JP2010059469A - Method for producing copper nanoparticle, metal paste and article having metal film - Google Patents

Method for producing copper nanoparticle, metal paste and article having metal film Download PDF

Info

Publication number
JP2010059469A
JP2010059469A JP2008225803A JP2008225803A JP2010059469A JP 2010059469 A JP2010059469 A JP 2010059469A JP 2008225803 A JP2008225803 A JP 2008225803A JP 2008225803 A JP2008225803 A JP 2008225803A JP 2010059469 A JP2010059469 A JP 2010059469A
Authority
JP
Japan
Prior art keywords
copper
metal
nanoparticles
metal film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008225803A
Other languages
Japanese (ja)
Inventor
Hideyuki Hirakoso
英之 平社
Hiroshi Nakanishi
啓 中西
Keisuke Abe
啓介 阿部
Kazushi Kobayashi
一志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008225803A priority Critical patent/JP2010059469A/en
Publication of JP2010059469A publication Critical patent/JP2010059469A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can produce copper nanoparticles having excellent oxidation resistance and also easy to be fired with a metal filler, to provide metal paste which can form a metal film having high conductivity, and to provide an article having a metal film whose conductivity is high. <P>SOLUTION: The method for producing copper nanoparticles having the average particle size of 10 to 100 nm and comprising 0.6 to 5.0 mass% phosphorous includes: a stage (a) where a water soluble copper compound is dissolved into water, so as to prepare a copper ion-containing water solution; and a stage (b) where the water solution is heated to ≥30°C, and copper ions are reduced with hypophosphoric acid, so as to produce silver nanoparticles. The metal paste comprises the copper nanoparticles, a metal filler and a resin binder. The article has a metal film formed by applying the metal paste to the surface of a base material and firing the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、銅ナノ粒子の製造方法、該銅ナノ粒子を含む金属ペースト、および該金属ペーストから形成される金属膜を有する物品に関する。   The present invention relates to a method for producing copper nanoparticles, a metal paste containing the copper nanoparticles, and an article having a metal film formed from the metal paste.

基材上に金属ペーストを所望の配線パターン状に塗布、焼成して、所望の配線パターンを有するプリント基板等を製造する方法が知られている。
該方法に用いられる金属ペーストとしては、たとえば、下記のものが提案されている。
(1)平均粒子径が1〜100nmである金属銀ナノ粒子と、平均粒子径が5〜20μmである金属フィラーと、樹脂バインダとを含む金属ペースト(特許文献1)。
A method of manufacturing a printed circuit board or the like having a desired wiring pattern by applying and baking a metal paste in a desired wiring pattern on a substrate is known.
As the metal paste used in the method, for example, the following has been proposed.
(1) A metal paste containing metallic silver nanoparticles having an average particle diameter of 1 to 100 nm, a metal filler having an average particle diameter of 5 to 20 μm, and a resin binder (Patent Document 1).

(1)の金属ペーストは、金属フィラーのみでは実現できなかった低抵抗化を、金属銀ナノ粒子の有する表面融解現象を利用して金属フィラー同士を融着することによって実現している。
しかし、銀はイオンマイグレーションを起こしやすい金属であるため、(1)の金属ペーストを用いて製造したプリント基板等の電子部品の信頼性を考慮した場合、金属ナノ粒子の材料としては、銅が好ましい。しかし、金属銅ナノ粒子は、非常に酸化しやすい。
The metal paste of (1) realizes a reduction in resistance that cannot be achieved only with a metal filler by fusing metal fillers together using the surface melting phenomenon of metal silver nanoparticles.
However, since silver is a metal that easily undergoes ion migration, copper is preferable as the material of the metal nanoparticles in consideration of the reliability of electronic components such as a printed circuit board manufactured using the metal paste of (1). . However, metallic copper nanoparticles are very easy to oxidize.

耐酸化性に優れた銅ナノ粒子としては、下記のものが提案されている。
(2)長鎖の有機化合物によって表面が被覆された水素化銅ナノ粒子(特許文献2)。
しかし、(2)の水素化銅ナノ粒子は、長鎖の有機化合物によって表面が被覆されているため、金属フィラーと焼結しにくく、焼成後の金属膜の導電性が不充分である。
The following are proposed as copper nanoparticles excellent in oxidation resistance.
(2) Copper hydride nanoparticles whose surface is coated with a long-chain organic compound (Patent Document 2).
However, since the surface of the copper hydride nanoparticles (2) is covered with a long-chain organic compound, it is difficult to sinter with the metal filler, and the conductivity of the fired metal film is insufficient.

耐酸化性に優れた銅粉末としては、下記のものが提案されている。
(3)外表面上にリン酸銅被膜が形成された銅粉末(特許文献3)。
しかし、(3)の銅粉末は、下記の問題を有する。そのため、該銅粉末を含む金属ペーストから形成される金属膜は、導電性が不充分である。
(i)銅粉末の表面が単にリン酸銅で被覆されているだけであるため、リン酸銅被膜が欠落しやすい。リン酸銅被膜が欠落すると、銅粉末の耐酸化性が低下する。
(ii)銅粉末におけるリン酸銅の含有量が少ない(リン原子換算で好ましくは0.5質量%以下である。)。よって、銅粉末の耐酸化性が不充分である。
(iii)銅粉末の粒径が比較的大きい(0.5μm程度である)。よって、表面融解が起こりにくく、緻密な金属膜を形成できない。
国際公開第02/35554号パンフレット 国際公開第2004/110925号パンフレット 特開平09−241862号公報
The following are proposed as copper powders excellent in oxidation resistance.
(3) Copper powder having a copper phosphate coating formed on the outer surface (Patent Document 3).
However, the copper powder (3) has the following problems. Therefore, the metal film formed from the metal paste containing the copper powder has insufficient conductivity.
(I) Since the surface of the copper powder is simply covered with copper phosphate, the copper phosphate coating is easily lost. If the copper phosphate coating is missing, the oxidation resistance of the copper powder decreases.
(Ii) The content of copper phosphate in the copper powder is small (preferably 0.5% by mass or less in terms of phosphorus atom). Therefore, the oxidation resistance of the copper powder is insufficient.
(Iii) The particle size of the copper powder is relatively large (about 0.5 μm). Therefore, surface melting hardly occurs and a dense metal film cannot be formed.
International Publication No. 02/35554 pamphlet International Publication No. 2004/110925 Pamphlet Japanese Patent Laid-Open No. 09-241862

本発明は、耐酸化性に優れ、かつ金属フィラーと焼結しやすい銅ナノ粒子を製造できる方法、導電性が高い金属膜を形成できる金属ペースト、および導電性が高い金属膜を有する物品を提供する。   The present invention provides a method capable of producing copper nanoparticles excellent in oxidation resistance and easily sintered with a metal filler, a metal paste capable of forming a highly conductive metal film, and an article having a highly conductive metal film. To do.

