JP2002266095A - Copper alloy material for electronic-electrical parts - Google Patents

Copper alloy material for electronic-electrical parts

Info

Publication number
JP2002266095A
JP2002266095A JP2001069547A JP2001069547A JP2002266095A JP 2002266095 A JP2002266095 A JP 2002266095A JP 2001069547 A JP2001069547 A JP 2001069547A JP 2001069547 A JP2001069547 A JP 2001069547A JP 2002266095 A JP2002266095 A JP 2002266095A
Authority
JP
Japan
Prior art keywords
plating
copper alloy
mass
alloy material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001069547A
Other languages
Japanese (ja)
Other versions
JP3986265B2 (en
Inventor
Tetsuzo Ogura
哲造 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001069547A priority Critical patent/JP3986265B2/en
Publication of JP2002266095A publication Critical patent/JP2002266095A/en
Application granted granted Critical
Publication of JP3986265B2 publication Critical patent/JP3986265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the whisker resistance of a copper alloy material for electrical-electronic parts without damaging the advantages of the excellent press blanking properties and low friction coefficient of bright electrotinning. SOLUTION: Bright electrotinning having a plating thickness of 0.5 to 2 μm, and in which the reflectivity of the surface is <=30%, the content of C in the plating is 0.05 to 1 mass%, and the crystal grain size of the plating is 0.1 to 1 μm, and the orientation index of the (101) plane in the plating is <=2.0 is applied to a copper alloy containing 0.1 to 10 mass% Zn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、端子、コネクタ、
スイッチ、リレー、リードフレームなどに用いる電子・
電気部品用銅合金材料に関するものである。
TECHNICAL FIELD The present invention relates to a terminal, a connector,
Electronics used for switches, relays, lead frames, etc.
The present invention relates to a copper alloy material for electric parts.

【0002】[0002]

【従来の技術】Snめっき技術として、電気めっき、リ
フローめっき、さらには溶融Sn浴に材料を浸漬して機
械的もしくはエアでめっき膜厚を制御する方法などがあ
る。溶融Sn浴に浸漬する方法はめっき膜厚の制御が難
しいため、品質の安定性に優れる電気めっき及びリフロ
ーめっきが電子・電気部品には多用されている。
2. Description of the Related Art Sn plating techniques include electroplating, reflow plating, and a method of mechanically or air immersing a material in a molten Sn bath to control the thickness of the plated film. Since it is difficult to control the plating film thickness in the method of immersion in a molten Sn bath, electroplating and reflow plating, which are excellent in quality stability, are frequently used for electronic and electric components.

【0003】電気めっきは、はんだ濡れ性の経時劣化を
抑えるとともに外観を良くするため、光沢剤を用いた電
気光沢Snめっきとするのが一般的である。しかし、電
気光沢Snめっきはウィスカ(針状のSn単結晶)の発
生を抑制するのが難しく、電気的信頼性の点からリフロ
ーSnめっきに置き換えられる場合も多い。なお、Sn
めっきにウイスカが発生すると、回路中や端子間の短
絡、絶縁不良などの短絡障害が発生したり、ノイズが発
生する原因にもなる。一方、リフローSnめっきはプレ
ス打抜き性が劣る(ヒゲバリの発生)、摩擦係数が高
い、という欠点がある。ヒゲバリはプレス打抜きの剪断
面近傍においてめっきが層状に脱落又は脱落しかけた状
態のことをいい、プレス金型破損や押込み疵の原因、又
は使用時において回路短絡の原因となることがある。ま
た、摩擦係数が高いことは、近年の自動車などの電装化
進展のなかで、コネクタの多極化の障害となっている。
[0003] In general, electroplating is carried out by using electrobright Sn plating using a brightener in order to suppress the deterioration of solder wettability with time and improve the appearance. However, it is difficult to suppress the generation of whiskers (needle-shaped Sn single crystal) in the electro-bright Sn plating, and it is often replaced with reflow Sn plating from the viewpoint of electrical reliability. Note that Sn
When whiskers are generated in plating, a short circuit failure such as a short circuit in a circuit or between terminals, insulation failure, or the like may occur, or noise may be generated. On the other hand, reflow Sn plating has disadvantages in that press punching properties are inferior (generation of burrs) and the friction coefficient is high. Beard burr refers to a state in which plating has dropped or is about to fall off in a layered manner in the vicinity of a shearing surface of press punching, and may cause breakage of a press die or a pressing flaw, or a short circuit during use. Also, the high coefficient of friction is an obstacle to increasing the number of poles of connectors in recent years with the progress of electrical equipment such as automobiles.

