JP5268748B2 - Sn or Sn alloy plating film and composite material having the same - Google Patents
Sn or Sn alloy plating film and composite material having the same Download PDFInfo
- Publication number
- JP5268748B2 JP5268748B2 JP2009086356A JP2009086356A JP5268748B2 JP 5268748 B2 JP5268748 B2 JP 5268748B2 JP 2009086356 A JP2009086356 A JP 2009086356A JP 2009086356 A JP2009086356 A JP 2009086356A JP 5268748 B2 JP5268748 B2 JP 5268748B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- plating film
- alloy
- foil
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims abstract description 257
- 229910052718 tin Inorganic materials 0.000 title claims abstract description 85
- 229910001128 Sn alloy Inorganic materials 0.000 title claims abstract description 79
- 239000002131 composite material Substances 0.000 title claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 53
- 230000003746 surface roughness Effects 0.000 claims abstract description 52
- 239000011888 foil Substances 0.000 claims abstract description 45
- 239000011889 copper foil Substances 0.000 claims abstract description 41
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 4
- 229910020836 Sn-Ag Inorganic materials 0.000 claims description 3
- 229910020888 Sn-Cu Inorganic materials 0.000 claims description 3
- 229910020988 Sn—Ag Inorganic materials 0.000 claims description 3
- 229910019204 Sn—Cu Inorganic materials 0.000 claims description 3
- 229910020816 Sn Pb Inorganic materials 0.000 claims description 2
- 229910020922 Sn-Pb Inorganic materials 0.000 claims description 2
- 229910008783 Sn—Pb Inorganic materials 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 abstract description 4
- 239000011135 tin Substances 0.000 description 171
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 230000007797 corrosion Effects 0.000 description 23
- 238000005260 corrosion Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229940044654 phenolsulfonic acid Drugs 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000006355 external stress Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 150000004002 naphthaldehydes Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 150000004780 naphthols Chemical class 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229940032330 sulfuric acid Drugs 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- RNMDNPCBIKJCQP-UHFFFAOYSA-N 5-nonyl-7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-ol Chemical compound C(CCCCCCCC)C1=C2C(=C(C=C1)O)O2 RNMDNPCBIKJCQP-UHFFFAOYSA-N 0.000 description 1
- BWHOZHOGCMHOBV-UHFFFAOYSA-N Benzalacetone Natural products CC(=O)C=CC1=CC=CC=C1 BWHOZHOGCMHOBV-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- BWHOZHOGCMHOBV-BQYQJAHWSA-N trans-benzylideneacetone Chemical compound CC(=O)\C=C\C1=CC=CC=C1 BWHOZHOGCMHOBV-BQYQJAHWSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、電磁波シールド材料等に用いられ、樹脂等を積層した銅箔又は銅合金箔の他の面に形成されるSn又はSn合金めっき被膜、及びそれを有する複合材料に関する。 The present invention relates to an Sn or Sn alloy plating film formed on the other surface of a copper foil or a copper alloy foil laminated with a resin or the like, and a composite material having the same.
Snめっき被膜は耐食性に優れ、かつ、はんだ付け性が良好で接触抵抗が低いと言う特徴を持っている。このため、例えば、車載用電磁波シールド材の複合材料として、銅等の金属箔にSnめっきされて使用されている。
上記の複合材料としては、銅箔又は銅合金箔の一方の面に樹脂層又はフィルムを積層し、他の面にSnめっき被膜を形成した構造が用いられている。
また、近年、コネクター等の用途において、耐摩耗性・挿抜性の観点からSnめっき被膜を硬くすることが望まれており、Snめっき表層のヌープ硬度Hkを規定した技術が開示されている(特許文献1参照)。
The Sn plating film is characterized by excellent corrosion resistance, good solderability and low contact resistance. For this reason, for example, a metal foil such as copper is Sn-plated and used as a composite material for an in-vehicle electromagnetic wave shielding material.
As said composite material, the structure which laminated | stacked the resin layer or the film on one surface of copper foil or copper alloy foil, and formed Sn plating film on the other surface is used.
In recent years, in applications such as connectors, it has been desired that the Sn plating film be hardened from the viewpoint of wear resistance and insertion / removability, and a technique for defining the Knoop hardness Hk of the Sn plating surface layer has been disclosed (patent). Reference 1).
銅又は銅合金箔へのSnめっきは、通常は湿式めっきにより行われるが、めっき皮膜に外観上ムラが無く、美麗であること、つまり色調が均一で、色斑や模様がないことが求められるため、めっき液に添加剤を加えて光沢Snめっきを行うことが多い。そのため、Snめっき皮膜の表面粗さは小さい。
例えば、錫とニッケルとモリブデンとからなる合金めっきを行って反射率が1%〜15%の銅箔を製造し、この銅箔を用いて電磁波シールド体を得る技術が開示されている(特許文献2)。この技術において、合金めっき前の銅箔の表面粗さは、中心線平均粗さで0.1〜0.5μm(1.0×102〜5.0×102nm)の値を示す。
一方、Snめっきには,その内部応力や外部応力によって,ウィスカとよばれるひげ状結晶が発生する。これを防止するために,めっき時に光沢剤を極端に減らして,内部応力を低下することが知られている。しかし,この方法によっても外部応力に伴うウィスカ発生を防止することは難しい。このため、電気めっき浴中の光沢剤を減らすと共にメタノールを添加し、Snめっき皮膜に空隙を持たせて,めっき後に曲げ加工や打ち抜き加工等で発生する外部応力を緩和する技術が開示されている。(特許文献3参照)
Sn plating on copper or copper alloy foil is usually performed by wet plating, but the plating film is required to have no appearance unevenness and be beautiful, that is, to have a uniform color tone and no color spots or patterns. Therefore, gloss Sn plating is often performed by adding an additive to the plating solution. Therefore, the surface roughness of the Sn plating film is small.
For example, a technique is disclosed in which an alloy plating made of tin, nickel, and molybdenum is performed to produce a copper foil having a reflectance of 1% to 15%, and an electromagnetic wave shielding body is obtained using the copper foil (Patent Literature). 2). In this technique, the surface roughness of the copper foil before alloy plating shows a value of 0.1 to 0.5 μm (1.0 × 10 2 to 5.0 × 10 2 nm) as a center line average roughness.
On the other hand, whisker-like crystals called whiskers are generated in Sn plating due to internal stress and external stress. In order to prevent this, it is known that the internal stress is reduced by extremely reducing the brightening agent during plating. However, it is difficult to prevent whisker generation due to external stress even by this method. For this reason, a technique has been disclosed in which the brightener in the electroplating bath is reduced and methanol is added to create a void in the Sn plating film to relieve external stress generated by bending or punching after plating. . (See Patent Document 3)
しかしながら、通常の光沢Snめっきの場合、表面粗さRaが小さいため、銅箔ストリップに連続めっきした場合、めっき出側で接触するロールとの摩擦が小さくなってロールがスリップし、Snめっき表面がこすれてロールに転写、付着するという問題がある。
また、例えば、銅又は銅合金箔を基材とする複合材料を使用して車載用電磁波シールド材を製造するため、熱可塑性接着剤を連続ラインで塗布する工程においても同様な問題がある。この工程は40m〜100m/minと通箔速度が速く、めっき面に接触するロールへのSn付着が顕著に観察される。
いずれの場合も、ロールへのSn付着により、メンテナンスに時間を要するため、生産性を低下させる。更に、メンテナンスを怠った場合、ロール側に付着したSnによる表面キズ等の品質異常が発生する恐れがある。また、ロールへのSn付着により、Snめっき被膜が薄くなり、耐食性の低下を招く可能性もある。
However, in the case of normal gloss Sn plating, since the surface roughness Ra is small, when the copper foil strip is continuously plated, the friction with the roll contacting with the plating outlet side is reduced, the roll slips, and the Sn plating surface is There is a problem of rubbing and transferring and adhering to the roll.
