JPWO2009116349A1 - Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film - Google Patents

Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film Download PDF

Info

Publication number
JPWO2009116349A1
JPWO2009116349A1 JP2010503804A JP2010503804A JPWO2009116349A1 JP WO2009116349 A1 JPWO2009116349 A1 JP WO2009116349A1 JP 2010503804 A JP2010503804 A JP 2010503804A JP 2010503804 A JP2010503804 A JP 2010503804A JP WO2009116349 A1 JPWO2009116349 A1 JP WO2009116349A1
Authority
JP
Japan
Prior art keywords
copper
filler
nanoparticle
coated
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010503804A
Other languages
Japanese (ja)
Inventor
中西 啓
啓 中西
平社 英之
英之 平社
阿部 啓介
啓介 阿部
一志 小林
一志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2009116349A1 publication Critical patent/JPWO2009116349A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

従来のものより体積抵抗率が低く抑えられた銅の金属膜を形成できる銅ナノ粒子被覆銅フィラー、その製造方法、体積抵抗率が低く抑えられた銅の金属膜を形成できる銅ペーストおよび体積抵抗率が低く抑えられた銅の金属膜を有する物品を提供する。平均粒子径が0.5〜20μmである銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーであり、銅フィラー100質量部に対する銅ナノ粒子の量が、5〜50質量部である銅ナノ粒子被覆銅フィラーを用いる。Copper nanoparticle-coated copper filler capable of forming a copper metal film with a lower volume resistivity than conventional ones, a method for producing the same, a copper paste capable of forming a copper metal film with a reduced volume resistivity, and a volume resistance An article having a copper metal film with a reduced rate is provided. The surface of the copper filler having an average particle diameter of 0.5 to 20 μm is a copper nanoparticle-coated copper filler coated with copper nanoparticles having an average particle diameter of 50 to 100 nm, and the copper nanoparticle with respect to 100 parts by mass of the copper filler The copper nanoparticle covering copper filler whose quantity of particle | grains is 5-50 mass parts is used.

Description

本発明は、銅ナノ粒子被覆銅フィラー、その製造方法、該銅ナノ粒子被覆銅フィラーを含む銅ペースト、および該銅ペーストから形成される金属膜を有する物品に関する。   The present invention relates to a copper nanoparticle-coated copper filler, a production method thereof, a copper paste containing the copper nanoparticle-coated copper filler, and an article having a metal film formed from the copper paste.

銀フィラーを含む銀ペーストを基材上に所望の配線パターン状に塗布、焼成して、所望の配線パターンの金属膜を有するプリント基板等を製造する方法が知られている。しかし、銀の金属膜は、イオンマイグレーションを起こしやすい。
そのため、電子機器の信頼性を考慮して、銀ペーストの代わりに銅ペーストを用いることが検討されている。しかし、銅フィラーは、酸化しやすいため、銅フィラーの表面の酸化皮膜の影響で、銅フィラーを焼成してなる銅の金属膜の体積抵抗率は高くなってしまう。
体積抵抗率の低い金属膜を形成できる金属ペーストとしては、下記のものが提案されている。
平均粒子径が0.5〜20μmである金属フィラーと、平均粒子径が1〜100nmである金属超微粒子とを含む金属ペースト(特許文献1)。
There is known a method of manufacturing a printed circuit board or the like having a metal film having a desired wiring pattern by applying and baking a silver paste containing a silver filler on a substrate in a desired wiring pattern. However, the silver metal film is liable to cause ion migration.
For this reason, considering the reliability of electronic devices, the use of copper paste instead of silver paste has been studied. However, since the copper filler is easily oxidized, the volume resistivity of the copper metal film formed by firing the copper filler is increased by the influence of the oxide film on the surface of the copper filler.
As a metal paste capable of forming a metal film having a low volume resistivity, the following has been proposed.
A metal paste containing a metal filler having an average particle diameter of 0.5 to 20 μm and metal ultrafine particles having an average particle diameter of 1 to 100 nm (Patent Document 1).

しかし、該金属ペーストにおいて実際に効果が確認されているのは、金属フィラーとして銀フィラーを選択し、金属超微粒子として銀微粒子を選択した場合だけであり、金属フィラーとして銅フィラーを選択し、金属超微粒子として銅微粒子を選択し、これらを単に混合しても、銅フィラーの酸化皮膜による金属膜の体積抵抗率の上昇を抑えることはできない。
国際公開第02/35554号パンフレット
However, in the metal paste, the effect is actually confirmed only when the silver filler is selected as the metal filler and the silver fine particles are selected as the metal ultrafine particles. Even if copper fine particles are selected as ultrafine particles and these are simply mixed, an increase in volume resistivity of the metal film due to the oxide film of the copper filler cannot be suppressed.
International Publication No. 02/35554 pamphlet

本発明は、従来のものより体積抵抗率が低く抑えられた銅の金属膜を形成できる銅ナノ粒子被覆銅フィラー、その製造方法、体積抵抗率が低く抑えられた銅の金属膜を形成できる銅ペーストおよび体積抵抗率が低く抑えられた銅の金属膜を有する物品を提供する。   The present invention relates to a copper nanoparticle-coated copper filler capable of forming a copper metal film with a lower volume resistivity than the conventional one, a method for producing the same, and a copper capable of forming a copper metal film with a reduced volume resistivity. An article having a paste and a copper metal film with low volume resistivity is provided.

本発明の銅ナノ粒子被覆銅フィラーは、平均粒子径が0.5〜20μmである銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーであり、銅フィラー100質量部に対する銅ナノ粒子の量が、5〜50質量部であることを特徴とする。   The copper nanoparticle-coated copper filler of the present invention is a copper nanoparticle-coated copper filler in which the surface of a copper filler having an average particle size of 0.5 to 20 μm is coated with copper nanoparticles having an average particle size of 50 to 100 nm. The amount of copper nanoparticles with respect to 100 parts by mass of the copper filler is 5 to 50 parts by mass.

本発明の銅ナノ粒子被覆銅フィラーの製造方法は、下記の工程(I)〜(II)を有することを特徴とする。
(I)平均粒子径が0.5〜20μmである銅フィラーの表面に、平均粒子径が20〜50nmである水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
(II)前記水素化銅ナノ粒子被覆銅フィラーを、不活性ガス雰囲気下、50〜100℃で焼成し、銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーを得る工程。
The manufacturing method of the copper nanoparticle coating | coated copper filler of this invention has the following process (I)-(II), It is characterized by the above-mentioned.
(I) The process of obtaining the copper hydride nanoparticle covering copper filler by making the surface of the copper filler whose average particle diameter is 0.5-20 micrometers coat | cover with the copper hydride nanoparticle whose average particle diameter is 20-50 nm.
(II) The copper hydride nanoparticle-coated copper filler was fired at 50 to 100 ° C. in an inert gas atmosphere, and the surface of the copper filler was coated with copper nanoparticles having an average particle diameter of 50 to 100 nm. The process of obtaining a copper nanoparticle covering copper filler.

前記工程(I)は、下記の工程(I−1)〜(I−2)からなることが好ましい。
(I−1)平均粒子径が0.5〜20μmである銅フィラーおよび平均粒子径が20〜50である水素化銅ナノ粒子を分散媒に分散させ、分散液を得る工程。
(I−2)前記分散液から分散媒を揮発させて取り除くことにより、銅フィラーの表面に水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
The step (I) preferably comprises the following steps (I-1) to (I-2).
(I-1) A step of dispersing a copper filler having an average particle diameter of 0.5 to 20 μm and copper hydride nanoparticles having an average particle diameter of 20 to 50 in a dispersion medium to obtain a dispersion.
(I-2) A step of volatilizing and removing the dispersion medium from the dispersion to coat the surface of the copper filler with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler.

前記分散媒の比誘電率は、4〜40であることが好ましい。
前記工程(I−1)における分散媒の量は、銅フィラーおよび水素化銅ナノ粒子の合計100質量部に対して、250〜1250質量部であることが好ましい。
The relative dielectric constant of the dispersion medium is preferably 4 to 40.
It is preferable that the quantity of the dispersion medium in the said process (I-1) is 250-1250 mass parts with respect to a total of 100 mass parts of a copper filler and a copper hydride nanoparticle.