【0004】[0004]

【発明が解決しようとする課題】本発明は、電子・電気
部品用途において、電気光沢Snめっきの優れたプレス
打抜き性、低摩擦係数といった長所を損なわずに、耐ウ
ィスカ性を向上させることを目的としたものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve whisker resistance in electronic and electric parts applications without impairing the advantages of electro-gloss Sn plating such as excellent press punching properties and low friction coefficient. It is what it was.

【0005】[0005]

【課題を解決するための手段】本発明者は、銅合金素材
のZn含有量を限定し、同時に電気光沢Snめっきの厚
さ、反射率、C量を制御し、さらにはSnめっきの結晶
粒径、配向指数を制御することにより、上記目的を達成
することができた。すなわち、本発明に係る電子・電気
部品用銅合金材料は、Znを0.1〜10mass%含有す
る銅合金に、めっき厚さが0.5〜2μm、表面の反射
率が30%以上、めっき中のC量が0.05〜1mass
%、めっきの結晶粒径が0.1〜1μm、めっきの(1
01)面の配向指数が2.0以下である電気光沢Snめ
っきを施したことを特徴とする。
Means for Solving the Problems The present inventor has limited the Zn content of a copper alloy material, and at the same time, controlled the thickness, reflectivity, and C content of electro-gloss Sn plating, and further improved the crystal grain size of the Sn plating. The above object was achieved by controlling the diameter and the orientation index. That is, the copper alloy material for electronic / electric parts according to the present invention is obtained by plating a copper alloy containing 0.1 to 10 mass% of Zn with a plating thickness of 0.5 to 2 μm and a surface reflectance of 30% or more. The amount of C inside is 0.05-1 mass
%, The crystal grain size of the plating is 0.1 to 1 μm,
It is characterized by being subjected to electro-gloss Sn plating having an orientation index of the (01) plane of 2.0 or less.

【0006】[0006]

【発明の実施の形態】以下、本発明に係る銅合金素材の
化学成分及びSnめっきの厚さ、反射率、C量、結晶粒
径、配向指数の限定理由について説明する。 (Zn:0.1〜10mass%)銅合金素材にZnが含有
されることで耐ウィスカ性が向上する。しかし、Zn含
有量が0.1mass%未満ではその効果が小さい。また1
0mass%を超えるとかえって耐ウィスカ性が低下する。
従って、素材のZn含有量は0.1〜10mass%とす
る。なお、ウィスカ抑制に対してはZnの効果が支配的
であり、銅合金素材がZn以外の元素を適宜含有する場
合も同様の効果を奏する。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical components of the copper alloy material according to the present invention and the reasons for limiting the thickness, reflectance, C content, crystal grain size, and orientation index of Sn plating will be described below. (Zn: 0.1 to 10 mass%) Whisker resistance is improved by containing Zn in the copper alloy material. However, if the Zn content is less than 0.1 mass%, the effect is small. Also one
If it exceeds 0 mass%, the whisker resistance is rather reduced.
Therefore, the Zn content of the material is set to 0.1 to 10 mass%. Note that the effect of Zn is dominant on whisker suppression, and the same effect can be obtained when the copper alloy material appropriately contains an element other than Zn.

【0007】ウィスカの原因については諸説が述べられ
ているが、有力なのはSnめっき表面の酸化膜説であ
る。本発明者は、Zn含有量が0.1〜10mass%の範
囲でウィスカ発生が強く抑制されることから、黄銅のよ
うにZn量が多い銅合金では、Cuよりも酸化しやすい
ZnがSnめっき表面に達し、厚いZnの酸化膜を形成
することでウィスカが発生し、Znを含まない銅合金で
は、CuがSnめっき表面に達して酸化膜を形成するこ
とでウィスカが発生し、一方、0.1〜10mass%と比
較的少量のZnを含む銅合金では、めっき表面に達した
少量のZnがCuの酸化を抑制しているのではないかと
推測している。
Although various theories have been described as to the cause of whiskers, the predominant one is the oxide film theory on the Sn plating surface. The present inventors have found that, since the generation of whiskers is strongly suppressed when the Zn content is in the range of 0.1 to 10 mass%, in a copper alloy having a large Zn content such as brass, Zn which is more easily oxidized than Cu is plated with Sn. Whisker is generated by reaching the surface and forming a thick Zn oxide film. In a copper alloy containing no Zn, whisker is generated when Cu reaches the Sn plating surface and forms an oxide film. In a copper alloy containing Zn in a relatively small amount of 0.1 to 10 mass%, it is speculated that a small amount of Zn reaching the plating surface may suppress the oxidation of Cu.