Further, for example, since a vehicle-mounted electromagnetic shielding material is manufactured using a composite material based on copper or copper alloy foil, there is a similar problem in a process of applying a thermoplastic adhesive in a continuous line. In this step, the foil passing speed is fast at 40 to 100 m / min, and Sn adhesion to the roll in contact with the plating surface is remarkably observed.
In any case, since the maintenance takes time due to Sn adhesion to the roll, productivity is lowered. Furthermore, when maintenance is neglected, there is a risk that quality abnormalities such as surface scratches due to Sn adhering to the roll side may occur. Moreover, Sn plating film becomes thin by Sn adhesion to a roll, and it may cause a fall of corrosion resistance.
一方、銅箔は薄いため、強度が低い。そのため、シールド材として使用する場合、銅箔に樹脂またはフィルムを貼り付けて使用するのが一般的である。しかし、このような樹脂またはフィルムを貼り付けた銅箔でさえ、連続めっき時にストリップにかかる張力を高くすると折れやシワが発生する。そこで、この折れやシワを防止するため、低い張力で通箔することが必要になる。加えて、めっき工程や熱可塑性接着剤塗布工程等では、表面のキズを防止するため粗さの小さいロールを使用しており、ロールとSnめっき被膜との抵抗が小さい。そのため、ロールとの間でスリップを生じ易くなっている。従って、Snめっき被膜の表面粗さが小さいと、ますますスリップを助長する。
また、Snめっき被膜の表面粗さが小さいと、光沢剤の有機物がSn被膜に共析して、めっきが脆くなり、脱落し易くなることも考えられる。
On the other hand, since copper foil is thin, its strength is low. Therefore, when using as a shielding material, it is common to stick a resin or a film on a copper foil. However, even a copper foil to which such a resin or film is attached is broken or wrinkled when the tension applied to the strip is increased during continuous plating. Therefore, in order to prevent the folding and wrinkling, it is necessary to pass the foil with a low tension. In addition, in the plating process, the thermoplastic adhesive coating process, and the like, a roll with a small roughness is used to prevent scratches on the surface, and the resistance between the roll and the Sn plating film is small. Therefore, it becomes easy to produce a slip between rolls. Therefore, when the surface roughness of the Sn plating film is small, the slip is further promoted.
In addition, when the surface roughness of the Sn plating film is small, it is also conceivable that the organic material of the brightener is co-deposited on the Sn film, and the plating becomes brittle and easily falls off.
又、銅箔にSnめっきして得られた複合材料をケーブル等の電磁波シールド材料に用いる場合、ケーブル外周にこの複合材料を巻き、更にその外側に樹脂を被覆する。そして、この被覆工程で、複合材料がダイス(金型)を通過する際、Snめっき被膜が脱落してダイスにSnカスとして付着する可能性があり、それを除去するためのメンテナンスに時間を要し、生産性を低下させる可能性がある。 When a composite material obtained by Sn plating on a copper foil is used as an electromagnetic shielding material such as a cable, the composite material is wound around the outer periphery of the cable, and further, a resin is coated on the outside. In this coating step, when the composite material passes through the die (die), the Sn plating film may drop off and adhere to the die as Sn residue, and it takes time for maintenance to remove it. And may reduce productivity.
更に、特許文献1記載の技術の場合、銅箔の表面粗さが0.1〜0.5μmであり、銅箔表面のめっき皮膜の表面粗さも同程度であることが想定される。そして、本発明者らの検討によれば、Snめっき皮膜の表面粗さRaが0.5×102nm以上であれば、連続めっきの際にロールがスリップし難いことが判明している。
ところが、接触式の表面粗さ計において表面粗さが0.5×102nm以上であっても、非接触式の表面粗さ計では0.5×102nm未満の場合があり、この場合には連続めっき時にロールのスリップが生じる。つまり、連続めっき時のロールのスリップを有効に防止するためには、非接触式の表面粗さ計でSnめっき皮膜の表面粗さRaを厳密に管理する必要がある。
Furthermore, in the case of the technique described in
However, even if the surface roughness is 0.5 × 10 2 nm or more in the contact-type surface roughness meter, the non-contact-type surface roughness meter may be less than 0.5 × 10 2 nm. In some cases, roll slip occurs during continuous plating. That is, in order to effectively prevent the slip of the roll during continuous plating, it is necessary to strictly control the surface roughness Ra of the Sn plating film with a non-contact type surface roughness meter.
一方、特許文献3には、外部応力の影響を受け難くするため、Snめっき被膜の硬さを400MPa以下にすることが記載されている。しかしながら、特許文献3記載の技術は、めっき浴中に高濃度のメタノールを含有するため空隙の多いめっき被膜であり、さらに長時間電解を続けると、Snめっき被膜に大きな欠陥(下地の露出)が生じることが本発明者らの検討により判明した。
これは、めっき浴中のメタノールが電解によってホルムアルデヒドに変化し、このホルムアルデヒドが正常なSnの析出を阻害し、めっき被膜の欠陥をもたらすためと考えられる。そして、下地が露出すると、下地(金属箔)の耐食性が低下する不具合が生じる。
On the other hand, Patent Document 3 describes that the hardness of the Sn plating film is 400 MPa or less in order to make it less susceptible to external stress. However, the technique described in Patent Document 3 is a plating film with many voids because it contains a high concentration of methanol in the plating bath, and if the electrolysis is continued for a long time, a large defect (exposure of the ground) occurs in the Sn plating film. It has been clarified by the inventors' investigation.
This is presumably because methanol in the plating bath is converted into formaldehyde by electrolysis, which inhibits normal Sn deposition and causes defects in the plating film. And if the foundation | substrate is exposed, the malfunction which the corrosion resistance of a foundation | substrate (metal foil) falls will arise.
本発明は上記の課題を解決するためになされたものであり、めっき時や使用時のSn又はSn合金めっき被膜の摺れや脱落を防止することにより、ロールのメンテナンス性に優れ、生産性を向上させることができるSn又はSn合金めっき被膜及びそれを有する複合材料の提供を目的とする。 The present invention has been made in order to solve the above-mentioned problems. By preventing the sliding or falling off of the Sn or Sn alloy plating film at the time of plating or use, the roll is excellent in maintainability and productivity. An object of the present invention is to provide a Sn or Sn alloy plating film that can be improved and a composite material having the same.
本発明者らは種々検討した結果、銅又は銅合金箔表面のSn又はSn合金めっき被膜の表面粗さを大きくすることで、Sn又はSn合金めっき被膜の摺れや脱落を低減することに成功した。又同時に、銅又は銅合金箔表面のSn又はSn合金めっき被膜の硬さを所定の硬さ以下にすることで、Sn又はSn合金めっき被膜の摺れや脱落を低減することに成功した。更に、メタノールを含有しないめっき浴を用いて電気めっきすることで、めっき被膜の欠陥による下地の露出を抑制し、耐食性を向上させることにも成功した。 As a result of various investigations, the present inventors have succeeded in reducing the sliding or dropping of the Sn or Sn alloy plating film by increasing the surface roughness of the Sn or Sn alloy plating film on the surface of the copper or copper alloy foil. did. At the same time, the hardness of the Sn or Sn alloy plating film on the surface of the copper or copper alloy foil was reduced to a predetermined hardness or less, thereby succeeding in reducing the sliding or dropping of the Sn or Sn alloy plating film. Furthermore, by electroplating using a plating bath not containing methanol, the exposure of the substrate due to defects in the plating film was suppressed, and the corrosion resistance was also successfully improved.
