミネート体(A19)の代わりにラミネート体(A28)を用いることを除いて実施例19と同様に、実施例28の蓋付き容器を作製した。
実施例28の蓋付き容器について上述したレトルト試験を行ったのち、レトルト処理後の蓋付き容器から蓋材を切り取り、蓋材の水蒸気透過度を測定した。測定は、水蒸気透過度測定装置(モダンコントロール社製「PERMATRAN C−IV」)を用いて行った。具体的には、水蒸気供給側にCPP層が向くように積層体をセットし、温度40℃、水蒸気供給側の湿度90%RH、キャリアガス側の湿度0%RHの条件下で水蒸気透過度(単位:g/(m2・day))を測定した。実施例28の蓋材の水蒸気透過度は1.2g/(m2・day)であり、良好な結果であった。
<実施例29〜33>
積層体(9)の代わりに積層体(6)、(7)、(11)、(18)または(19)を用いること除いて実施例19と同様にして、実施例29〜33の蓋付き容器を作製した。
<実施例34〜39>
積層体(9)の代わりに積層体(12)〜(17)を使用したことを除いて実施例19と同様にして、実施例34〜39の蓋付き容器を作製した。
<比較例7、8>
積層体(9)の代わりに積層体(39)または(40)を使用したことを除いて実施例19と同様にして、比較例7および8の蓋付き容器を作製した。
<比較例9、10>
積層体(21)の代わりに積層体(39)または(40)を使用したことを除いて実施例24と同様にして、比較例9および10の蓋付き容器を作製した。
<比較例11〜15>
積層体(9)の代わりに積層体(41)または(42)を使用したことを除いて実施例19と同様にして、比較例11および12の蓋付き容器を作製した。積層体(9)の代わりに積層体(45)〜(47)を使用したことを除いて実施例19と同様にして、比較例13、14および15の蓋付き容器を作製した。
実施例および比較例の蓋材の構成を、表6に示す。
Figure 2010053097
実施例および比較例の蓋材の評価結果を表7に示す。
Figure 2010053097
実施例の蓋材は、レトルト処理後および輸送試験後における酸素バリア性が高かった。特に、実施例21〜28の蓋材は、他の実施例に比べて、レトルト処理後および輸送試験後における酸素バリア性が高かった。また、実施例の蓋材は、レトルト処理後の外観が良好であった。
実施例24〜26で用いたラミネート体はそれを構成する層の数が少ないにも拘らず、高い酸素バリア性を示した。実施例24〜26のラミネート体は減量化されており、さらに製造過程で発生する廃棄物の量も少ないため、環境の観点から好ましい。また、実施例24〜26のラミネート体の製造では、ラミネート工程の工程数が少ないため、生産性が高い。
比較例の蓋材には、酸素バリア性と外観との両方について優れた特性を示すものはなかった。比較例7〜10の酸素バリア性は高いが、これは、比較例7〜10のガスバリア層の厚さが、実施例の2倍以上であるためである。ガスバリア層の厚さが実施例と同じである比較例11〜15は、実施例と比較して酸素バリア性が低く、特に、レトルト処理後および輸送試験後のガスバリア性が低かった。比較例13を除く比較例の蓋材は、レトルト処理によってわずかに白化した。
以上のように、ガスバリア性積層体単独の評価と同様に、所定のガスバリア層を用いた蓋材は、優れた特性を示した。
[真空包装袋の作製および評価]
上述した積層体を用いて真空包装袋を作製して評価した。真空包装袋の評価は、以下の方法(1)〜(4)によって実施した。
(1)酸素透過度
実施例および比較例で得られた真空包装袋について、レトルト殺菌処理前後、および輸送試験後の真空包装袋から、酸素透過度測定用のサンプルを切り取った。レトルト処理後の真空包装袋は、室温(20℃、65%RH)雰囲気下に24時間以上放置した後、酸素透過度測定用のサンプルを切り取った。酸素透過度は、酸素透過量測定装置(モダンコントロール社製:MOCON OX−TRAN2/20)を用いて測定した。具体的には、真空包装袋を構成する積層体の外側層が酸素供給側に向き、積層体の内側層がキャリアガス側に向くように積層体を測定装置にセットした。そして、温度20℃、酸素供給側の湿度85%RH、キャリアガス側の湿度85%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(単位:cm3/(m2・day・atm))を測定した。
(2)外観変化
実施例および比較例で得られたレトルト殺菌処理前後の真空包装袋のヒートシール部を切り取り、レトルト処理前後の外観を目視で観察した。そして、以下の基準で外観変化の程度を評価した。レトルト殺菌処理後の真空包装袋は、室温(20℃、65%RH)雰囲気下に24時間以上放置した後、サンプルを切り取り、その直後に目視による評価を実施した。
