JPWO2009144973A1 - Sn or Sn alloy plating film, composite material having the same, and method for producing composite material - Google Patents

Sn or Sn alloy plating film, composite material having the same, and method for producing composite material Download PDF

Info

Publication number
JPWO2009144973A1
JPWO2009144973A1 JP2009525834A JP2009525834A JPWO2009144973A1 JP WO2009144973 A1 JPWO2009144973 A1 JP WO2009144973A1 JP 2009525834 A JP2009525834 A JP 2009525834A JP 2009525834 A JP2009525834 A JP 2009525834A JP WO2009144973 A1 JPWO2009144973 A1 JP WO2009144973A1
Authority
JP
Japan
Prior art keywords
plating
plating film
alloy
foil
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009525834A
Other languages
Japanese (ja)
Other versions
JP4484962B2 (en
Inventor
国芳 前澤
国芳 前澤
正輝 村田
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Application granted granted Critical
Publication of JP4484962B2 publication Critical patent/JP4484962B2/en
Publication of JPWO2009144973A1 publication Critical patent/JPWO2009144973A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】Sn又はSn合金めっき被膜の摺れや脱落を防止することにより、ロールのメンテナンス性に優れ、生産性を向上させることができるSn又はSn合金めっき被膜及びそれを有する複合材料を提供する。【解決手段】樹脂層又はフィルム4を積層した銅箔又は銅合金箔1の他の面に、メタノールを含有しないSn又はSn合金電気めっき浴から形成され、硬さが500MPa以下のSn又はSn合金めっき被膜2であって、Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、銅箔又は銅合金箔が露出しない。【選択図】図1Provided are a Sn or Sn alloy plating film which is excellent in roll maintainability and can improve productivity by preventing the Sn or Sn alloy plating film from sliding or falling off, and a composite material having the Sn or Sn alloy plating film. . SOLUTION: An Sn or Sn alloy having a hardness of 500 MPa or less, formed from an Sn or Sn alloy electroplating bath not containing methanol on the other surface of a copper foil or copper alloy foil 1 on which a resin layer or a film 4 is laminated. When the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope in the case of the plating film 2 (however, when the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm, the thickness of the Sn or Sn alloy plating film) ) Is not exposed to copper foil or copper alloy foil. [Selection] Figure 1

Description

本発明は、電磁波シールド材料等に用いられ、樹脂等を積層した銅箔又は銅合金箔の他の面に形成されるSn又はSn合金めっき被膜、それを有する複合材料、及び複合材料の製造方法に関する。   The present invention relates to an Sn or Sn alloy plating film formed on the other surface of a copper foil or a copper alloy foil laminated with a resin or the like, used for an electromagnetic wave shielding material or the like, a composite material having the same, and a method for producing the composite material About.

Snめっき被膜は耐食性に優れ、かつ、はんだ付け性が良好で接触抵抗が低いと言う特徴を持っている。このため、例えば、車載電磁波シールド材の複合材料として、銅等の金属箔にSnめっきされて使用されている。
上記の複合材料としては、銅又は銅合金箔を基材とする電磁波シールド材料等の複合材料として、銅箔又は銅合金箔の一方の面に樹脂層又はフィルムを積層し、他の面にSnめっき被膜を形成した構造が用いられている。
また、近年、コネクター等の用途において、耐摩耗性・挿抜性の観点からSnめっき被膜を硬くすることが望まれており、Snめっき表層のヌープ硬度Hkを規定した技術が開示されている(特許文献1参照)。
The Sn plating film is characterized by excellent corrosion resistance, good solderability and low contact resistance. For this reason, for example, Sn plating is used for metal foils, such as copper, as a composite material of a vehicle-mounted electromagnetic wave shielding material.
As the above composite material, as a composite material such as an electromagnetic shielding material based on copper or copper alloy foil, a resin layer or a film is laminated on one surface of copper foil or copper alloy foil, and Sn is formed on the other surface. A structure in which a plating film is formed is used.
In recent years, in applications such as connectors, it has been desired that the Sn plating film be hardened from the viewpoint of wear resistance and insertion / removability, and a technique for defining the Knoop hardness Hk of the Sn plating surface layer has been disclosed (patent). Reference 1).

銅又は銅合金箔へのSnめっきは、通常は湿式めっきにより行われるが、めっき被膜の安定性(色調が均一で、色斑や模様がないこと) 、Snめっき被膜の耐摩耗性を図るため、めっき液に添加剤を加えて光沢Snめっきを行うことが多い。
例えば、めっき液に光沢剤を加えて光沢Snめっきを行い、Sn粒子をできるだけ小さくする技術が開示されている(特許文献2参照)。
一方、Snめっきには,その内部応力や外部応力によって,ウィスカとよばれるひげ状結晶が発生する。これを防止するために,めっき時に光沢剤を極端に減らして,内部応力を低下することが知られている。しかし,この方法によっても外部応力に伴うウィスカ発生を防止することは難しい。このため、電気めっき浴中の光沢剤を減らすと共にメタノールを添加し、Snめっき皮膜に空隙を持たせて,めっき後に曲げ加工や打ち抜き加工等で発生する外部応力を緩和する技術が開示されている。(特許文献3参照)
Sn plating on copper or copper alloy foil is usually performed by wet plating, but in order to improve the stability of the plating film (the color must be uniform and free of color spots and patterns) and the wear resistance of the Sn plating film In many cases, bright Sn plating is performed by adding an additive to the plating solution.
For example, a technique is disclosed in which a brightening agent is added to a plating solution to perform bright Sn plating to make Sn particles as small as possible (see Patent Document 2).
On the other hand, whisker-like crystals called whiskers are generated in Sn plating due to internal stress and external stress. In order to prevent this, it is known that the internal stress is reduced by extremely reducing the brightening agent during plating. However, it is difficult to prevent whisker generation due to external stress even by this method. For this reason, a technique has been disclosed in which the brightener in the electroplating bath is reduced and methanol is added to create a void in the Sn plating film to relieve external stress generated by bending or punching after plating. . (See Patent Document 3)

特開2002-298963号公報JP 2002-298963 A 特許第3007207号公報Japanese Patent No. 3007207 特開2007-254860号公報JP 2007-254860 JP

しかしながら、銅又は銅合金箔のような金属箔に硬いSnめっき(例えば、通常の光沢Snめっき)を連続ラインで行う場合に、Snめっき表面がこすれてロールに転写、付着するという問題がある。ロール表面にめっきが付着すると、ロールの清掃等でめっき時の生産性を低下させると共に、めっきの付着が極端にひどい場合にはSnめっき被膜が薄くなり、得られる複合材料の耐食性の低下を招くおそれもあるため、無視できない問題である。
このような不具合が発生する理由は不明であるが、端子やコネクター等の場合にはSnめっきが硬いほうが挿抜性がよいことから、Snめっきが硬いとSnの接する面同士のすべり性が良くなることが考えられる。すなわち、Snめっきが硬い場合には、ロールと金属箔上のSnめっき表面とのスリップが起こりやすく、仮にスリップが生じ始めると摩擦熱等によりSnめっきがロールに凝着しやすくなり、Snめっきの付着が見られるものと考えられる。
また、光沢剤の有機物がSn被膜に共析して、めっきが脆くなり、脱落し易くなることも考えられる。
However, when hard Sn plating (for example, normal bright Sn plating) is performed on a metal foil such as copper or copper alloy foil in a continuous line, there is a problem that the surface of the Sn plating is rubbed and transferred and adhered to the roll. When plating adheres to the roll surface, the productivity during plating is reduced by cleaning the roll, etc., and when the adhesion of plating is extremely severe, the Sn plating film becomes thin, leading to a reduction in the corrosion resistance of the resulting composite material. This is a problem that cannot be ignored because there is a fear.
The reason why such a defect occurs is unknown, but in the case of terminals, connectors, etc., the harder the Sn plating, the better the insertion / extraction, so the harder the Sn plating, the better the slipperiness between the Sn contact surfaces. It is possible. That is, when the Sn plating is hard, slippage between the roll and the Sn plating surface on the metal foil is likely to occur, and if slip begins to occur, the Sn plating tends to adhere to the roll due to frictional heat or the like. It is thought that adhesion is seen.
It is also conceivable that the organic material of the brightener co-deposits on the Sn coating, making the plating brittle and easy to fall off.