上記の目的を達成するために、本発明のSn又はSn合金めっき被膜は、樹脂層又はフィルムを積層した電解箔又は圧延箔からなる厚み5〜50μmの銅箔又は銅合金箔の他の面に形成され、非接触式の表面粗さ計を使用した場合の表面粗さRaが0.5×102nm〜2.0×10 2 nmであるSn又はSn−Cu、Sn−Ag、若しくはSn−Pb合金からなる平均厚みが0.5〜2μmのSn合金めっき被膜であって、前記Sn又はSn合金めっき被膜の硬さが500MPa以下であって、該Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、該Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、該Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、前記銅箔又は銅合金箔が露出しない。
非接触式の表面粗さ計としては、原子間力顕微鏡(AFM)等が例示される。
In order to achieve the above object, the Sn or Sn alloy plating film of the present invention is formed on the other surface of a copper foil or copper alloy foil having a thickness of 5 to 50 μm made of an electrolytic foil or a rolled foil in which a resin layer or a film is laminated. Sn or Sn—Cu, Sn—Ag, or Sn having a surface roughness Ra of 0.5 × 10 2 nm to 2.0 × 10 2 nm when formed and using a non-contact type surface roughness meter A Sn alloy plating film having an average thickness of 0.5-2 μm made of a Pb alloy , wherein the Sn or Sn alloy plating film has a hardness of 500 MPa or less, and the surface of the Sn or Sn alloy plating film is scanned; When observed with an electron microscope (however, when the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm, the thickness of the Sn or Sn alloy plating film is reduced to 1.5 μm), the copper foil or copper Alloy foil is not exposed Yes .
Examples of the non-contact type surface roughness meter include an atomic force microscope (AFM).
Sn又はSn合金めっき被膜が連続めっきによって形成されていることが好ましい。 The Sn or Sn alloy plating film is preferably formed by continuous plating.
本発明の複合材料は、銅箔又は銅合金箔と、前記銅箔又は銅合金箔の一方の面に積層された樹脂層又はフィルムと、前記銅箔又は銅合金箔の他の面に形成された前記Sn又はSn合金めっき被膜とからなる。 The composite material of the present invention is formed on a copper foil or copper alloy foil, a resin layer or film laminated on one surface of the copper foil or copper alloy foil, and the other surface of the copper foil or copper alloy foil. And the Sn or Sn alloy plating film.
複合材料の厚みが0.1mm以下であることが好ましく、電磁波シールドに用いられることが好ましい。 The thickness of the composite material is preferably 0.1 mm or less, and is preferably used for an electromagnetic wave shield.
なお、本発明において、Sn又はSn合金めっきの硬さは、ISO 14577-1 2002-10-01 Part1に準拠して測定される、超微小硬さ試験において、最大荷重1mNによる押し込み硬さとする。測定方法の詳細は後述する。
本発明において、Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき、「銅箔又は銅合金箔が露出しない」とは、Sn又はSn合金めっき被膜の反射電子像と異なる輝度の反射電子像が通常の倍率(例えば、1000倍程度)で観察されず、一様な輝度の反射電子像が得られることをいう。
又、Sn又はSn合金めっき被膜の厚みは、Sn又はSn合金めっき被膜の平均的なマクロな厚みであり、めっき被膜を電解して完全に溶解したときの電気量から求めることができる。
In the present invention, the hardness of Sn or Sn alloy plating is an indentation hardness with a maximum load of 1 mN in an ultra micro hardness test measured in accordance with ISO 14577-1 2002-10-01
In the present invention, when the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope, “the copper foil or copper alloy foil is not exposed” means that the reflected electron image of the Sn or Sn alloy plating film has a luminance different from that of the reflected electron image. It means that an electron image is not observed at a normal magnification (for example, about 1000 times), and a reflected electron image having a uniform luminance is obtained.
The thickness of the Sn or Sn alloy plating film is an average macro thickness of the Sn or Sn alloy plating film, and can be determined from the amount of electricity when the plating film is electrolyzed and completely dissolved.
本発明によれば、Sn又はSn合金めっき皮膜の摺れや脱落を防止することにより、ロールのメンテナンス性に優れ、生産性を向上させることができるSn又はSn合金めっき皮膜及びそれを有する複合材料が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the Sn or Sn alloy plating membrane | film | coat which is excellent in the maintainability of a roll and can improve productivity by preventing the sliding and dropping | offset of Sn or Sn alloy plating membrane | film | coat, and a composite material having the same Is obtained.
以下、本発明の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Embodiments of the present invention will be described below. In the present invention, “%” means “% by mass” unless otherwise specified.
本発明の実施の形態に係る複合材料は、銅箔(又は銅合金箔)1と、銅箔(又は銅合金箔)1の一方の面に積層された樹脂層(又はフィルム)4と、銅箔(又は銅合金箔)1の他の面に形成されたSn又はSn合金めっき被膜2とからなる。
材料の軽薄化の観点から、複合材料の厚みは0.1mm以下であることが好ましい。
The composite material which concerns on embodiment of this invention is the copper foil (or copper alloy foil) 1, the resin layer (or film) 4 laminated | stacked on one surface of the copper foil (or copper alloy foil) 1, and copper It consists of Sn or Sn
From the viewpoint of lightening the material, the thickness of the composite material is preferably 0.1 mm or less.
銅箔としては、純度99.9%以上のタフピッチ銅、無酸素銅、又、銅合金箔としては要求される強度や導電性に応じて公知の銅合金を用いることができる。公知の銅合金としては、例えば、0.01〜0.3%の錫入り銅合金や0.01〜0.05%の銀入り銅合金が挙げられ、中でも、導電性に優れたものとしてCu-0.12%Sn、Cu-0.02%Agがよく用いられる。
銅箔(又は銅合金箔)の厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。
なお、銅箔(又は銅合金箔)としては、電解銅箔よりも高強度の圧延箔を用いることが好ましい。
又、銅箔(又は銅合金箔)の表面粗さは、Sn又はSn合金めっき被膜の表面粗さに影響を与えないよう、中心線平均粗さで0.3μm以下、好ましくは0.2μm以下のものを用いることが好ましい。
As the copper foil, tough pitch copper having a purity of 99.9% or more, oxygen-free copper, and as the copper alloy foil, a known copper alloy can be used depending on required strength and conductivity. Known copper alloys include, for example, 0.01 to 0.3% tin-containing copper alloys and 0.01 to 0.05% silver-containing copper alloys. -0.12% Sn and Cu-0.02% Ag are often used.
Although the thickness in particular of copper foil (or copper alloy foil) is not restrict | limited, For example, the thing of 5-50 micrometers can be used conveniently.
In addition, as copper foil (or copper alloy foil), it is preferable to use a rolled foil having higher strength than electrolytic copper foil.
Further, the surface roughness of the copper foil (or copper alloy foil) is 0.3 μm or less, preferably 0.2 μm or less in terms of the center line average roughness so as not to affect the surface roughness of the Sn or Sn alloy plating film. It is preferable to use those.
樹脂層としては例えばポリイミド等の樹脂を用いることができ、フィルムとしては例えばPET(ポリエチレンテレフタラート)、PEN(ポリエチレンナフタレート)のフィルムを用いることができる。樹脂層やフィルムは、接着剤により銅箔(又は銅合金箔)に接着されてもよいが、接着剤を用いずに溶融樹脂を銅箔(銅合金箔)上にキャスティングしたり、フィルムを銅箔(銅合金箔)に熱圧着させてもよい。
樹脂層やフィルムの厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。又、接着剤を用いた場合、接着層の厚みは例えば10μm以下とすることができる。
As the resin layer, for example, a resin such as polyimide can be used, and as the film, for example, a film of PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) can be used. The resin layer or film may be bonded to the copper foil (or copper alloy foil) with an adhesive, but the molten resin is cast on the copper foil (copper alloy foil) without using the adhesive, or the film is made of copper. You may make it thermocompression-bond to foil (copper alloy foil).