本発明の銅ナノ粒子の製造方法は、平均粒子径が10〜100nmであり、銅ナノ粒子の100質量%のうちリンを0.6〜5.0質量%含む銅ナノ粒子を製造する方法であって、下記の工程(a)および工程(b)を有することを特徴とする。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)該水溶液を30℃以上に加熱し、次亜リン酸によって銅イオンを還元して銅ナノ粒子を生成させる工程。
前記銅ナノ粒子は、水素化銅ナノ粒子または金属銅ナノ粒子であることが好ましい。
The method for producing copper nanoparticles of the present invention is a method of producing copper nanoparticles having an average particle diameter of 10 to 100 nm and containing 0.6 to 5.0 mass% of phosphorus out of 100 mass% of the copper nanoparticles. And it has the following process (a) and process (b), It is characterized by the above-mentioned.
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of heating the aqueous solution to 30 ° C. or higher and reducing copper ions with hypophosphorous acid to produce copper nanoparticles.
The copper nanoparticles are preferably copper hydride nanoparticles or metal copper nanoparticles.

本発明の金属ペーストは、本発明の製造方法で得られた銅ナノ粒子と、平均粒子径が0.5〜20μmである金属フィラーと、樹脂バインダとを含むことを特徴とする。
本発明の物品は、基材と、該基材上に、本発明の金属ペーストを塗布、焼成して形成された金属膜とを有することを特徴とする。
The metal paste of this invention is characterized by including the copper nanoparticle obtained by the manufacturing method of this invention, the metal filler whose average particle diameter is 0.5-20 micrometers, and a resin binder.
The article of the present invention is characterized by having a base material and a metal film formed by applying and firing the metal paste of the present invention on the base material.

本発明の銅ナノ粒子の製造方法によれば、耐酸化性に優れ、かつ金属フィラーと焼結しやすい銅ナノ粒子を製造できる。
本発明の金属ペーストによれば、導電性が高い金属膜を形成できる。
本発明の物品は、導電性が高い金属膜を有する。
According to the method for producing copper nanoparticles of the present invention, it is possible to produce copper nanoparticles that have excellent oxidation resistance and are easily sintered with a metal filler.
According to the metal paste of the present invention, a metal film having high conductivity can be formed.
The article of the present invention has a highly conductive metal film.

<銅ナノ粒子>
銅ナノ粒子は、銅を主成分とし、さらに水素、酸素等の他の元素を含むものである。銅を主成分とするとは、銅ナノ粒子の100質量%のうち、銅を90質量%以上含むことを意味する。
<Copper nanoparticles>
The copper nanoparticles are mainly composed of copper and further contain other elements such as hydrogen and oxygen. To have copper as a main component means to contain 90% by mass or more of copper in 100% by mass of the copper nanoparticles.

銅ナノ粒子としては、導電性の高い金属膜を形成できる点から、水素化銅ナノ粒子または金属銅ナノ粒子が好ましく、水素化銅ナノ粒子が特に好ましい。
水素化銅は、元素として銅の他に水素を含む化合物であって、銅原子は水素原子と結合した状態で存在し、60〜100℃で金属銅と水素とに分解する性質を有する。
The copper nanoparticles are preferably copper hydride nanoparticles or metal copper nanoparticles, and particularly preferably copper hydride nanoparticles from the viewpoint that a highly conductive metal film can be formed.
Copper hydride is a compound containing hydrogen in addition to copper as an element. The copper atom exists in a state of being bonded to a hydrogen atom and has a property of decomposing into metallic copper and hydrogen at 60 to 100 ° C.

銅ナノ粒子の平均粒子径は、10〜100nmであり、50〜80nmが好ましい。平均粒子径が100nm以下であれば、表面融解温度が充分に低下するため、表面融解が起こりやすくなり、また、緻密な金属膜を形成できることから導電性の向上が期待できる。平均粒子径が10nm以上であれば、表面積の増加による酸化の促進も顕著ではなくなる。銅ナノ粒子の平均粒子径は、後述する工程(b)における次亜リン酸と銅イオンとの反応時間等によって調整できる。
銅ナノ粒子の平均粒子径は、走査型電子顕微鏡(以下、SEMと記す。)像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出する。
The average particle diameter of the copper nanoparticles is 10 to 100 nm, and preferably 50 to 80 nm. If the average particle diameter is 100 nm or less, the surface melting temperature is sufficiently lowered, so that surface melting is likely to occur, and a dense metal film can be formed, so that improvement in conductivity can be expected. When the average particle diameter is 10 nm or more, the promotion of oxidation due to the increase in surface area is not significant. The average particle diameter of the copper nanoparticles can be adjusted by the reaction time of hypophosphorous acid and copper ions in the step (b) described later.
The average particle diameter of the copper nanoparticles is calculated by measuring and averaging the particle diameters of 100 particles randomly selected from a scanning electron microscope (hereinafter referred to as SEM) image.

本発明の製造方法で得られる銅ナノ粒子は、リンを含むものである。
リンを含むことの確認は、銅ナノ粒子を湿式で分解後に、ICP分析することによって実施できる。
The copper nanoparticles obtained by the production method of the present invention contain phosphorus.
Confirmation that phosphorus is contained can be carried out by ICP analysis after copper nanoparticles are decomposed in a wet manner.

リンの含有量は、銅ナノ粒子の100質量%のうち、0.6〜5.0質量%であり、1.0〜3.0質量%が好ましい。リンの含有量が0.6質量%以上であれば、耐酸化性が充分に高くなる。リンの含有量が5.0質量%以下であれば、リンによる導電性の低下が抑えられる。リンの含有量は、後述する工程(b)における次亜リン酸の添加量、工程(b)における次亜リン酸と銅イオンとの反応時間、工程(d)における銅ナノ粒子の精製等によって調整できる。
リンの含有量は、銅ナノ粒子を湿式で分解後に、ICP分析から算出できる。
Content of phosphorus is 0.6-5.0 mass% among 100 mass% of copper nanoparticles, and 1.0-3.0 mass% is preferable. When the phosphorus content is 0.6% by mass or more, the oxidation resistance is sufficiently high. If content of phosphorus is 5.0 mass% or less, the electroconductive fall by phosphorus will be suppressed. The phosphorus content depends on the amount of hypophosphorous acid added in step (b), the reaction time of hypophosphorous acid and copper ions in step (b), the purification of copper nanoparticles in step (d), etc. Can be adjusted.
The phosphorus content can be calculated from ICP analysis after the copper nanoparticles are decomposed in a wet manner.