【0008】(Snめっき厚さ:0.5〜2μm)Sn
めっき厚さが0.5μm未満では、高温放置試験後の接
触抵抗劣化が大きくなる。また、経時後のはんだ濡れ性
も低下する。一方、2μmを超えると、プレス打抜き性
が低下し(ヒゲバリの発生)、摩擦係数も大きくなる。
従って、Snめっき厚さは、0.5〜2μmとする。な
お、経時劣化抑制を目的に、Snめっきの下地にCuめ
っきが施される場合があるが、Snめっき厚さはこの場
合も同様とする。
(Sn plating thickness: 0.5-2 μm) Sn
If the plating thickness is less than 0.5 μm, the contact resistance degradation after the high temperature storage test becomes large. Further, the solder wettability after aging is also reduced. On the other hand, when it exceeds 2 μm, the press punching property is reduced (the generation of burrs) and the friction coefficient is increased.
Therefore, the Sn plating thickness is set to 0.5 to 2 μm. Note that Cu plating may be applied to the Sn plating underlayer for the purpose of suppressing deterioration over time. The Sn plating thickness is the same in this case.

【0009】(Snめっきの反射率:30%以上)Sn
めっきの表面反射率が30%未満では、外観が劣化する
とともに、経時後のはんだ濡れ性が低下する。従って、
Snめっきの反射率は30%以上とする。 (SnめっきのC量:0.05〜1mass%)Snめっき
に含有されるC量が0.05mass%未満では、プレス打
抜き性が低下(ヒゲバリの発生)するとともに、摩擦係
数が大きくなる。一方、C量が1mass%を超えると、耐
ウィスカ性が低下する。従って、SnめっきのC量は
0.05〜1mass%とする。
(Reflectance of Sn plating: 30% or more) Sn
If the plating has a surface reflectance of less than 30%, the appearance is deteriorated and the solder wettability after aging is reduced. Therefore,
The reflectance of Sn plating is 30% or more. (C content of Sn plating: 0.05 to 1 mass%) If the C content contained in the Sn plating is less than 0.05 mass%, the press punching property is reduced (the occurrence of burrs) and the friction coefficient is increased. On the other hand, if the C content exceeds 1 mass%, the whisker resistance decreases. Therefore, the C content of Sn plating is set to 0.05 to 1 mass%.

【0010】(Snめっきの結晶粒径)Snめっきの結
晶粒界は銅合金素材を構成する元素がめっき表面へ拡散
する主要経路となり、結晶粒径が小さい場合は結晶粒界
の面積が大きく拡散速度が大きくなり、結晶粒径が大き
い場合は逆になる。従って、ウィスカ発生のメカニズム
として前記酸化膜説を前提とすれば、Znの拡散を制御
するため、銅合金素材のZn含有量のみならず、拡散を
司るSnめっきの結晶粒径をも制御することが重要なは
ずである。その推測のもとに研究をすすめた結果、前記
Zn含有量において、Snめっきの結晶粒径が0.1μ
m未満又は1μmを超える場合はウィスカが発生しやす
く、結晶粒径が0.1〜1μmの範囲内でウィスカ発生
が抑制されることが分かった。これは、結晶粒径が1μ
mを超えるとZnの拡散が起こりやすく、ZnがSnめ
っき表面で酸化膜を形成し、結晶粒径が0.1μm未満
ではZnの拡散が起こりにくく、ウィスカを抑制するに
必要な量のZnがSnめっき表面に達しないためと推測
される。
(Grain size of Sn plating) The crystal grain boundary of Sn plating is a main route for diffusing elements constituting the copper alloy material to the plating surface, and when the crystal grain size is small, the area of the crystal grain boundary is large and diffuses. The reverse is true for higher speeds and larger grain sizes. Therefore, assuming the oxide film theory as a mechanism of whisker generation, in order to control the diffusion of Zn, it is necessary to control not only the Zn content of the copper alloy material but also the crystal grain size of Sn plating which controls the diffusion. Should be important. As a result of study based on the presumption, the crystal grain size of the Sn plating was 0.1 μm at the Zn content.
When it is less than m or more than 1 μm, whiskers are easily generated, and it has been found that whisker generation is suppressed when the crystal grain size is in the range of 0.1 to 1 μm. This is because the crystal grain size is 1μ.
If it exceeds m, Zn diffusion tends to occur, Zn forms an oxide film on the Sn plating surface, and if the crystal grain size is less than 0.1 μm, Zn diffusion hardly occurs, and the amount of Zn necessary to suppress whiskers is reduced. It is presumed that it did not reach the Sn plating surface.