前記水素化銅ナノ粒子は、下記の工程(a)〜(c)を経て製造されることが好ましい。
(a)水溶性銅化合物を水に溶解し、銅イオンを含む水溶液を調製する工程。
(b)前記水溶液に酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均粒子径が20〜50nmである水素化銅ナノ粒子を生成させる工程。
The copper hydride nanoparticles are preferably produced through the following steps (a) to (c).
(A) A step of dissolving a water-soluble copper compound in water to prepare an aqueous solution containing copper ions.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) While stirring the aqueous solution having a pH of 3 or less, a step of adding a reducing agent to the aqueous solution to reduce copper ions to produce copper hydride nanoparticles having an average particle size of 20 to 50 nm.

本発明の銅ペーストは、本発明の銅ナノ粒子被覆銅フィラーと、樹脂バインダとを含むことを特徴とする。
本発明の物品は、基材と、該基材上に、本発明の銅ペーストを塗布、焼成して形成された金属膜とを有することを特徴とする。
The copper paste of the present invention includes the copper nanoparticle-coated copper filler of the present invention and a resin binder.
The article of the present invention is characterized by having a base material and a metal film formed by applying and baking the copper paste of the present invention on the base material.

本発明の銅ナノ粒子被覆銅フィラーによれば、体積抵抗率が低く抑えられた銅の金属膜を形成できる。
本発明の銅ナノ粒子被覆銅フィラーの製造方法によれば、体積抵抗率が低く抑えられた銅の金属膜を形成できる銅ナノ粒子被覆銅フィラーを製造できる。
本発明の銅ペーストによれば、体積抵抗率が低く抑えられた銅の金属膜を形成できる。
本発明の物品は、体積抵抗率が低く抑えられた銅の金属膜を有する。
According to the copper nanoparticle-coated copper filler of the present invention, a copper metal film having a low volume resistivity can be formed.
According to the method for producing a copper nanoparticle-coated copper filler of the present invention, a copper nanoparticle-coated copper filler capable of forming a copper metal film with a low volume resistivity can be produced.
According to the copper paste of the present invention, a copper metal film having a low volume resistivity can be formed.
The article of the present invention has a copper metal film with a low volume resistivity.

水素化銅ナノ粒子被覆銅フィラーのSEM像である。It is a SEM image of a copper hydride nanoparticle covering copper filler. 銅ナノ粒子被覆銅フィラーのSEM像である。It is a SEM image of a copper nanoparticle covering copper filler. 銅フィラーと水素化銅ナノ粒子との混合物のSEM像である。It is a SEM image of the mixture of a copper filler and a copper hydride nanoparticle.

<銅ナノ粒子被覆銅フィラー>
本発明の銅ナノ粒子被覆銅フィラーは、銅フィラーの表面の少なくとも一部が銅ナノ粒子で被覆されたものである。
銅フィラーの表面が銅ナノ粒子で被覆されていることは、走査型電子顕微鏡(以下、SEMと記す。)像を観察し、銅フィラーの表面の少なくとも一部に複数の銅ナノ粒子が付着していることから確認できる。銅フィラーと銅ナノ粒子とを単に混合しただけでは、銅フィラーと銅ナノ粒子の集合体とが個別に存在し、銅フィラーの表面が銅ナノ粒子で被覆されているものとは明確に区別できる。
<Copper filler coated with copper nanoparticles>
The copper nanoparticle-coated copper filler of the present invention is one in which at least a part of the surface of the copper filler is coated with copper nanoparticles.
The fact that the surface of the copper filler is coated with copper nanoparticles means that a scanning electron microscope (hereinafter referred to as SEM) image is observed, and a plurality of copper nanoparticles adhere to at least a part of the surface of the copper filler. This can be confirmed. By simply mixing the copper filler and copper nanoparticles, there is a separate copper filler and aggregate of copper nanoparticles, which can be clearly distinguished from the copper filler surface coated with copper nanoparticles. .

(銅フィラー)
銅フィラーとしては、銅ペーストに用いられる公知の銅粒子が挙げられる。
銅フィラーの平均粒子径は、0.5〜20μmであり、1〜10μmが好ましい。銅フィラーの平均粒子径が0.5μm以上であれば、銅ペーストの流動特性が良好となる。銅フィラーの平均粒子径が20μm以下であれば、微細配線が作製しやすくなる。
銅フィラーの平均粒子径は、透過型電子顕微鏡(以下、TEMと記す。)像またはSEM像の中から無作為に選ばれた100個の銅フィラーの粒子径を測定し、平均することにより算出する。
(Copper filler)
As a copper filler, the well-known copper particle used for a copper paste is mentioned.
The average particle diameter of a copper filler is 0.5-20 micrometers, and 1-10 micrometers is preferable. If the average particle diameter of a copper filler is 0.5 micrometer or more, the flow characteristic of a copper paste will become favorable. If the average particle diameter of the copper filler is 20 μm or less, it becomes easy to produce fine wiring.
The average particle size of the copper filler is calculated by measuring and averaging the particle size of 100 copper fillers randomly selected from a transmission electron microscope (hereinafter referred to as TEM) image or SEM image. To do.

(銅ナノ粒子)
銅ナノ粒子の平均粒子径は、50〜100nmであり、60〜80nmが好ましい。銅ナノ粒子の平均粒子径が50nm以上であれば、銅ナノ粒子の融着・成長に伴う体積収縮により金属膜に生じるクラックが発生しにくい。銅ナノ粒子の平均粒子径が100nm以下であれば、表面融解温度が充分に低下するため、表面融解が起こりやすくなり、また、緻密な金属膜を形成できることから導電性の向上が期待できる。
銅ナノ粒子の平均粒子径は、TEM像またはSEM像の中から無作為に選ばれた100個の銅ナノ粒子の粒子径を測定し、平均することにより算出する。
(Copper nanoparticles)
The average particle diameter of the copper nanoparticles is 50 to 100 nm, and preferably 60 to 80 nm. If the average particle diameter of the copper nanoparticles is 50 nm or more, cracks generated in the metal film due to volume shrinkage accompanying the fusion / growth of the copper nanoparticles are unlikely to occur. If the average particle diameter of the copper nanoparticles is 100 nm or less, the surface melting temperature is sufficiently lowered, so that surface melting is likely to occur and a dense metal film can be formed, so that improvement in conductivity can be expected.
The average particle diameter of the copper nanoparticles is calculated by measuring and averaging the particle diameters of 100 copper nanoparticles randomly selected from the TEM image or SEM image.

銅ナノ粒子の量は、銅フィラー100質量部に対して、5〜50質量部であり、10〜35質量部が好ましい。銅ナノ粒子の量が5質量部以上であれば、銅フィラー間の導電パスを増やすことができ、金属膜の体積抵抗率が低く抑えられる。銅ナノ粒子の量が50質量部以下であれば、銅ナノ粒子の添加に伴う銅ペーストの流動性の低下を抑えることができる。
本発明における銅ナノ粒子の量は、水素化銅ナノ粒子と銅フィラーを分散媒に添加する際の添加量から算出できる。
The quantity of a copper nanoparticle is 5-50 mass parts with respect to 100 mass parts of copper fillers, and 10-35 mass parts is preferable. If the amount of copper nanoparticles is 5 parts by mass or more, the conductive paths between the copper fillers can be increased, and the volume resistivity of the metal film can be kept low. If the quantity of copper nanoparticles is 50 mass parts or less, the fall of the fluidity | liquidity of the copper paste accompanying the addition of copper nanoparticles can be suppressed.
The amount of the copper nanoparticles in the present invention can be calculated from the addition amount when the copper hydride nanoparticles and the copper filler are added to the dispersion medium.

以上説明した本発明の銅ナノ粒子被覆銅フィラーにあっては、銅フィラーの表面が銅ナノ粒子で被覆されているため、金属膜を形成する際に銅フィラー間に銅ナノ粒子が必ず存在することになる。そのため、銅ナノ粒子によって導電パスが確実に形成され、金属膜の体積抵抗率が低く抑えられる。また、銅フィラーから独立して存在する余分な銅ナノ粒子が存在しないため、高価である銅ナノ粒子の量を低く抑えることができる。また、銅フィラーから独立して存在する余分な銅ナノ粒子が存在しないため、銅ペーストにした際に、銅ペーストの粘度の増加を抑えることができる。   In the copper nanoparticle-coated copper filler of the present invention described above, since the surface of the copper filler is coated with copper nanoparticles, the copper nanoparticles are always present between the copper fillers when the metal film is formed. It will be. Therefore, a conductive path is reliably formed by the copper nanoparticles, and the volume resistivity of the metal film is kept low. Moreover, since there is no excess copper nanoparticle which exists independently from a copper filler, the quantity of expensive copper nanoparticle can be restrained low. Moreover, since there is no excess copper nanoparticle which exists independently from a copper filler, when it is set as a copper paste, the increase in the viscosity of a copper paste can be suppressed.