以上説明した銅ナノ粒子にあっては、銅ナノ粒子の100質量%のうち、リンを0.6〜5.0質量%含むため、耐酸化性に優れる。また、表面に酸化膜が形成されにくく、平均粒子径が10〜100nmであり、また、長鎖の有機化合物によって表面を被覆する必要がないため、金属フィラーと焼結しやすい。   In the copper nanoparticle demonstrated above, since it contains 0.6-5.0 mass% of phosphorus among 100 mass% of a copper nanoparticle, it is excellent in oxidation resistance. In addition, an oxide film is hardly formed on the surface, the average particle diameter is 10 to 100 nm, and it is not necessary to cover the surface with a long-chain organic compound, so that it is easily sintered with a metal filler.

<銅ナノ粒子の製造方法>
本発明の銅ナノ粒子の製造方法は、下記の工程(a)〜(d)を有する方法(湿式還元法)である。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)該水溶液を30℃以上に加熱し、次亜リン酸によって銅イオンを還元し、水素化銅ナノ粒子、または、場合によっては金属銅ナノ粒子を生成させる工程。
(c)必要に応じて、前記水素化銅ナノ粒子を、熱分解させて金属銅ナノ粒子を生成させる工程。
(d)必要に応じて、得られた銅ナノ粒子を精製する工程。
<Method for producing copper nanoparticles>
The method for producing copper nanoparticles of the present invention is a method (wet reduction method) having the following steps (a) to (d).
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of heating the aqueous solution to 30 ° C. or higher and reducing copper ions with hypophosphorous acid to produce copper hydride nanoparticles or, in some cases, metal copper nanoparticles.
(C) A step of thermally decomposing the copper hydride nanoparticles to produce metallic copper nanoparticles as necessary.
(D) The process of refine | purifying the obtained copper nanoparticle as needed.

工程(a):
水溶性銅化合物としては、硫酸銅、硝酸銅、ギ酸銅、酢酸銅、塩化銅、臭化銅、ヨウ化銅等が挙げられる。
水溶性銅化合物の濃度は、水溶液100質量%中、0.1〜30質量%が好ましい。水溶液中の水溶性銅化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、銅ナノ粒子の生産効率が良好となる。水溶液中の水溶性銅化合物の濃度が30質量%以下であれば、銅ナノ粒子の収率の低下が抑えられる。
Step (a):
Examples of the water-soluble copper compound include copper sulfate, copper nitrate, copper formate, copper acetate, copper chloride, copper bromide, copper iodide and the like.
The concentration of the water-soluble copper compound is preferably 0.1 to 30% by mass in 100% by mass of the aqueous solution. If the density | concentration of the water-soluble copper compound in aqueous solution is 0.1 mass% or more, the quantity of water will be restrained and the production efficiency of copper nanoparticles will become favorable. If the density | concentration of the water-soluble copper compound in aqueous solution is 30 mass% or less, the fall of the yield of a copper nanoparticle will be suppressed.

工程(b):
銅イオンは30℃以上の温度で次亜リン酸により酸性条件で還元され、徐々に水素化銅ナノ粒子が成長して、平均粒子径が10〜100nmである水素化銅ナノ粒子が生成する。また、反応を一定時間以上進行させると水素化銅の分解によって金属銅が生成する。
工程(b)における水溶液の温度は、30〜80℃が好ましく、35〜60℃がより好ましい。水溶液の温度が80℃以下であれば、水の蒸発による反応系の変化を抑制できる。
Step (b):
Copper ions are reduced under acidic conditions by hypophosphorous acid at a temperature of 30 ° C. or higher, and copper hydride nanoparticles are gradually grown to produce copper hydride nanoparticles having an average particle size of 10 to 100 nm. Further, when the reaction is allowed to proceed for a certain time or more, metallic copper is generated by the decomposition of copper hydride.
30-80 degreeC is preferable and, as for the temperature of the aqueous solution in a process (b), 35-60 degreeC is more preferable. If the temperature of aqueous solution is 80 degrees C or less, the change of the reaction system by water evaporation can be suppressed.

次亜リン酸は、水溶液にして添加することが好ましい。次亜リン酸の濃度は、水溶液100質量%中、30〜80質量%が好ましく、40〜60質量%がより好ましい。水溶液中の次亜リン酸の濃度が30質量%以上であれば、水の量が抑えられる。水溶液中の次亜リン酸の濃度が80質量%以下であれば、急激な反応が抑えられる。   Hypophosphorous acid is preferably added as an aqueous solution. The concentration of hypophosphorous acid is preferably 30 to 80% by mass and more preferably 40 to 60% by mass in 100% by mass of the aqueous solution. If the concentration of hypophosphorous acid in the aqueous solution is 30% by mass or more, the amount of water can be suppressed. If the concentration of hypophosphorous acid in the aqueous solution is 80% by mass or less, a rapid reaction can be suppressed.

次亜リン酸の添加量は、銅イオンに対して1.5〜10倍当量数が好ましい。次亜リン酸の添加量が銅イオンに対して1.5倍当量数以上であれば、還元作用が充分となる。還元剤の添加量が銅イオンに対して10倍当量数以下であれば、残存するリンによる悪影響を抑制できる。   The addition amount of hypophosphorous acid is preferably 1.5 to 10 times the number of equivalents to copper ions. When the amount of hypophosphorous acid added is 1.5 times the number of equivalents or more with respect to copper ions, the reducing action is sufficient. If the addition amount of the reducing agent is 10 times the number of equivalents or less with respect to copper ions, the adverse effect of the remaining phosphorus can be suppressed.