さらに、金属箔を連続ラインに通板する場合、上記したスリップがより発生しやすい状況にあると考えられる。つまり、銅箔は薄いため強度が低く、Snめっきやラミネーター、スリッターのような連続ラインへの通板の際に折れやシワが発生しやすい。そのため、シールド材として使用する場合、銅箔に樹脂またはフィルムを先に貼り付けてSnめっきを実施するのが一般的であるが、このような樹脂またはフィルムを貼り付けた銅箔であっても、連続ライン通板時にストリップにかかる張力を高くすると折れやシワが発生しやすくなる。そのため、折れやシワの発生を安定的に防止するためには、低い張力で通板することが望ましいが、一方、ストリップにかかる張力が低くなると、ロールとストリップとの接触圧力が小さくなり、ロールとストリップとの間でスリップしやすくなる。そのため、Snめっきの付着が更に起こりやすくなる。
このようなSnめっきの付着は,めっき工程以降にロールを用いた連続工程がある場合にも同様である。たとえば,Snめっき後にストリップを所望の幅にスリットする工程がこれにあたる。
Furthermore, when passing a metal foil through a continuous line, it is considered that the above-described slip is more likely to occur. That is, since the copper foil is thin, its strength is low, and folding and wrinkling are likely to occur when passing through a continuous line such as Sn plating, laminator, and slitter. Therefore, when used as a shielding material, it is common to first paste a resin or film on a copper foil and then perform Sn plating, but even a copper foil with such a resin or film attached When the tension applied to the strip is increased during continuous line passing, folding and wrinkles are likely to occur. Therefore, in order to stably prevent the occurrence of folds and wrinkles, it is desirable to pass the plate with a low tension. On the other hand, when the tension applied to the strip decreases, the contact pressure between the roll and the strip decreases, and the roll And slip easily between strips. Therefore, the adhesion of Sn plating is more likely to occur.
Such adhesion of Sn plating is the same when there is a continuous process using a roll after the plating process. For example, this is the process of slitting the strip to the desired width after Sn plating.

又、銅箔にSnめっきして得られた複合材料をケーブル等の電磁波シールド材料に用いる場合、ケーブル外周に複合材料を巻き、更にその外側に樹脂を被覆する。この樹脂被覆工程で、上記したようにSnめっきがラインに付着しやすい複合材料を用いると、複合材料がダイス(金型)を通過する際、Snめっき被膜が脱落しやすくなり、ダイスにSnカスが付着する可能性が高くなる。そして、ダイスにSnカスが付着するとメンテナンスに時間を要し、生産性を低下させる。   Moreover, when using the composite material obtained by Sn-plating copper foil for electromagnetic shielding materials, such as a cable, a composite material is wound around cable outer periphery, and also the resin is coat | covered on the outer side. In this resin coating process, if a composite material in which Sn plating easily adheres to the line as described above is used, when the composite material passes through a die (die), the Sn plating film tends to fall off, and the Sn residue is removed from the die. There is a high possibility of adhesion. And if Sn residue adheres to the die, time is required for maintenance, and productivity is lowered.

一方、特許文献3には、外部応力の影響を受け難くするため、Snめっき被膜の硬さを400MPa以下にすることが記載されている。しかしながら、特許文献3記載の技術は、めっき浴中に高濃度のメタノールを含有するため空隙の多いめっき被膜であり、さらに長時間電解を続けると、Snめっき被膜に大きな欠陥(下地の露出)が生じることが本発明者らの検討により判明した。
これは、めっき浴中のメタノールが電解によってホルムアルデヒドに変化し、このホルムアルデヒドが正常なSnの析出を阻害し、めっき被膜の欠陥をもたらすためと考えられる。そして、下地が露出すると、下地(金属箔)の耐食性が低下する不具合が生じる。
On the other hand, Patent Document 3 describes that the hardness of the Sn plating film is 400 MPa or less in order to make it less susceptible to external stress. However, the technique described in Patent Document 3 is a plating film with many voids because it contains a high concentration of methanol in the plating bath, and if the electrolysis is continued for a long time, a large defect (exposure of the ground) occurs in the Sn plating film. It has been clarified by the inventors' investigation.
This is presumably because methanol in the plating bath is converted into formaldehyde by electrolysis, which inhibits normal Sn deposition and causes defects in the plating film. And if the foundation | substrate is exposed, the malfunction which the corrosion resistance of a foundation | substrate (metal foil) falls will arise.

本発明は上記の課題を解決するためになされたものであり、めっき時や使用時のSn又はSn合金めっき被膜の摺れや脱落を防止して生産性を向上させ、かつ耐食性に優れたSn又はSn合金めっき被膜及びそれを有する複合材料の提供を目的とする。   The present invention has been made to solve the above-described problems, and prevents Sn or Sn alloy plating film from being slid or dropped during plating or use, thereby improving productivity and being excellent in corrosion resistance. Alternatively, an object is to provide a Sn alloy plating film and a composite material having the same.

本発明者らは種々検討した結果、銅又は銅合金箔表面のSn又はSn合金めっき被膜の硬さを所定の硬さ以下にすることで、Sn又はSn合金めっき被膜の摺れや脱落を低減することに成功した。又、メタノールを含有しないめっき浴を用いて電気めっきすることで、めっき被膜の欠陥による下地の露出を抑制し、耐食性を向上させることにも成功した。   As a result of various studies, the present inventors reduced the sliding or falling off of the Sn or Sn alloy plating film by setting the hardness of the Sn or Sn alloy plating film on the surface of the copper or copper alloy foil to a predetermined hardness or less. Succeeded in doing. In addition, by electroplating using a plating bath not containing methanol, the exposure of the substrate due to defects in the plating film was suppressed, and the corrosion resistance was also successfully improved.

上記の目的を達成するために、本発明のSn又はSn合金めっき被膜は、樹脂層又はフィルムを積層した銅箔又は銅合金箔の他の面に、メタノールを含有しないSn又はSn合金電気めっき浴から形成され、硬さが500MPa以下のSn又はSn合金めっき被膜であって、該Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、該Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、該Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、前記銅箔又は銅合金箔が露出しないものである。   In order to achieve the above object, the Sn or Sn alloy plating film of the present invention is a Sn or Sn alloy electroplating bath not containing methanol on the other surface of the copper foil or copper alloy foil in which the resin layer or film is laminated. When the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope (however, the thickness of the Sn or Sn alloy plating film is When the thickness exceeds 1.5 μm, when the thickness of the Sn or Sn alloy plating film is reduced to 1.5 μm), the copper foil or copper alloy foil is not exposed.

さらに、前記Sn又はSn合金めっき被膜内の炭素量が0.01質量%以下であることが好ましい。
Sn又はSn合金めっき被膜の厚みが0.5μm以上であることが好ましい。又、Sn又はSn合金めっき被膜の厚みが2.0μm未満であることが好ましい。
Sn又はSn合金めっき被膜が連続めっきによって形成されていることが好ましい。
Furthermore, it is preferable that the carbon content in the Sn or Sn alloy plating film is 0.01% by mass or less.
The thickness of the Sn or Sn alloy plating film is preferably 0.5 μm or more. Moreover, it is preferable that the thickness of Sn or Sn alloy plating film is less than 2.0 micrometers.
The Sn or Sn alloy plating film is preferably formed by continuous plating.

本発明の複合材料は、銅箔又は銅合金箔と、前記銅箔又は銅合金箔の一方の面に積層された樹脂層又はフィルムと、前記銅箔又は銅合金箔の他の面に形成された前記Sn又はSn合金めっき被膜とからなる。   The composite material of the present invention is formed on a copper foil or copper alloy foil, a resin layer or film laminated on one surface of the copper foil or copper alloy foil, and the other surface of the copper foil or copper alloy foil. And the Sn or Sn alloy plating film.

複合材料の厚みが0.1mm以下であることが好ましく、電磁波シールドに用いられることが好ましい。   The thickness of the composite material is preferably 0.1 mm or less, and is preferably used for an electromagnetic wave shield.