評価5:レトルト殺菌処理前後で全く変化がない。
評価4:実用上問題のないレベルであるが、よく観ればわずかに白化している。
評価3:実用上問題のないレベルであるが、わずかに白化している。
評価2:少し白化しており、実用上問題になる可能性がある。
評価1:完全に白化しており、実用上問題になる。
(3)レトルト試験
実施例および比較例で得られた真空包装袋を、レトルト殺菌装置(株式会社日阪製作所製:RCS−60−10RSTXG−FAM)の棚に載せた。そして、真空包装袋が完全に熱水に浸漬する熱水式レトルト殺菌処理を、以下の2つの条件で実施した。
(a)レトルト処理温度、時間、圧力:135℃、30分、0.25MPa
(b)レトルト処理温度、時間、圧力:135℃、60分、0.25MPa
(4)輸送試験
実施例および比較例において、上記(a)の条件でレトルト殺菌処理を施した真空包装袋各々8袋を、ダンボール箱(サイズ:15×35×45cm)に入れた。真空包装袋とダンボール箱との隙間には緩衝材を詰めた。そして、真空包装袋の入ったダンボール箱をトラックに積み、岡山県と東京都の間を10往復させる輸送試験を実施した。
<実施例40>
積層体(9)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと延伸ポリアミドフィルム(OPA)とをラミネートしてラミネート体を得た。続いて、そのラミネート体のOPA上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとポリプロピレンフィルム(トーセロ株式会社製、RXC−21(商品名)、厚さ70μm、以下「CPP」と略記することがある)とをラミネートした。このようにして、積層体(9)/接着剤層/OPA層/接着剤層/CPP層という構成を有するラミネート体(A40)を得た。
次に、ラミネート体(A40)から、22cm×30cmの長方形の積層体2枚を切り取った。そして、CPP層が内側となるように2枚の積層体を重ね合わせ、長方形の3辺をヒートシールすることによって袋を形成した。その袋に、固形食品のモデルとして木製の球体(直径30mm)を、球体同士が接触するように1層に敷き詰めた状態で充填した。その後、包装袋の内部の空気を脱気して、最後の1辺をヒートシールした。球体の凹凸に沿って包装袋が球体に密着した状態で真空包装された(以下の実施例でも同様である)。このようにして、実施例40の真空包装袋を得た。
<実施例41〜43>
積層体(9)の代わりに積層体(8)、(21)または(35)を使用したこと以外は実施例40と同様にして、実施例41、42および43の真空包装袋を作製した。実施例43の包装袋は、実施例42の包装袋に比べてより球体に密着した。そのため、実施例43の包装袋では、内部の残存空気がより少なくなった。
<実施例44>
延伸ポリアミドフィルム(OPA)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(21)とをラミネートしてラミネート体を得た。続いて、そのラミネート体の積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPPとをラミネートした。このようにして、OPA層/接着剤層/積層体(21)/接着剤層/CPP層という構成を有するラミネート体(A44)を得た。
ラミネート体(A40)の代わりにラミネート体(A44)を用いることを除いて実施例40と同様に、実施例44の真空包装袋を作製した。
<実施例45>
無機蒸着フィルム(三菱樹脂株式会社製、テックバリアTXR(商品名))の無機蒸着面上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これと積層体(21)とをラミネートしラミネート体を得た。続いて、そのラミネート体の積層体(21)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPPとをラミネートした。このようにして、無機蒸着フィルム層/接着剤層/積層体(21)/接着剤層/CPP層という構成を有するラミネート体(A45)を得た。ラミネート体(A40)の代わりにラミネート体(A45)を使用することを除いて実施例40と同様に、実施例45の真空包装袋を作製した。
<実施例46>