【0011】(Snめっきの配向指数)Snめっき表面
からウィスカが成長する結晶方位は<101>である。
従って、Snめっきの(101)面の配向指数を制御す
ることにより、ウィスカ成長を抑制できる可能性を想起
し、種々実験を重ねた結果、配向指数を2.0以下に制
御することにより抑制できることを見い出した。従っ
て、Snめっきの(101)面の配向指数は2.0以下
とする。
(Orientation Index of Sn Plating) The crystal orientation in which whiskers grow from the Sn plating surface is <101>.
Therefore, the possibility that whisker growth can be suppressed by controlling the orientation index of the (101) plane of the Sn plating is recalled. As a result of repeated experiments, it can be suppressed by controlling the orientation index to 2.0 or less. I found Therefore, the orientation index of the (101) plane of Sn plating is set to 2.0 or less.

【0012】前記組成の銅合金素材に0.5〜2μmの
厚さの電気光沢Snめっきを施し、そのSnめっき表面
の反射率を30%以上、めっき中のC量を0.05〜1
mass%、Snめっきの結晶粒径を0.1〜1μm、かつ
Snめっきの(101)面の配向指数を2.0以下を同
時に満足させるためには、例えば、硫酸錫ベースに、1
0ml/lの光沢剤(アセトアルデヒドとオルソトルイ
ジンの反応沈澱物をイソプロピルアルコールに溶解させ
たもの)と20g/lの分散剤を添加しためっき浴を用
い、めっきの電流密度を1〜5A/dm、かつめっき
浴の温度を5〜15℃のめっき条件でSnめっきを行え
ばよい。このめっき条件は、従来の条件に比べて浴温を
低温に制御することが特徴である。前記組成のめっき浴
に対し、従来は通常浴温を17〜40℃程度に制御しS
nめっきを行っていた。このような高温側でめっきを行
った場合、特にSnめっきの(101)面の配向指数が
2.0を越えてしまい、本発明の配向指数が得難くな
る。
A copper alloy material having the above composition is electroplated with an electroluminescent Sn plating having a thickness of 0.5 to 2 μm, the reflectance of the Sn plating surface is 30% or more, and the C content in the plating is 0.05 to 1 μm.
mass%, the crystal grain size of Sn plating is 0.1-1 μm, and the orientation index of the (101) plane of Sn plating is 2.0 or less at the same time.
Using a plating bath to which 0 ml / l of a brightener (a reaction precipitate of acetaldehyde and orthotoluidine was dissolved in isopropyl alcohol) and 20 g / l of a dispersant, the current density of plating was 1 to 5 A / dm 2. The Sn plating may be performed under the plating conditions of a plating bath temperature of 5 to 15 ° C. This plating condition is characterized in that the bath temperature is controlled to be lower than in the conventional condition. Conventionally, with respect to the plating bath having the above composition, the bath temperature is usually controlled to about 17 to 40 ° C.
n plating was performed. When plating is performed on such a high temperature side, the orientation index of the (101) plane of Sn plating in particular exceeds 2.0, making it difficult to obtain the orientation index of the present invention.

【0013】[0013]

【実施例】本発明に係る電子・電気部品用銅合金材料の
実施例について、その比較例とともに以下に説明する。
表1に示す組成を有するZn含有量の異なる鋳塊を熱間
圧延し、冷間圧延と焼鈍を適宜繰返して、0.25mm
厚さの板材に調整し、この板材に対し硫酸Sn浴にて電
気光沢Snめっきを施した。Snめっきの表面反射率、
C含有量、結晶粒径及び結晶配向性を制御するために、
前記の要領で適宜めっき浴組成、光沢剤濃度、めっき浴
温度、電流密度を調整した。なお、No.16はリフロ
ーSnめっきである。Snめっき後の各銅合金板材につ
いて、電気光沢Snめっきのめっき厚さ、反射率、C含
有量、結晶粒径及び(101)配向指数を測定した。そ
の結果を表1にあわせて示す。
EXAMPLES Examples of the copper alloy material for electronic / electric parts according to the present invention will be described below together with comparative examples.
The ingots having different Zn contents having the compositions shown in Table 1 were hot-rolled, and cold rolling and annealing were appropriately repeated to obtain 0.25 mm
The thickness of the plate was adjusted, and the plate was electroplated with Sn in a sulfuric acid Sn bath. Surface reflectance of Sn plating,
In order to control C content, crystal grain size and crystal orientation,
The plating bath composition, brightener concentration, plating bath temperature, and current density were appropriately adjusted as described above. In addition, No. Reference numeral 16 denotes reflow Sn plating. With respect to each copper alloy sheet material after the Sn plating, the plating thickness, the reflectance, the C content, the crystal grain size, and the (101) orientation index of the electroluminescent Sn plating were measured. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】なお、Snめっきの反射率の測定は、JI
SZ8722に記載されている方法で行った。Snめっ
き中のC含有量は、各板材をめっきしたと同じめっき液
を用い、同じ電流密度で50×100mmのチタン板上
に10μm厚さのSnめっきを施した後に皮膜を剥離
し、アセトン溶液中で超音波洗浄後、燃焼赤外線吸収法
で定量分析した。Snめっきの結晶粒径は、ミクロトー
ムによるめっき切断面をArエッチングして結晶粒を出
し、大きさの判定は、JISH0501に記載の比較法
に準じて行った。ただし、結晶粒径が小さいので、観察
は倍率10,000倍のSEMにて行った。
The measurement of the reflectance of the Sn plating is performed according to JI
It carried out by the method described in SZ8722. The C content in the Sn plating was determined by using the same plating solution as used for plating each plate material, applying a 10 μm-thick Sn plating on a 50 × 100 mm titanium plate at the same current density, and then peeling off the film. After ultrasonic cleaning in the inside, it was quantitatively analyzed by a combustion infrared absorption method. The crystal grain size of the Sn plating was determined by subjecting the cut surface of the plating with a microtome to Ar etching to produce crystal grains, and the size was determined according to the comparison method described in JIS H0501. However, since the crystal grain size was small, the observation was performed using a SEM with a magnification of 10,000 times.

【0016】Snめっきの配向指数は、10×10mm
の試験片を採取し、X線回折装置を用いて測定した。X
線源にはCuKα線を用いた。配向指数の計算方法は次
式による。 配向指数={A/B}/{C/D} ここで、 A:求める配向面(この場合(101)面)のピーク強
度値(cps) B:考慮した配向面のピーク強度の和(cps) C:粉末X線回折による求める配向面(この場合(10
1)面)のピーク強度(csp) D:粉末X線回折による考慮した配向面のピーク強度の
和(csp) 母材によるピーク強度を除外し、めっき皮膜によるピー
クが認められた(200)、(101)、(220)、
(301)、(112)、(400)、(321)及び
(312)の8種類の面についてのピーク強度を測定し
た。これらが上記考慮した配向面に相当する。
The orientation index of Sn plating is 10 × 10 mm
Were sampled and measured using an X-ray diffractometer. X
CuKα radiation was used as the radiation source. The calculation method of the orientation index is based on the following equation. Orientation index = {A / B} / {C / D} where: A: peak intensity value (cps) of desired orientation plane ((101) plane in this case) B: sum of peak intensity of orientation plane considered (cps) C) Orientation plane determined by powder X-ray diffraction (in this case, (10
1) Peak intensity of surface) (csp) D: Sum of peak intensities of oriented surfaces taken into account by powder X-ray diffraction (csp) Excluding the peak intensity of the base material, a peak due to the plating film was observed (200). (101), (220),
Peak intensity was measured for eight types of planes (301), (112), (400), (321) and (312). These correspond to the orientation planes considered above.

【0017】上記各銅合金板材から試験片を採取し、耐
ウィスカ性(ウィスカ長さ)、高温放置後の接触抵抗、
はんだ濡れ性、プレス打抜き性(ヒゲバリの有無)及び
摩擦係数を、それぞれ次の要領で測定した。その結果を
表2に示す。耐ウィスカ性の測定は、幅50mm、長さ
100mmの試験片を採取し、内幅94mmの断面コの
字型治具に長手方向に屈曲させた状態で固定して、曲げ
応力を負荷することによりウィスカ発生促進を図った。
室温で3ヶ月放置後、30mm×20mmの面積を拡大
鏡で観察し、発生したウィスカの最大長さのものを記録
した。
A test piece was taken from each of the above copper alloy sheets, and whisker resistance (whisker length), contact resistance after leaving at high temperature,
Solder wettability, press punching property (with or without burrs) and coefficient of friction were measured as follows. Table 2 shows the results. To measure the whisker resistance, a test piece with a width of 50 mm and a length of 100 mm is sampled and fixed to a U-shaped jig with an inner width of 94 mm in a state of being bent in the longitudinal direction, and a bending stress is applied. To promote the generation of whiskers.
After standing at room temperature for 3 months, an area of 30 mm × 20 mm was observed with a magnifying glass, and the maximum length of the generated whisker was recorded.