<銅ナノ粒子被覆銅フィラーの製造方法>
本発明の銅ナノ粒子被覆銅フィラーの製造方法は、下記の工程(I)〜(II)を有する方法である。
(I)平均粒子径が0.5〜20μmである銅フィラーの表面に、平均粒子径が20〜50nmである水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
(II)前記水素化銅ナノ粒子被覆銅フィラーを、不活性ガス雰囲気下、50〜100℃で焼成し、銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーを得る工程。
<Method for producing copper filler coated with copper nanoparticles>
The manufacturing method of the copper nanoparticle covering copper filler of the present invention is a method having the following steps (I) to (II).
(I) The process of obtaining the copper hydride nanoparticle covering copper filler by making the surface of the copper filler whose average particle diameter is 0.5-20 micrometers coat | cover with the copper hydride nanoparticle whose average particle diameter is 20-50 nm.
(II) The copper hydride nanoparticle-coated copper filler was fired at 50 to 100 ° C. in an inert gas atmosphere, and the surface of the copper filler was coated with copper nanoparticles having an average particle diameter of 50 to 100 nm. The process of obtaining a copper nanoparticle covering copper filler.

工程(I):
工程(I)は、下記の工程(I−1)〜(I−2)からなることが好ましい。
(I−1)平均粒子径が0.5〜20μmである銅フィラーおよび平均粒子径が20〜50nmである水素化銅ナノ粒子を分散媒に分散させ、分散液を得る工程。
(I−2)前記分散液から分散媒を揮発させて取り除くことにより、銅フィラーの表面に水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
Step (I):
The step (I) preferably comprises the following steps (I-1) to (I-2).
(I-1) A step of obtaining a dispersion by dispersing copper filler having an average particle diameter of 0.5 to 20 μm and copper hydride nanoparticles having an average particle diameter of 20 to 50 nm in a dispersion medium.
(I-2) A step of volatilizing and removing the dispersion medium from the dispersion to coat the surface of the copper filler with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler.

工程(I−1):
分散媒の比誘電率は、4〜40が好ましく、10〜30がより好ましい。分散媒の比誘電率が4以上であれば、水素化銅ナノ粒子の分散性が良好となる。分散媒の比誘電率が40以下であれば、銅フィラーの分散性が良好となる。
分散媒としては、下記のものが挙げられる。括弧内は比誘電率である。
メチルアルコール(33.0(20℃))、エチルアルコール(25.3(20℃))、1−プロパノール(20.8(20℃))、2−プロパノール(20.2(20℃))、1−ブタノール(17.8(20℃))、2−ブタノール(17.3(20℃))、イソブチルアルコール(17.9(20℃))、1−ペンタノール(15.1(25℃))、イソペンチルアルコール(14.7(20℃))、1−ヘキサノール(13.3(20℃))、1−オクタノール(10.3(20℃))、シクロヘキサノール(16.4(20℃))、シクロヘキサノン(16.1(20℃))、アセトン(21.0(20℃))、オクチルアルコール(10.3(20℃))、酢酸エチル(6.1(20℃))等。
分散媒としては、銅フィラーと水素化銅ナノ粒子ともに分散性に優れる点から、1−プロパノール(20.8(20℃))または2−プロパノール(20.2(20℃))が好ましい。
Step (I-1):
The relative dielectric constant of the dispersion medium is preferably 4 to 40, and more preferably 10 to 30. If the relative dielectric constant of the dispersion medium is 4 or more, the dispersibility of the copper hydride nanoparticles will be good. If the relative dielectric constant of the dispersion medium is 40 or less, the dispersibility of the copper filler will be good.
Examples of the dispersion medium include the following. The relative dielectric constant is shown in parentheses.
Methyl alcohol (33.0 (20 ° C.)), ethyl alcohol (25.3 (20 ° C.)), 1-propanol (20.8 (20 ° C.)), 2-propanol (20.2 (20 ° C.)), 1-butanol (17.8 (20 ° C.)), 2-butanol (17.3 (20 ° C.)), isobutyl alcohol (17.9 (20 ° C.)), 1-pentanol (15.1 (25 ° C.)) ), Isopentyl alcohol (14.7 (20 ° C.)), 1-hexanol (13.3 (20 ° C.)), 1-octanol (10.3 (20 ° C.)), cyclohexanol (16.4 (20 ° C.)) )), Cyclohexanone (16.1 (20 ° C.)), acetone (21.0 (20 ° C.)), octyl alcohol (10.3 (20 ° C.)), ethyl acetate (6.1 (20 ° C.)) and the like.
As the dispersion medium, 1-propanol (20.8 (20 ° C.)) or 2-propanol (20.2 (20 ° C.)) is preferable because both the copper filler and the copper hydride nanoparticles are excellent in dispersibility.

工程(I−1)における分散媒の量は、銅フィラーおよび水素化銅ナノ粒子の合計100質量部に対して、250〜1250質量部が好ましく、300〜750質量部がより好ましい。分散媒の量が250質量部以上であれば、分散媒中に水素化銅ナノ粒子と銅フィラーを均一に分散させることができる。分散媒の量が1250質量部以下であれば、分散媒を揮発させるのに要する時間が短く、製造コストを抑えることができる。   The amount of the dispersion medium in the step (I-1) is preferably 250 to 1250 parts by mass and more preferably 300 to 750 parts by mass with respect to a total of 100 parts by mass of the copper filler and the copper hydride nanoparticles. When the amount of the dispersion medium is 250 parts by mass or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed in the dispersion medium. When the amount of the dispersion medium is 1250 parts by mass or less, the time required for volatilizing the dispersion medium is short, and the manufacturing cost can be suppressed.

水素化銅ナノ粒子は、銅原子が水素原子と結合した状態で存在し、50〜100℃で金属銅と水素とに分解する性質を有する。
水素化銅ナノ粒子としては、たとえば、後述する水素化銅ナノ粒子の製造方法で得られるものが挙げられる。
Copper hydride nanoparticles exist in a state where copper atoms are bonded to hydrogen atoms, and have a property of decomposing into metal copper and hydrogen at 50 to 100 ° C.
As a copper hydride nanoparticle, what is obtained with the manufacturing method of the copper hydride nanoparticle mentioned later is mentioned, for example.

水素化銅ナノ粒子の平均粒子径は、20〜50nmであり、25〜40nmが好ましい。水素化銅ナノ粒子の平均粒子径が20nm以上であれば、焼成時の水素化銅ナノ粒子同士の凝集を抑えることができる。水素化銅ナノ粒子の平均粒子径が50nm以下であれば、表面活性が充分に高い水素化銅ナノ粒子を得ることができる。
水素化銅ナノ粒子の平均粒子径は、TEM像またはSEM像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出する。
The average particle diameter of the copper hydride nanoparticles is 20 to 50 nm, and preferably 25 to 40 nm. If the average particle diameter of the copper hydride nanoparticles is 20 nm or more, aggregation of the copper hydride nanoparticles during firing can be suppressed. If the average particle diameter of the copper hydride nanoparticles is 50 nm or less, copper hydride nanoparticles with sufficiently high surface activity can be obtained.
The average particle diameter of the copper hydride nanoparticles is calculated by measuring and averaging the particle diameters of 100 particles randomly selected from the TEM image or SEM image.

水素化銅ナノ粒子の量は、銅フィラー100質量部に対して、5〜50質量部であり、10〜35質量部が好ましい。水素化銅ナノ粒子の量が5質量部以上であれば、銅フィラー間の導電パスを増やすことができ、金属膜の体積抵抗率が低く抑えられる。水素化銅ナノ粒子の量が50質量部以下であれば、水素化銅ナノ粒子の添加に伴う分散液の流動性の悪化を抑えることができる。   The amount of the copper hydride nanoparticles is 5 to 50 parts by mass, preferably 10 to 35 parts by mass with respect to 100 parts by mass of the copper filler. If the amount of copper hydride nanoparticles is 5 parts by mass or more, the conductive path between the copper fillers can be increased, and the volume resistivity of the metal film can be kept low. When the amount of the copper hydride nanoparticles is 50 parts by mass or less, deterioration of the fluidity of the dispersion accompanying the addition of the copper hydride nanoparticles can be suppressed.