なお、本発明において、Snめっきの硬さは、ISO 14577-1 2002-10-01 Part1に準拠して測定される、超微小硬さ試験において、最大荷重1mNによる押し込み硬さとする。測定方法の詳細は後述する。
本発明において、Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき、「銅箔又は銅合金箔が露出しない」とは、Sn又はSn合金めっき被膜の反射電子像と異なる輝度の反射電子像が通常の倍率(例えば、1000倍程度)で観察されず、一様な輝度の反射電子像が得られることをいう。
又、Sn又はSn合金めっき被膜の厚みは、Sn又はSn合金めっき被膜の平均的なマクロな厚みであり、めっき被膜を電解して完全に溶解したときの電気量から求める。
また、Snめっき被膜内の炭素量分析方法は、高周波誘導加熱赤外線吸収法を用いて行うことができる。この方法は、Snめっきした試料を酸素雰囲気中で加熱溶解させ、試料中の炭素と雰囲気の酸素を反応させ、該雰囲気中の二酸化炭素量を測定することにより、炭素量を算出する。Snめっき被膜内の炭素量はめっき被膜をあらかじめ取り除いた試料(めっき基材)をブランクとし、Snめっき被膜付の試料との差で求める。
In the present invention, the Sn plating hardness is an indentation hardness with a maximum load of 1 mN in an ultra-micro hardness test measured in accordance with ISO 14577-1 2002-10-01 Part 1. Details of the measurement method will be described later.
In the present invention, when the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope, “the copper foil or copper alloy foil is not exposed” means that the reflected electron image of the Sn or Sn alloy plating film has a luminance different from that of the reflected electron image. It means that an electron image is not observed at a normal magnification (for example, about 1000 times), and a reflected electron image having a uniform luminance is obtained.
The thickness of the Sn or Sn alloy plating film is an average macro thickness of the Sn or Sn alloy plating film, and is obtained from the amount of electricity when the plating film is electrolyzed and completely dissolved.
Moreover, the carbon content analysis method in Sn plating film can be performed using the high frequency induction heating infrared absorption method. In this method, a Sn-plated sample is heated and dissolved in an oxygen atmosphere, carbon in the sample is reacted with oxygen in the atmosphere, and the amount of carbon dioxide in the atmosphere is measured to calculate the amount of carbon. The amount of carbon in the Sn plating film is determined by the difference from the sample with the Sn plating film, with the sample (plating base material) from which the plating film has been removed beforehand being used as a blank.

本発明によれば、Snめっき被膜の摺れや脱落を防止することにより、ロールのメンテナンス性に優れ、生産性を向上させることができるSnめっき被膜及びそれを有する複合材料が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the Sn plating film which can be excellent in the maintainability of a roll and can improve productivity by preventing a Sn plating film from sliding and dropping, and a composite material having the same are obtained.

以下、本発明の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Embodiments of the present invention will be described below. In the present invention, “%” means “% by mass” unless otherwise specified.

本発明の実施の形態に係る複合材料は、銅箔(又は銅合金箔)1と、銅箔(又は銅合金箔)1の一方の面に積層された樹脂層(又はフィルム)4と、銅箔(又は銅合金箔)1の他の面に形成されたSnめっき被膜2とからなる。
材料の軽薄化の観点から、複合材料の厚みは0.1mm以下であることが好ましい。
The composite material which concerns on embodiment of this invention is the copper foil (or copper alloy foil) 1, the resin layer (or film) 4 laminated | stacked on one surface of the copper foil (or copper alloy foil) 1, and copper It consists of Sn plating film 2 formed in the other surface of foil (or copper alloy foil) 1.
From the viewpoint of lightening the material, the thickness of the composite material is preferably 0.1 mm or less.

銅箔としては、純度99.9%以上のタフピッチ銅、無酸素銅、又、銅合金箔としては要求される強度や導電性に応じて公知の銅合金を用いることができる。公知の銅合金としては、例えば、0.01〜0.3%の錫入り銅合金や0.01〜0.05%の銀入り銅合金が挙げられ、中でも、導電性に優れたものとしてCu-0.12%Sn、Cu-0.02%Agがよく用いられる。
銅箔(又は銅合金箔)の厚みは特に制限されないが、シールド材として使用する場合、例えば5〜50μmのものを好適に用いることができる。
なお、銅箔(又は銅合金箔)としては、電解箔よりも高強度の圧延箔を用いることが好ましい。
又、銅箔(又は銅合金箔)の表面粗さは、厚み5〜50μmの場合、中心線平均粗さで0.3μm以下が好ましく、さらに0.2μm以下のものを用いることが好ましい。
As the copper foil, tough pitch copper having a purity of 99.9% or more, oxygen-free copper, and as the copper alloy foil, a known copper alloy can be used depending on required strength and conductivity. Known copper alloys include, for example, 0.01 to 0.3% tin-containing copper alloys and 0.01 to 0.05% silver-containing copper alloys. -0.12% Sn and Cu-0.02% Ag are often used.
The thickness of the copper foil (or copper alloy foil) is not particularly limited, but when used as a shielding material, for example, a thickness of 5 to 50 μm can be suitably used.
In addition, as copper foil (or copper alloy foil), it is preferable to use a rolled foil having higher strength than electrolytic foil.
Further, the surface roughness of the copper foil (or copper alloy foil) is preferably 0.3 μm or less, more preferably 0.2 μm or less in terms of centerline average roughness when the thickness is 5 to 50 μm.

樹脂層としては例えばポリイミド等の樹脂を用いることができ、フィルムとしては例えばPET(ポリエチレンテレフタラート)、PEN(ポリエチレンナフタレート)のフィルムを用いることができる。樹脂層やフィルムは、接着剤により銅箔(又は銅合金箔)に接着されてもよいが、接着剤を用いずに溶融樹脂を銅箔(銅合金箔)上にキャスティングしたり、フィルムを銅箔(銅合金箔)に熱圧着させてもよい。
樹脂層やフィルムの厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。又、接着剤を用いた場合、接着層の厚みは例えば10μm以下とすることができる。
As the resin layer, for example, a resin such as polyimide can be used, and as the film, for example, a film of PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) can be used. The resin layer or film may be bonded to the copper foil (or copper alloy foil) with an adhesive, but the molten resin is cast on the copper foil (copper alloy foil) without using the adhesive, or the film is made of copper. You may make it thermocompression-bond to foil (copper alloy foil).
The thickness of the resin layer or film is not particularly limited, but for example, a thickness of 5 to 50 μm can be suitably used. When an adhesive is used, the thickness of the adhesive layer can be set to 10 μm or less, for example.

Sn合金めっき被膜としては、例えばSn−Cu、Sn−Ag、Sn−Pb等を用いることができる。   For example, Sn—Cu, Sn—Ag, or Sn—Pb can be used as the Sn alloy plating film.

本発明において、Sn又はSn合金めっき被膜はメタノールを含有しないSn又はSn合金電気めっき浴から形成される。めっき浴中にメタノールを含有させると、長時間電解を続けた際にめっき被膜に欠陥(下地の露出)を生じる。
これは、めっき浴中のメタノールが電解によってホルムアルデヒドに変化し、このホルムアルデヒドが正常なSnの析出を阻害し、めっき被膜の欠陥をもたらすためと考えられる。そして、下地が露出すると、下地(銅箔又は銅合金箔)の耐食性が低下する不具合が生じる。めっき被膜に欠陥を与えるための電解時間はめっき条件によって変化するが、電解時間の合計が多くなるほど、メタノールが変化したホルムアルデヒドがめっき浴中に蓄積し、下地が露出するめっき欠陥が発生し易くなる。
なお、めっき浴中に「メタノールを含有しない」とは、めっき浴中のメタノール濃度が不純物レベル(通常は、数ppm(数mg/L)以下、例えば5mg/L以下)であることをいう。
In the present invention, the Sn or Sn alloy plating film is formed from an Sn or Sn alloy electroplating bath not containing methanol. When methanol is contained in the plating bath, defects (exposure of the base) occur in the plating film when electrolysis is continued for a long time.
This is presumably because methanol in the plating bath is converted into formaldehyde by electrolysis, which inhibits normal Sn deposition and causes defects in the plating film. And when a foundation | substrate is exposed, the malfunction which the corrosion resistance of a foundation | substrate (copper foil or copper alloy foil) falls arises. The electrolysis time for giving defects to the plating film varies depending on the plating conditions, but as the total electrolysis time increases, the formaldehyde in which methanol has changed accumulates in the plating bath, and plating defects that expose the substrate are more likely to occur. .
Note that “not containing methanol” in the plating bath means that the methanol concentration in the plating bath is at an impurity level (usually several ppm (several mg / L) or less, for example, 5 mg / L or less).

