JP2009287095A - PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME - Google Patents

PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME Download PDF

Info

Publication number
JP2009287095A
JP2009287095A JP2008142065A JP2008142065A JP2009287095A JP 2009287095 A JP2009287095 A JP 2009287095A JP 2008142065 A JP2008142065 A JP 2008142065A JP 2008142065 A JP2008142065 A JP 2008142065A JP 2009287095 A JP2009287095 A JP 2009287095A
Authority
JP
Japan
Prior art keywords
plating
film
copper
foil
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008142065A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Maezawa
国芳 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008142065A priority Critical patent/JP2009287095A/en
Publication of JP2009287095A publication Critical patent/JP2009287095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated film of Sn, which is superior in the maintenability of a roll and can enhance the productivity by preventing the rubbing or falling of the plated film of Sn, and to provide a composite material having the same. <P>SOLUTION: The plated film 2 of Sn is formed on the other side of a copper foil or copper alloy foil 1 which is stacked on a resin layer or a film 4, and the sizes of electrodeposited particles in the film are 1.0 μm or larger. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁波シールド材料等に用いられ、樹脂等を積層した銅箔又は銅合金箔の他の面に形成されるSnめっき被膜、及びそれを有する複合材料に関する。   The present invention relates to an Sn plating film used for an electromagnetic wave shielding material or the like and formed on the other surface of a copper foil or a copper alloy foil laminated with a resin or the like, and a composite material having the same.

Snめっき被膜は耐食性に優れ、かつ、はんだ付け性が良好で接触抵抗が低いと言う特徴を持っている。このため、例えば、車載電磁波シールド材の複合材料として、銅等の金属箔にSnめっきされて使用されている。
上記の複合材料としては、銅又は銅合金箔を基材とする電磁波シールド材料等の複合材料として、銅箔又は銅合金箔の一方の面に樹脂層又はフィルムを積層し、他の面にSnめっき被膜を形成した構造が用いられている。
The Sn plating film is characterized by excellent corrosion resistance, good solderability and low contact resistance. For this reason, for example, Sn plating is used for metal foils, such as copper, as a composite material of a vehicle-mounted electromagnetic wave shielding material.
As the above composite material, as a composite material such as an electromagnetic shielding material based on copper or copper alloy foil, a resin layer or a film is laminated on one surface of copper foil or copper alloy foil, and Sn is formed on the other surface. A structure in which a plating film is formed is used.

銅又は銅合金箔へのSnめっきは、通常は湿式めっきにより行われるが、めっき被膜の安定性(色調が均一で、色斑や模様がないこと) 、Snめっき皮膜の耐摩耗性を図るため、めっき液に添加剤を加えて光沢Snめっきを行うことが多い。
例えば、めっき液に光沢剤を加えて光沢Snめっきを行い、Sn粒子をできるだけ小さくする技術が開示されている(特許文献1参照)。
Sn plating on copper or copper alloy foil is usually performed by wet plating, but in order to improve the stability of the plating film (uniform color, no color spots and patterns) and wear resistance of the Sn plating film In many cases, bright Sn plating is performed by adding an additive to the plating solution.
For example, a technique is disclosed in which a brightening agent is added to a plating solution to perform bright Sn plating to make Sn particles as small as possible (see Patent Document 1).

特許第3007207号公報Japanese Patent No. 3007207

しかしながら、銅又は銅合金箔のような金属箔に電着粒が小さいSnめっき(例えば、通常の光沢Snめっき)を連続ラインで行う場合には、Snめっき表面がこすれてロールに転写、付着するという問題がある。ロール表面にめっきが付着すると、ロールの清掃等でめっき時の生産性を低下させると共に、付着が極端にひどい場合にはSnめっき被膜が薄くなり、得られる複合材料の耐食性の低下を招くおそれもあるため、無視できない問題である。   However, when Sn plating with small electrodeposition grains (for example, normal bright Sn plating) is performed on a metal foil such as copper or copper alloy foil in a continuous line, the Sn plating surface is rubbed and transferred and adhered to the roll. There is a problem. If plating adheres to the roll surface, the productivity during plating is reduced by cleaning the roll, etc., and if the adhesion is extremely severe, the Sn plating film becomes thin, which may lead to a decrease in the corrosion resistance of the resulting composite material. This is a problem that cannot be ignored.