工程(I−2):
分散媒の揮発は、−40〜−20kPaの減圧下で徐々に行うことが好ましい。該圧力が−40kPa以上であれば、分散媒が完全に揮発する直前まで水素化銅ナノ粒子と銅フィラーを均一に分散させておくことができる。該圧力が−20kPa以下であれば、分散媒を揮発させるのに要する時間が短く、製造コストを抑えることができる。
銅フィラーの表面が水素化銅ナノ粒子で被覆されていることは、SEM像を観察し、銅フィラーの表面の少なくとも一部に複数の水素化銅ナノ粒子が付着していることから確認できる。
Step (I-2):
The volatilization of the dispersion medium is preferably performed gradually under a reduced pressure of −40 to −20 kPa. When the pressure is −40 kPa or more, the copper hydride nanoparticles and the copper filler can be uniformly dispersed until immediately before the dispersion medium is completely volatilized. When the pressure is −20 kPa or less, the time required for volatilizing the dispersion medium is short, and the manufacturing cost can be suppressed.
The fact that the surface of the copper filler is coated with copper hydride nanoparticles can be confirmed by observing the SEM image and confirming that a plurality of copper hydride nanoparticles are attached to at least a part of the surface of the copper filler.

工程(II):
水素化銅ナノ粒子被覆銅フィラーを不活性ガス雰囲気下、50〜100℃で焼成することにより、銅フィラーの表面の水素化銅ナノ粒子が金属銅と水素とに分解すると同時に、ナノ粒子同士が焼結し、粒子径が50〜100nmの銅ナノ粒子が得られる。
Step (II):
By firing the copper hydride nanoparticle-coated copper filler at 50 to 100 ° C. in an inert gas atmosphere, the copper hydride nanoparticles on the surface of the copper filler are decomposed into metallic copper and hydrogen, and at the same time the nanoparticles are bonded to each other. It sinters and the copper nanoparticle whose particle diameter is 50-100 nm is obtained.

不活性ガスとしては、窒素ガス、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が挙げられ、窒素ガスが好ましい。
焼成温度は、50〜100℃であり、60〜80℃が好ましい。焼成温度が50℃以上であれば、金属膜に生じるクラックの発生を抑制できる銅ナノ粒子被覆銅フィラーが得られる。焼成温度が100℃以下であれば、銅ナノ粒子表面の活性が失われていない銅ナノ粒子被覆銅フィラーが得られる。
Examples of the inert gas include nitrogen gas, helium, neon, argon, krypton, xenon, and radon, and nitrogen gas is preferable.
A calcination temperature is 50-100 degreeC, and 60-80 degreeC is preferable. If a calcination temperature is 50 degreeC or more, the copper nanoparticle covering copper filler which can suppress generation | occurrence | production of the crack which arises in a metal film will be obtained. If a calcination temperature is 100 degrees C or less, the copper nanoparticle covering copper filler in which the activity of the copper nanoparticle surface is not lost is obtained.

(水素化銅ナノ粒子の製造方法)
水素化銅ナノ粒子は、たとえば、下記の工程(a)〜(d)を有する方法(湿式還元法)によって製造される。
(a)水溶性銅化合物を水に溶解し、銅イオンを含む水溶液を調製する工程。
(b)前記水溶液に酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均粒子径が20〜50nmである水素化銅ナノ粒子を生成させる工程。
(d)必要に応じて、前記水素化銅ナノ粒子を分散媒に再分散させて精製する工程。
(Method for producing copper hydride nanoparticles)
Copper hydride nanoparticles are produced, for example, by a method (wet reduction method) having the following steps (a) to (d).
(A) A step of dissolving a water-soluble copper compound in water to prepare an aqueous solution containing copper ions.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) While stirring the aqueous solution having a pH of 3 or less, a step of adding a reducing agent to the aqueous solution to reduce copper ions to produce copper hydride nanoparticles having an average particle size of 20 to 50 nm.
(D) A step of purifying the copper hydride nanoparticles by redispersing them in a dispersion medium as necessary.

工程(a):
水溶性銅化合物としては、硫酸銅、硝酸銅、ギ酸銅、酢酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。
水溶性銅化合物の濃度は、水溶液100質量%中、0.1〜30質量%が好ましい。水溶液中の水溶性銅化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、水素化銅ナノ粒子の生産効率が良好となる。水溶液中の水溶性銅化合物の濃度が30質量%以下であれば、水素化銅ナノ粒子の収率の低下が抑えられる。
Step (a):
Examples of the water-soluble copper compound include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
The concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass in 100% by mass of the aqueous solution. If the density | concentration of the water-soluble copper compound in aqueous solution is 0.1 mass% or more, the quantity of water will be restrained and the production efficiency of a copper hydride nanoparticle will become favorable. If the density | concentration of the water-soluble copper compound in aqueous solution is 30 mass% or less, the fall of the yield of a copper hydride nanoparticle will be suppressed.

工程(b):
水溶液のpHを3以下に調整する酸としては、クエン酸、マレイン酸、マロン酸、酢酸、ギ酸、プロピオン酸、硫酸、硝酸、塩酸等が挙げられ、水素化銅ナノ粒子が酸化されにくくなる点から、ギ酸が好ましい。
水溶液のpHを3以下に調整することにより、水溶液中の銅イオンが還元剤により還元されやすくなり、水素化銅ナノ粒子が生成しやすくなる。水溶液のpHが3を超えると、水素化銅ナノ粒子が生成せずに、金属銅ナノ粒子が生成するおそれがある。
水溶液のpHは、水素化銅ナノ粒子を短時間で生成できる点から、2〜2.5が好ましい。
なお、工程(a)と工程(b)は、同時に行ってもよい。
Step (b):
Examples of the acid for adjusting the pH of the aqueous solution to 3 or less include citric acid, maleic acid, malonic acid, acetic acid, formic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid and the like, and the copper hydride nanoparticles are less likely to be oxidized. Therefore, formic acid is preferred.
By adjusting the pH of the aqueous solution to 3 or less, copper ions in the aqueous solution are easily reduced by the reducing agent, and copper hydride nanoparticles are easily generated. When pH of aqueous solution exceeds 3, there exists a possibility that a metal copper nanoparticle may produce | generate, without producing | generating a copper hydride nanoparticle.
The pH of the aqueous solution is preferably 2 to 2.5 because copper hydride nanoparticles can be generated in a short time.
In addition, you may perform a process (a) and a process (b) simultaneously.

工程(c):
銅イオンは酸性下で還元剤により還元され、徐々に水素化物銅ナノ粒子が成長して、平均粒子径が20〜50nmである水素化物銅ナノ粒子が生成する。水溶液のpHを3以下に調整する酸としてギ酸を用いた場合、該水素化銅ナノ粒子は、ただちに共存しているギ酸により表面を覆われ、安定化する。
Step (c):
Copper ions are reduced by a reducing agent under acidic conditions, and hydride copper nanoparticles are gradually grown to produce hydride copper nanoparticles having an average particle diameter of 20 to 50 nm. When formic acid is used as the acid that adjusts the pH of the aqueous solution to 3 or less, the copper hydride nanoparticles are immediately covered with the formic acid present together and stabilized.

還元剤としては、大きな還元作用があることから金属水素化物または次亜リン酸が好ましい。金属水素化物としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化リチウム、水素化カリウム、水素化カルシウム等が挙げられ、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウムが好ましい。   As the reducing agent, metal hydride or hypophosphorous acid is preferable because of its large reducing action. Examples of metal hydrides include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, and the like. Lithium aluminum hydride, lithium borohydride, borohydride Sodium is preferred.

還元剤の添加量は、銅イオンに対して1.5〜10倍当量数が好ましい。還元剤の添加量が銅イオンに対して1.5倍当量数以上であれば、還元作用が充分となる。還元剤の添加量が銅イオンに対して10倍当量数以下であれば、水素化銅ナノ粒子に含まれる不純物(ナトリウム、ホウ素、リン等。)の量が抑えられる。
還元剤を加える際の水溶液の温度は、5〜60℃が好ましく、20〜50℃がより好ましい。水溶液の温度が60℃以下であれば、水素化銅ナノ粒子の分解が抑えられる。
The amount of the reducing agent added is preferably 1.5 to 10 times the number of equivalents of copper ions. If the amount of the reducing agent added is 1.5 times the number of equivalents or more of copper ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride nanoparticles can be suppressed.
5-60 degreeC is preferable and, as for the temperature of the aqueous solution at the time of adding a reducing agent, 20-50 degreeC is more preferable. If the temperature of aqueous solution is 60 degrees C or less, decomposition | disassembly of a copper hydride nanoparticle will be suppressed.