工程(c):
必要に応じて、得られた水素化銅ナノ粒子を熱分解させて金属銅ナノ粒子を生成させる。
熱分解は不活性雰囲気下で行う。雰囲気中の酸素濃度は1000ppm以下が好ましい。1000ppmを超えると、酸化によって亜酸化銅を生じてしまう。
熱分解の温度は、60〜100℃が好ましく、70〜90℃が好ましい。該温度が60℃以上であれば、熱分解が円滑に進行する。該温度が100℃以下であれば、銅ナノ粒子同士の融着が抑えられる。
Step (c):
If necessary, the obtained copper hydride nanoparticles are pyrolyzed to produce metallic copper nanoparticles.
Thermal decomposition is performed under an inert atmosphere. The oxygen concentration in the atmosphere is preferably 1000 ppm or less. When it exceeds 1000 ppm, cuprous oxide will be produced by oxidation.
The temperature for thermal decomposition is preferably 60 to 100 ° C, and preferably 70 to 90 ° C. If the temperature is 60 ° C. or higher, thermal decomposition proceeds smoothly. If this temperature is 100 degrees C or less, the fusion | melting of copper nanoparticles will be suppressed.

工程(d):
必要に応じて、得られた銅ナノ粒子を精製してもよい。精製方法としては、得られた銅ナノ粒子を水に分散させる方法等が挙げられる。
Step (d):
You may refine | purify the obtained copper nanoparticle as needed. Examples of the purification method include a method of dispersing the obtained copper nanoparticles in water.

以上説明した銅ナノ粒子の製造方法にあっては、下記の理由から、耐酸化性に優れ、かつ金属フィラーと焼結しやすい銅ナノ粒子を製造できると考える。
外表面上にリン酸銅被膜が形成された従来の銅粉末においては、銅粉末をリン酸塩含有溶液に浸漬して、銅粉末の外表面上にリン酸銅被膜を形成している。一方、以上説明した銅ナノ粒子の製造方法によれば、粒子を形成する段階でリンと銅を作用させているため、リンは、粒子表面だけでなく、粒子中にも含まれる。よって、得られる銅ナノ粒子は、耐酸化性に優れ、表面に酸化膜を形成しにくく、表面近傍に銅原子が存在することができ、金属フィラーと焼結しやすい。
In the manufacturing method of the copper nanoparticle demonstrated above, it thinks that the copper nanoparticle which is excellent in oxidation resistance and is easy to sinter with a metal filler can be manufactured for the following reason.
In a conventional copper powder having a copper phosphate coating formed on the outer surface, the copper phosphate coating is formed on the outer surface of the copper powder by immersing the copper powder in a phosphate-containing solution. On the other hand, according to the copper nanoparticle manufacturing method described above, phosphorus and copper are allowed to act at the stage of forming the particles, so that phosphorus is contained not only in the particle surface but also in the particles. Therefore, the obtained copper nanoparticles are excellent in oxidation resistance, hardly form an oxide film on the surface, can have copper atoms in the vicinity of the surface, and are easily sintered with a metal filler.

<金属ペースト>
本発明の金属ペーストは、本発明の製造方法で得られた銅ナノ粒子と、平均粒子径が0.5〜20μmである金属フィラーと、樹脂バインダとを含む。
<Metal paste>
The metal paste of this invention contains the copper nanoparticle obtained with the manufacturing method of this invention, the metal filler whose average particle diameter is 0.5-20 micrometers, and the resin binder.

金属フィラーとしては、金属ペーストに用いられる公知の金属粒子が挙げられる。金属フィラーの材料としては、金、銅、パラジウム、ニッケル、錫、アルミニウム、ビスマス、インジウム、鉛等が挙げられ、導電性、耐マイグレーション性、価格の点から、銅が好ましい。   As a metal filler, the well-known metal particle used for a metal paste is mentioned. Examples of the material for the metal filler include gold, copper, palladium, nickel, tin, aluminum, bismuth, indium, lead and the like, and copper is preferable from the viewpoint of conductivity, migration resistance, and cost.

金属フィラーの平均粒子径は、0.5〜20μmであり、1〜10μmが好ましい。金属フィラーの平均粒子径が0.5μm以上であれば、得られるペーストの流動特性が良好となる。金属フィラーの平均粒子径が20μm以下であれば、微細配線を作製しやすい。
金属フィラーの平均粒子径は、SEM像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出する。
The average particle diameter of a metal filler is 0.5-20 micrometers, and 1-10 micrometers is preferable. If the average particle diameter of the metal filler is 0.5 μm or more, the flow characteristics of the resulting paste will be good. If the average particle diameter of the metal filler is 20 μm or less, it is easy to produce fine wiring.
The average particle size of the metal filler is calculated by measuring and averaging the particle size of 100 particles randomly selected from the SEM image.

樹脂バインダとしては、金属ペーストに用いられる公知の樹脂バインダ(熱硬化性樹脂、熱可塑性樹脂等。)等が挙げられ、焼成時の温度において充分な硬化がなされる樹脂成分を選択して用いることが好ましい。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂、オキサジン樹脂等が挙げられ、フェノー樹脂、エポキシ樹脂、オキサジン樹脂が好ましい。
熱可塑性樹脂としては、ポリアミド、ポリイミド、アクリル樹脂、ケトン樹脂、ポリスチレン、ポリエステル等が挙げられる。
Examples of the resin binder include known resin binders (thermosetting resins, thermoplastic resins, etc.) used for metal pastes, and a resin component that can be sufficiently cured at the firing temperature is selected and used. Is preferred.
Thermosetting resins include phenolic resin, epoxy resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane resin, melamine resin, silicon Examples thereof include resins, acrylic resins, oxetane resins, and oxazine resins, and pheno resins, epoxy resins, and oxazine resins are preferable.
Examples of the thermoplastic resin include polyamide, polyimide, acrylic resin, ketone resin, polystyrene, and polyester.

金属ペースト中の銅ナノ粒子の量は、金属フィラー100質量%に対して、3〜40質量%が好ましく、5〜25質量%がより好ましい。銅ナノ粒子の量が3質量%以上であれば、金属フィラーの表面に焼結しやすく、金属フィラー間の導電パスを増やすことができ、得られる金属膜の導電性の向上に寄与できる。銅ナノ粒子の量が40質量%以下であれば、得られる金属ペーストの流動特性が良好となる。   3-40 mass% is preferable with respect to 100 mass% of metal fillers, and, as for the quantity of the copper nanoparticle in a metal paste, 5-25 mass% is more preferable. If the amount of the copper nanoparticles is 3% by mass or more, it is easy to sinter on the surface of the metal filler, the conductive paths between the metal fillers can be increased, and the conductivity of the resulting metal film can be improved. If the amount of copper nanoparticles is 40% by mass or less, the flow characteristics of the resulting metal paste will be good.