積層体(35)上に、2液型の接着剤(三井武田ケミカル株式会社製、A−520(商品名)およびA−50(商品名))をコートして乾燥したものを準備し、これとCPPとをラミネートし、積層体(35)/接着剤/CPPという構成を有するラミネート体(A46)を得た。ラミネート体(A40)の代わりにラミネート体(A46)を用いることを除いて実施例40と同様に、実施例46の真空包装袋を作製した。実施例40〜45と比較しても、実施例46の包装袋は球体との密着度が高く、包装袋内の残存空気は最も少なかった。
<実施例47〜57>
積層体(9)の代わりに積層体(6)、(7)、(11)、(18)または(19)を用いることを除いて実施例40と同様にして、実施例47〜51の真空包装袋を作製した。また、積層体(9)の代わりに積層体(12)〜(17)を用いることを除いて実施例40と同様にして、実施例52〜57の真空包装袋を作製した。
<比較例16>
積層体(9)の代わりに積層体(39)を使用したことを除いて実施例40と同様にして、比較例16の真空包装袋を作製した。比較例16の包装袋は、包装された球体の凹凸に沿って球体に密着した状態で真空包装された。しかし、実施例40〜43の包装袋と比較すると、比較例16の包装袋は、球体との密着が不充分で包装袋内の残存空気が多かった。
<比較例17>
積層体(21)の代わりに積層体(39)を使用したことを除いて実施例44と同様にして、比較例17の真空包装袋を作製した。比較例17の真空包装袋は、包装された球体の凹凸に沿って球体に密着した状態で真空包装された。しかし、実施例44の包装袋と比較すると、比較例17の包装袋は、球体と包装袋との密着が不充分で包装体内の残存空気が多かった。
<比較例18>
積層体(21)の代わりに積層体(39)を使用したことを除いて実施例45と同様にして、比較例18の真空包装袋を作製した。比較例18の真空包装袋は、包装された球体の凹凸に沿って包装袋が球体に密着した状態で真空包装された。
<比較例19>
積層体(35)の代わりに積層体(40)を使用したことを除いて実施例46と同様にして、比較例19の真空包装袋を作製した。比較例19の真空包装袋は、包装された球体の凹凸に沿って包装袋が球体に密着した状態で真空包装された。しかし、実施例46の包装袋と比較すると、比較例19の包装袋は球体との密着度が低かった。
<比較例20〜22>
積層体(9)の代わりに積層体(45)、(46)または(47)を用いることを除いて実施例40と同様にして、比較例20、21および22の真空包装袋を作製した。
実施例および比較例の真空包装袋の構成を、表8に示す。
Figure 2010053097
実施例および比較例の真空包装袋の評価結果を表9に示す。
Figure 2010053097
実施例の真空包装袋は、レトルト処理前だけでなく、レトルト処理後および輸送試験後も、良好な酸素バリア性を示した。また、実施例の真空包装袋は、レトルト処理後の外観が良好であった。
比較例16〜19の包装袋の酸素バリア性は比較的高かったが、これは、比較例16〜19のガスバリア層の厚さが、実施例の2倍以上であるためである。それでも、レトルト処理後および輸送試験後の比較例16および17の酸素バリア性は、実施例よりも低かった。また、比較例16では、レトルト処理によってわずかに白化した。
ガスバリア層の厚さが実施例と同じである比較例20〜22は、実施例と比較して酸素バリア性が低く、特に、レトルト処理後および輸送試験後のガスバリア性が低かった。比較例17および20を除く比較例の包装袋は、レトルト処理によってわずかに白化した。
以上のように、ガスバリア性積層体単独の評価と同様に、所定のガスバリア層を用いた真空包装袋は、優れた特性を示した。
本発明は、縦製袋充填シール袋、容器用蓋材、および真空包装袋から選ばれるいずれか1つの成形品に利用できる。
本発明の縦製袋充填シール袋は、たとえば、液体、粘稠体、粉体、固形バラ物、または、これらを組み合わせた食品や飲料物などを包装する袋に利用できる。本発明の縦製袋充填シール袋は、酸素バリア性に優れ、さらに屈曲や伸長などの変形による酸素バリア性の低下が少ない。そのため、本発明の縦製袋充填シール袋によれば、内容物である食品の品質劣化を長期間にわたって抑制できる。
本発明の蓋材は、たとえば、畜肉加工品、野菜加工品、水産加工品、フルーツなどの食品が充填される蓋付き容器に利用できる。本発明の蓋材は酸素などのガスバリア性に優れるため、内容物である食品の品質劣化を長期間にわたって抑制できる。本発明の蓋材は、食料品などの内容物の保存用に使用される容器の蓋材として、特に、ボイル殺菌処理やレトルト殺菌処理などの加熱殺菌処理する容器の蓋材として、好ましく用いられる。

Claims (11)

  1. 縦製袋充填シール袋、容器用蓋材および真空包装袋からなる群より選ばれるいずれか1つの成形品であって、
    前記成形品は、ガスバリア性積層体を用いて形成されており、
    前記ガスバリア性積層体は、基材と前記基材に積層された少なくとも1つのガスバリア性を有する層とを含み、
    前記層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)の中和物とを含む組成物からなり、
    前記化合物(L)は、化合物(A)と、加水分解性を有する特性基が結合したSiを含有する化合物(B)とを含み、
    前記化合物(A)は、以下の式(I)で表される少なくとも1種の化合物であり、
    11 m1 n-m・・・(I)
    [式(I)中、M1はAl、Ti、およびZrから選ばれるいずれか1つを表す。X1は、F、Cl、Br、I、OR1、R2COO、R3COCHCOR4、およびNO3から選ばれるいずれか1つを表す。Y1は、F、Cl、Br、I、OR5、R6COO、R7COCHCOR8、NO3およびR9から選ばれるいずれか1つを表す。R1、R2、R5およびR6は、それぞれ独立に、水素原子またはアルキル基を表す。R3、R4、R7、R8およびR9は、それぞれ独立にアルキル基を表す。nはM1の原子価と等しい。mは1〜nの整数を表す。]
    前記化合物(B)は、以下の式(II)で表される少なくとも1種の化合物を含み、
    Si(OR10p11 4-p-q2 q・・・(II)
    [式(II)中、R10はアルキル基を表す。R11はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X2はハロゲン原子を表す。pおよびqは、それぞれ独立に0〜4の整数を表す。1≦p+q≦4である。]
    前記重合体(X)の前記官能基に含まれる−COO−基の少なくとも一部が2価以上の金属イオンで中和されており、
    前記化合物(B)に占める前記式(II)で表される化合物の割合が80モル%以上であり、
    前記組成物において、[前記化合物(A)に由来する前記M1原子のモル数]/[前記化合物(B)に由来するSi原子のモル数]の比が0.1/99.9〜35.0/65.0の範囲にある、成形品。
  2. 前記化合物(B)は、以下の式(III)で表される少なくとも1種の化合物をさらに含み、
    Si(OR12r3 s3 4-r-s・・・(III)
    [式(III)中、R12はアルキル基を表す。X3はハロゲン原子を表す。Z3は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。rおよびsは、それぞれ独立に0〜3の整数を表す。1≦r+s≦3である。]
    [前記式(II)で表される化合物に由来するSi原子のモル数]/[前記式(III)で表される化合物に由来するSi原子のモル数]の比が、99.5/0.5〜80.0/20.0の範囲にある、請求項1に記載の成形品。
  3. 前記少なくとも1つのガスバリア性を有する層の厚さの合計が1μm以下である、請求項1または2に記載の成形品。
  4. 前記M1がAlである、請求項1〜3のいずれか1項に記載の成形品。
  5. [前記化合物(L)に由来する無機成分の重量]/[前記化合物(L)に由来する有機成分の重量と前記重合体(X)に由来する有機成分の重量との合計]の比が、20.0/80.0〜80.0/20.0の範囲にある、請求項1〜4のいずれか1項に記載の成形品。
  6. [前記化合物(L)に由来する無機成分の重量]/[前記化合物(L)に由来する有機成分の重量と前記重合体(X)に由来する有機成分の重量との合計]の比が、30.5/69.5〜70.0/30.0の範囲にある、請求項1〜4のいずれか1項に記載の成形品。
  7. 前記基材がポリアミドフィルムである、請求項1〜6のいずれか1項に記載の成形品。
  8. 前記ポリアミドフィルムの厚さが20μm以上である、請求項7に記載の成形品。
  9. 前記ガスバリア性積層体は、一方の最表面に配置されたポリオレフィン層を含む、請求項1〜8のいずれか1項に記載の成形品。
  10. 前記成形品が縦製袋充填シール袋であり、且つ前記ガスバリア性積層体は、一方の最表面に配置された第1のポリオレフィン層と、他方の最表面に配置された第2のポリオレフィン層とを含む、請求項1〜8のいずれか1項に記載の成形品。
  11. 前記成形品が、固形分を含む食品を真空包装して加熱殺菌処理される用途に使用される真空包装袋である、請求項1〜9のいずれか1項に記載の成形品。
JP2010510601A 2008-11-05 2009-11-04 成形品 Active JP4554726B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2008284452 2008-11-05
JP2008284452 2008-11-05
JP2008304247 2008-11-28
JP2008304247 2008-11-28
JP2008304246 2008-11-28
JP2008304246 2008-11-28
JP2009229255 2009-10-01
JP2009229256 2009-10-01
JP2009229254 2009-10-01
JP2009229254 2009-10-01
JP2009229256 2009-10-01
JP2009229255 2009-10-01
PCT/JP2009/068838 WO2010053097A1 (ja) 2008-11-05 2009-11-04 成形品

Publications (2)

Publication Number Publication Date
JP4554726B2 JP4554726B2 (ja) 2010-09-29
JPWO2010053097A1 true JPWO2010053097A1 (ja) 2012-04-05

Family

ID=42152905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010510601A Active JP4554726B2 (ja) 2008-11-05 2009-11-04 成形品

Country Status (8)

Country Link
US (1) US8206798B2 (ja)
EP (1) EP2361841B1 (ja)
JP (1) JP4554726B2 (ja)
KR (1) KR101701130B1 (ja)
CN (1) CN102202984B (ja)
AU (1) AU2009312009B2 (ja)
ES (1) ES2477554T3 (ja)
WO (1) WO2010053097A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4463876B2 (ja) * 2008-04-09 2010-05-19 株式会社クラレ ガスバリア性積層体およびその製造方法
WO2011043031A1 (ja) 2009-10-08 2011-04-14 株式会社クラレ 積層体、それを用いた包装材料および成形品、ならびに当該積層体の製造方法
MX2013011139A (es) * 2011-04-12 2013-10-30 Procter & Gamble Envases de barrera flexible derivados de recursos renovables.
CN103781710A (zh) * 2011-09-05 2014-05-07 帝斯曼知识产权资产管理有限公司 用于延长食品或农产品保存期的方法
JP5870781B2 (ja) * 2012-03-13 2016-03-01 大日本印刷株式会社 蓋材用積層体、蓋材、分配包装容器、分配包装体、及び蓋材用積層体の製造方法
KR20140147879A (ko) * 2012-03-30 2014-12-30 도요세이칸 그룹 홀딩스 가부시키가이샤 가스 배리어재 및 가스 배리어성 적층체
CN104968496B (zh) * 2013-02-08 2017-06-27 株式会社可乐丽 具备包含多层结构体的包装材料的制品
JP6255735B2 (ja) * 2013-06-20 2018-01-10 凸版印刷株式会社 真空断熱材の外装材
CN106132692B (zh) * 2014-03-18 2018-04-27 株式会社可乐丽 多层结构体及其制造方法、使用其得到的包装材料和制品、电子设备的保护片材以及涂布液
US20170173929A1 (en) 2014-05-23 2017-06-22 Bemis Company, Inc. Peelable package
NL2016394B1 (en) * 2016-03-08 2017-09-27 Louis Rinze Henricus Adrianus Willemsen Method for the preparation of a biodegradable article.
EP3385758A1 (de) * 2017-04-05 2018-10-10 HILTI Aktiengesellschaft Vorrichtung und verfahren zum detektieren von elektrisch leitenden messobjekten in einem untergrund

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2005053954A1 (ja) * 2003-12-03 2005-06-16 Kuraray Co., Ltd. ガスバリア性積層体および包装体ならびにガスバリア性積層体の製造方法
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148688A (en) 1978-05-13 1979-11-21 Crown Cork Japan Container lid with high intercepting property
JPS5730745A (en) 1980-07-30 1982-02-19 Toyo Soda Mfg Co Ltd Adherent resin composition
US5804300A (en) 1991-12-28 1998-09-08 Toppan Printing Co., Ltd. Method of producing laminated packaging material
JP2768142B2 (ja) 1992-05-19 1998-06-25 凸版印刷株式会社 縦ピロー包装用積層包装材料
JPH09239911A (ja) 1996-03-07 1997-09-16 Toyo Seikan Kaisha Ltd 多層ラミネートフイルム製蓋材
JPH11314675A (ja) 1998-05-06 1999-11-16 Sumitomo Chem Co Ltd 真空包装用容器およびそれを用いた真空包装方法
JP2002138109A (ja) * 2000-07-28 2002-05-14 Kuraray Co Ltd ビニルアルコール系重合体組成物の製造方法
JP4241206B2 (ja) 2003-06-17 2009-03-18 大日本印刷株式会社 無菌米飯充填包装容器用蓋材およびそれを使用した無菌包装米飯
JP2005119063A (ja) 2003-10-15 2005-05-12 Toppan Printing Co Ltd 包装材料
JP2005231701A (ja) 2004-02-23 2005-09-02 Toppan Printing Co Ltd 蓋材
JP4483448B2 (ja) 2004-07-20 2010-06-16 凸版印刷株式会社 蓋材
JP4617754B2 (ja) 2004-07-27 2011-01-26 凸版印刷株式会社 真空包装材
ES2468222T3 (es) 2005-03-25 2014-06-16 Kuraray Co., Ltd. Recipiente de papel
JP4828280B2 (ja) 2005-03-31 2011-11-30 株式会社クラレ 容器蓋材
JP4865707B2 (ja) * 2005-06-03 2012-02-01 株式会社クラレ ガスバリア性積層体およびその製造方法ならびにそれを用いた包装体
JP4828281B2 (ja) 2005-06-03 2011-11-30 株式会社クラレ 真空包装袋
JP4923837B2 (ja) 2006-08-10 2012-04-25 大日本印刷株式会社 ボイル・レトルト容器用蓋材
JP4463876B2 (ja) 2008-04-09 2010-05-19 株式会社クラレ ガスバリア性積層体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2005053954A1 (ja) * 2003-12-03 2005-06-16 Kuraray Co., Ltd. ガスバリア性積層体および包装体ならびにガスバリア性積層体の製造方法
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体

Also Published As

Publication number Publication date
JP4554726B2 (ja) 2010-09-29
CN102202984B (zh) 2013-05-22
EP2361841B1 (en) 2014-06-18
US20110210034A1 (en) 2011-09-01
AU2009312009A1 (en) 2010-05-14
CN102202984A (zh) 2011-09-28
ES2477554T3 (es) 2014-07-17
EP2361841A4 (en) 2013-01-23
KR101701130B1 (ko) 2017-02-01
KR20110084438A (ko) 2011-07-22
US8206798B2 (en) 2012-06-26
AU2009312009B2 (en) 2015-07-16
WO2010053097A1 (ja) 2010-05-14
EP2361841A1 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4554726B2 (ja) 成形品
KR101220103B1 (ko) 가스 배리어성 적층체 및 이의 제조방법
EP2266794B1 (en) Gas barrier layered product and method for producing the same
KR101768841B1 (ko) 적층체, 이를 사용한 포장 재료 및 성형품, 및 당해 적층체의 제조 방법
JP5280166B2 (ja) 真空包装袋
JP5139964B2 (ja) 輸液バッグ
JP5436128B2 (ja) スパウト付きパウチ
JP5081139B2 (ja) ラミネートチューブ容器
JP5292085B2 (ja) スパウト付きパウチ
JP5366750B2 (ja) ラミネートチューブ容器
JP5155102B2 (ja) 縦製袋充填シール袋
JP5155122B2 (ja) 容器用蓋材
JP2010167765A (ja) 紙容器
JP4828280B2 (ja) 容器蓋材
JP5481147B2 (ja) 輸液バッグ
WO2024135610A1 (ja) 多層構造体及びそれを用いた包装材料並びに多層構造体の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4