このような不具合が発生する理由は不明であるが、Snめっきの電着粒が小さい場合、ロールと電着粒との接触面積が大きくなるためと考えられる。つまり、銅箔は薄いため強度が低く、Snめっきのような連続ラインへの通板の際に折れやシワが発生しやすい。そのため、シールド材として使用する場合、銅箔に樹脂またはフィルムを先に貼り付けてSnめっきを実施するのが一般的である。しかし、このような樹脂またはフィルムを貼り付けた銅箔であっても、連続めっき時にストリップにかかる張力を高くすると折れやシワが発生しやすくなる。そのため、折れやシワの発生を安定的に防止するためには、低い張力で通箔することが必要になるが、一方、ストリップにかかる張力が低くなると、ロールとストリップとの接点圧力が小さくなり、ロールとストリップとの間でスリップしやすくなる。特に、ロールと電着粒との接触面積が大きい場合には、接触面が多くなるために接点圧力が低くなり、スリップがしやすくなって、ロールとSnめっき皮膜がスリップした際にSnめっき表面がこすれる度合が大きくなり、電着粒が落下してロールに転写、付着するためと考えられる。   The reason why such a defect occurs is unknown, but it is considered that when the electrodeposited grains of Sn plating are small, the contact area between the roll and the electrodeposited grains is increased. That is, since copper foil is thin, its strength is low, and it is easy to bend and wrinkle when passing through a continuous line such as Sn plating. Therefore, when using as a shielding material, it is common to perform Sn plating by pasting resin or a film on copper foil first. However, even a copper foil with such a resin or film attached thereto is likely to bend or wrinkle when the tension applied to the strip during continuous plating is increased. Therefore, in order to stably prevent the occurrence of folds and wrinkles, it is necessary to pass the foil with a low tension. On the other hand, when the tension applied to the strip is lowered, the contact pressure between the roll and the strip is reduced. , Slip easily between roll and strip. In particular, when the contact area between the roll and the electrodeposited grains is large, the contact pressure increases because the contact surface is increased, and slipping easily occurs. When the roll and the Sn plating film slip, the Sn plating surface This is considered to be because the degree of rubbing increases and the electrodeposited grains fall and transfer and adhere to the roll.

又、銅箔にSnめっきして得られた複合材料をケーブル等の電磁波シールド材料に用いる場合、ケーブル外周に複合材料を巻き、更にその外側に樹脂を被覆する。この樹脂被覆工程で、Snめっきの電着粒が0.9μm以下の複合材料を用いると、上記と同様の理由でダイスと電着粒との接触面積が大きくなり、複合材料がダイス(金型)を通過する際、Snめっき被膜が脱落しやすくなり、ダイスにSnカスが付着する可能性が高くなる。そして、ダイスにSnカスが付着するとメンテナンスに時間を要し、生産性を低下させる。
本発明は上記の課題を解決するためになされたものであり、めっき時や使用時のSnめっき皮膜の摺れや脱落を防止して生産性を向上させることができるSnめっき被膜及びそれを有する複合材料の提供を目的とする。
Moreover, when using the composite material obtained by Sn-plating copper foil for electromagnetic wave shielding materials, such as a cable, a composite material is wound around a cable outer periphery, and also the resin is coat | covered on the outer side. In this resin coating process, if a composite material with an electrodeposited grain of Sn plating of 0.9 μm or less is used, the contact area between the die and the electrodeposited grain is increased for the same reason as described above, and the composite material becomes a die (die). When passing through, the Sn plating film tends to fall off, and the possibility that Sn residue adheres to the die increases. And if Sn residue adheres to the die, time is required for maintenance, and productivity is lowered.
The present invention has been made to solve the above-described problems, and has an Sn plating film capable of improving the productivity by preventing the Sn plating film from sliding or falling off during plating or use. The purpose is to provide composite materials.

本発明者らは種々検討した結果、銅又は銅合金箔表面のSnめっき被膜の電着粒を大きくすることで、Snめっき皮膜の摺れや脱落を低減することに成功した。   As a result of various studies, the present inventors have succeeded in reducing the sliding or dropping of the Sn plating film by increasing the electrodeposited grains of the Sn plating film on the surface of the copper or copper alloy foil.

上記の目的を達成するために、本発明のSnめっき被膜は、樹脂層又はフィルムを積層した銅箔又は銅合金箔の他の面に形成され、電着粒の大きさが1.0μm以上である。   In order to achieve the above object, the Sn plating film of the present invention is formed on the other surface of the copper foil or copper alloy foil laminated with a resin layer or film, and the size of the electrodeposited grains is 1.0 μm or more. is there.