金属ペースト中の樹脂バインダの量は、金属フィラーおよび銅ナノ粒子の全体の体積とそれらの粒子間に存在する空隙との比率に応じて適宜選択すればよく、通常、金属フィラーおよび銅ナノ粒子の合計100質量%に対して、5〜50質量%が好ましく、5〜20質量%がより好ましい。樹脂バインダの量が5質量%以上であれば、得られる金属ペーストの流動特性が良好となる。樹脂バインダの量が50質量%以下であれば、得られる金属膜の導電性が良好となる。   The amount of the resin binder in the metal paste may be appropriately selected according to the ratio between the total volume of the metal filler and copper nanoparticles and the voids existing between the particles. 5-50 mass% is preferable with respect to a total of 100 mass%, and 5-20 mass% is more preferable. When the amount of the resin binder is 5% by mass or more, the flow characteristics of the obtained metal paste are good. When the amount of the resin binder is 50% by mass or less, the conductivity of the obtained metal film is good.

金属ペーストは、必要に応じて、溶媒、公知の添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等。)等を、本発明の効果を損なわない範囲で含んでいてもよい。   The metal paste may contain a solvent, a known additive (a leveling agent, a coupling agent, a viscosity modifier, an antioxidant, etc.), etc., as necessary, as long as the effects of the present invention are not impaired. .

以上説明した本発明の金属ペーストにあっては、耐酸化性に優れ、かつ金属フィラーと焼結しやすい銅ナノ粒子を含んでいるため、導電性が高い金属膜を形成できる。   Since the metal paste of the present invention described above has excellent oxidation resistance and contains metal nanoparticles and copper nanoparticles that can be easily sintered, a highly conductive metal film can be formed.

<物品>
本発明の物品は、基材と、該基材上に、本発明の金属ペーストを塗布、焼成して形成された金属膜とを有する。
基材としては、ガラス基板、プラスチック基材(ポリイミド基板、ポリエステル基板等。)、繊維強化複合材料(ガラス繊維強化プラスチック基板等。)等が挙げられる。
<Article>
The article of the present invention has a base material and a metal film formed by applying and firing the metal paste of the present invention on the base material.
Examples of the substrate include glass substrates, plastic substrates (polyimide substrates, polyester substrates, etc.), fiber reinforced composite materials (glass fiber reinforced plastic substrates, etc.), and the like.

塗布方法としては、スクリーン印刷、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。   Examples of the coating method include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.

焼成方法としては、温風加熱、熱輻射等の方法が挙げられる。
焼成温度および焼成時間は、金属膜に求められる特性に応じて適宜決定すればよい。焼成温度は、100〜300℃が好ましい。焼成温度が100℃以上であれば、金属フィラーと銅ナノ粒子との焼結が進行しやすい。焼成温度が300℃以下であれば、金属膜を形成する基板として、プラスチックフィルムを使用できる。
Examples of the firing method include warm air heating and thermal radiation.
The firing temperature and firing time may be appropriately determined according to the characteristics required for the metal film. The firing temperature is preferably 100 to 300 ° C. If a calcination temperature is 100 degreeC or more, sintering with a metal filler and a copper nanoparticle will advance easily. If the firing temperature is 300 ° C. or lower, a plastic film can be used as the substrate on which the metal film is formed.

金属膜の体積抵抗率は、1.0×10−4Ωcm以下が好ましい。体積抵抗率が1.0×10−4Ωcmを超えると、電子部品用の導電体としての使用が困難となる場合がある。 The volume resistivity of the metal film is preferably 1.0 × 10 −4 Ωcm or less. When the volume resistivity exceeds 1.0 × 10 −4 Ωcm, it may be difficult to use as a conductor for electronic components.

以上説明した本発明の物品にあっては、金属膜が本発明の金属ペーストから形成されているため、金属膜の導電性が高い。   In the article of the present invention described above, since the metal film is formed from the metal paste of the present invention, the conductivity of the metal film is high.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
例1〜6は実施例であり、例7〜11は比較例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Examples 1 to 6 are examples, and examples 7 to 11 are comparative examples.

(ナノ粒子および金属膜の同定)
ナノ粒子および金属膜の同定は、X線回折装置(株式会社リガク製、TTR−III)により行った。
(Identification of nanoparticles and metal films)
The identification of the nanoparticles and the metal film was performed with an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).

(平均粒子径)
ナノ粒子および金属フィラーの平均粒子径は、SEM(日立製作所社製、S−4300)にて得られたSEM像の中から無作為に選ばれた100個の粒子の粒子径を測定し、平均することにより算出した。
(Average particle size)
The average particle size of the nanoparticles and the metal filler was determined by measuring the particle size of 100 particles randomly selected from SEM images obtained by SEM (manufactured by Hitachi, Ltd., S-4300). It was calculated by doing.

(リン含有量)
銅ナノ粒子中のリン含有量は、下記の方法で求めた。
銅ナノ粒子の100mgをビーカーに入れ、硝酸の5mLを入れて90℃の温浴中で30分間反応させた。その後、冷却してから過酸化水素水の5mLを加え、再び90℃の温浴中に1時間置いた。冷却して硝酸の3mLと過酸化水素水の3.3mLを入れ、再び90℃の温浴中に2時間置き、0.28mol/Lの硝酸水溶液で100mLに定容し、フィルターでろ過した後、ICP装置(セイコーインスツル社製、SPS3100)を用い、ICP発光法で定量した。
(Phosphorus content)
The phosphorus content in the copper nanoparticles was determined by the following method.
100 mg of copper nanoparticles were placed in a beaker, 5 mL of nitric acid was added, and the mixture was reacted for 30 minutes in a 90 ° C. warm bath. Then, after cooling, 5 mL of hydrogen peroxide water was added, and it was again placed in a warm bath at 90 ° C. for 1 hour. After cooling, 3 mL of nitric acid and 3.3 mL of hydrogen peroxide were added, placed again in a 90 ° C. hot bath for 2 hours, adjusted to 100 mL with a 0.28 mol / L aqueous nitric acid solution, filtered through a filter, Using an ICP device (Seiko Instruments, SPS3100), the amount was quantified by the ICP emission method.

(金属膜の厚さ)
金属膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(Metal film thickness)
The thickness of the metal film was measured by using DEKTAK3 (manufactured by Veeco metrology group).

(金属膜の体積抵抗率)
金属膜の体積抵抗率は、四探針式抵抗計(三菱油化社製、型式:lorestaIP MCP−T250)を用いて測定した。
(Volume resistivity of metal film)
The volume resistivity of the metal film was measured using a four-probe resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).