The thickness of the resin layer or film is not particularly limited, but for example, a thickness of 5 to 50 μm can be suitably used. When an adhesive is used, the thickness of the adhesive layer can be set to 10 μm or less, for example.
Sn合金めっき被膜としては、例えばSn−Cu、Sn−Ag、Sn−Pb等を用いることができる。 For example, Sn—Cu, Sn—Ag, or Sn—Pb can be used as the Sn alloy plating film.
Sn又はSn合金めっき被膜の表面粗さRaを0.5×102nm以上とする。ここで、本発明におけるRaは、JIS B0601 で定義されているRaを三次元に拡張して適用したものである。但し、JIS規格には、面の平均的な粗さを示す指標がないため、表面粗さ計で出力されるRaを本発明では三次元的な値として採用する。
Sn又はSn合金めっき被膜のRaを0.5×102nm以上とすると、Sn又はSn合金めっき被膜の粗度が高くなって接触部分の摩擦力を高くすることができる。このため、連続めっき時にロールとの間のスリップを低減することができる。又、Raを0.5×102nm以上とすると、得られた複合材料をケーブル等の電磁波シールド材料に加工する際、Sn又はSn合金めっき被膜がロールとの間でスリップしてSn又はSn合金めっき被膜が脱落することが少なくなる。このため、ロールへのSn付着を防止でき、生産性を向上でき、得られた複合材料を加工した際、Sn又はSn合金めっき被膜の粉落ちが生じず、固着力が低下することがない。
Sn又はSn合金めっき被膜の表面粗さRaの上限は、Sn又はSn合金めっきの製造条件等によって変化するので特に制限されないが、Raが2.0×102nmを超えると、めっき効率が低下したり、不均一な外観(粗大な析出等)となって耐食性が低下する場合がある。
The surface roughness Ra of the Sn or Sn alloy plating film is 0.5 × 10 2 nm or more. Here, Ra in the present invention is obtained by extending Ra defined in JIS B0601 in three dimensions. However, since the JIS standard does not have an index indicating the average roughness of the surface, Ra output from the surface roughness meter is adopted as a three-dimensional value in the present invention.
When the Ra of the Sn or Sn alloy plating film is 0.5 × 10 2 nm or more, the roughness of the Sn or Sn alloy plating film increases and the frictional force of the contact portion can be increased. For this reason, the slip between rolls at the time of continuous plating can be reduced. Further, when Ra is 0.5 × 10 2 nm or more, when the obtained composite material is processed into an electromagnetic shielding material such as a cable, the Sn or Sn alloy plating film slips between the roll and Sn or Sn. The alloy plating film is less likely to fall off. For this reason, Sn adhesion to the roll can be prevented, productivity can be improved, and when the obtained composite material is processed, Sn or Sn alloy plating film does not fall off, and the fixing force does not decrease.
The upper limit of the surface roughness Ra of the Sn or Sn alloy plating film is not particularly limited because it varies depending on the production conditions of the Sn or Sn alloy plating, but if Ra exceeds 2.0 × 10 2 nm, the plating efficiency is lowered. Or a non-uniform appearance (coarse precipitation, etc.) and corrosion resistance may be reduced.
又、本発明においては、非接触式の表面粗さ計を使用してSn又はSn合金めっき被膜の表面粗さRaを測定する。これは、Sn又はSn合金めっき被膜が柔らかいため、接触式の表面粗さ計を使用すると、Raを精度よく測定できず、結果として実際の表面粗さに関らず、測定された表面粗さの値が大きな値を示してしまう。従って、接触式の表面粗さ計で測定した場合には、連続めっき時にロールのスリップを低減するRaの閾値が明確とならない。
このようなことから、本発明においては、非接触式の表面粗さ計を使用してRaを測定する。非接触式の表面粗さ計としては、原子間力顕微鏡等のマイクロプローブ顕微鏡や、共焦点顕微鏡が例示される。原子間力顕微鏡としては、例えば、セイコーインスツル社製の型式 SPI-4000 ( E-Sweep )が挙げられる。
又、測定誤差を低減するため、表面粗さの測定の際、100×100μm程度の視野内で複数の位置のRaを測定して平均することが好ましい。
In the present invention, the surface roughness Ra of the Sn or Sn alloy plating film is measured using a non-contact type surface roughness meter. This is because the Sn or Sn alloy plating film is soft, so if a contact type surface roughness meter is used, Ra cannot be measured accurately, and as a result, the measured surface roughness regardless of the actual surface roughness. The value of shows a large value. Therefore, when measured with a contact-type surface roughness meter, the Ra threshold for reducing roll slip during continuous plating is not clear.
For this reason, in the present invention, Ra is measured using a non-contact type surface roughness meter. Examples of the non-contact type surface roughness meter include a microprobe microscope such as an atomic force microscope and a confocal microscope. An example of the atomic force microscope is a model SPI-4000 (E-Sweep) manufactured by Seiko Instruments Inc.
In order to reduce measurement errors, it is preferable to measure and average Ra at a plurality of positions within a field of view of about 100 × 100 μm when measuring the surface roughness.
Sn又はSn合金めっき被膜の表面粗さRaを0.5×102nm以上とする方法としては、Sn又はSn合金めっき浴中に光沢剤(例えば、ホルマリン及びアルデヒド系、イミダゾル系、ベンザルアセトン等の市販されている薬品)を添加しないことにより制御できる。但し、EN(エトキシレーテッドナフトール)等のナフトール系の界面活性剤をSn又はSn合金めっき浴中に添加してもよい。また、ENSA(エトキシレーテッドナフトールスルフォニックアッシド)、ポリエチレングリコール、さらにはポリエチレングリコールノニルフェノールエーテル等のノニオン界面活性剤をSn又はSn合金めっき浴中に添加してもよい。また、界面活性剤の他、光沢効果の低いナフトール等の有機物を添加しても良い。 As a method for setting the surface roughness Ra of the Sn or Sn alloy plating film to 0.5 × 10 2 nm or more, a brightener (for example, formalin and aldehyde type, imidazole type, benzal acetone) is used in the Sn or Sn alloy plating bath. It is possible to control by not adding commercially available chemicals such as However, a naphthol surfactant such as EN (ethoxylated naphthol) may be added to the Sn or Sn alloy plating bath. Further, a nonionic surfactant such as ENSA (ethoxylated naphthol sulfonic acid), polyethylene glycol, or polyethylene glycol nonylphenol ether may be added to the Sn or Sn alloy plating bath. In addition to the surfactant, an organic substance such as naphthol having a low gloss effect may be added.
より具体的な方法について以下に説明する。
Sn又はSn合金めっき浴の基剤としては、フェノールスルホン酸、硫酸、メタンスルホン酸等を挙げることができる。
電着粒の大きさは、めっき条件において、電流密度を低く、浴中のSn濃度を高く、浴温度を高くすることで調整できる。例えば電流密度2〜12A/dm2、Sn濃度30〜60g/L、浴温30〜60℃とすることで、粒状の電着Sn(又はSn合金)を銅箔面に均一に電着させることができ、表面粗さRaを0.5×102nm以上とすることができるが、装置によって異なるので特に限定されない。
A more specific method will be described below.
Examples of the base of the Sn or Sn alloy plating bath include phenolsulfonic acid, sulfuric acid, methanesulfonic acid and the like.