工程(d):
水素化銅ナノ粒子を含む懸濁液を静置すると、水素化銅ナノ粒子が凝集して沈殿する。該沈殿物を分散媒に再分散させた後、水素化銅ナノ粒子を再び凝集させて沈殿させる方法で精製することにより、高純度化した水素化銅ナノ粒子が得られる。
Step (d):
When the suspension containing copper hydride nanoparticles is allowed to stand, the copper hydride nanoparticles aggregate and precipitate. After the precipitate is redispersed in a dispersion medium, the copper hydride nanoparticles are purified again by aggregating and precipitating, whereby highly purified copper hydride nanoparticles are obtained.

<銅ペースト>
本発明の銅ペーストは、本発明の銅ナノ粒子被覆銅フィラーと、樹脂バインダとを含む。
樹脂バインダとしては、金属ペーストに用いられる公知の樹脂バインダ(熱硬化性樹脂、熱可塑性樹脂等。)等が挙げられ、焼成時の温度において充分な硬化がなされる樹脂成分を選択して用いることが好ましい。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂、オキサジン樹脂等が挙げられ、フェノー樹脂、エポキシ樹脂またはオキサジン樹脂が好ましい。
熱可塑性樹脂としては、ポリアミド、ポリイミド、アクリル樹脂、ケトン樹脂、ポリスチレン、ポリエステル等が挙げられる。
<Copper paste>
The copper paste of the present invention includes the copper nanoparticle-coated copper filler of the present invention and a resin binder.
Examples of the resin binder include known resin binders (thermosetting resins, thermoplastic resins, etc.) used for metal pastes, and a resin component that can be sufficiently cured at the firing temperature is selected and used. Is preferred.
Thermosetting resins include phenol resin, epoxy resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane resin, melamine resin, silicon Examples thereof include resins, acrylic resins, oxetane resins, oxazine resins, and the like, and pheno resins, epoxy resins, or oxazine resins are preferable.
Examples of the thermoplastic resin include polyamide, polyimide, acrylic resin, ketone resin, polystyrene, and polyester.

銅ペースト中の樹脂バインダの量は、銅ナノ粒子被覆銅フィラーの体積と該フィラー間に存在する空隙との比率に応じて適宜選択すればよく、通常、銅ナノ粒子被覆銅フィラー100質量部に対して、5〜50質量部が好ましく、5〜20質量部がより好ましい。樹脂バインダの量が5質量部以上であれば、ペーストの流動特性が良好となる。樹脂バインダの量が50質量部以下であれば、金属膜の体積抵抗率が低く抑えられる。   The amount of the resin binder in the copper paste may be appropriately selected according to the ratio between the volume of the copper nanoparticle-coated copper filler and the voids present between the fillers, and is usually 100 parts by mass of the copper nanoparticle-coated copper filler. On the other hand, 5-50 mass parts is preferable and 5-20 mass parts is more preferable. When the amount of the resin binder is 5 parts by mass or more, the flow characteristics of the paste are good. When the amount of the resin binder is 50 parts by mass or less, the volume resistivity of the metal film can be kept low.

本発明の銅ペーストは、必要に応じて、溶媒、公知の添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等。)等を、本発明の効果を損なわない範囲で含んでいてもよい。
以上説明した本発明の銅ペーストにあっては、本発明の銅ナノ粒子被覆銅フィラーを含んでいるため、従来の銅ペーストに比べ体積抵抗率の低い金属膜を形成できる。
The copper paste of the present invention contains a solvent, known additives (leveling agents, coupling agents, viscosity modifiers, antioxidants, etc.), etc., as necessary, as long as the effects of the present invention are not impaired. May be.
Since the copper paste of the present invention described above includes the copper nanoparticle-coated copper filler of the present invention, a metal film having a volume resistivity lower than that of a conventional copper paste can be formed.

<物品>
本発明の物品は、基材と、該基材上に、本発明の銅ペーストを塗布、焼成して形成された金属膜とを有する
<Article>
The article of the present invention has a base material and a metal film formed by applying and baking the copper paste of the present invention on the base material.

基材としては、ガラス基板、プラスチック基材(ポリイミド基板、ポリエステル基板等。)、繊維強化複合材料(ガラス繊維強化樹脂基板等。)等が挙げられる。   Examples of the substrate include glass substrates, plastic substrates (polyimide substrates, polyester substrates, etc.), fiber reinforced composite materials (glass fiber reinforced resin substrates, etc.) and the like.

塗布方法としては、スクリーン印刷、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。   Examples of the coating method include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.

焼成方法としては、温風加熱、熱輻射等の方法が挙げられる。
焼成温度および焼成時間は、金属膜に求められる特性に応じて適宜決定すればよい。焼成温度は、100〜300℃が好ましい。焼成温度が100℃以上であれば、銅フィラーと銅ナノ粒子との焼結が進行しやすくなる。焼成温度が300℃以下であれば、金属膜を形成する基材としてプラスチックフィルムを用いることができる。
Examples of the firing method include warm air heating and thermal radiation.
The firing temperature and firing time may be appropriately determined according to the characteristics required for the metal film. The firing temperature is preferably 100 to 300 ° C. If a calcination temperature is 100 degreeC or more, it will become easy to sinter with a copper filler and a copper nanoparticle. When the firing temperature is 300 ° C. or lower, a plastic film can be used as a base material for forming a metal film.

金属膜の体積抵抗率は、1.0×10−4Ωcm以下が好ましい。体積抵抗率が1.0×10−4Ωcmを超えると、電子機器用の導電体としての使用が困難となる場合がある。
以上説明した本発明の物品にあっては、金属膜を本発明の銅ペーストから形成しているため、従来の銅の金属膜に比べ金属膜の体積抵抗率が低い。
The volume resistivity of the metal film is preferably 1.0 × 10 −4 Ωcm or less. If the volume resistivity exceeds 1.0 × 10 −4 Ωcm, it may be difficult to use as a conductor for electronic equipment.
In the article of the present invention described above, since the metal film is formed from the copper paste of the present invention, the volume resistivity of the metal film is lower than that of the conventional copper metal film.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
例1〜5は実施例であり、例6〜9は比較例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Examples 1 to 5 are examples, and examples 6 to 9 are comparative examples.

(水素化銅ナノ粒子の同定)
水素化銅ナノ粒子の同定は、X線回折装置(リガク社製、TTR−III)にて行った。
(Identification of copper hydride nanoparticles)
The copper hydride nanoparticles were identified with an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).

(平均粒子径)
銅フィラーおよびナノ粒子の平均粒子径は、TEM(日本電子社製、JEM−1230)にて得られたTEM像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出した。
(Average particle size)
The average particle size of the copper filler and nanoparticles was measured by measuring the particle size of 100 particles randomly selected from TEM images obtained by TEM (manufactured by JEOL Ltd., JEM-1230). It was calculated by doing.

(金属膜の厚さ)
金属膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(Metal film thickness)
The thickness of the metal film was measured by using DEKTAK3 (manufactured by Veeco metrology group).

(金属膜の体積抵抗率)
金属膜の体積抵抗率は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP−T250)を用いて測定した。
(Volume resistivity of metal film)
The volume resistivity of the metal film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).

〔例1〕
ガラス容器内にて、酢酸銅(II)水和物の5.2gを蒸留水の30gおよびギ酸の3.3gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.7であった。
該水溶液を激しく撹拌しながら、20℃で該水溶液に4質量%の水素化ホウ素ナトリウム水溶液の23gをゆっくり滴下した。滴下終了後、10分間そのまま撹拌を続け、懸濁液を得た。
[Example 1]
In a glass container, 5.2 g of copper (II) acetate hydrate was dissolved in 30 g of distilled water and 3.3 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.7.
While the aqueous solution was vigorously stirred, 23 g of a 4 mass% sodium borohydride aqueous solution was slowly added dropwise to the aqueous solution at 20 ° C. After completion of the dropwise addition, stirring was continued for 10 minutes to obtain a suspension.

遠心分離によって懸濁液中の凝集物を沈殿させ、沈殿物を分離した。該沈殿物を2−プロパノールの30gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。精製後の沈殿物をX線回折で同定したところ、水素化銅ナノ粒子であることが確認された。水素化銅ナノ粒子の平均粒子径は30nmであった。   The aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated. The precipitate was redispersed in 30 g of 2-propanol, and then the aggregate was precipitated again by centrifugation to separate the precipitate. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. The average particle diameter of the copper hydride nanoparticles was 30 nm.