〔例1〕
ガラス容器内にて、ギ酸銅(II)水和物の59gを蒸留水の520gおよびギ酸の29gで溶解して、銅イオンを含む水溶液を調製した。該水溶液のpHは2.6であった。
該水溶液を激しく撹拌しながら、45℃で該水溶液に50質量%の次亜リン酸水溶液の92gを添加した。添加後、45℃で30分間そのまま撹拌を続け、懸濁液を得た。
[Example 1]
In a glass container, 59 g of copper (II) formate hydrate was dissolved in 520 g of distilled water and 29 g of formic acid to prepare an aqueous solution containing copper ions. The pH of the aqueous solution was 2.6.
While the aqueous solution was vigorously stirred, 92 g of a 50 mass% aqueous hypophosphorous acid solution was added to the aqueous solution at 45 ° C. After the addition, stirring was continued for 30 minutes at 45 ° C. to obtain a suspension.

遠心分離によって懸濁液中の凝集物を沈殿させ、沈殿物を分離した。該沈殿物を蒸留水の400gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。この操作を2回行った。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。
水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。
The aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated. The precipitate was redispersed in 400 g of distilled water, and then the aggregate was precipitated again by centrifugation to separate the precipitate. This operation was performed twice. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles.
The average particle diameter and phosphorus content of the copper hydride nanoparticles were measured. The results are shown in Table 1.

水素化銅ナノ粒子の0.7gと金属銅粒子(三井金属鉱業社製、1400YP、平均粒子径:7μm)の6.3gをそれぞれ2−プロパノールの10gに懸濁させ、両者を混合した。混合した懸濁液中の2−プロパノールを減圧下に置き、2−プロパノールを除去し、水素化銅と金属銅粒子の複合体を形成した。この複合体を非晶質ポリエステル樹脂(東洋紡績社製、バイロン103)の0.9gをシクロヘキサノン(純正化学社製、特級)の1.1gに溶解させた樹脂バインダ溶液の2.0gに加えた。該混合物を乳鉢中で混ぜ合わせた後、室温で減圧下に置き、シクロヘキサノンを除去し、金属ペーストを得た。   0.7 g of copper hydride nanoparticles and 6.3 g of metallic copper particles (Mitsui Metal Mining Co., Ltd., 1400 YP, average particle size: 7 μm) were suspended in 10 g of 2-propanol, respectively, and both were mixed. 2-Propanol in the mixed suspension was placed under reduced pressure to remove 2-propanol to form a composite of copper hydride and metallic copper particles. This composite was added to 2.0 g of a resin binder solution obtained by dissolving 0.9 g of amorphous polyester resin (byron 103, manufactured by Toyobo Co., Ltd.) in 1.1 g of cyclohexanone (made by Junsei Chemical Co., Ltd., special grade). . The mixture was mixed in a mortar and then placed under reduced pressure at room temperature to remove cyclohexanone and obtain a metal paste.

金属ペーストをガラス基板に塗布し、窒素雰囲気中、150℃で1時間焼成し、厚さ4μmの金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。金属膜の体積抵抗率を測定した。結果を表1に示す。
また、金属ペーストを、空気中で5日間保存後にガラス基板に塗布し、窒素雰囲気中、150℃で1時間焼成し、厚さ4μmの金属膜を形成した。金属膜の体積抵抗率を測定した。結果を表1に示す。
A metal paste was applied to a glass substrate and baked at 150 ° C. for 1 hour in a nitrogen atmosphere to form a metal film having a thickness of 4 μm. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured. The results are shown in Table 1.
In addition, the metal paste was applied to a glass substrate after being stored in the air for 5 days and baked at 150 ° C. for 1 hour in a nitrogen atmosphere to form a metal film having a thickness of 4 μm. The volume resistivity of the metal film was measured. The results are shown in Table 1.

〔例2〕
精製回数を2回から5回に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。精製回数を増やしても、リン含有量に変化はなかった。
[Example 2]
A purified precipitate was obtained in the same manner as in Example 1 except that the number of purifications was changed from 2 to 5. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 1. Increasing the number of purifications did not change the phosphorus content.

例2の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表1に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 2 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 1.

〔例3〕
反応時間を30分から15分に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。
[Example 3]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 15 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 1.

例3の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表1に示す。   A metal paste was prepared in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 3 were used, and a metal film was formed. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 1.

〔例4〕
反応時間を30分から60分に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。
[Example 4]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 60 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 1.

例4の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表1に示す。   A metal paste was prepared in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 4 were used, and a metal film was formed. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 1.

〔例5〕
反応時間を30分から45分に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。
[Example 5]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 45 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 1.

例5の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表1に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 5 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 1.

〔例6〕
反応時間を30分から20分に変更した以外は、例1と同様にして精製された沈殿物を得た。沈殿物を窒素中、70℃で1時間加熱した。加熱後の生成物についてX線回折で同定を行ったところ、金属銅ナノ粒子であることが確認された。また、金属銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表1に示す。
[Example 6]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 20 minutes. The precipitate was heated in nitrogen at 70 ° C. for 1 hour. When the product after heating was identified by X-ray diffraction, it was confirmed to be metallic copper nanoparticles. Moreover, the average particle diameter and phosphorus content of the metallic copper nanoparticles were measured. The results are shown in Table 1.

例6の金属銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表1に示す。   A metal paste was prepared in the same manner as in Example 1 except that the metal copper nanoparticles of Example 6 were used, and a metal film was formed. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 1.

〔例7〕
市販の金属銅ナノ粒子(石原産業社製、MD50、平均粒子径:50nm)の10gを、ピロリン酸ナトリウムの0.45gを蒸留水30gに溶解したリン酸塩含有水溶液に投入した後、窒素中、50℃で30分間撹拌した。遠心分離によって懸濁液中の凝集物を沈殿させ、沈殿物を分離した。該沈殿物を蒸留水の40gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。精製後の沈殿物についてX線回折で同定を行ったところ、金属銅ナノ粒子であることが確認された。また、金属銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表2に示す。
[Example 7]
After putting 10 g of commercially available metal copper nanoparticles (Ishihara Sangyo Co., Ltd., MD50, average particle size: 50 nm) into a phosphate-containing aqueous solution in which 0.45 g of sodium pyrophosphate was dissolved in 30 g of distilled water, And stirred at 50 ° C. for 30 minutes. The aggregate in the suspension was precipitated by centrifugation, and the precipitate was separated. The precipitate was redispersed in 40 g of distilled water, and then the aggregate was precipitated again by centrifugation to separate the precipitate. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be metallic copper nanoparticles. Moreover, the average particle diameter and phosphorus content of the metallic copper nanoparticles were measured. The results are shown in Table 2.

例7の金属銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表2に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the metal copper nanoparticles of Example 7 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 2.

〔例8〕
精製回数を2回から0回に変更した以外は、例1と同様にして沈殿物を得た。沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表2に示す。
[Example 8]
A precipitate was obtained in the same manner as in Example 1 except that the number of purifications was changed from 2 to 0. When the precipitate was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 2.

例8の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表2に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 8 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 2.

〔例9〕
反応時間を30分から10分に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表2に示す。
[Example 9]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 10 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 2.

例9の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜についてX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表2に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 9 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 2.

〔例10〕
反応時間を30分から120分に変更した以外は、例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、金属銅ナノ粒子であることが確認された。また、金属銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表2に示す。
[Example 10]
A purified precipitate was obtained in the same manner as in Example 1 except that the reaction time was changed from 30 minutes to 120 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be metallic copper nanoparticles. Moreover, the average particle diameter and phosphorus content of the metallic copper nanoparticles were measured. The results are shown in Table 2.

例10の金属銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜をX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表2に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the metal copper nanoparticles of Example 10 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 2.

〔例11〕
添加する50質量%の次亜リン酸水溶液を92gから80gに変更し、反応時間を30分から60分に変更した以外は例1と同様にして精製された沈殿物を得た。精製後の沈殿物についてX線回折で同定を行ったところ、水素化銅ナノ粒子であることが確認された。また、水素化銅ナノ粒子の平均粒子径、リン含有量を測定した。結果を表2に示す。
[Example 11]
A purified precipitate was obtained in the same manner as in Example 1 except that the 50 mass% hypophosphorous acid aqueous solution to be added was changed from 92 g to 80 g and the reaction time was changed from 30 minutes to 60 minutes. When the precipitate after purification was identified by X-ray diffraction, it was confirmed to be copper hydride nanoparticles. Moreover, the average particle diameter and phosphorus content of the copper hydride nanoparticle were measured. The results are shown in Table 2.

例11の水素化銅ナノ粒子を用いた以外は、例1と同様にして金属ペーストを調製し、金属膜を形成した。金属膜をX線回折で同定を行ったところ、金属銅であることが確認された。例1と同様にして金属膜の体積抵抗率を測定した。結果を表2に示す。   A metal paste was prepared and a metal film was formed in the same manner as in Example 1 except that the copper hydride nanoparticles of Example 11 were used. When the metal film was identified by X-ray diffraction, it was confirmed to be metallic copper. The volume resistivity of the metal film was measured in the same manner as in Example 1. The results are shown in Table 2.

Figure 2010059469
Figure 2010059469

Figure 2010059469
Figure 2010059469

本発明の銅ナノ粒子および金属ペーストは、様々な用途に利用でき、たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。   The copper nanoparticles and metal paste of the present invention can be used for various applications, such as formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, bonding between printed wiring boards and electronic components, etc. Available for use.

Claims (4)

平均粒子径が10〜100nmであり、銅ナノ粒子の100質量%のうちリンを0.6〜5.0質量%含む銅ナノ粒子を製造する方法であって、
下記の工程(a)および工程(b)を有する、銅ナノ粒子の製造方法。
(a)水溶性銅化合物を水に溶解して、銅イオンを含む水溶液を調製する工程。
(b)該水溶液を30℃以上に加熱し、次亜リン酸によって銅イオンを還元して銅ナノ粒子を生成させる工程。
An average particle diameter is 10 to 100 nm, and a method for producing copper nanoparticles containing phosphorus in an amount of 0.6 to 5.0% by mass of 100% by mass of the copper nanoparticles,
The manufacturing method of a copper nanoparticle which has the following process (a) and process (b).
(A) A step of preparing an aqueous solution containing copper ions by dissolving a water-soluble copper compound in water.
(B) A step of heating the aqueous solution to 30 ° C. or higher and reducing copper ions with hypophosphorous acid to produce copper nanoparticles.
前記銅ナノ粒子が、水素化銅ナノ粒子または金属銅ナノ粒子である、請求項1記載の銅ナノ粒子の製造方法。   The manufacturing method of the copper nanoparticle of Claim 1 whose said copper nanoparticle is a copper hydride nanoparticle or a metal copper nanoparticle. 請求項1に記載の製造方法で得られた銅ナノ粒子と、
平均粒子径が0.5〜20μmである金属フィラーと、
樹脂バインダと
を含む、金属ペースト。
Copper nanoparticles obtained by the production method according to claim 1,
A metal filler having an average particle size of 0.5 to 20 μm;
A metal paste containing a resin binder.
基材と、
該基材上に、請求項3に記載の金属ペーストを塗布、焼成して形成された金属膜と
を有する、物品。
A substrate;
An article comprising: a metal film formed by applying and baking the metal paste according to claim 3 on the substrate.
JP2008225803A 2008-09-03 2008-09-03 Method for producing copper nanoparticle, metal paste and article having metal film Withdrawn JP2010059469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225803A JP2010059469A (en) 2008-09-03 2008-09-03 Method for producing copper nanoparticle, metal paste and article having metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225803A JP2010059469A (en) 2008-09-03 2008-09-03 Method for producing copper nanoparticle, metal paste and article having metal film

Publications (1)

Publication Number Publication Date
JP2010059469A true JP2010059469A (en) 2010-03-18

Family

ID=42186598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225803A Withdrawn JP2010059469A (en) 2008-09-03 2008-09-03 Method for producing copper nanoparticle, metal paste and article having metal film

Country Status (1)

Country Link
JP (1) JP2010059469A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277831A1 (en) * 2010-01-25 2011-11-17 Hitachi Chemical Co., Ltd. Paste composition for electrode and photovoltaic cell
JP2011253867A (en) * 2010-06-01 2011-12-15 Hitachi Chem Co Ltd Paste composition for electrode formation having donor element diffusion function, solar cell, and manufacturing method of solar cell
WO2012137688A1 (en) * 2011-04-07 2012-10-11 日立化成工業株式会社 Paste composition for electrodes, and solar cell
JP2012227182A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Element, solar cell, and paste composition for electrode
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JP2012227184A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
JP2012227185A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
WO2013012071A1 (en) * 2011-07-21 2013-01-24 日立化成工業株式会社 Electrically conductive material
WO2013015172A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
WO2013015285A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
JP2013026580A (en) * 2011-07-25 2013-02-04 Hitachi Chem Co Ltd Element and solar battery
JP2013033751A (en) * 2012-10-09 2013-02-14 Hitachi Chemical Co Ltd Paste composition for electrode, and solar cell
CN103979496A (en) * 2014-04-30 2014-08-13 北京理工大学 Antioxidation method of light rare earth metal hydride
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2015144126A (en) * 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2015188089A (en) * 2015-04-30 2015-10-29 日立化成株式会社 Device and solar battery
JP2015195223A (en) * 2015-07-15 2015-11-05 日立化成株式会社 Paste composition for electrode, solar cell element, and solar cell
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
JP2016176133A (en) * 2015-03-23 2016-10-06 株式会社村田製作所 Copper powder and conductive paste using the copper powder
WO2018003399A1 (en) * 2016-06-30 2018-01-04 株式会社コイネックス Copper wiring and manufacturing method thereof, and electronic apparatus, touch pad and touch panel using same
JP2019196510A (en) * 2018-05-08 2019-11-14 石原ケミカル株式会社 Copper nano-powder, copper nano-ink, and conductive film forming method
WO2022150935A1 (en) * 2021-01-13 2022-07-21 Nano Biotechnology Chile Spa Copper nanoparticles and preparation method, nanopolymers comprising same, disinfectant composition and surface-protecting antimicrobial adhesive film

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277831A1 (en) * 2010-01-25 2011-11-17 Hitachi Chemical Co., Ltd. Paste composition for electrode and photovoltaic cell
US9390829B2 (en) * 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2011253867A (en) * 2010-06-01 2011-12-15 Hitachi Chem Co Ltd Paste composition for electrode formation having donor element diffusion function, solar cell, and manufacturing method of solar cell
EP2696353A4 (en) * 2011-04-07 2015-01-14 Hitachi Chemical Co Ltd Paste composition for electrodes, and solar cell
TWI570748B (en) * 2011-04-07 2017-02-11 日立化成股份有限公司 Paste composition for electrode and photovoltaic cell
TWI450405B (en) * 2011-04-07 2014-08-21 Paste composition for electrode and photovoltaic cell
JP2012221703A (en) * 2011-04-07 2012-11-12 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
EP2696353A1 (en) * 2011-04-07 2014-02-12 Hitachi Chemical Company, Ltd. Paste composition for electrodes, and solar cell
CN102934174A (en) * 2011-04-07 2013-02-13 日立化成工业株式会社 Paste composition for electrodes, and solar cell
WO2012137688A1 (en) * 2011-04-07 2012-10-11 日立化成工業株式会社 Paste composition for electrodes, and solar cell
JP2012227185A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JP2012227182A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Element, solar cell, and paste composition for electrode
JP2012227184A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
JP2012226837A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, solar cell element, and solar cell
JPWO2013012071A1 (en) * 2011-07-21 2015-02-23 日立化成株式会社 Conductive material
CN103563011A (en) * 2011-07-21 2014-02-05 日立化成株式会社 Electrically conductive material
WO2013012071A1 (en) * 2011-07-21 2013-01-24 日立化成工業株式会社 Electrically conductive material
WO2013015172A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
JPWO2013015285A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Element and solar cell
JP2013026580A (en) * 2011-07-25 2013-02-04 Hitachi Chem Co Ltd Element and solar battery
WO2013015285A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Element and solar cell
US9240502B2 (en) 2011-07-25 2016-01-19 Hitachi Chemical Company, Ltd. Element and photovoltaic cell
JP2013033751A (en) * 2012-10-09 2013-02-14 Hitachi Chemical Co Ltd Paste composition for electrode, and solar cell
CN103979496A (en) * 2014-04-30 2014-08-13 北京理工大学 Antioxidation method of light rare earth metal hydride
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2015144126A (en) * 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2016176133A (en) * 2015-03-23 2016-10-06 株式会社村田製作所 Copper powder and conductive paste using the copper powder
JP2015188089A (en) * 2015-04-30 2015-10-29 日立化成株式会社 Device and solar battery
JP2015195223A (en) * 2015-07-15 2015-11-05 日立化成株式会社 Paste composition for electrode, solar cell element, and solar cell
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
WO2018003399A1 (en) * 2016-06-30 2018-01-04 株式会社コイネックス Copper wiring and manufacturing method thereof, and electronic apparatus, touch pad and touch panel using same
JPWO2018003399A1 (en) * 2016-06-30 2018-07-05 株式会社コイネックス Copper wiring and electronic equipment, touchpad, touch panel using the same
JP2019196510A (en) * 2018-05-08 2019-11-14 石原ケミカル株式会社 Copper nano-powder, copper nano-ink, and conductive film forming method
WO2022150935A1 (en) * 2021-01-13 2022-07-21 Nano Biotechnology Chile Spa Copper nanoparticles and preparation method, nanopolymers comprising same, disinfectant composition and surface-protecting antimicrobial adhesive film

Similar Documents

Publication Publication Date Title
JP2010059469A (en) Method for producing copper nanoparticle, metal paste and article having metal film
WO2010032841A1 (en) Conductive filler, conductive paste and article having conductive film
JPWO2009116349A1 (en) Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
TWI510592B (en) Method for manufacturing conductive copper particles
TWI501260B (en) Conductive paste and substrate with conductive film
WO2016104347A1 (en) Substrate for printed wiring boards and method for producing substrate for printed wiring boards
WO2007105636A1 (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
US20170213615A1 (en) Metal nanoparticle dispersion and metal coating film
WO2016039314A1 (en) Printed circuit board substrate, printed circuit board, and production method for printed circuit board substrate
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP5593699B2 (en) Copper hydride nanoparticles, method for producing the same, metal paste and article
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP6484026B2 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
JP5410850B2 (en) Method for producing copper composite particles, method for producing composite metal copper particles, method for producing copper paste and metal copper conductor
JP2012140661A (en) Flat copper particle
JP2018076594A (en) Copper powder
JP5439995B2 (en) Method for producing surface-modified copper particles, composition for forming conductor, method for producing conductor film and article
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP7302350B2 (en) Copper nanoink, substrate for printed wiring board, and method for producing copper nanoink
JP2015056392A (en) Production of electroconductive paste material and production method
JP2020031196A (en) Copper nano ink, substrate for printed wiring board, and method of manufacturing copper nano ink
WO2023100622A1 (en) Printed-wiring-board substrate
JP6111170B2 (en) Conductive film forming composition and method for producing conductive film using the same
KR100784762B1 (en) Conductive metal paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120704