The size of the electrodeposited grains can be adjusted by reducing the current density, increasing the Sn concentration in the bath, and increasing the bath temperature under plating conditions. For example, by making the current density 2 to 12 A / dm 2 , Sn concentration 30 to 60 g / L, and bath temperature 30 to 60 ° C., the electrodeposition of granular electrodeposited Sn (or Sn alloy) uniformly on the copper foil surface The surface roughness Ra can be 0.5 × 10 2 nm or more, but is not particularly limited because it varies depending on the apparatus.
なお、特許文献3に記載されているように、Snめっき浴にメタノールを添加すると、長時間電解を続けた際にSnめっき皮膜に空隙が生じ、耐食性が低下するので好ましくない。これは、めっき浴中のメタノールが電解によってホルムアルデヒドに変化し、このホルムアルデヒドが正常なSnの析出を阻害し、めっき被膜の欠陥をもたらすためと考えられる。従って、本発明のSn又はSn合金めっき被膜は、メタノールを添加しないSn又はSn合金めっき浴によって形成されるものとする。
なお、めっき被膜に欠陥を与えるための電解時間はめっき条件によって変化するが、電解時間の合計が多くなるほど、メタノールが変化したホルムアルデヒドがめっき浴中に蓄積し、下地が露出するめっき欠陥が発生し易くなる。めっき浴中に「メタノールを含有しない」とは、めっき浴中のメタノール濃度が不純物レベル(通常は、数ppm(数mg/L)以下、例えば5mg/L以下)であることをいう。
In addition, as described in Patent Document 3, it is not preferable to add methanol to the Sn plating bath because voids are generated in the Sn plating film when the electrolysis is continued for a long time, and the corrosion resistance is lowered. This is presumably because methanol in the plating bath is converted into formaldehyde by electrolysis, which inhibits normal Sn deposition and causes defects in the plating film. Therefore, the Sn or Sn alloy plating film of the present invention is formed by an Sn or Sn alloy plating bath to which methanol is not added.
The electrolysis time for giving defects to the plating film varies depending on the plating conditions. However, as the total electrolysis time increases, the formaldehyde in which methanol has changed accumulates in the plating bath, resulting in plating defects that expose the substrate. It becomes easy. “No methanol” in the plating bath means that the methanol concentration in the plating bath is at an impurity level (usually several ppm (several mg / L) or less, for example, 5 mg / L or less).
Sn又はSn合金めっき浴の基剤としては、フェノールスルホン酸、硫酸、メタンスルホン酸等を挙げることができる。
めっき条件は、特に限定されないが、例えば電流密度8A/dm2、Sn濃度20〜50g/L、浴温30〜60℃とすることができるが、装置によって異なるので特に限定されない。
Examples of the base of the Sn or Sn alloy plating bath include phenolsulfonic acid, sulfuric acid, methanesulfonic acid and the like.
The plating conditions are not particularly limited. For example, the current density may be 8 A / dm 2 , the Sn concentration may be 20 to 50 g / L, and the bath temperature may be 30 to 60 ° C.
Sn又はSn合金めっき被膜の硬さを500MPa以下とし、該Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、該Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、該Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、前記銅箔又は銅合金箔が露出しないことが好ましい。
Sn又はSn合金めっき被膜の硬さを500MPa以下とすると、Sn又はSn合金めっき時にSn又はSn合金めっき表面とロールとの間のスリップが少なくなり、Sn又はSn合金めっきの付着がなくなる。又、得られた複合材料をケーブル等の電磁波シールド材料に用いる場合にも、加工時のロールやダイスへのSnの付着が見られず、生産性を向上できる。そして、得られた複合材料を加工した際、Sn又はSn合金めっき被膜の粉落ちが生じず、密着性が低下することがない。
Sn又はSn合金めっき被膜のめっきの硬さの下限を特に限定する理由はないが、溶融凝固したSnの硬さ以下にはなりえず、本発明では、100MPaを下限とする。
When the hardness of the Sn or Sn alloy plating film is 500 MPa or less and the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope (provided that the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm) When the thickness of the Sn or Sn alloy plating film is reduced to 1.5 μm), it is preferable that the copper foil or copper alloy foil is not exposed.
When the hardness of the Sn or Sn alloy plating film is 500 MPa or less, slip between the Sn or Sn alloy plating surface and the roll is reduced during Sn or Sn alloy plating, and the adhesion of Sn or Sn alloy plating is lost. In addition, when the obtained composite material is used for an electromagnetic shielding material such as a cable, Sn does not adhere to a roll or die during processing, and productivity can be improved. And when processing the obtained composite material, the powder fall of Sn or Sn alloy plating film does not arise, and adhesiveness does not fall.
There is no particular limitation on the lower limit of the plating hardness of the Sn or Sn alloy plating film, but it cannot be less than the hardness of the melted and solidified Sn. In the present invention, the lower limit is 100 MPa.
Sn又はSn合金めっき被膜の硬さは、ISO(国際標準化機構)14577-1 2002-10-01 Part1に準拠して測定される超微小硬さ試験において、最大荷重1mNによる押し込み硬さとする。この測定に用いる測定機器はISO 14577-1 2002-10-01 Part1に準拠して測定できる装置であれば問わないが、例えば、エリオニクス製のENT-2100を用いることができ、圧子としてバーコビッチ圧子(ダイヤモンド三角錐圧子)を用いることができる。また、本発明において、押し込み硬さの測定条件は以下のとおりである。
試験モード:負荷-除荷試験(最大荷重まで押し込んだ後、除荷する)
最大荷重:1mN
測定温度:32±1℃
硬さの値は5箇所の平均値とする。
本方法で測定できる押し込み硬さは被膜厚さの影響を受ける。すなわち、被膜が厚いほど被膜そのものの硬さとなり、被膜が薄いほど下地金属である、CuやCu−Snの金属間化合物の硬さの影響を受ける。しかし、本発明で問題にするのは表層の「みかけ硬さ」であり、これが柔らかく測定される場合にロールとのスリップを起こさない。その指標として、上記条件での硬さ測定結果が有効である。
The hardness of the Sn or Sn alloy plating film is an indentation hardness with a maximum load of 1 mN in an ultra micro hardness test measured in accordance with ISO (International Organization for Standardization) 14477-1 2002-10-01
Test mode: Load-unloading test (unload after pushing to maximum load)
Maximum load: 1mN
Measurement temperature: 32 ± 1 ℃
The hardness value is an average value of five locations.
The indentation hardness that can be measured by this method is affected by the film thickness. That is, the thicker the film, the harder the film itself, and the thinner the film, the lower the influence of the hardness of the intermetallic compound of Cu or Cu-Sn, which is the base metal. However, what is a problem in the present invention is the “apparent hardness” of the surface layer, and when this is measured softly, it does not slip with the roll. As the index, the result of hardness measurement under the above conditions is effective.
Sn又はSn合金めっき被膜の硬さを500MPa以下にする方法としては、例えば電着粒の制御(電着粒を大きくする)によって行うことができる。電着粒の大きさは、電流密度、Sn濃度及び浴温等のめっき条件により、又は、Sn又はSn合金めっき浴中に光沢剤(例えば、アルデヒド系、イミダゾル系、ベンザルアセトン等の市販されている薬品)の添加量を変化させることにより制御できる。 As a method of setting the hardness of the Sn or Sn alloy plating film to 500 MPa or less, for example, it can be performed by controlling the electrodeposited grains (increasing the electrodeposited grains). The size of the electrodeposited grains depends on the plating conditions such as current density, Sn concentration and bath temperature, or in the Sn or Sn alloy plating bath. It can be controlled by changing the amount of added chemical).