水素化銅ナノ粒子の0.8gおよび銅フィラー(三井金属鉱業社製、1400YP、平均粒子径:7μm)の3.2gをそれぞれ2−プロパノール(比誘電率:20.2(20℃))の20gに分散させ、両者を混合し、分散液を得た。水素化銅ナノ粒子の添加量は銅フィラー100質量部に対して、25質量部であった。また、2−プロパノールの添加量は、銅フィラーおよび水素化銅ナノ粒子の合計100質量部に対して500質量部であった。分散液から2−プロパノールを−35kPaの減圧下で揮発させて徐々に取り除き、銅フィラーの表面に水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得た。水素化銅ナノ粒子被覆銅フィラーのSEM像を図1に示す。   0.8 g of copper hydride nanoparticles and 3.2 g of copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average particle size: 7 μm) were each 2-propanol (relative permittivity: 20.2 (20 ° C.)). The mixture was dispersed in 20 g, and both were mixed to obtain a dispersion. The addition amount of the copper hydride nanoparticles was 25 parts by mass with respect to 100 parts by mass of the copper filler. Moreover, the addition amount of 2-propanol was 500 mass parts with respect to a total of 100 mass parts of a copper filler and a copper hydride nanoparticle. 2-Propanol was volatilized and removed gradually from the dispersion under a reduced pressure of -35 kPa, and the surface of the copper filler was coated with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler. An SEM image of the copper hydride nanoparticle-coated copper filler is shown in FIG.

水素化銅ナノ粒子被覆銅フィラーを、窒素ガス雰囲気下、80℃で30分間焼成し、銅ナノ粒子被覆銅フィラーを得た。銅ナノ粒子の平均粒子径は70nmであり、銅フィラーの平均粒子径は7μmであった。また、銅フィラー100質量部に対する銅ナノ粒子の量は、25質量部であった。銅ナノ粒子被覆銅フィラーのSEM像を図2に示す。   The copper hydride-coated copper filler was baked at 80 ° C. for 30 minutes in a nitrogen gas atmosphere to obtain a copper nanoparticle-coated copper filler. The average particle diameter of the copper nanoparticles was 70 nm, and the average particle diameter of the copper filler was 7 μm. Moreover, the quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers was 25 mass parts. An SEM image of the copper nanoparticle-coated copper filler is shown in FIG.

銅ナノ粒子被覆銅フィラーの1.2gを、非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.135gをシクロヘキサノン(純正化学社製、特級)の0.315gに溶解した樹脂バインダ溶液の0.45gに加えた。非晶質ポリエステル樹脂の添加量は銅フィラーおよび水素化銅ナノ粒子100質量部に対して、11.3質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、銅ペーストを得た。   Resin binder solution in which 1.2 g of copper nanoparticle coated copper filler and 0.135 g of amorphous polyester resin (byron 103, manufactured by Toyobo Co., Ltd.) are dissolved in 0.315 g of cyclohexanone (manufactured by Junsei Chemical, special grade). Of 0.45 g. The addition amount of the amorphous polyester resin was 11.3 parts by mass with respect to 100 parts by mass of the copper filler and the copper hydride nanoparticles. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone and obtain a copper paste.

銅ペーストをガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   Copper paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a metal film having a thickness of 100 μm. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例2〕
水素化銅ナノ粒子被覆銅フィラーを、窒素ガス雰囲気下、50℃で30分間焼成した以外は、例1と同様にして銅ナノ粒子被覆銅フィラーを得た。銅ナノ粒子の平均粒子径は51nmであり、銅フィラーの平均粒子径は7μmであった。また、銅フィラー100質量部に対する銅ナノ粒子の量は、25質量部であった。
[Example 2]
A copper nanoparticle-coated copper filler was obtained in the same manner as in Example 1, except that the copper hydride-coated copper filler was baked at 50 ° C. for 30 minutes in a nitrogen gas atmosphere. The average particle diameter of the copper nanoparticles was 51 nm, and the average particle diameter of the copper filler was 7 μm. Moreover, the quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers was 25 mass parts.

該銅ナノ粒子被覆銅フィラーを用いた以外は、例1と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared in the same manner as in Example 1 except that the copper nanoparticle-coated copper filler was used, and a metal film was formed. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例3〕
水素化銅ナノ粒子被覆銅フィラーを、窒素ガス雰囲気下、100℃で30分間焼成した以外は、例1と同様にして銅ナノ粒子被覆銅フィラーを得た。銅ナノ粒子の平均粒子径は97nmであり、銅フィラーの平均粒子径は7μmであった。また、銅フィラー100質量部に対する銅ナノ粒子の量は、25質量部であった。
[Example 3]
A copper nanoparticle-coated copper filler was obtained in the same manner as in Example 1, except that the copper hydride-coated copper filler was baked at 100 ° C. for 30 minutes in a nitrogen gas atmosphere. The average particle diameter of the copper nanoparticles was 97 nm, and the average particle diameter of the copper filler was 7 μm. Moreover, the quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers was 25 mass parts.

該銅ナノ粒子被覆銅フィラーを用いた以外は、例1と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared in the same manner as in Example 1 except that the copper nanoparticle-coated copper filler was used, and a metal film was formed. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例4〕
水素化銅ナノ粒子被覆銅フィラーを得る際の分散媒としてメチルアルコール(比誘電率:33.0(20℃))を用いた以外は、例1と同様にして銅ナノ粒子被覆銅フィラーを得た。銅ナノ粒子の平均粒子径は70nmであり、銅フィラーの平均粒子径は7μmであった。また、銅フィラー100質量部に対する銅ナノ粒子の量は、25質量部であった。
[Example 4]
A copper nanoparticle-coated copper filler is obtained in the same manner as in Example 1 except that methyl alcohol (relative dielectric constant: 33.0 (20 ° C.)) is used as a dispersion medium when obtaining the copper hydride-coated copper filler. It was. The average particle diameter of the copper nanoparticles was 70 nm, and the average particle diameter of the copper filler was 7 μm. Moreover, the quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers was 25 mass parts.

該銅ナノ粒子被覆銅フィラーを用いた以外は、例1と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared in the same manner as in Example 1 except that the copper nanoparticle-coated copper filler was used, and a metal film was formed. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例5〕
水素化銅ナノ粒子被覆銅フィラーを得る際の分散媒として酢酸エチル(比誘電率:6.1(20℃))を用いた以外は、例1と同様にして銅ナノ粒子被覆銅フィラーを得た。銅ナノ粒子の平均粒子径は71nmであり、銅フィラーの平均粒子径は7μmであった。また、銅フィラー100質量部に対する銅ナノ粒子の量は、25質量部であった。
[Example 5]
A copper nanoparticle-coated copper filler is obtained in the same manner as in Example 1 except that ethyl acetate (relative dielectric constant: 6.1 (20 ° C.)) is used as a dispersion medium when obtaining the copper hydride nanoparticle-coated copper filler. It was. The average particle diameter of the copper nanoparticles was 71 nm, and the average particle diameter of the copper filler was 7 μm. Moreover, the quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers was 25 mass parts.

該銅ナノ粒子被覆銅フィラーを用いた以外は、例1と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared in the same manner as in Example 1 except that the copper nanoparticle-coated copper filler was used, and a metal film was formed. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例6〕
銅フィラー(三井金属鉱業社製、1400YP、平均粒子径:7μm)の1.2gを、非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.135gをシクロヘキサノン(純正化学社製、特級)の0.315gに溶解させた樹脂バインダ溶液の0.45gに加えた。非晶質ポリエステル樹の添加量は銅フィラー100質量部に対して、11.3質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、銅ペーストを得た。
[Example 6]
1.2 g of copper filler (Mitsui Metals Mining Co., Ltd., 1400 YP, average particle size: 7 μm) and 0.135 g of amorphous polyester resin (Toyobo Co., Ltd., Byron 103) cyclohexanone (manufactured by Junsei Chemical Co., Ltd., special grade) ) Was added to 0.45 g of the resin binder solution dissolved in 0.315 g. The addition amount of the amorphous polyester tree was 11.3 parts by mass with respect to 100 parts by mass of the copper filler. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone and obtain a copper paste.

銅ペーストをガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   Copper paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a metal film having a thickness of 100 μm. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例7〕
例1で得られた水素化銅ナノ粒子の0.8gと、銅フィラー(三井金属鉱業社製、1400YP、平均粒子径:7μm)の3.2gとを乳鉢中で混ぜ合わせた。水素化銅ナノ粒子と銅フィラーとの混合物のSEM像を図3に示す。銅フィラー(SEM像の中央)と水素化銅ナノ粒子の集合体(SEM像の上および右下)が個別に存在することが確認された。該混合物を、窒素ガス雰囲気下、80℃で30分間焼成し、銅ナノ粒子と銅フィラーとの混合物を得た。銅ナノ粒子の平均粒子径は70nmであり、銅フィラーの平均粒子径は7μmであった。銅ナノ粒子の添加量は銅フィラー100質量部に対して、25質量部であった。
[Example 7]
0.8 g of the copper hydride nanoparticles obtained in Example 1 and 3.2 g of a copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average particle size: 7 μm) were mixed in a mortar. An SEM image of a mixture of copper hydride nanoparticles and copper filler is shown in FIG. It was confirmed that a copper filler (center of SEM image) and an aggregate of copper hydride nanoparticles (upper and lower right of SEM image) existed individually. The mixture was baked at 80 ° C. for 30 minutes in a nitrogen gas atmosphere to obtain a mixture of copper nanoparticles and a copper filler. The average particle diameter of the copper nanoparticles was 70 nm, and the average particle diameter of the copper filler was 7 μm. The addition amount of the copper nanoparticles was 25 parts by mass with respect to 100 parts by mass of the copper filler.

銅ナノ粒子と銅フィラーとの混合物の1.2gを、非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.135gをシクロヘキサノン(純正化学社製、特級)の0.315gに溶解させた樹脂バインダ溶液の0.45gに加えた。非晶質ポリエステル樹の添加量は銅ナノ粒子と銅フィラーとの混合物100質量部に対して、11.3質量部であった。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、銅ペーストを得た。   1.2 g of a mixture of copper nanoparticles and copper filler is dissolved in 0.315 g of cyclohexanone (manufactured by Junsei Kagaku Co., Ltd.) 0.135 g of amorphous polyester resin (Toyobo Co., Ltd., Byron 103) Of the resin binder solution was added to 0.45 g. The addition amount of the amorphous polyester tree was 11.3 parts by mass with respect to 100 parts by mass of the mixture of copper nanoparticles and copper filler. The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone and obtain a copper paste.

銅ペーストをガラス基板に塗布し、窒素ガス雰囲気下、150℃で1時間焼成し、厚さ100μmの金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   Copper paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen gas atmosphere to form a metal film having a thickness of 100 μm. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例8〕
例1で得られた水素化銅ナノ粒子の0.8gと、銅フィラー(三井金属鉱業社製、1400YP、平均粒子径:7μm)の3.2gとを乳鉢中で混ぜ合わせた後、該混合物を、窒素ガス雰囲気下、50℃で30分間焼成し、銅ナノ粒子と銅フィラーとの混合物を得た。銅ナノ粒子の平均粒子径は51nmであり、銅フィラーの平均粒子径は7μmであった。銅ナノ粒子の添加量は銅フィラー100質量部に対して、25質量部であった。
[Example 8]
After mixing 0.8 g of the copper hydride nanoparticles obtained in Example 1 and 3.2 g of a copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average particle size: 7 μm) in a mortar, the mixture Was baked at 50 ° C. for 30 minutes in a nitrogen gas atmosphere to obtain a mixture of copper nanoparticles and a copper filler. The average particle diameter of the copper nanoparticles was 51 nm, and the average particle diameter of the copper filler was 7 μm. The addition amount of the copper nanoparticles was 25 parts by mass with respect to 100 parts by mass of the copper filler.

該銅ナノ粒子と銅フィラーとの混合物を用いた以外は、例7と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared and a metal film was formed in the same manner as in Example 7 except that the mixture of the copper nanoparticles and the copper filler was used. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例9〕
例1で得られた水素化銅ナノ粒子の0.8gと、銅フィラー(三井金属鉱業社製、1400YP、平均粒子径:7μm)の3.2gとを乳鉢中で混ぜ合わせた後、該混合物を、窒素ガス雰囲気下、100℃で30分間焼成し、銅ナノ粒子と銅フィラーとの混合物を得た。銅ナノ粒子の平均粒子径は97nmであり、銅フィラーの平均粒子径は7μmであった。銅ナノ粒子の添加量は銅フィラー100質量部に対して、25質量部であった。
[Example 9]
After mixing 0.8 g of the copper hydride nanoparticles obtained in Example 1 and 3.2 g of a copper filler (Mitsui Metal Mining Co., Ltd., 1400 YP, average particle size: 7 μm) in a mortar, the mixture Was baked at 100 ° C. for 30 minutes in a nitrogen gas atmosphere to obtain a mixture of copper nanoparticles and a copper filler. The average particle diameter of the copper nanoparticles was 97 nm, and the average particle diameter of the copper filler was 7 μm. The addition amount of the copper nanoparticles was 25 parts by mass with respect to 100 parts by mass of the copper filler.

該銅ナノ粒子と銅フィラーとの混合物を用いた以外は、例7と同様にして銅ペーストを調製し、金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。   A copper paste was prepared and a metal film was formed in the same manner as in Example 7 except that the mixture of the copper nanoparticles and the copper filler was used. The volume resistivity of the metal film was measured. The results are shown in Table 1.

Figure 2009116349
Figure 2009116349

本発明の銅ナノ粒子被覆銅フィラーおよび銅ペーストは、様々な用途に利用でき、たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。

なお、2008年3月21日に出願された日本特許出願2008−074448号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The copper nanoparticle-coated copper filler and copper paste of the present invention can be used for various applications, for example, formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, printed wiring boards and electronic components. It can be used for applications such as bonding.

It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-074448 filed on March 21, 2008 are cited herein as disclosure of the specification of the present invention. Incorporated.

Claims (12)

平均粒子径が0.5〜20μmである銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーであり、
銅フィラー100質量部に対する銅ナノ粒子の量が、5〜50質量部である、銅ナノ粒子被覆銅フィラー。
The surface of the copper filler having an average particle diameter of 0.5 to 20 μm is a copper nanoparticle-coated copper filler coated with copper nanoparticles having an average particle diameter of 50 to 100 nm,
The copper nanoparticle coating | coated copper filler whose quantity of the copper nanoparticle with respect to 100 mass parts of copper fillers is 5-50 mass parts.
請求項1に記載の銅ナノ粒子被覆銅フィラーを製造する方法であって、
下記の工程(I)〜(II)を有する、銅ナノ粒子被覆銅フィラーの製造方法。
(I)平均粒子径が0.5〜20μmである銅フィラーの表面に、平均粒子径が20〜50nmである水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
(II)前記水素化銅ナノ粒子被覆銅フィラーを、不活性ガス雰囲気下、50〜100℃で焼成し、前記銅フィラーの表面が、平均粒子径が50〜100nmである銅ナノ粒子で被覆された銅ナノ粒子被覆銅フィラーを得る工程。
A method for producing the copper nanoparticle-coated copper filler according to claim 1,
The manufacturing method of the copper nanoparticle covering copper filler which has the following process (I)-(II).
(I) The process of obtaining the copper hydride nanoparticle covering copper filler by making the surface of the copper filler whose average particle diameter is 0.5-20 micrometers coat | cover with the copper hydride nanoparticle whose average particle diameter is 20-50 nm.
(II) The copper hydride nanoparticle-coated copper filler is fired at 50 to 100 ° C. in an inert gas atmosphere, and the surface of the copper filler is coated with copper nanoparticles having an average particle diameter of 50 to 100 nm. Obtaining a copper filler coated with copper nanoparticles.
前記工程(I)が、下記の工程(I−1)〜(I−2)からなる、請求項2に記載の銅ナノ粒子被覆銅フィラーの製造方法。
(I−1)平均粒子径が0.5〜20μmである銅フィラーおよび平均粒子径が20〜50nmである水素化銅ナノ粒子を分散媒に分散させ、分散液を得る工程。
(I−2)前記分散液から分散媒を揮発させて取り除くことにより、銅フィラーの表面に水素化銅ナノ粒子を被覆させ、水素化銅ナノ粒子被覆銅フィラーを得る工程。
The method for producing a copper nanoparticle-coated copper filler according to claim 2, wherein the step (I) comprises the following steps (I-1) to (I-2).
(I-1) A step of obtaining a dispersion by dispersing copper filler having an average particle diameter of 0.5 to 20 μm and copper hydride nanoparticles having an average particle diameter of 20 to 50 nm in a dispersion medium.
(I-2) A step of volatilizing and removing the dispersion medium from the dispersion to coat the surface of the copper filler with copper hydride nanoparticles to obtain a copper hydride nanoparticle-coated copper filler.
前記分散媒の比誘電率が、4〜40である、請求項3に記載の銅ナノ粒子被覆銅フィラーの製造方法。   The manufacturing method of the copper nanoparticle coating | coated copper filler of Claim 3 whose relative dielectric constants of the said dispersion medium are 4-40. 前記工程(I−1)における分散媒の量が、前記銅フィラーおよび前記水素化銅ナノ粒子の合計100質量部に対して、250〜1250質量部である、請求項3または4に記載の銅ナノ粒子被覆銅フィラーの製造方法。   Copper of Claim 3 or 4 whose quantity of the dispersion medium in the said process (I-1) is 250-1250 mass parts with respect to a total of 100 mass parts of the said copper filler and the said copper hydride nanoparticle. A method for producing a nanoparticle-coated copper filler. 前記水素化銅ナノ粒子が、下記の工程(a)〜(c)を経て製造される、請求項2〜5のいずれかに記載の銅ナノ粒子被覆銅フィラーの製造方法。
(a)水溶性銅化合物を水に溶解し、銅イオンを含む水溶液を調製する工程。
(b)前記水溶液に酸を加えてpHを3以下に調整する工程。
(c)前記pHが3以下の水溶液を撹拌しながら、該水溶液に還元剤を加えて銅イオンを還元し、平均粒子径が20〜50nmである水素化銅ナノ粒子を生成させる工程。
The method for producing a copper nanoparticle-coated copper filler according to any one of claims 2 to 5, wherein the copper hydride nanoparticles are produced through the following steps (a) to (c).
(A) A step of dissolving a water-soluble copper compound in water to prepare an aqueous solution containing copper ions.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) While stirring the aqueous solution having a pH of 3 or less, a step of adding a reducing agent to the aqueous solution to reduce copper ions to produce copper hydride nanoparticles having an average particle size of 20 to 50 nm.
前記工程(b)における酸が、ギ酸である、請求項6に記載の銅ナノ粒子被覆銅フィラーの製造方法。   The method for producing a copper nanoparticle-coated copper filler according to claim 6, wherein the acid in the step (b) is formic acid. 前記工程(c)における還元剤が、金属水素化物または次亜リン酸である、請求項6に記載の銅ナノ粒子被覆銅フィラーの製造方法。   The manufacturing method of the copper nanoparticle coating | coated copper filler of Claim 6 whose reducing agent in the said process (c) is a metal hydride or hypophosphorous acid. 請求項1に記載の銅ナノ粒子被覆銅フィラーと、樹脂バインダとを含む、銅ペースト。   A copper paste comprising the copper nanoparticle-coated copper filler according to claim 1 and a resin binder. 銅ナノ粒子被覆銅フィラー100質量部に対して、樹脂バインダの量が5〜50質量部である、請求項9に記載の銅ペースト。   The copper paste according to claim 9, wherein the amount of the resin binder is 5 to 50 parts by mass with respect to 100 parts by mass of the copper nanoparticle-coated copper filler. 基材と、該基材上に、請求項9に記載の銅ペーストを塗布、焼成して形成された金属膜とを有する、物品。   An article comprising: a base material; and a metal film formed by applying and baking the copper paste according to claim 9 on the base material. 金属膜の体積抵抗率が1.0×10−4Ωcm以下である、請求項11に記載の物品。The article according to claim 11, wherein the volume resistivity of the metal film is 1.0 × 10 −4 Ωcm or less.
JP2010503804A 2008-03-21 2009-02-19 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film Withdrawn JPWO2009116349A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008074448 2008-03-21
JP2008074448 2008-03-21
PCT/JP2009/052939 WO2009116349A1 (en) 2008-03-21 2009-02-19 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film

Publications (1)

Publication Number Publication Date
JPWO2009116349A1 true JPWO2009116349A1 (en) 2011-07-21

Family

ID=41090757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010503804A Withdrawn JPWO2009116349A1 (en) 2008-03-21 2009-02-19 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film

Country Status (3)

Country Link
JP (1) JPWO2009116349A1 (en)
TW (1) TW200946446A (en)
WO (1) WO2009116349A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197227A (en) * 2012-03-19 2013-09-30 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and method of manufacturing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410850B2 (en) * 2009-06-15 2014-02-05 旭硝子株式会社 Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor
CN103262173A (en) * 2010-12-10 2013-08-21 旭硝子株式会社 Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
KR20140038413A (en) * 2011-05-23 2014-03-28 아사히 가라스 가부시키가이샤 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP2014182913A (en) * 2013-03-19 2014-09-29 Fujifilm Corp Composition for conductive film formation, and method for producing conductive film using the same
JP2014196427A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
CN106715009A (en) * 2014-08-28 2017-05-24 石原产业株式会社 Metallic copper particles, and production method therefor
JP2016131078A (en) * 2015-01-13 2016-07-21 Dowaエレクトロニクス株式会社 Conductive paste and production method of conductive film using the same
JP7300172B2 (en) * 2019-10-09 2023-06-29 協立化学産業株式会社 Composite metal particles, method for producing same, composition containing composite metal particles, and method for producing article
JP7302487B2 (en) * 2020-01-14 2023-07-04 トヨタ自動車株式会社 Composite particles and method for producing composite particles
CN112018031B (en) * 2020-09-09 2023-12-19 合肥工业大学 Method for filling SiC through hole based on copper nano particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188671A (en) * 1996-10-29 1998-07-21 Mitsuboshi Belting Ltd Copper conductive paste and board printed therewith
JP2001176325A (en) * 1999-12-21 2001-06-29 Dowa Mining Co Ltd Conductive filler and conductive paste
JP2006124814A (en) * 2004-11-01 2006-05-18 Asahi Glass Co Ltd Method for manufacturing metallic foil for printed wiring board, and printed wiring board
JP2006339057A (en) * 2005-06-03 2006-12-14 Nec Corp Resin metal composite conductive material, its manufacturing method, and electronic device using it
JP2007100155A (en) * 2005-10-03 2007-04-19 Mitsui Mining & Smelting Co Ltd Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188671A (en) * 1996-10-29 1998-07-21 Mitsuboshi Belting Ltd Copper conductive paste and board printed therewith
JP2001176325A (en) * 1999-12-21 2001-06-29 Dowa Mining Co Ltd Conductive filler and conductive paste
JP2006124814A (en) * 2004-11-01 2006-05-18 Asahi Glass Co Ltd Method for manufacturing metallic foil for printed wiring board, and printed wiring board
JP2006339057A (en) * 2005-06-03 2006-12-14 Nec Corp Resin metal composite conductive material, its manufacturing method, and electronic device using it
JP2007100155A (en) * 2005-10-03 2007-04-19 Mitsui Mining & Smelting Co Ltd Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197227A (en) * 2012-03-19 2013-09-30 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and method of manufacturing the same

Also Published As

Publication number Publication date
WO2009116349A1 (en) 2009-09-24
TW200946446A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
WO2009116349A1 (en) Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
WO2010032841A1 (en) Conductive filler, conductive paste and article having conductive film
JP2010059469A (en) Method for producing copper nanoparticle, metal paste and article having metal film
JP5872063B2 (en) Copper powder
WO2007105636A1 (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
TWI510592B (en) Method for manufacturing conductive copper particles
TWI501260B (en) Conductive paste and substrate with conductive film
JP6211245B2 (en) Conductive material and method for producing the same
JP2014182913A (en) Composition for conductive film formation, and method for producing conductive film using the same
JP2015168878A (en) copper powder
JP2013067854A (en) Copper composite particle, composite metallic copper particle, method for producing copper composite particle, metallic paste, article having metallic conductor and method for producing article having metallic conductor
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
WO2016125355A1 (en) Electroconductive microparticles
WO2009098985A1 (en) Copper hydride nanoparticle, process for producing the same, metallic paste, and article
JP6067515B2 (en) Conductive film forming composition and method for producing conductive film using the same
JP5410850B2 (en) Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor
JP2012218020A (en) Bonding method
JP2012140661A (en) Flat copper particle
JP2004315835A (en) Copper powder with irregular shape, method for manufacturing the copper powder with irregular shape, and electroconductive paste using the copper powder with irregular shape
JP2016113699A (en) Composite copper powder and conductive composition including the same
JP7145869B2 (en) Fine silver particle dispersion
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
WO2023210662A1 (en) Spherical silver powder, production method for spherical silver powder, spherical silver powder production device, and electrically conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130926