【0018】高温放置後の接触抵抗の測定は、120℃
で120h保持後のめっき表面を、4端子法で、開放電
圧20mv、電流10mA、接触荷重9.8Nの条件に
て行った。なお、プローブはAuを用いた。はんだ濡れ
性は、経時の促進条件として40℃、80%RHで96
h保持後、レスカ社製ソルダチェッカATS−2000
型を用いて行った。はんだ組成は60mass%Sn−40
mass%Pbで245℃とし、フラックスはロジン系非活
性タイプ(α100)を用いた。試験片サイズは10m
m幅、30mm長さで、浸漬速度25mm/s、浸漬深
さ8mm、浸漬時間5sの条件にて、濡れ力が反発側か
ら引込み側に変わるまでの時間(いわゆるゼロクロスタ
イム)を測定した。
Measurement of contact resistance after leaving at high temperature was 120 ° C.
The plating surface after holding for 120 hours was subjected to a four-terminal method under the conditions of an open voltage of 20 mv, a current of 10 mA, and a contact load of 9.8 N. The probe used was Au. Solder wettability was 96 at 40 ° C. and 80% RH as conditions for promoting aging.
After holding, the solder checker ATS-2000 manufactured by Resca
Performed using a mold. Solder composition is 60 mass% Sn-40
The mass% Pb was set to 245 ° C., and the flux used was a rosin-based inactive type (α100). Test piece size is 10m
Under the conditions of m width, 30 mm length, immersion speed of 25 mm / s, immersion depth of 8 mm, and immersion time of 5 s, the time until the wetting force changes from the rebound side to the retraction side (so-called zero cross time) was measured.

【0019】プレス打抜き後のヒゲバリは、金型クリア
ランスを板厚の5%、パンチ径10mm、打抜き速度5
0mm/分として無潤滑で打抜いた時の剪断面近傍のS
nめっきの状況を実体顕微鏡にて観察し、ヒゲバリの有
無を判定した。摩擦係数は、以下のように測定した。実
端子の接触部の形状を模擬するため、メス試験片は10
×10mmの材料を切り出した後、成形金型とプレス機
を用いて、内側半径1.5mm、高さ1mmの半球形状
に加工し、オス端子は板のままとした。測定は、図1に
示すように、オス試験片1を2つのメス試験片2で挟み
込んだ後、オス試験片1を80mm/min.の速度で
水平方向に引っ張り、2mm摺動後の引抜き力を横型荷
重測定器3(アイコーエンジニアリング製Model−
301型)により測定した。なお、接触荷重は300g
fとした。最大引抜き力を接触荷重の2倍で除し、この
値を摩擦係数とした。接触荷重の2倍で除した理由は、
接触部が上下2箇所あるためである。
The burrs after press punching were performed by setting the mold clearance to 5% of the plate thickness, the punch diameter to 10 mm, and the punching speed to 5 mm.
S near the shear surface when punching without lubrication at 0 mm / min
The state of n-plating was observed with a stereoscopic microscope, and the presence or absence of mustache was determined. The coefficient of friction was measured as follows. In order to simulate the shape of the contact part of the actual terminal,
After cutting out a material having a size of × 10 mm, it was processed into a hemispherical shape having an inner radius of 1.5 mm and a height of 1 mm using a molding die and a press, and the male terminal was left as a plate. As shown in FIG. 1, the measurement was performed by sandwiching the male test piece 1 between two female test pieces 2 and then setting the male test piece 1 to 80 mm / min. In the horizontal direction at a speed of 2 mm, and the pull-out force after sliding 2 mm is measured by a horizontal load measuring device 3 (Model-
301 type). The contact load is 300 g
f. The maximum pulling force was divided by twice the contact load, and this value was defined as the friction coefficient. The reason for dividing by twice the contact load is that
This is because there are two upper and lower contact portions.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すように、No.1〜5はいずれ
の特性も良好である。一方、No.6及び7は銅合金素
材のZn含有量が少ないため耐ウィスカ性が劣り、N
o.8及び9は、逆にZn含有量が多すぎて耐ウィスカ
性が劣る。No.10はめっき厚さが薄く接触抵抗とは
んだ濡れ性が劣る。No.11はめっき厚さが厚くヒゲ
バリが発生するとともに、摩擦係数も劣る。No.12
及び13は反射率が小さいためはんだ濡れ性が劣る。N
o.14は反射率が小さくC含有量も低いため、はんだ
濡れ性、プレス打抜き性及び摩擦係数が劣る。No.1
5はC含有量が多いため耐ウィスカ性が劣る。No.1
6はリフローSnめっきであり、プレス打抜き性及び摩
擦係数が劣る。No.17はSnめっきの結晶粒径が小
さすぎるため、No.18は結晶粒径が大きすぎるため
耐ウィスカ性が劣る。No.19はSnめっきの(10
1)面の配向指数が大きいため耐ウィスカ性が劣る。
As shown in Table 2, as shown in FIG. 1 to 5 are all good. On the other hand, No. Nos. 6 and 7 have poor whisker resistance due to the low Zn content of the copper alloy material.
o. Conversely, Nos. 8 and 9 have an excessively high Zn content and have poor whisker resistance. No. No. 10 has a small plating thickness and is inferior in contact resistance and solder wettability. No. Sample No. 11 has a large plating thickness, generates burrs, and has a poor coefficient of friction. No. 12
And 13 have poor reflectivity and therefore poor solder wettability. N
o. 14 has a low reflectance and a low C content, and thus has poor solder wettability, press punching properties, and friction coefficient. No. 1
Sample No. 5 has a low C content because of its high C content. No. 1
Reference numeral 6 denotes reflow Sn plating, which is inferior in press punching properties and friction coefficient. No. No. 17 has a too small grain size of Sn plating. No. 18 is inferior in whisker resistance because the crystal grain size is too large. No. 19 is Sn plating (10
1) Since the orientation index of the plane is large, the whisker resistance is poor.

【0022】[0022]

【発明の効果】本発明に係る電子・電気部品用銅合金材
料は、電気光沢めっきの耐ウィスカ性が優れ、同時にプ
レス打抜き性、摩擦係数、経時後のはんだ濡れ性及び高
温放置後の接触抵抗などの電気的信頼性にも優れてい
る。従って、本発明は電気・電子部品の生産性及び信頼
性の向上に対する寄与が大である。
The copper alloy material for electronic and electric parts according to the present invention has excellent whisker resistance of electro-gloss plating, and at the same time, press punching property, friction coefficient, solder wettability after aging and contact resistance after standing at high temperature. It also has excellent electrical reliability. Therefore, the present invention greatly contributes to improvement in productivity and reliability of electric / electronic parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 摩擦係数の測定方法を説明する図である。FIG. 1 is a diagram illustrating a method for measuring a friction coefficient.

【符号の説明】[Explanation of symbols]

1 メス端子 2 オス端子 1 Female terminal 2 Male terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Znを0.1〜10mass%含有する銅合
金に、めっき厚さが0.5〜2μm、表面の反射率が3
0%以上、めっき中のC量が0.05〜1mass%、めっ
きの結晶粒径が0.1〜1μm、めっきの(101)面
の配向指数が2.0以下の電気光沢Snめっきを施した
ことを特徴とする電子・電気部品用銅合金材料。
1. A copper alloy containing Zn of 0.1 to 10 mass% has a plating thickness of 0.5 to 2 μm and a surface reflectance of 3%.
0% or more, the amount of C in the plating is 0.05 to 1 mass%, the crystal grain size of the plating is 0.1 to 1 μm, and the orientation index of the (101) plane of the plating is 2.0 or less. A copper alloy material for electronic and electrical parts, characterized in that:
JP2001069547A 2001-03-13 2001-03-13 Copper alloy materials for electronic and electrical parts Expired - Lifetime JP3986265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069547A JP3986265B2 (en) 2001-03-13 2001-03-13 Copper alloy materials for electronic and electrical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069547A JP3986265B2 (en) 2001-03-13 2001-03-13 Copper alloy materials for electronic and electrical parts

Publications (2)

Publication Number Publication Date
JP2002266095A true JP2002266095A (en) 2002-09-18
JP3986265B2 JP3986265B2 (en) 2007-10-03

Family

ID=18927573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069547A Expired - Lifetime JP3986265B2 (en) 2001-03-13 2001-03-13 Copper alloy materials for electronic and electrical parts

Country Status (1)

Country Link
JP (1) JP3986265B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187831A (en) * 2003-12-24 2005-07-14 Kobe Steel Ltd Material for electric relay contact having excellent consumption-proof
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor
JP2006108666A (en) * 2004-10-05 2006-04-20 Samsung Techwin Co Ltd Semiconductor lead frame, semiconductor package having it, and method of plating it
WO2007142352A1 (en) * 2006-06-09 2007-12-13 National University Corporation Kumamoto University Method and material for plating film formation
WO2009144973A1 (en) * 2008-05-30 2009-12-03 日鉱金属株式会社 Sn or sn alloy plated film, composite material having same and composite material production method
JP2009287095A (en) * 2008-05-30 2009-12-10 Nippon Mining & Metals Co Ltd PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME
JP2009299157A (en) * 2008-06-16 2009-12-24 Nippon Mining & Metals Co Ltd Tin plating film and composite material having the same
WO2011065166A1 (en) * 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 Reflow sn plated member
JP2011527100A (en) * 2008-06-30 2011-10-20 アギア システムズ インコーポレーテッド Prevent or reduce growth formation on metal films
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device
TWI405662B (en) * 2009-09-30 2013-08-21 Jx Nippon Mining & Metals Corp Tinned or tinned alloy coatings, and composites containing such films

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187831A (en) * 2003-12-24 2005-07-14 Kobe Steel Ltd Material for electric relay contact having excellent consumption-proof
JP2006070340A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Tin plated film, electronic parts provided with the film, and production method therefor
JP4639701B2 (en) * 2004-09-03 2011-02-23 パナソニック株式会社 Metal plate having tin plating film, electronic component including the same, and method for producing tin plating film
JP2006108666A (en) * 2004-10-05 2006-04-20 Samsung Techwin Co Ltd Semiconductor lead frame, semiconductor package having it, and method of plating it
WO2007142352A1 (en) * 2006-06-09 2007-12-13 National University Corporation Kumamoto University Method and material for plating film formation
WO2009144973A1 (en) * 2008-05-30 2009-12-03 日鉱金属株式会社 Sn or sn alloy plated film, composite material having same and composite material production method
JP2009287095A (en) * 2008-05-30 2009-12-10 Nippon Mining & Metals Co Ltd PLATED FILM OF Sn, AND COMPOSITE MATERIAL HAVING THE SAME
JP4484962B2 (en) * 2008-05-30 2010-06-16 日鉱金属株式会社 Sn or Sn alloy plating film, composite material having the same, and method for producing composite material
JPWO2009144973A1 (en) * 2008-05-30 2011-10-06 日鉱金属株式会社 Sn or Sn alloy plating film, composite material having the same, and method for producing composite material
JP2009299157A (en) * 2008-06-16 2009-12-24 Nippon Mining & Metals Co Ltd Tin plating film and composite material having the same
JP2011527100A (en) * 2008-06-30 2011-10-20 アギア システムズ インコーポレーテッド Prevent or reduce growth formation on metal films
TWI405662B (en) * 2009-09-30 2013-08-21 Jx Nippon Mining & Metals Corp Tinned or tinned alloy coatings, and composites containing such films
JP2011111663A (en) * 2009-11-30 2011-06-09 Jx Nippon Mining & Metals Corp REFLOW Sn PLATED MEMBER
EP2495354A1 (en) * 2009-11-30 2012-09-05 JX Nippon Mining & Metals Corporation Reflow sn plated member
CN102666938A (en) * 2009-11-30 2012-09-12 Jx日矿日石金属株式会社 Reflow sn plated member
KR101214421B1 (en) 2009-11-30 2012-12-21 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Reflow sn plated member
EP2495354A4 (en) * 2009-11-30 2013-08-14 Jx Nippon Mining & Metals Corp Reflow sn plated member
WO2011065166A1 (en) * 2009-11-30 2011-06-03 Jx日鉱日石金属株式会社 Reflow sn plated member
TWI409128B (en) * 2009-11-30 2013-09-21 Jx Nippon Mining & Metals Corp Reflow Sn plating components
US8865319B2 (en) 2009-11-30 2014-10-21 Jx Nippon Mining & Metals Corporation Reflow Sn plated material
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JP3986265B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5319101B2 (en) Sn plating material for electronic parts
EP2620275B1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
US11795525B2 (en) Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof
EP2743381A1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
WO2021117698A1 (en) Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
JP3986265B2 (en) Copper alloy materials for electronic and electrical parts
US11781234B2 (en) Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products
JP4699252B2 (en) Titanium copper
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
KR102572398B1 (en) Copper alloy plate, copper alloy plate with plating film and manufacturing method thereof
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
WO2021025071A1 (en) Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
WO2016098669A1 (en) Solder alloy for plating and electronic component
JP4332412B2 (en) Cu-Ti alloy plate having excellent surface characteristics and method for producing the same
JPH09111374A (en) Beryllium-copper alloy spring material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3986265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

EXPY Cancellation because of completion of term