又、メタノールを含有しないSn又はSn合金電気めっき浴を用いてめっきすることにより、めっき被膜の表面を走査電子顕微鏡で観察したとき、下地(銅箔又は銅合金箔)が露出せず、欠陥のないめっき被膜が得られる。この場合、めっき被膜の表面を走査電子顕微鏡で観察すると、めっき被膜の反射電子像と異なる輝度の反射電子像が通常の倍率(例えば、1000倍程度)で観察されず、一様な輝度の反射電子像が得られる。つまり、めっき被膜と異なる組成がめっき被膜表面から検出されず、下地(銅箔又は銅合金箔)が露出しないことを表す。
なお、Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、粗雑なめっき粒が下地の露出部分(めっき欠陥部分)を覆う場合があるため(但し、下地を完全に被覆しているわけではない)、めっき被膜の表面を走査電子顕微鏡で観察すると、露出しているはずの下地の反射電子像が得られないことがある。この場合も実際には下地が露出して耐食性が劣ることから、下地の露出の有無を正確に判定するため、めっき被膜の厚みを1.5μmに減じて走査電子顕微鏡で観察することとする。
めっき被膜の厚みを1.5μmに減じる方法としては、FIB(集束イオンビーム)によりめっき被膜の断面を作製する方法や、めっき被膜の厚みを1.5μmにするための、めっき金属(又は合金)の減量を求めておき、めっき被膜を電解したときの溶解量がこの減量に一致するよう電解時の電気量を設定する方法がある。
In addition, by plating using a Sn or Sn alloy electroplating bath that does not contain methanol, when the surface of the plating film is observed with a scanning electron microscope, the base (copper foil or copper alloy foil) is not exposed and defects are not observed. No plating coating is obtained. In this case, when the surface of the plating film is observed with a scanning electron microscope, a reflected electron image having a luminance different from that of the reflected electron image of the plating film is not observed at a normal magnification (for example, about 1000 times). An electronic image is obtained. That is, the composition different from the plating film is not detected from the surface of the plating film, and the base (copper foil or copper alloy foil) is not exposed.
If the thickness of the Sn or Sn alloy plating film exceeds 1.5 μm, coarse plating grains may cover the exposed part of the base (plating defect part) (however, the base is completely covered). However, when the surface of the plating film is observed with a scanning electron microscope, the reflected electron image of the ground which should be exposed may not be obtained. Also in this case, since the base is actually exposed and the corrosion resistance is inferior, in order to accurately determine whether the base is exposed or not, the thickness of the plating film is reduced to 1.5 μm and observed with a scanning electron microscope.
As a method of reducing the thickness of the plating film to 1.5 μm, a method of producing a cross section of the plating film by FIB (focused ion beam), or a plating metal (or alloy) for reducing the thickness of the plating film to 1.5 μm. There is a method in which the amount of electricity at the time of electrolysis is set so that the amount of dissolution when electrolyzing the plating film coincides with this amount of reduction.
Sn又はSn合金めっき被膜の厚みが0.5μm以上であることが好ましい。厚みが0.5μm未満であると耐食性、はんだ付け性が低下する場合がある。
Sn又はSn合金めっき被膜の厚みの上限は、Sn又はSn合金めっきの製造条件等によって変化するので特に制限されないが、2μmを超えてSn又はSn合金めっきを厚くしても耐食性、はんだ付け性の更なる向上はみられず、逆に、コストアップや生産性を低下させる等の不具合もある。従って、Sn又はSn合金めっき被膜の厚みが0.5〜2μmであることが好ましい。
The thickness of the Sn or Sn alloy plating film is preferably 0.5 μm or more. If the thickness is less than 0.5 μm, corrosion resistance and solderability may be deteriorated.
The upper limit of the thickness of the Sn or Sn alloy plating film is not particularly limited because it varies depending on the manufacturing conditions of the Sn or Sn alloy plating, but even if the Sn or Sn alloy plating exceeds 2 μm, the corrosion resistance and solderability There is no further improvement, and conversely, there are problems such as increased costs and reduced productivity. Therefore, it is preferable that the thickness of the Sn or Sn alloy plating film is 0.5 to 2 μm.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に、厚み12.5μmのPETフィルムを熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤(EN)10g/Lと酸化錫を添加し、Sn濃度25〜37g/Lとした。めっき条件は、浴温35〜55℃、電流密度9A/dm2とし、めっき厚を1.2μmとした。
得られたSnめっき被膜の表面粗さRaを、原子間力顕微鏡(セイコーインスツル社製の型式 SPI-4000 E-Sweep )で測定したところ、1.01×102nmであった。なお、Raの測定範囲を100×100μm、測定モードDFMとした。
また、Snめっきの硬さは、470MPaであった。なお、めっき表面からの超微小硬さ試験による最大荷重1mNでの硬さを測定し、測定機器はエリオニクス製ENT-2100とし、圧子にバーコビッチ圧子(ダイヤモンド三角錐圧子)を用い、測定条件は、試験モード:負荷-除荷試験(最大荷重まで押し込んだ後、除荷する)、測定温度:32±1℃とした。硬さの値は5回の測定の平均値とした。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。
さらに、耐食性評価として塩水噴霧試験(Z2371)(温度:35℃、塩水濃度:5%(塩化ナトリウム)、噴霧圧力:98±10kPa、噴霧時間:480h)を行い、良好な結果を得た。
A strip made of a 12.5 μm thick PET film bonded to one side of a 99.9% or more copper tough pitch copper foil (thickness 7.3 μm) using a thermoplastic adhesive was used as a strip. This strip was electroplated in a continuous plating cell facing the tin anode. A phenolsulfonic acid bath was used as a plating bath, and 10 g / L of a surfactant (EN) and tin oxide were added to obtain a Sn concentration of 25 to 37 g / L. The plating conditions were a bath temperature of 35 to 55 ° C., a current density of 9 A / dm 2 , and a plating thickness of 1.2 μm.
The surface roughness Ra of the obtained Sn plating film was measured by an atomic force microscope (model SPI-4000 E-Sweep manufactured by Seiko Instruments Inc.) and found to be 1.01 × 10 2 nm. The Ra measurement range was 100 × 100 μm and the measurement mode DFM.
Moreover, the hardness of Sn plating was 470 MPa. In addition, the hardness at the maximum load of 1 mN from the plated surface is measured, the measuring instrument is ENT-2100 made by Elionix, and Barcovich indenter (diamond triangular pyramid indenter) is used as the indenter. , Test mode: Load-unloading test (unloading after pushing to maximum load), measuring temperature: 32 ± 1 ° C. The hardness value was an average value of five measurements.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed.
Further, as a corrosion resistance evaluation, a salt spray test (Z2371) (temperature: 35 ° C., salt water concentration: 5% (sodium chloride), spray pressure: 98 ± 10 kPa, spray time: 480 h) was performed, and good results were obtained.
めっき厚を0.5μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、0.86×102nmであり、Snめっきの硬さは、480MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.5 μm.
The surface roughness Ra of the obtained Sn plating film was 0.86 × 10 2 nm, and the hardness of the Sn plating was 480 MPa.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.
めっき厚を1.9μmとし、電流密度7A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、1.31×102nmであり、Snめっきの硬さは、450MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 1.9 μm and the current density was 7 A / dm 2 .
The surface roughness Ra of the obtained Sn plating film was 1.31 × 10 2 nm, and the Sn plating hardness was 450 MPa.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.
めっき厚を2.0μmとし、電流密度5A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、1.54×102nmであり、Snめっきの硬さは、425MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 2.0 μm and the current density was 5 A / dm 2 .
The surface roughness Ra of the obtained Sn plating film was 1.54 × 10 2 nm, and the Sn plating hardness was 425 MPa.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.
銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムと熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤(EN)10g/Lと酸化錫を添加し、Sn濃度32〜40g/Lとした。めっき条件は、浴温35〜45℃、電流密度9A/dm2とし、めっき厚を2.0μmとした。
得られたSnめっき被膜の表面粗さRaは、1.88×102nmであり、Snめっきの硬さは、475MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
A strip of a tough pitch copper foil (thickness 7.3 μm) of 99.9% or more copper bonded to a 12.5 μm thick PET film and a thermoplastic adhesive was used as a strip. This strip was electroplated in a continuous plating cell facing the tin anode. A phenolsulfonic acid bath was used as a plating bath, and 10 g / L of a surfactant (EN) and tin oxide were added to obtain a Sn concentration of 32 to 40 g / L. The plating conditions were a bath temperature of 35 to 45 ° C., a current density of 9 A / dm 2 , and a plating thickness of 2.0 μm.
The surface roughness Ra of the obtained Sn plating film was 1.88 × 10 2 nm, and the hardness of the Sn plating was 475 MPa.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.
銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムを熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤EN10g/L、光沢剤(パラアルデヒド5ml/L、ナフトアルデヒド0.1ml/L)および酸化錫を添加し、Sn濃度25〜37g/Lとした。めっき条件は、浴温45〜55℃、電流密度9A/dm2とし、めっき厚を1.3μmとした。
得られたSnめっき被膜の表面粗さRaは、0.55×102nmであり、硬さは495MPaであった。
連続めっき中、めっき出側のロールを観察したところ、4000m通箔したところでロールにSn付着が見られた。耐食性は良好であった。
A strip was obtained by bonding a PET film having a thickness of 12.5 μm to one surface of a tough pitch copper foil (thickness: 7.3 μm) of 99.9% or more copper using a thermoplastic adhesive. This strip was electroplated in a continuous plating cell facing the tin anode. A phenol sulfonic acid bath was used as a plating bath, and a surfactant EN 10 g / L, a brightener (paraaldehyde 5 ml / L, naphthaldehyde 0.1 ml / L) and tin oxide were added to obtain a Sn concentration of 25 to 37 g / L. . The plating conditions were a bath temperature of 45 to 55 ° C., a current density of 9 A / dm 2 , and a plating thickness of 1.3 μm.
The obtained Sn plating film had a surface roughness Ra of 0.55 × 10 2 nm and a hardness of 495 MPa.
During continuous plating, when the roll on the plating outlet side was observed, Sn adhesion was observed on the roll when 4000 m foil was passed. Corrosion resistance was good.
<比較例1>
めっき厚を0.4μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、0.43×102nmであり、Snめっきの硬さは、495MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔した時点でロールにSn付着が見られ、塩水噴霧試験(Z2371)で腐食が見られた。
<Comparative Example 1>
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.4 μm.
The surface roughness Ra of the obtained Sn plating film was 0.43 × 10 2 nm, and the Sn plating hardness was 495 MPa.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was observed at the time when 4700 m of foil was passed, and corrosion was observed in the salt spray test (Z2371).
<比較例2>
めっき厚を1.0μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加したこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、0.32×102nmであり、Snめっきの硬さは、550MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative example 2>
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 1.0 μm and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath.
The surface roughness Ra of the obtained Sn plating film was 0.32 × 10 2 nm, and the hardness of the Sn plating was 550 MPa.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.
<比較例3>
めっき厚を0.7μmとし、電流密度13A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、2.18×102nmであり、Snめっきの硬さは、580MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ3500m通箔した時点でロールにSn付着が顕著に見られ、塩水噴霧試験(Z2371)で微細な腐食が見られた。
<Comparative Example 3>
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.7 μm and the current density was 13 A / dm 2 .
The surface roughness Ra of the obtained Sn plating film was 2.18 × 10 2 nm, and the Sn plating hardness was 580 MPa.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeable on the roll when 3500 m was passed through, and fine corrosion was observed in the salt spray test (Z2371).
<比較例4>
めっき厚を1.3μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加し、電流密度14A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっきの表面粗さRaは、0.29×102nmであり、Snめっきの硬さは、505MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative example 4>
Exactly the same as Example 1 except that the plating thickness was 1.3 μm, and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath to obtain a current density of 14 A / dm 2. Then, continuous plating was performed.
The surface roughness Ra of the obtained Sn plating was 0.29 × 10 2 nm, and the hardness of the Sn plating was 505 MPa.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.
<比較例5>
めっき厚を1.3μmとし、Snめっき浴中に光沢剤(パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加し、電流密度8A/dm2としたこと以外は実施例1をまったく同様にして連続めっきを行った。
得られたSnめっき被膜の表面粗さRaは、0.45×102nmであり、Snめっきの硬さは、470MPaであった。
又、連続めっき中、めっき出側のロールを観察したところ3700m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 5>
Example 1 was exactly the same except that the plating thickness was 1.3 μm and a brightener (paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath to obtain a current density of 8 A / dm 2. Then, continuous plating was performed.
The surface roughness Ra of the obtained Sn plating film was 0.45 × 10 2 nm, and the hardness of the Sn plating was 470 MPa.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3700 m was fed. The corrosion resistance evaluation was a good result.
得られた結果を表1に示す。 The obtained results are shown in Table 1.
表1から明らかなように、Snめっき被膜の表面粗さRaが0.5×102nm以上である各実施例の場合、連続めっきによっても長期間(4000m以上)、ロールにSnが付着しなかった。また、各実施例1〜6の場合、Snめっき被膜の硬さが500MPa以下であり、連続めっきによっても長期間(4000m以上)、ロールにSnが付着しなかった。さらに、各実施例1〜6の場合、Snめっき被膜表面のSEMによるSn以外の反射像が見られず、Snめっき被膜に欠陥がないことがわかった。なお、実施例3,4,5の試料については、電解によりSnめっき被膜の厚みを1.5μmに減じた後、SEMによる反射像を観察した。 As is clear from Table 1, in each case where the surface roughness Ra of the Sn plating film is 0.5 × 10 2 nm or more, Sn adheres to the roll for a long period of time (4000 m or more) even by continuous plating. There wasn't. In each of Examples 1 to 6, the Sn plating film had a hardness of 500 MPa or less, and Sn did not adhere to the roll for a long time (4000 m or more) even by continuous plating. Furthermore, in the case of each Example 1-6, the reflection image other than Sn by SEM of the Sn plating film surface was not seen, and it turned out that there is no defect in Sn plating film. In addition, about the sample of Examples 3, 4, and 5, after reducing the thickness of Sn plating film to 1.5 micrometers by electrolysis, the reflected image by SEM was observed.
一方、Snめっき被膜の厚みが0.5μm未満である比較例1の場合、耐食性が劣化した。
Snめっきに光沢剤を含む比較例2,4,5の場合、Snめっき被膜の表面粗さRaが0.5×102nm未満となり、連続めっきを3000〜3700m行った時点でロールにSnが付着した。
Snめっきの電流密度が12A/dm2以上である比較例3の場合、Snめっき被膜の表面粗さRaが2.0×102nmを超え、耐食性が劣化した。
同様に、Snめっきの電流密度が12A/dm2以上である比較例4の場合、Snめっき被膜の表面粗さRaが0.5×102nm未満となり、連続めっきを3000〜3500m行った時点でロールにSnが付着した。なお、比較例3は比較例4に比べてSnめっき被膜の厚さが薄く、Snめっきの電流密度が12A/dm2以上であっても、めっき厚みによってRaが変化することがわかる。
Snめっき浴にメタノールを添加した比較例6の場合、Snめっき被膜表面のSEMによるSn以外の反射像が見られ、耐食性が劣化した。これは、Snめっき被膜に欠陥があるためである。
On the other hand, in the case of the comparative example 1 whose thickness of Sn plating film is less than 0.5 micrometer, corrosion resistance deteriorated.