Snめっき被膜の厚みが0.5μm以上であることが好ましい。   The thickness of the Sn plating film is preferably 0.5 μm or more.

本発明の複合材料は、銅箔又は銅合金箔と、前記銅箔又は銅合金箔の一方の面に積層された樹脂層又はフィルムと、前記銅箔又は銅合金箔の他の面に形成された前記Snめっき被膜とからなる。   The composite material of the present invention is formed on a copper foil or copper alloy foil, a resin layer or film laminated on one surface of the copper foil or copper alloy foil, and the other surface of the copper foil or copper alloy foil. And the Sn plating film.

複合材料の厚みが0.1mm以下であることが好ましい。   The thickness of the composite material is preferably 0.1 mm or less.

なお、本発明における電着粒は以下のように定義する。Snめっき皮膜は、図2に示すようにSnめっきの結晶核を中心に半円状に成長し、さらに同様の核がその成長粒の上に積層されており、Snめっき皮膜の表面から見ると、図3,4に示すような粒子状に観察される。その個々の粒子を電着粒と定義する。具体的には、Snめっき被膜表面から5000倍の倍率の走査型電子顕微鏡像を撮影した時に観察される粒子状の境界を電着粒界とし、JIS H0501切断法(2007年版)に基づいて求められた粒径を、電着粒の大きさとする。   The electrodeposited grains in the present invention are defined as follows. As shown in FIG. 2, the Sn plating film grows in a semicircular shape centering on the Sn plating crystal nucleus, and the same nucleus is laminated on the grown grain. When viewed from the surface of the Sn plating film, 3 and 4 are observed in the form of particles. The individual particles are defined as electrodeposited grains. Specifically, it is obtained based on the JIS H0501 cutting method (2007 version), with the electrode boundary as the grain boundary observed when a scanning electron microscope image at a magnification of 5000 times is taken from the Sn plating film surface. Let the obtained particle size be the size of the electrodeposited particles.

本発明によれば、Snめっき被膜の摺れや脱落を防止することにより、ロールのメンテナンス性に優れ、生産性を向上させることができるSnめっき被膜及びそれを有する複合材料が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the Sn plating film which can be excellent in the maintainability of a roll and can improve productivity by preventing a Sn plating film from sliding and dropping, and a composite material having the same are obtained.

以下、本発明の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Embodiments of the present invention will be described below. In the present invention, “%” means “% by mass” unless otherwise specified.

本発明の実施の形態に係る複合材料は、銅箔(又は銅合金箔)1と、銅箔(又は銅合金箔)1の一方の面に積層された樹脂層(又はフィルム)4と、銅箔(又は銅合金箔)1の他の面に形成されたSnめっき被膜2とからなる。
材料の軽薄化の観点から、複合材料の厚みは0.1mm以下であることが好ましい。
The composite material which concerns on embodiment of this invention is the copper foil (or copper alloy foil) 1, the resin layer (or film) 4 laminated | stacked on one surface of the copper foil (or copper alloy foil) 1, and copper It consists of Sn plating film 2 formed in the other surface of foil (or copper alloy foil) 1.
From the viewpoint of lightening the material, the thickness of the composite material is preferably 0.1 mm or less.

銅箔としては、純度99.9%以上のタフピッチ銅、無酸素銅、又、銅合金箔としては要求される強度や導電性に応じて公知の銅合金を用いることができる。公知の銅合金としては、例えば、0.01〜0.3%の錫入り銅合金や0.01〜0.05%の銀入り銅合金が挙げられ、中でも、導電性に優れたものとしてCu-0.12%Sn、Cu-0.02%Agがよく用いられる。
銅箔(又は銅合金箔)の厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。
なお、銅箔(又は銅合金箔)としては、電解箔よりも高強度の圧延箔を用いることが好ましい。
又、銅箔(又は銅合金箔)の表面粗さは、中心線平均粗さで0.3μm以下、好ましくは0.2μm以下とすることができるが、表面粗さが0.1μmより小さいと樹脂層との接着性が十分でなくなることがある。
As the copper foil, tough pitch copper having a purity of 99.9% or more, oxygen-free copper, and as the copper alloy foil, a known copper alloy can be used depending on required strength and conductivity. Known copper alloys include, for example, 0.01 to 0.3% tin-containing copper alloys and 0.01 to 0.05% silver-containing copper alloys. -0.12% Sn and Cu-0.02% Ag are often used.
Although the thickness in particular of copper foil (or copper alloy foil) is not restrict | limited, For example, the thing of 5-50 micrometers can be used conveniently.
In addition, as copper foil (or copper alloy foil), it is preferable to use a rolled foil having higher strength than electrolytic foil.
Moreover, the surface roughness of the copper foil (or copper alloy foil) can be 0.3 μm or less, preferably 0.2 μm or less in terms of the center line average roughness, but if the surface roughness is less than 0.1 μm Adhesiveness with the resin layer may be insufficient.

樹脂層としては例えばポリイミド等の樹脂を用いることができ、フィルムとしては例えばPET(ポリエチレンテレフタラート)、PEN(ポリエチレンナフタレート)のフィルムを用いることができる。樹脂層やフィルムは、接着剤により銅箔(又は銅合金箔)に接着されてもよいが、接着剤を用いずに溶融樹脂を銅箔(銅合金箔)上にキャスティングしたり、フィルムを銅箔(銅合金箔)に熱圧着させてもよい。
樹脂層やフィルムの厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。又、接着剤を用いた場合、接着層の厚みは例えば10μm以下とすることができる。
As the resin layer, for example, a resin such as polyimide can be used, and as the film, for example, a film of PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) can be used. The resin layer or film may be bonded to the copper foil (or copper alloy foil) with an adhesive, but the molten resin is cast on the copper foil (copper alloy foil) without using the adhesive, or the film is made of copper. You may make it thermocompression-bond to foil (copper alloy foil).
The thickness of the resin layer or film is not particularly limited, but for example, a thickness of 5 to 50 μm can be suitably used. When an adhesive is used, the thickness of the adhesive layer can be set to 10 μm or less, for example.

Snめっき被膜の電着粒の大きさを1.0μm以上とする。Snめっき被膜の電着粒の大きさを1.0μm以上とすると、Snめっき時にロールと電着粒とは点接触するため、両者の接触面積が小さくなり、ロールとの接点圧力が強くなる。そのため、ロールでのスリップが少なくなり、電着粒の落下によるロールへの転写、付着がなくなる。又、得られた複合材料をケーブル等の電磁波シールド材料に用いる場合にも、加工時にSnめっき被膜とロールとの接触面積が小さくなる。このため、ロールへのSn付着を防止でき、生産性を向上できる。そして、得られた複合材料を加工した際、Snめっき被膜の粉落ちが生じず、密着性が低下することがない。
Snめっき被膜の電着粒の大きさの上限は、Snめっきの製造条件等によって変化するので特に制限されないが、電着粒の大きさが3μmを超えると、めっき効率が低下したり、不均一な外観となったりする場合がある。従って、Snめっき被膜の電着粒の大きさが1.0〜3.0μmであることが好ましい。
Snめっき被膜の厚みが0.5μm以上であることが好ましい。厚みが0.5μm未満の場合は耐食性、はんだ付け性が低下する場合がある。
また、Snめっき被膜の厚みの上限は、Snめっきの製造条件等によって変化するので特に制限されないが、2μmを超えてSnめっきを厚くしても耐食性、はんだ付け性の更なる向上はみられず、逆に、Snめっき代を増加させる、生産性を低下させる等のマイナス面もある。従って、Snめっき被膜の厚みが0.5〜2μmであることが好ましい。
The size of the electrodeposited grains of the Sn plating film is 1.0 μm or more. If the size of the electrodeposited grains of the Sn plating film is 1.0 μm or more, the roll and the electrodeposited grains are in point contact at the time of Sn plating, so that the contact area between the two becomes small and the contact pressure with the roll becomes strong. For this reason, slip on the roll is reduced, and transfer and adhesion to the roll due to the drop of the electrodeposited grains are eliminated. Moreover, also when using the obtained composite material for electromagnetic wave shielding materials, such as a cable, the contact area of Sn plating film and a roll becomes small at the time of a process. For this reason, Sn adhesion to a roll can be prevented and productivity can be improved. And when the obtained composite material is processed, the Sn plating film does not fall off and adhesion does not deteriorate.
The upper limit of the size of the electrodeposited grains of the Sn plating film is not particularly limited because it varies depending on the manufacturing conditions of the Sn plating. However, if the size of the electrodeposited grains exceeds 3 μm, the plating efficiency may be reduced or uneven. The appearance may be different. Therefore, the size of the electrodeposited grains of the Sn plating film is preferably 1.0 to 3.0 μm.
The thickness of the Sn plating film is preferably 0.5 μm or more. When the thickness is less than 0.5 μm, the corrosion resistance and solderability may deteriorate.
In addition, the upper limit of the thickness of the Sn plating film is not particularly limited because it varies depending on the manufacturing conditions of Sn plating, etc. However, even if the Sn plating is thickened exceeding 2 μm, no further improvement in corrosion resistance and solderability is observed. On the contrary, there are also negative aspects such as increasing the Sn plating allowance and decreasing the productivity. Therefore, it is preferable that the thickness of the Sn plating film is 0.5 to 2 μm.

Snめっき被膜の電着粒の大きさの測定方法は以下のように行う。まず、Snめっき被膜表面から5000倍の倍率の走査型電子顕微鏡像を撮影する。この画像について、JIS H0501切断法(2007年版)により、その画像の横3箇所、縦3箇所の計6箇所の電着粒界の数を数え、電着粒の大きさを求める。
又、測定誤差を低減するため、10×10mm程度の視野内で電着粒の大きさを測定し、平均することが好ましい。
めっき被膜の厚みは蛍光X線膜厚計で測定し、5箇所の平均値をめっき層の厚みとする
The method for measuring the size of the electrodeposited grains of the Sn plating film is performed as follows. First, a scanning electron microscope image at a magnification of 5000 times is taken from the Sn plating film surface. With respect to this image, the size of the electrodeposited grains is determined by counting the number of electrodeposited grain boundaries at a total of six places, three in the horizontal direction and three in the vertical direction, by the JIS H0501 cutting method (2007 version).
In order to reduce measurement errors, it is preferable to measure and average the size of the electrodeposited grains within a visual field of about 10 × 10 mm.
The thickness of the plating film is measured with a fluorescent X-ray film thickness meter, and the average value of the five points is defined as the thickness of the plating layer.

Snめっき被膜の電着粒の大きさを1.0μm以上とする方法としては、例えば、電流密度、Sn濃度及び浴温をそれぞれ調整する方法;Snめっき浴中に光沢剤(例えば、ホルマリン及びアルデヒド系、イミダゾル系、ベンザルアセトン等の市販されている薬品)を添加しないで粒状の電気めっきする方法が挙げられる。但し、EN(エトキシレーテッドナフトール)等のナフトール系の界面活性剤をSnめっき浴中に添加してもよい。また、ENSA(エトキシレーテッドナフトールスルフォニックアシッド)、ポリエチレングリコール、さらにはポリエチレングリコールノニルフェノールエーテル等のノニオン界面活性剤をSnめっき浴中に添加してもよい。また、界面活性剤の他、光沢効果の低いナフトール等の有機物を添加しても良い。   Examples of a method for setting the size of the electrodeposited grains of the Sn plating film to 1.0 μm or more include, for example, a method of adjusting current density, Sn concentration and bath temperature, respectively; a brightener (for example, formalin and aldehyde) in the Sn plating bath The method of carrying out granular electroplating without adding chemicals (commercially available chemicals such as imidazole, benzal acetone). However, a naphthol surfactant such as EN (ethoxylated naphthol) may be added to the Sn plating bath. Further, nonionic surfactants such as ENSA (ethoxylated naphthol sulfonic acid), polyethylene glycol, and polyethylene glycol nonylphenol ether may be added to the Sn plating bath. In addition to the surfactant, an organic substance such as naphthol having a low gloss effect may be added.

Snめっき浴の基剤としては、フェノールスルホン酸、硫酸、メタンスルホン酸等を挙げることができる。
めっき条件では、電流密度を低く、浴中のSn濃度を高く、浴温度を高くすることで、電着粒を大きくする方向に調整できる。例えば電流密度2〜12A/dm、Sn濃度30〜60g/L、浴温30〜60℃とするで、粒状の電着Snを銅箔面に均一に電着させることができるが、装置によって異なるので特に限定されない。
Examples of the base for the Sn plating bath include phenolsulfonic acid, sulfuric acid, methanesulfonic acid and the like.
The plating conditions can be adjusted to increase the electrodeposited grains by reducing the current density, increasing the Sn concentration in the bath, and increasing the bath temperature. For example, when the current density is 2 to 12 A / dm 2 , the Sn concentration is 30 to 60 g / L, and the bath temperature is 30 to 60 ° C., the granular electrodeposited Sn can be uniformly electrodeposited on the copper foil surface. Since it differs, it is not specifically limited.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

銅99.9%以上のタフピッチ銅箔(厚み7.3μm)の片面に厚み12.5μmのPETフィルムを熱可塑性接着剤を使用して接着したものをストリップとした。このストリップを錫陽極と対向させ、連続めっきセル中で電気めっきした。めっき浴としてフェノールスルホン酸浴を用い、界面活性剤(EN)10g/Lと酸化錫を添加し、Sn濃度32〜40g/Lとした。めっき条件は、浴温45〜55℃、電流密度8〜11A/dm2とし、めっき厚1.5μmとした。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、1.0μmであった。(図3参照)
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。
さらに、耐食性評価として塩水噴霧試験(Z2371)(温度:35℃、塩水濃度:5%(塩化ナトリウム)、噴霧圧力:98±10kPa、噴霧時間:480h)を行い、良好な結果を得た。
A strip was obtained by bonding a PET film having a thickness of 12.5 μm to one surface of a tough pitch copper foil (thickness: 7.3 μm) of 99.9% or more copper using a thermoplastic adhesive. This strip was electroplated in a continuous plating cell facing the tin anode. A phenol sulfonic acid bath was used as a plating bath, and a surfactant (EN) 10 g / L and tin oxide were added to obtain a Sn concentration of 32 to 40 g / L. The plating conditions were a bath temperature of 45 to 55 ° C., a current density of 8 to 11 A / dm 2 , and a plating thickness of 1.5 μm.
It was 1.0 micrometer when the magnitude | size of the electrodeposition particle | grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version). (See Figure 3)
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed.
Further, as a corrosion resistance evaluation, a salt spray test (Z2371) (temperature: 35 ° C., salt water concentration: 5% (sodium chloride), spray pressure: 98 ± 10 kPa, spray time: 480 h) was performed, and good results were obtained.

めっき厚を0.5μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、1.0μmであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.5 μm.
It was 1.0 micrometer when the magnitude | size of the electrodeposition particle | grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version).
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

めっき厚を2.0μmとし、電流密度6〜8A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、2.0μmであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 2.0 μm and the current density was 6 to 8 A / dm 2 .
It was 2.0 micrometers when the magnitude | size of the electrodeposited grain of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version).
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

めっき厚を2.0μmとし、電流密度5〜6A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、2.5μmであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかった。また、耐食性評価も良好な結果であった。
Continuous plating was performed in the same manner as in Example 1 except that the plating thickness was 2.0 μm and the current density was 5 to 6 A / dm 2 .
When the size of the electrodeposited grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version), it was 2.5 μm.
In addition, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was not observed on the roll even when 4700 m was fed. Moreover, corrosion resistance evaluation was also a favorable result.

めっき厚を0.4μmとしたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、1.0μmであった。
又、連続めっき中、めっき出側のロールを観察したところ、4700m通箔してもロールにSn付着が見られなかったが、塩水噴霧試験(Z2371)で腐食が見られた。
このことより、めっき厚を0.5μm以上とすると、より好ましいことがわかる。
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.4 μm.
It was 1.0 micrometer when the magnitude | size of the electrodeposition particle | grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version).
Further, during the continuous plating, when the roll on the plating outlet side was observed, Sn adhesion was not observed even when the foil was fed through 4700 m, but corrosion was observed in the salt spray test (Z2371).
From this, it can be seen that it is more preferable that the plating thickness is 0.5 μm or more.

<比較例1>
めっき厚を1.0μmとし、Snめっき浴中に光沢剤 パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加したこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、0.9μmであった(図4参照)。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 1>
Continuous plating was performed in the same manner as in Example 1 except that the plating thickness was 1.0 μm and the brightener paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath.
When the size of the electrodeposited grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version), it was 0.9 μm (see FIG. 4).
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.

<比較例2>
めっき厚を0.5μmとし、電流密度12〜15A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、0.9μmであった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 2>
Continuous plating was performed in exactly the same manner as in Example 1 except that the plating thickness was 0.5 μm and the current density was 12 to 15 A / dm 2 .
When the size of the electrodeposited grains of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version), it was 0.9 μm.
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.

<比較例3>
めっき厚を1.5μmとし、Snめっき浴中に光沢剤 パラアルデヒド12ml/L、ナフトアルデヒド0.2ml/L)を添加し、電流密度12〜15A/dm2としたこと以外は実施例1とまったく同様にして連続めっきを行った。
得られたSnめっき被膜の電着粒の大きさを、JIS H0501切断法(2007年版)で測定したところ、0.8μmであった。
又、連続めっき中、めっき出側のロールを観察したところ3000m通箔した時点でロールにSn付着が顕著に見られた。耐食性評価は良好な結果であった。
<Comparative Example 3>
Except that the plating thickness was 1.5 μm, brightener paraaldehyde 12 ml / L, naphthaldehyde 0.2 ml / L) was added to the Sn plating bath, and the current density was 12 to 15 A / dm 2. Similarly, continuous plating was performed.
It was 0.8 micrometer when the magnitude | size of the electrodeposited grain of the obtained Sn plating film was measured by the JIS H0501 cutting method (2007 version).
Further, when the roll on the plating outlet side was observed during continuous plating, Sn adhesion was noticeably observed on the roll when 3000 m was passed through. The corrosion resistance evaluation was a good result.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

表1から明らかなように、Snめっき被膜の電着粒の大きさが1.0μm以上である各実施例の場合、連続めっきによっても長期間、ロールにSnが付着しなかった。
一方、Snめっき被膜の電着粒の大きさが1.0μm未満である比較例1〜4の場合、連続めっきを3000m行った時点でロールにSnが付着した。
As is clear from Table 1, in each Example in which the size of the electrodeposited grains of the Sn plating film was 1.0 μm or more, Sn did not adhere to the roll for a long time even by continuous plating.
On the other hand, in the case of Comparative Examples 1 to 4 in which the size of the electrodeposited grains of the Sn plating film was less than 1.0 μm, Sn adhered to the roll when continuous plating was performed 3000 m.

本発明の複合材料の一例を示した図である。It is the figure which showed an example of the composite material of this invention. 銅箔(又は銅合金箔)に形成されたSnめっき電着粒を示す模式図である。It is a schematic diagram which shows the Sn plating electrodeposition grain formed in copper foil (or copper alloy foil). 発明例1のSnめっき被膜表面から5000倍の倍率の走査型電子顕微鏡像である。It is a scanning electron microscope image of the magnification of 5000 times from the Sn plating film surface of the example 1 of an invention. 比較例1のSnめっき被膜表面から5000倍の倍率の走査型電子顕微鏡像である。3 is a scanning electron microscope image at a magnification of 5000 times from the Sn plating film surface of Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 銅箔(又は銅合金箔)
2 Snめっき被膜
4 樹脂層(又はフィルム)
1 Copper foil (or copper alloy foil)
2 Sn plating film 4 Resin layer (or film)

Claims (4)

樹脂層又はフィルムを積層した銅箔又は銅合金箔の他の面に形成され、電着粒の大きさが1.0μm以上であるSnめっき被膜。   An Sn plating film formed on the other surface of a copper foil or copper alloy foil on which a resin layer or a film is laminated and having a size of electrodeposited grains of 1.0 μm or more. 厚みが0.5μm以上である請求項1に記載のSnめっき被膜。   The Sn plating film according to claim 1, wherein the thickness is 0.5 μm or more. 銅箔又は銅合金箔と、前記銅箔又は銅合金箔の一方の面に積層された樹脂層又はフィルムと、前記銅箔又は銅合金箔の他の面に形成された請求項1又は2に記載のSnめっき被膜とからなる複合材料。   The copper foil or copper alloy foil, the resin layer or film laminated on one surface of the copper foil or copper alloy foil, and the other surface formed on the other surface of the copper foil or copper alloy foil. A composite material comprising the described Sn plating film. 厚みが0.1mm以下である請求項3に記載の複合材料。   The composite material according to claim 3, wherein the thickness is 0.1 mm or less.
JP2008142065A 2008-05-30 2008-05-30 PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME Pending JP2009287095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142065A JP2009287095A (en) 2008-05-30 2008-05-30 PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142065A JP2009287095A (en) 2008-05-30 2008-05-30 PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME

Publications (1)

Publication Number Publication Date
JP2009287095A true JP2009287095A (en) 2009-12-10

Family

ID=41456593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142065A Pending JP2009287095A (en) 2008-05-30 2008-05-30 PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME

Country Status (1)

Country Link
JP (1) JP2009287095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236041A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Sn OR Sn ALLOY PLATING FILM AND COMPOSITE MATERIAL HAVING THE SAME
WO2011040280A1 (en) * 2009-09-30 2011-04-07 Jx日鉱日石金属株式会社 Coating film of sn or sn alloy formed by plating and composite material having same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096095A (en) * 1996-08-21 1998-04-14 Lucent Technol Inc Eiectroplating method of tin or tin alloy on metallic substrate
JP2002190215A (en) * 2000-12-21 2002-07-05 Auto Network Gijutsu Kenkyusho:Kk Shielded cable
JP2002208321A (en) * 2001-01-11 2002-07-26 Auto Network Gijutsu Kenkyusho:Kk Shield cable
JP2002266095A (en) * 2001-03-13 2002-09-18 Kobe Steel Ltd Copper alloy material for electronic-electrical parts
JP2004128158A (en) * 2002-10-01 2004-04-22 Fcm Kk Electromagnetic shielding material
JP2004253766A (en) * 2002-12-27 2004-09-09 Hien Electric Industries Ltd Metal foil laminate tape for electromagnetc shielding
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096095A (en) * 1996-08-21 1998-04-14 Lucent Technol Inc Eiectroplating method of tin or tin alloy on metallic substrate
JP2002190215A (en) * 2000-12-21 2002-07-05 Auto Network Gijutsu Kenkyusho:Kk Shielded cable
JP2002208321A (en) * 2001-01-11 2002-07-26 Auto Network Gijutsu Kenkyusho:Kk Shield cable
JP2002266095A (en) * 2001-03-13 2002-09-18 Kobe Steel Ltd Copper alloy material for electronic-electrical parts
JP2004128158A (en) * 2002-10-01 2004-04-22 Fcm Kk Electromagnetic shielding material
JP2004253766A (en) * 2002-12-27 2004-09-09 Hien Electric Industries Ltd Metal foil laminate tape for electromagnetc shielding
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236041A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Sn OR Sn ALLOY PLATING FILM AND COMPOSITE MATERIAL HAVING THE SAME
WO2011040280A1 (en) * 2009-09-30 2011-04-07 Jx日鉱日石金属株式会社 Coating film of sn or sn alloy formed by plating and composite material having same
JP2011074458A (en) * 2009-09-30 2011-04-14 Jx Nippon Mining & Metals Corp Sn or sn alloy plating film, and composite material having the same

Similar Documents

Publication Publication Date Title
JP4484962B2 (en) Sn or Sn alloy plating film, composite material having the same, and method for producing composite material
JP5356968B2 (en) Sn plating film and composite material having the same
JP5268748B2 (en) Sn or Sn alloy plating film and composite material having the same
CN104717831B (en) Surface treatment copper foil, laminate, printed wiring board, e-machine, the manufacture method of Copper foil with carrier and printed wiring board
JP6029590B2 (en) Copper foil excellent in adhesiveness with resin, method for producing the same, and printed wiring board or battery negative electrode material using the electrolytic copper foil
JP5654416B2 (en) Liquid crystal polymer copper clad laminate and copper foil used for the laminate
TWI438784B (en) Conductive member and manufacturing method thereof
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP2001068804A (en) Electrolytic copper foil with carrier foil and its manufacture, and copper plated laminate provided therewith
JPWO2016174998A1 (en) Roughened copper foil and printed wiring board
JP5666384B2 (en) Ultrathin copper foil with support and method for producing the same
EP2752505A1 (en) Copper foil with carrier
US20120196144A1 (en) Ultra thin copper foil with very low profile copper foil as carrier and its manufacturing method
CN104943270A (en) Copper foil with carrier, printed wiring board, laminate, electronic machine and method for manufacturing printed wiring board
KR20210143761A (en) Surface-treated copper foil and copper clad laminate and printed wiring board using the same
JP2023123687A (en) Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed circuit board, and method for producing electronic device
CN114555868B (en) Electrolytic foil and current collector for battery
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP7019876B1 (en) Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
JP2009287095A (en) PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME
JP2005288856A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
JP2009299157A (en) Tin plating film and composite material having the same
KR102390417B1 (en) Surface-treated copper foil and copper clad laminate and printed wiring board using the same
JP5373993B1 (en) Copper foil with carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A711 Notification of change in applicant

Effective date: 20100903

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120521