メタノールを含有しないSn又はSn合金電気めっき浴を用いてめっきすることにより、めっき被膜の表面を走査電子顕微鏡で観察したとき、下地(銅箔又は銅合金箔)が露出せず、欠陥のないめっき被膜が得られる。この場合、めっき被膜の表面を走査電子顕微鏡で観察すると、めっき被膜の反射電子像と異なる輝度の反射電子像が通常の倍率(例えば、1000倍程度)で観察されず、一様な輝度の反射電子像が得られる。つまり、めっき被膜と異なる組成がめっき被膜表面から検出されず、下地(銅箔又は銅合金箔)が露出しないことを表す。
なお、Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、粗雑なめっき粒が下地の露出部分(めっき欠陥部分)を覆う場合があるため(但し、下地を完全に被覆しているわけではない)、めっき被膜の表面を走査電子顕微鏡で観察すると、露出しているはずの下地の反射電子像が得られないことがある。この場合も実際には下地が露出して耐食性が劣ることから、下地の露出の有無を正確に判定するため、めっき被膜の厚みを1.5μmに減じて走査電子顕微鏡で観察することとする。
めっき被膜の厚みを1.5μmに減じる方法としては、FIB(集束イオンビーム)によりめっき被膜の断面を作製する方法や、めっき被膜の厚みを1.5μmにするための、めっき金属(又は合金)の減量を求めておき、めっき被膜を電解したときの溶解量がこの減量に一致するよう電解時の電気量を設定する方法がある。
By plating using a Sn or Sn alloy electroplating bath that does not contain methanol, when the surface of the plating film is observed with a scanning electron microscope, the base (copper foil or copper alloy foil) is not exposed, and there is no defect. A film is obtained. In this case, when the surface of the plating film is observed with a scanning electron microscope, a reflected electron image having a luminance different from that of the reflected electron image of the plating film is not observed at a normal magnification (for example, about 1000 times). An electronic image is obtained. That is, the composition different from the plating film is not detected from the surface of the plating film, and the base (copper foil or copper alloy foil) is not exposed.
If the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm, coarse plating grains may cover the exposed part of the base (plating defect part) (however, the base is completely covered). However, when the surface of the plating film is observed with a scanning electron microscope, the reflected electron image of the ground which should be exposed may not be obtained. Also in this case, since the base is actually exposed and the corrosion resistance is inferior, in order to accurately determine whether the base is exposed or not, the thickness of the plating film is reduced to 1.5 μm and observed with a scanning electron microscope.
As a method of reducing the thickness of the plating film to 1.5 μm, a method of producing a cross section of the plating film by FIB (focused ion beam), or a plating metal (or alloy) for reducing the thickness of the plating film to 1.5 μm. There is a method in which the amount of electricity at the time of electrolysis is set so that the amount of dissolution when electrolyzing the plating film coincides with this amount of reduction.

又、Sn又はSn合金めっき被膜の厚みは、Sn又はSn合金めっき被膜の平均的なマクロな厚みであり、めっき被膜を電解して完全に溶解したときの電気量から求める。   The thickness of the Sn or Sn alloy plating film is an average macro thickness of the Sn or Sn alloy plating film, and is obtained from the amount of electricity when the plating film is electrolyzed and completely dissolved.

Sn又はSn合金めっき被膜の硬さを500MPa以下とする。Sn又はSn合金めっき被膜の硬さを500MPa以下とすると、Sn又はSn合金めっき時にSn又はSn合金めっき表面とロールとの間のスリップが少なくなり、Sn又はSn合金めっきの付着がなくなる。又、得られた複合材料をケーブル等の電磁波シールド材料に用いる場合にも、加工時のロールやダイスへのSn又はSn合金の付着が見られず、生産性を向上できる。そして、得られた複合材料を加工した際、Sn又はSn合金めっき被膜の粉落ちが生じず、密着性が低下することがない。
Sn又はSn合金めっき被膜のめっきの硬さの下限を特に限定する理由はないが、溶融凝固したSn又はSn合金の硬さ以下にはなりえず、本発明では、100MPaを下限とする。
The hardness of the Sn or Sn alloy plating film is 500 MPa or less. When the hardness of the Sn or Sn alloy plating film is 500 MPa or less, slip between the Sn or Sn alloy plating surface and the roll is reduced during Sn or Sn alloy plating, and the adhesion of Sn or Sn alloy plating is lost. Further, when the obtained composite material is used for an electromagnetic shielding material such as a cable, the adhesion of Sn or Sn alloy to the roll or die during processing is not seen, and the productivity can be improved. And when processing the obtained composite material, the powder fall of Sn or Sn alloy plating film does not arise, and adhesiveness does not fall.
There is no reason to specifically limit the lower limit of the plating hardness of the Sn or Sn alloy plating film, but it cannot be less than the hardness of the melted and solidified Sn or Sn alloy. In the present invention, the lower limit is 100 MPa.

また、Sn又はSn合金めっき被膜内の炭素量が0.01質量%以下が好ましく、より望ましくは0.006質量%以下である。Sn又はSn合金めっき被膜内の炭素量が0.01質量%を超えると、Snめっき被膜の硬さが500MPa以下であっても被膜が脆く、ロールへのSnの付着が多くなる傾向にある。
また、Sn又はSn合金めっき被膜内の炭素量分析方法は、高周波誘導加熱赤外線吸収法を用いて行うことができる。この方法は、Sn又はSn合金めっきした試料を酸素雰囲気中で加熱溶解させ、試料中の炭素と雰囲気の酸素を反応させ、該雰囲気中の二酸化炭素量を測定することにより、炭素量を算出する。Sn又はSn合金めっき被膜内の炭素量はめっき被膜をあらかじめ取り除いた試料(めっき基材)をブランクとし、Sn又はSn合金めっき被膜付の試料との差で求める。
Further, the carbon content in the Sn or Sn alloy plating film is preferably 0.01% by mass or less, and more preferably 0.006% by mass or less. If the amount of carbon in the Sn or Sn alloy plating film exceeds 0.01% by mass, even if the Sn plating film has a hardness of 500 MPa or less, the film is brittle and Sn tends to adhere to the roll.
Moreover, the carbon content analysis method in Sn or Sn alloy plating film can be performed using the high frequency induction heating infrared absorption method. In this method, a sample plated with Sn or Sn alloy is heated and dissolved in an oxygen atmosphere, the carbon in the sample is reacted with oxygen in the atmosphere, and the amount of carbon dioxide in the atmosphere is measured to calculate the amount of carbon. . The amount of carbon in the Sn or Sn alloy plating film is determined by the difference from the sample with the Sn or Sn alloy plating film, with the sample (plating base material) from which the plating film has been removed beforehand being used as a blank.

Sn又はSn合金めっき被膜の厚みが0.5μm以上であることが好ましい。厚みが0.5μm未満の場合は耐食性、はんだ付け性が低下する場合がある。
Sn又はSn合金めっき被膜の厚みの上限は、Sn又はSn合金めっきの製造条件等によって変化するので特に制限されないが、2μm以上にSn又はSn合金めっきを厚くしても耐食性、はんだ付け性の更なる向上はみられず、逆に、Sn又はSn合金めっき代を増加させる、生産性を低下させる等の不具合もある。従って、Snめっき被膜の厚みが0.5μm以上2μm未満であることが好ましい。
The thickness of the Sn or Sn alloy plating film is preferably 0.5 μm or more. When the thickness is less than 0.5 μm, the corrosion resistance and solderability may deteriorate.
The upper limit of the thickness of the Sn or Sn alloy plating film is not particularly limited because it varies depending on the manufacturing conditions of the Sn or Sn alloy plating, etc. Even if the Sn or Sn alloy plating is thickened to 2 μm or more, the corrosion resistance and solderability are further improved. However, there are also problems such as increasing the Sn or Sn alloy plating allowance and reducing productivity. Therefore, it is preferable that the thickness of the Sn plating film is 0.5 μm or more and less than 2 μm.

Sn又はSn合金めっき被膜の硬さは、ISO(国際標準化機構)14577-1 2002-10-01 Part1に準拠して測定される超微小硬さ試験において、最大荷重1mNによる押し込み硬さとする。この測定に用いる測定機器はISO 14577-1 2002-10-01 Part1に準拠して測定できる装置であれば問わないが、例えば、エリオニクス製のENT-2100を用いることができ、圧子としてバーコビッチ圧子(ダイヤモンド三角錐圧子)を用いることができる。また、本発明において、押し込み硬さの測定条件は以下のとおりである。
試験モード:負荷-除荷試験(最大荷重まで押し込んだ後、除荷する)
最大荷重:1mN
測定温度:32±1℃
硬さの値は5箇所の平均値とする。
本方法で測定できる押し込み硬さは被膜厚さの影響を受ける。すなわち、被膜が厚いほど被膜そのものの硬さとなり、被膜が薄いほど下地金属である、CuやCu−Snの金属間化合物の硬さの影響を受ける。しかし、本発明で問題にするのは表層の「みかけ硬さ」であり、これが柔らかく測定される場合にロールとのスリップを起こさない。その指標として、上記条件での硬さ測定結果が有効である。
めっき被膜の厚みは蛍光X線膜厚計で測定し、5箇所の平均値をめっき層の厚みとする
The hardness of the Sn or Sn alloy plating film is an indentation hardness with a maximum load of 1 mN in an ultra micro hardness test measured in accordance with ISO (International Organization for Standardization) 14477-1 2002-10-01 Part 1. The measuring instrument used for this measurement is not limited as long as it can be measured in accordance with ISO 14577-1 2002-10-01 Part1, but for example, ENT-2100 made by Elionix can be used, and Berkovich indenter ( Diamond triangular pyramid indenter) can be used. Moreover, in this invention, the measurement conditions of indentation hardness are as follows.
Test mode: Load-unloading test (unload after pushing to maximum load)
Maximum load: 1mN
Measurement temperature: 32 ± 1 ℃
The hardness value is an average value of five locations.
The indentation hardness that can be measured by this method is affected by the film thickness. That is, the thicker the film, the harder the film itself, and the thinner the film, the lower the influence of the hardness of the intermetallic compound of Cu or Cu-Sn, which is the base metal. However, what is a problem in the present invention is the “apparent hardness” of the surface layer, and when this is measured softly, it does not slip with the roll. As the index, the result of hardness measurement under the above conditions is effective.
The thickness of the plating film is measured with a fluorescent X-ray film thickness meter, and the average value of the five points is defined as the thickness of the plating layer.

Sn又はSn合金めっき被膜の硬さを500MPa以下にする方法としては、例えば電着粒の制御(電着粒を大きくする)によって行うことができる。電着粒の大きさは、電流密度、Sn濃度及び浴温等のめっき条件により、又は、Sn又はSn合金めっき浴中に光沢剤(例えば、アルデヒド系、イミダゾル系、ベンザルアセトン等の市販されている薬品)をめっき浴に添加しないことにより制御できる。   As a method of setting the hardness of the Sn or Sn alloy plating film to 500 MPa or less, for example, it can be performed by controlling the electrodeposited grains (increasing the electrodeposited grains). The size of the electrodeposited grains depends on the plating conditions such as current density, Sn concentration and bath temperature, or in the Sn or Sn alloy plating bath, brighteners (for example, aldehyde, imidazole, benzal acetone, etc. are commercially available. Can be controlled by not adding to the plating bath.

さらに、Sn又はSn合金めっき被膜中の炭素量の制御(炭素量を低減する)により、Sn又はSn合金めっき被膜の脆化を防止することができる。Sn又はSn合金めっき被膜中の炭素量を低減する方法としては、例えば有機化合物からなる薬品(例えば光沢剤等)のめっき浴への添加を少なくすることにより制御できる。但し、EN(エトキシレーテッドナフトール)等のナフトール系の界面活性剤をSn又はSn合金めっき浴中に添加してもよい。また、ENSA(エトキシレーテッドナフトールスルフォニックアシッド)、ポリエチレングリコール、さらにはポリエチレングリコールノニルフェノールエーテル等のノニオン界面活性剤をSn又はSn合金めっき浴中に添加してもよい。また、界面活性剤の他、光沢効果の低いナフトール等の有機物を添加しても良い。   Furthermore, embrittlement of the Sn or Sn alloy plating film can be prevented by controlling the carbon amount in the Sn or Sn alloy plating film (reducing the carbon amount). The method for reducing the amount of carbon in the Sn or Sn alloy plating film can be controlled, for example, by reducing the addition of chemicals made of organic compounds (for example, brighteners) to the plating bath. However, a naphthol surfactant such as EN (ethoxylated naphthol) may be added to the Sn or Sn alloy plating bath. Further, a nonionic surfactant such as ENSA (ethoxylated naphthol sulfonic acid), polyethylene glycol, or polyethylene glycol nonylphenol ether may be added to the Sn or Sn alloy plating bath. In addition to the surfactant, an organic substance such as naphthol having a low gloss effect may be added.

より具体的な方法について以下に説明する。
Sn又はSn合金めっき浴の基剤としては、フェノールスルホン酸、硫酸、メタンスルホン酸等を挙げることができる。
電着粒の大きさは、めっき条件において、電流密度を低く、浴中のSn濃度を高く、浴温度を高くすることで調整できる。例えば電流密度2〜12A/dm、Sn濃度30〜60g/L、浴温30〜60℃とするで、粒状の電着Sn(又はSn合金)を銅箔面に均一に電着させることができるが、装置によって異なるので特に限定されない。
また、Sn又はSn合金めっき被膜中の炭素量は、光沢剤の種類や界面活性剤の種類や、めっき条件によって変化する。光沢剤の場合、ほとんどがSn又はSn合金めっき被膜中の炭素量を増加させ、0.01質量%を超えることが多い。しかし、光沢剤を極わずかしか添加しなかったり、めっき条件の電流密度を低く、Sn濃度を高く、温度を高くしたりして、被膜中の炭素量を低減できる場合もある。
めっき液に界面活性剤のみを添加した場合には被膜中の炭素量は、0.01質量%以下になることが多い。ただし、めっき液への界面活性剤の添加量が多かったり、Snに吸着しやすい構造の界面活性剤であったりすると、被膜中の炭素量は増加するので、適宜界面活性剤を選択する。
A more specific method will be described below.
Examples of the base of the Sn or Sn alloy plating bath include phenolsulfonic acid, sulfuric acid, methanesulfonic acid and the like.
The size of the electrodeposited grains can be adjusted by reducing the current density, increasing the Sn concentration in the bath, and increasing the bath temperature under plating conditions. For example, when the current density is 2 to 12 A / dm 2 , the Sn concentration is 30 to 60 g / L, and the bath temperature is 30 to 60 ° C., the electrodeposition of granular electrodeposited Sn (or Sn alloy) can be uniformly electrodeposited on the copper foil surface. Yes, but it is not particularly limited because it varies depending on the device.
Further, the amount of carbon in the Sn or Sn alloy plating film varies depending on the type of brightener, the type of surfactant, and the plating conditions. Most brighteners increase the amount of carbon in the Sn or Sn alloy plating film and often exceed 0.01% by weight. However, in some cases, the amount of carbon in the coating can be reduced by adding very little brightener, reducing the current density under plating conditions, increasing the Sn concentration, and increasing the temperature.
When only a surfactant is added to the plating solution, the amount of carbon in the coating is often 0.01% by mass or less. However, if the amount of the surfactant added to the plating solution is large, or if the surfactant has a structure that is easily adsorbed to Sn, the amount of carbon in the coating increases. Therefore, the surfactant is appropriately selected.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムと熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤(EN)10g/Lと酸化錫を添加し、Sn濃度32〜40g/Lとした。めっき条件は、浴温45〜55℃、電流密度10A/dm2とし、めっき厚1.5μmとした。
得られたSnめっき被膜は、光沢剤を用いずに得られ、電着粒の大きさはJIS H0501切断法(2007年版)により1.0μmであった。
なお、電着粒の大きさの測定方法は以下のとおりである。Snめっき被膜表面から5000倍の倍率の走査型電子顕微鏡像を撮影した。この画像の粒子状の境界を電着粒界として、JIS H0501切断法(2007年版)により、画像の横3箇所、縦3箇所の計6箇所の電着粒界の数を数え、電着粒の大きさを求めた。又、測定箇所は,測定誤差を低減するため、10×10mm程度の試料内で電着粒の大きさを測定し、平均した。
Snめっきの硬さは、470MPaであった。なお、めっき表面からの超微小硬さ試験による最大荷重1mNでの硬さを測定し、測定機器はエリオニクス製ENT-2100とし、圧子にバーコビッチ圧子(ダイヤモンド三角錐圧子)を用い、測定条件は、試験モード:負荷-除荷試験(最大荷重まで押し込んだ後、除荷する)、測定温度:32±1℃とした。硬さの値は5回の測定の平均値とした。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.005質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。
さらに、耐食性評価として塩水噴霧試験(Z2371)(温度:35℃、塩水濃度:5%(塩化ナトリウム)、噴霧圧力:98±10kPa、噴霧時間:480h)を行い、良好な結果を得た。
A strip of a tough pitch copper foil (thickness 7.3 μm) of 99.9% or more copper bonded to a 12.5 μm thick PET film and a thermoplastic adhesive was used as a strip. This strip was electroplated in a continuous plating cell facing the tin anode. A phenolsulfonic acid bath was used as a plating bath, and 10 g / L of a surfactant (EN) and tin oxide were added to obtain a Sn concentration of 32 to 40 g / L. The plating conditions were a bath temperature of 45 to 55 ° C., a current density of 10 A / dm 2 , and a plating thickness of 1.5 μm.
The obtained Sn plating film was obtained without using a brightener, and the size of the electrodeposited grains was 1.0 μm by JIS H0501 cutting method (2007 version).
In addition, the measuring method of the magnitude | size of an electrodeposition grain is as follows. A scanning electron microscope image at a magnification of 5000 times was taken from the surface of the Sn plating film. Using the grain boundary of this image as the electrodeposition grain boundary, count the number of electrodeposition grain boundaries at a total of 6 locations, 3 in the horizontal direction and 3 in the vertical direction, using the JIS H0501 cutting method (2007 version). The size of was calculated. In order to reduce measurement errors, the measurement locations were measured by averaging the size of the electrodeposited grains in a sample of about 10 × 10 mm.
The hardness of the Sn plating was 470 MPa. In addition, the hardness at the maximum load of 1 mN from the plated surface is measured, the measuring instrument is ENT-2100 made by Elionix, and Barcovich indenter (diamond triangular pyramid indenter) is used as the indenter. , Test mode: Load-unloading test (unloading after pushing to maximum load), measuring temperature: 32 ± 1 ° C. The hardness value was an average value of five measurements.
It was 0.005 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed.
Further, as a corrosion resistance evaluation, a salt spray test (Z2371) (temperature: 35 ° C., salt water concentration: 5% (sodium chloride), spray pressure: 98 ± 10 kPa, spray time: 480 h) was performed, and good results were obtained.

めっき厚を0.5μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜は、光沢剤を用いずに得られ、電着粒の大きさは1.0μmであり、Snめっきの硬さは、480MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.007質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.5 μm.
The obtained Sn plating film was obtained without using a brightener, the size of the electrodeposited grains was 1.0 μm, and the hardness of the Sn plating was 480 MPa.
It was 0.007 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

めっき厚を1.9μmとし、電流密度7A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
Snめっき被膜は、光沢剤を用いずに得られ、電着粒の大きさは2.0μmであり、Snめっきの硬さは、450MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.004質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
なお、電着粒の大きさがめっき厚より大きいのは、電着粒をめっき表面から観察したためであり、電着粒が扁平状であることを示す。
Continuous plating was performed in the same manner as in Example 1 except that the plating thickness was 1.9 μm and the current density was 7 A / dm 2 .
The Sn plating film was obtained without using a brightener, the size of the electrodeposited grains was 2.0 μm, and the hardness of the Sn plating was 450 MPa.
It was 0.004 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.
The reason why the size of the electrodeposited grains is larger than the plating thickness is that the electrodeposited grains were observed from the plating surface, indicating that the electrodeposited grains are flat.

めっき厚を1.9μmとし、電流密度5A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜は、光沢剤を用いずに得られ、電着粒の大きさは2.5μmであり、Snめっきの硬さは、425MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.003質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 1.9 μm and the current density was 5 A / dm 2 .
The obtained Sn plating film was obtained without using a brightener, the size of the electrodeposited grains was 2.5 μm, and the hardness of the Sn plating was 425 MPa.
It was 0.003 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムと熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤(EN)10g/Lと酸化錫を添加し、Sn濃度32〜40g/Lとした。めっき条件は、浴温55〜65℃、電流密度10A/dm2と浴温を高くし、めっき厚1.9μmとした。
得られたSnめっき被膜は、光沢剤を用いずに得られ、電着粒の大きさは2.5μmであり、Snめっきの硬さは、475MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.01質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
A strip of a tough pitch copper foil (thickness 7.3 μm) of 99.9% or more copper bonded to a 12.5 μm thick PET film and a thermoplastic adhesive was used as a strip. This strip was electroplated in a continuous plating cell facing the tin anode. A phenolsulfonic acid bath was used as a plating bath, and 10 g / L of a surfactant (EN) and tin oxide were added to obtain a Sn concentration of 32 to 40 g / L. The plating conditions were such that the bath temperature was 55 to 65 ° C., the current density was 10 A / dm 2 and the bath temperature was high, and the plating thickness was 1.9 μm.
The obtained Sn plating film was obtained without using a brightener, the size of the electrodeposited grains was 2.5 μm, and the hardness of the Sn plating was 475 MPa.
It was 0.01 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムを熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気メッキした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤EN10g/L、光沢剤(パラアルデヒド5ml/L、ナフトアルデヒド0.1ml/L)および酸化錫を添加し、Sn濃度32〜40g/Lとした。めっき条件は、浴温45〜55℃、電流密度10A/dm2とし、めっき厚1.5μmとした。
得られたSnめっき被膜の電着粒の大きさは1.0μmであり、硬さは495MPaであった。Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.02質量%であった。
連続めっき中、めっき出側のロールを観察したところ、4000m通箔したところでロールにSn付着が見られた。耐食性は良好であった。
A strip was obtained by bonding a PET film having a thickness of 12.5 μm to one surface of a tough pitch copper foil (thickness: 7.3 μm) of 99.9% or more copper using a thermoplastic adhesive. This strip was electroplated in a continuous plating cell facing the tin anode. A phenol sulfonic acid bath was used as a plating bath, and a surfactant EN10 g / L, a brightener (paraaldehyde 5 ml / L, naphthaldehyde 0.1 ml / L) and tin oxide were added to obtain a Sn concentration of 32 to 40 g / L. . The plating conditions were a bath temperature of 45 to 55 ° C., a current density of 10 A / dm 2 , and a plating thickness of 1.5 μm.
The size of the electrodeposited grains of the obtained Sn plating film was 1.0 μm, and the hardness was 495 MPa. It was 0.02 mass% when the amount of carbon in Sn plating film was measured using the high frequency induction heating infrared absorption method.
During continuous plating, when the roll on the plating outlet side was observed, Sn adhesion was observed on the roll when 4000 m foil was passed. Corrosion resistance was good.

実施例1の条件で、40000m通箔するまで電気めっきを行った後、実施例1と同様な評価を行った(但し、ロールへのSnの付着の有無は評価せず)ところ、耐食性は良好であった。
なお、実施例1〜7の試料につき、めっき被膜の表面を走査電子顕微鏡で倍率1000倍で観察したところ、Snの反射電子像のみが一様に観察され、Snと異なる輝度の反射電子像が検出されなかった。このことより、Snめっき被膜と異なる組成がめっき被膜表面に存在せず、下地である銅箔が露出していないものと考えられる。
Under the conditions of Example 1, after electroplating until 40000m was passed, the same evaluation as in Example 1 was performed (however, the presence or absence of Sn adhesion to the roll was not evaluated), but the corrosion resistance was good. Met.
In addition, about the sample of Examples 1-7, when the surface of the plating film was observed with a scanning electron microscope at a magnification of 1000 times, only a reflected electron image of Sn was observed uniformly, and a reflected electron image having a luminance different from that of Sn was observed. Not detected. From this, it is considered that the composition different from the Sn plating film does not exist on the surface of the plating film, and the copper foil as the base is not exposed.

銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムをウレタン系接着剤を使用して接着し、めっき厚を0.4μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっきは、光沢剤を用いずに得られ、電着粒の大きさは1.0μmであり、Snめっきの硬さは、495MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.005質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかったが、塩水噴霧試験(Z2371)で腐食が見られた。
Implemented except that a 12.5 μm thick PET film was bonded to one side of a 99.9% or more copper tough pitch copper foil (thickness 7.3 μm) using a urethane adhesive and the plating thickness was 0.4 μm. Continuous plating was performed exactly as in Example 1.
The obtained Sn plating was obtained without using a brightener, the size of the electrodeposited grains was 1.0 μm, and the hardness of the Sn plating was 495 MPa.
It was 0.005 mass% when the carbon content in Sn plating film was measured using the high frequency induction heating infrared absorption method.
Further, during the continuous plating, when the roll on the plating outlet side was observed, Sn adhesion was not observed even when the foil was fed through 4700 m, but corrosion was observed in the salt spray test (Z2371).

<比較例1>
めっき厚を1.0μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加したこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさは、0.9μmであった。Snめっきの硬さは、550MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.05質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 1>
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 1.0 μm and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath.
The size of the electrodeposited grains of the obtained Sn plating film was 0.9 μm. The hardness of the Sn plating was 550 MPa.
It was 0.05 mass% when the carbon amount in Sn plating film was measured using the high frequency induction heating infrared absorption method.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.

<比較例2>
めっき厚を1.5μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加し、電流密度13A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさは、0.8μmであり、Snめっきの硬さは、580MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.10質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative example 2>
Exactly the same as Example 1 except that the plating thickness was 1.5 μm and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath to obtain a current density of 13 A / dm 2. Then, continuous plating was performed.
The size of the electrodeposited grains of the obtained Sn plating film was 0.8 μm, and the hardness of the Sn plating was 580 MPa.
It was 0.10 mass% when the amount of carbon in Sn plating film was measured using the high frequency induction heating infrared absorption method.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.

<比較例3>
めっき厚を1.5μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加し、電流密度7A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさは、1.0μmであり、Snめっきの硬さは、505MPaであった。
Snめっき被膜中の炭素量を、高周波誘導加熱赤外線吸収法を用いて測定したところ、0.10質量%であった。
又、連続めっき中、めっき出側のロールを観察したところ3500m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 3>
Exactly the same as Example 1 except that the plating thickness was 1.5 μm, and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath to obtain a current density of 7 A / dm 2. Then, continuous plating was performed.
The size of the electrodeposited grains of the obtained Sn plating film was 1.0 μm, and the hardness of the Sn plating was 505 MPa.
It was 0.10 mass% when the amount of carbon in Sn plating film was measured using the high frequency induction heating infrared absorption method.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3500 m was passed through. The corrosion resistance evaluation was a good result.

<比較例4>
Snめっき浴中にメタノール(100mg/L)を添加したこと以外は、実施例7とまったく同様にして、40000m通箔するまで電気めっきを行った後、実施例7と同様な評価を行った(但し、ロールへのSnの付着の有無は評価せず)ところ、塩水噴霧試験(Z2371)で腐食が見られ、耐食性が劣化した。
又、比較例4の試料につき、めっき被膜の表面を走査電子顕微鏡で倍率1000倍で観察したところ、Snの反射電子像の中に、Snと異なる輝度の反射電子像が散見された。このことより、Snめっき被膜と異なる組成がめっき被膜表面に存在し、めっき被膜の欠陥が生じて下地である銅箔が露出したものと考えられる。
<Comparative example 4>
Except that methanol (100 mg / L) was added to the Sn plating bath, the same evaluation as in Example 7 was performed after electroplating until 40000 m was passed in the same manner as in Example 7. However, the presence or absence of Sn adhesion to the roll was not evaluated.) However, corrosion was observed in the salt spray test (Z2371), and the corrosion resistance deteriorated.
Further, regarding the sample of Comparative Example 4, when the surface of the plating film was observed with a scanning electron microscope at a magnification of 1000 times, reflected electron images having brightness different from that of Sn were scattered in the reflected electron images of Sn. From this, it is considered that a composition different from that of the Sn plating film exists on the surface of the plating film, a defect of the plating film occurs, and the copper foil as the base is exposed.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2009144973
Figure 2009144973

表1から明らかなように、Snめっき被膜の硬さが500MPa以下である各実施例1〜8の場合、連続めっきによっても長期間(4000m以上)、ロールにSnが付着しなかった。
但し、Snめっき被膜内の炭素量が0.01質量%を超えた実施例6の場合、他の実施例1〜5に比べて、ロールにSnが付着するまでのめっき時間(4000m)が短かった。
一方、Snめっき被膜の硬さが500MPaを超える比較例1〜3の場合、連続めっきを3000〜3500m行った時点でロールにSnが付着した。なお、比較例1〜3は光沢剤の含有量が実施例より多かった。
As is clear from Table 1, in each of Examples 1 to 8 where the hardness of the Sn plating film was 500 MPa or less, Sn did not adhere to the roll for a long time (4000 m or more) even by continuous plating.
However, in Example 6 in which the amount of carbon in the Sn plating film exceeded 0.01% by mass, the plating time (4000 m) until Sn adhered to the roll was shorter than in other Examples 1 to 5. It was.
On the other hand, in the case of Comparative Examples 1 to 3 where the hardness of the Sn plating film exceeded 500 MPa, Sn adhered to the roll when continuous plating was performed for 3000 to 3500 m. In addition, Comparative Examples 1-3 had more brightener content than the Example.

又、めっき浴中にメタノールを含まない実施例7の場合、更に長期間(40000m)めっきを行ってもめっき被膜に欠陥が生じず、耐食性が良好であった。これに対し、めっき浴中にメタノールを100mg/L含む比較例4の場合、長期間(40000m)めっきを行うとめっき被膜に欠陥が生じ、耐食性が劣化した。   Further, in the case of Example 7 in which methanol was not contained in the plating bath, even if plating was performed for a longer period (40000 m), no defects were generated in the plating film, and the corrosion resistance was good. On the other hand, in the case of Comparative Example 4 containing 100 mg / L of methanol in the plating bath, when plating was performed for a long time (40000 m), defects were generated in the plating film, and the corrosion resistance was deteriorated.

本発明の複合材料の一例を示した図である。It is the figure which showed an example of the composite material of this invention.

符号の説明Explanation of symbols

1 銅箔(又は銅合金箔)
2 Snめっき被膜
4 樹脂層(又はフィルム)
1 Copper foil (or copper alloy foil)
2 Sn plating film 4 Resin layer (or film)

Claims (9)

樹脂層又はフィルムを積層した銅箔又は銅合金箔の他の面に、メタノールを含有しないSn又はSn合金電気めっき浴から形成され、硬さが500MPa以下のSn又はSn合金めっき被膜であって、該Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、該Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、該Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、前記銅箔又は銅合金箔が露出しないSn又はSn合金めっき被膜。   The other surface of the copper foil or copper alloy foil laminated with a resin layer or film is formed from a Sn or Sn alloy electroplating bath not containing methanol, and is a Sn or Sn alloy plating film having a hardness of 500 MPa or less, When the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope (however, when the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm, the thickness of the Sn or Sn alloy plating film is 1.5 μm). Sn or Sn alloy plating film in which the copper foil or copper alloy foil is not exposed. 前記Sn又はSn合金めっき被膜内の炭素量が0.01質量%以下である請求項1に記載のSn又はSn合金めっき被膜。   The Sn or Sn alloy plating film according to claim 1, wherein the amount of carbon in the Sn or Sn alloy plating film is 0.01% by mass or less. 前記Sn又はSn合金めっき被膜の厚みが0.5μm以上である請求項1または2に記載のSn又はSn合金めっき被膜。   The Sn or Sn alloy plating film according to claim 1 or 2, wherein the Sn or Sn alloy plating film has a thickness of 0.5 µm or more. 前記Sn又はSn合金めっき被膜の厚みが2.0μm未満である請求項1〜3のいずれかに記載のSn又はSn合金めっき被膜。   The Sn or Sn alloy plating film according to claim 1, wherein the Sn or Sn alloy plating film has a thickness of less than 2.0 μm. 前記Sn又はSn合金めっき被膜が連続めっきによって形成されている請求項1〜4のいずれかに記載のSn又はSn合金めっき被膜。   The Sn or Sn alloy plating film according to any one of claims 1 to 4, wherein the Sn or Sn alloy plating film is formed by continuous plating. 銅箔又は銅合金箔と、前記銅箔又は銅合金箔の一方の面に積層された樹脂層又はフィルムと、前記銅箔又は銅合金箔の他の面に形成された請求項1〜5のいずれかに記載のSn又はSn合金めっき被膜とからなる複合材料。   The copper foil or copper alloy foil, the resin layer or film laminated on one surface of the copper foil or copper alloy foil, and the other surface of the copper foil or copper alloy foil. A composite material comprising the Sn or Sn alloy plating film according to any one of the above. 厚みが0.1mm以下である請求項6に記載の複合材料。   The composite material according to claim 6, wherein the thickness is 0.1 mm or less. 電磁波シールドに用いられる請求項7に記載の複合材料。   The composite material according to claim 7, which is used for an electromagnetic wave shield. 銅箔又は銅合金箔の一方の面に樹脂層又はフィルムを積層した後、当該銅箔又は銅合金箔の他の面に、メタノールを含有しないSn又はSn合金電気めっき浴を用い、硬さが500MPa以下であるSn又はSn合金めっき被膜を形成する複合材料の製造方法。   After laminating the resin layer or film on one surface of the copper foil or copper alloy foil, the other surface of the copper foil or copper alloy foil is made of Sn or Sn alloy electroplating bath that does not contain methanol. The manufacturing method of the composite material which forms Sn or Sn alloy plating film which is 500 Mpa or less.
JP2009525834A 2008-05-30 2009-02-09 Sn or Sn alloy plating film, composite material having the same, and method for producing composite material Active JP4484962B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008142064 2008-05-30
JP2008142064 2008-05-30
PCT/JP2009/052140 WO2009144973A1 (en) 2008-05-30 2009-02-09 Sn or sn alloy plated film, composite material having same and composite material production method

Publications (2)

Publication Number Publication Date
JP4484962B2 JP4484962B2 (en) 2010-06-16
JPWO2009144973A1 true JPWO2009144973A1 (en) 2011-10-06

Family

ID=41376861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009525834A Active JP4484962B2 (en) 2008-05-30 2009-02-09 Sn or Sn alloy plating film, composite material having the same, and method for producing composite material

Country Status (4)

Country Link
JP (1) JP4484962B2 (en)
KR (1) KR101245911B1 (en)
CN (1) CN102046854B (en)
WO (1) WO2009144973A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268748B2 (en) * 2009-03-31 2013-08-21 Jx日鉱日石金属株式会社 Sn or Sn alloy plating film and composite material having the same
JP5356968B2 (en) * 2009-09-30 2013-12-04 Jx日鉱日石金属株式会社 Sn plating film and composite material having the same
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
JP5705311B2 (en) 2011-05-13 2015-04-22 Jx日鉱日石金属株式会社 Copper foil composite, copper foil used therefor, molded body and method for producing the same
JP5822838B2 (en) * 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
JP5822842B2 (en) 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
CN103114315B (en) * 2013-03-11 2015-03-25 福建清景铜箔有限公司 Chromate-free passivation method of copper foil
JP5497949B1 (en) * 2013-07-03 2014-05-21 Jx日鉱日石金属株式会社 Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable
JP5887305B2 (en) 2013-07-04 2016-03-16 Jx金属株式会社 Metal foil for electromagnetic shielding, electromagnetic shielding material, and shielded cable
US10221487B2 (en) 2014-05-30 2019-03-05 Jx Nippon Mining & Metals Corporation Metal foil for electromagnetic shielding, electromagnetic shielding material and shielded cable
KR101620449B1 (en) * 2014-06-26 2016-05-12 삼성전자 주식회사 Robot cleaner and method for controlling the same
JP6421154B2 (en) * 2016-09-26 2018-11-07 千住金属工業株式会社 Method for producing metal body
CN106757190A (en) * 2016-11-21 2017-05-31 江苏梦得新材料科技有限公司 A kind of electrotinning light agent solution
CN114214600A (en) * 2021-12-17 2022-03-22 东莞市光志光电有限公司 Preparation method of antioxidant PET silver film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266095A (en) * 2001-03-13 2002-09-18 Kobe Steel Ltd Copper alloy material for electronic-electrical parts
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor
JP2007254860A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Plating film and method for forming the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112426B2 (en) * 2003-05-14 2008-07-02 三菱伸銅株式会社 Method for manufacturing plating material
CN1718867A (en) * 2004-07-07 2006-01-11 皇家飞利浦电子股份有限公司 Electronic element and electroplating method thereof
CN100370062C (en) * 2005-03-24 2008-02-20 广东风华高新科技集团有限公司 Composition for plating pure tin and electronic component employing the same
TW200704790A (en) * 2005-03-29 2007-02-01 Nippon Mining Co Sn-plated strip of cu-ni-si-zn-based alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266095A (en) * 2001-03-13 2002-09-18 Kobe Steel Ltd Copper alloy material for electronic-electrical parts
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor
JP2007254860A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Plating film and method for forming the same

Also Published As

Publication number Publication date
WO2009144973A1 (en) 2009-12-03
KR20100135904A (en) 2010-12-27
KR101245911B1 (en) 2013-03-20
CN102046854A (en) 2011-05-04
CN102046854B (en) 2013-09-25
JP4484962B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4484962B2 (en) Sn or Sn alloy plating film, composite material having the same, and method for producing composite material
JP5268748B2 (en) Sn or Sn alloy plating film and composite material having the same
CN101466875B (en) Rolled copper or copper alloy foil with roughened surface and method of roughening rolled copper or copper alloy foil
JP5356968B2 (en) Sn plating film and composite material having the same
TWI613940B (en) Copper foil with printed carrier, printed wiring board, laminated body, electronic device, and printed wiring board manufacturing method
KR101318871B1 (en) Surface-treated copper foil and copper-clad laminate
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP5666384B2 (en) Ultrathin copper foil with support and method for producing the same
US20130270218A1 (en) Rolled Copper Foil or Electrolytic Copper Foil for Electronic Circuit, and Method of Forming Electronic Circuit Using Same
KR101269708B1 (en) Rolled copper foil or electrolytic copper foil for electronic circuit, method for forming electronic circuit and printed substrate using the rolled copper foil or electrolytic copper foil
KR101295472B1 (en) Rolled copper foil or electrolytic copper foil for electronic circuit and method of forming electronic circuit using same
US8357307B2 (en) Method of forming electronic circuit
KR101269745B1 (en) Rolled copper foil or electrolytic copper foil for electronic circuit, method for forming electronic circuit and printed substrate using the rolled copper foil or electrolytic copper foil
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
US8158269B2 (en) Composite material for electrical/electronic part and electrical/electronic part using the same
JP4549774B2 (en) Method for producing electrolytic copper foil
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2016065267A (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate using the same
JP2009287095A (en) PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2009299157A (en) Tin plating film and composite material having the same
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014172180A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4484962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250