In the case of Comparative Examples 2, 4, and 5 in which Sn plating includes a brightener, the surface roughness Ra of the Sn plating film is less than 0.5 × 10 2 nm, and Sn is formed on the roll when continuous plating is performed at 3000 to 3700 m. Attached.
In the case of Comparative Example 3 in which the current density of Sn plating was 12 A / dm 2 or more, the surface roughness Ra of the Sn plating film exceeded 2.0 × 10 2 nm, and the corrosion resistance was deteriorated.
Similarly, in the case of Comparative Example 4 in which the current density of Sn plating is 12 A / dm 2 or more, when the surface roughness Ra of the Sn plating film is less than 0.5 × 10 2 nm and continuous plating is performed at 3000 to 3500 m. As a result, Sn adhered to the roll. In Comparative Example 3, it can be seen that the thickness of the Sn plating film is smaller than that of Comparative Example 4, and even if the Sn plating current density is 12 A / dm 2 or more, Ra changes depending on the plating thickness.
In the case of Comparative Example 6 in which methanol was added to the Sn plating bath, a reflection image other than Sn by SEM on the surface of the Sn plating film was seen, and the corrosion resistance was deteriorated. This is because the Sn plating film has a defect.
1 銅箔(又は銅合金箔)
2 Sn又はSn合金めっき被膜
4 樹脂層(又はフィルム)
1 Copper foil (or copper alloy foil)
2 Sn or Sn alloy plating film 4 Resin layer (or film)
Claims (6)
前記Sn又はSn合金めっき被膜の硬さが500MPa以下であって、該Sn又はSn合金めっき被膜の表面を走査電子顕微鏡で観察したとき(但し、該Sn又はSn合金めっき被膜の厚みが1.5μmを超える場合、該Sn又はSn合金めっき被膜の厚みを1.5μmに減じたとき)、前記銅箔又は銅合金箔が露出しないSn又はSn合金めっき被膜。 Surface roughness Ra when a non-contact type surface roughness meter is used, which is formed on the other surface of a copper foil or copper alloy foil having a thickness of 5 to 50 μm made of electrolytic foil or rolled foil laminated with a resin layer or film. met but 0.5 × 10 2 nm ~2.0 × 10 is 2 nm Sn or Sn-Cu, Sn-Ag, or an average thickness of 0.5 to 2 [mu] m Sn alloy plating film consisting of Sn-Pb alloy And
When the hardness of the Sn or Sn alloy plating film is 500 MPa or less and the surface of the Sn or Sn alloy plating film is observed with a scanning electron microscope (however, the thickness of the Sn or Sn alloy plating film is 1.5 μm) When the thickness of the Sn or Sn alloy plating film is reduced to 1.5 μm), the Sn or Sn alloy plating film in which the copper foil or copper alloy foil is not exposed .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009086356A JP5268748B2 (en) | 2009-03-31 | 2009-03-31 | Sn or Sn alloy plating film and composite material having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009086356A JP5268748B2 (en) | 2009-03-31 | 2009-03-31 | Sn or Sn alloy plating film and composite material having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010236041A JP2010236041A (en) | 2010-10-21 |
JP5268748B2 true JP5268748B2 (en) | 2013-08-21 |
Family
ID=43090644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009086356A Active JP5268748B2 (en) | 2009-03-31 | 2009-03-31 | Sn or Sn alloy plating film and composite material having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5268748B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5356968B2 (en) * | 2009-09-30 | 2013-12-04 | Jx日鉱日石金属株式会社 | Sn plating film and composite material having the same |
JP5534626B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5534627B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5497949B1 (en) * | 2013-07-03 | 2014-05-21 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5774061B2 (en) * | 2013-07-03 | 2015-09-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5887305B2 (en) | 2013-07-04 | 2016-03-16 | Jx金属株式会社 | Metal foil for electromagnetic shielding, electromagnetic shielding material, and shielded cable |
JP5619307B1 (en) * | 2014-01-06 | 2014-11-05 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
US10221487B2 (en) | 2014-05-30 | 2019-03-05 | Jx Nippon Mining & Metals Corporation | Metal foil for electromagnetic shielding, electromagnetic shielding material and shielded cable |
JP6278922B2 (en) * | 2015-03-30 | 2018-02-14 | Jx金属株式会社 | Electromagnetic shielding material |
JP2023111239A (en) * | 2022-01-31 | 2023-08-10 | 株式会社 Mtg | Beauty device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223886A (en) * | 1999-01-28 | 2000-08-11 | Nisshinbo Ind Inc | Perspective electromagnetic wave shield material and its manufacture |
JP3644631B2 (en) * | 2000-12-21 | 2005-05-11 | 株式会社オートネットワーク技術研究所 | Shielded cable |
JP2002208321A (en) * | 2001-01-11 | 2002-07-26 | Auto Network Gijutsu Kenkyusho:Kk | Shield cable |
JP2003201597A (en) * | 2002-01-09 | 2003-07-18 | Nippon Denkai Kk | Copper foil, production method therefor and electromagnetic wave shield body obtained by using the copper foil |
JP2004128158A (en) * | 2002-10-01 | 2004-04-22 | Fcm Kk | Electromagnetic shielding material |
JP2004253766A (en) * | 2002-12-27 | 2004-09-09 | Hien Electric Industries Ltd | Metal foil laminate tape for electromagnetc shielding |
JPWO2005022971A1 (en) * | 2003-09-01 | 2007-11-01 | 大日本印刷株式会社 | Electromagnetic shielding film for plasma display |
CN102046854B (en) * | 2008-05-30 | 2013-09-25 | Jx日矿日石金属株式会社 | Sn or Sn alloy plated film, composite material having same and composite material production method |
JP2009287095A (en) * | 2008-05-30 | 2009-12-10 | Nippon Mining & Metals Co Ltd | PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME |
JP2009299157A (en) * | 2008-06-16 | 2009-12-24 | Nippon Mining & Metals Co Ltd | Tin plating film and composite material having the same |
-
2009
- 2009-03-31 JP JP2009086356A patent/JP5268748B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010236041A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5268748B2 (en) | Sn or Sn alloy plating film and composite material having the same | |
JP4484962B2 (en) | Sn or Sn alloy plating film, composite material having the same, and method for producing composite material | |
JP5356968B2 (en) | Sn plating film and composite material having the same | |
US9060431B2 (en) | Liquid crystal polymer copper-clad laminate and copper foil used for said laminate | |
JP4927503B2 (en) | Ultra-thin copper foil with carrier and printed wiring board | |
US20130270218A1 (en) | Rolled Copper Foil or Electrolytic Copper Foil for Electronic Circuit, and Method of Forming Electronic Circuit Using Same | |
JP2005344174A (en) | Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape | |
KR101318871B1 (en) | Surface-treated copper foil and copper-clad laminate | |
KR102706307B1 (en) | Surface-treated copper foil, and copper-clad laminates and printed wiring boards using the same | |
JP5666384B2 (en) | Ultrathin copper foil with support and method for producing the same | |
US8357307B2 (en) | Method of forming electronic circuit | |
US8668994B2 (en) | Rolled copper foil or electrolytic copper foil for electronic circuit, and method of forming electronic circuit using same | |
US8158269B2 (en) | Composite material for electrical/electronic part and electrical/electronic part using the same | |
JP7178530B1 (en) | Lead frame material, manufacturing method thereof, and semiconductor package | |
JP5728118B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
KR20160103534A (en) | Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT | |
JP2020063492A (en) | Electroconductive material, molded article, and electronic component | |
JP2009287095A (en) | PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME | |
JP5728117B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
JP2020063493A (en) | Electroconductive material, molded article, and electronic component | |
JP2009299157A (en) | Tin plating film and composite material having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100903 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130103 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130502 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130507 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5268748 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |