WO2012161201A1 - Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film - Google Patents

Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film Download PDF

Info

Publication number
WO2012161201A1
WO2012161201A1 PCT/JP2012/063100 JP2012063100W WO2012161201A1 WO 2012161201 A1 WO2012161201 A1 WO 2012161201A1 JP 2012063100 W JP2012063100 W JP 2012063100W WO 2012161201 A1 WO2012161201 A1 WO 2012161201A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductive paste
particles
copper particles
conductive film
Prior art date
Application number
PCT/JP2012/063100
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 諏訪
平社 英之
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137030588A priority Critical patent/KR20140038413A/en
Priority to JP2013516387A priority patent/JPWO2012161201A1/en
Priority to CN201280025384.1A priority patent/CN103582918A/en
Publication of WO2012161201A1 publication Critical patent/WO2012161201A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive paste, a base material with a conductive film using the same, and a method for manufacturing a base material with a conductive film.
  • a method of using a conductive paste for forming a wiring conductor such as an electronic component or a printed wiring board (printed circuit board) is known.
  • a conductive paste is applied in a desired pattern shape on an insulating substrate made of glass, ceramics, etc., and then heated to 150 ° C. or higher to be baked to form a wiring pattern. It is done by.
  • a silver paste mainly composed of silver (Ag) was mainly applied from the viewpoint of ensuring high conductivity.
  • ion migration silver electrodeposition
  • ion migration in which silver atoms are ionized and moved by being attracted by an electric field is likely to occur. If ion migration occurs in the wiring pattern, problems such as a short circuit between the wirings occur, which may hinder the reliability of the wiring board.
  • the conductive film formed by baking the copper paste has a problem that the volume resistivity tends to be high due to the influence of the oxide film.
  • the present invention has been made to solve the above-described problems, and is a conductive film that can be cured at a lower temperature than before to suppress the formation of an oxide film and can maintain a low volume resistivity for a long period of time. It is an object to provide a conductive paste capable of forming a film. Moreover, this invention aims at provision of the base material with the electrically conductive film which has the electrically conductive film using the said electrically conductive paste.
  • the present invention provides the following conductive paste, a substrate with a conductive film, and a method for producing a substrate with a conductive film.
  • a chelating agent (B) comprising a compound having a stability constant logK Cu of 5 to 15 between copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L, and a thermosetting resin
  • a conductive paste comprising (C) and an ester or amide (D) of an organic acid having a pKa of 1 to 4.
  • the copper particles (A) are composite metal copper particles in which metal copper fine particles having an average primary particle diameter of 1 to 20 nm are aggregated and adhered to the surface of the metal copper particles having an average primary particle diameter of 0.3 to 20 ⁇ m.
  • the functional group (a) containing a nitrogen atom and the functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring.
  • the conductive paste according to (5), wherein the functional group (b) containing an atom having a lone electron pair other than the nitrogen atom is a hydroxyl group or a carboxyl group.
  • the conductive paste according to (5) or (6), wherein the nitrogen atom and an atom having a lone electron pair other than the nitrogen atom are bonded via two or three atoms.
  • the chelating agent (B) is at least one selected from the group consisting of salicylhydroxamic acid, salicylaldoxime and o-aminophenol, according to any one of (1) to (7) Conductive paste.
  • thermosetting resin (C) is at least one selected from the group consisting of a phenol resin, a melamine resin, and a urea resin.
  • the organic acid ester or amide (D) is at least one selected from the group consisting of formamide, methyl salicylate, dimethyl oxalate, dimethyl malonate and dimethyl maleate (1) to (9) The electrically conductive paste as described in any one of these.
  • the content of the chelating agent (B) is 0.01 to 1 part by mass with respect to 100 parts by mass of the copper particles (A), according to any one of (1) to (10).
  • the content of the thermosetting resin (C) is 5 to 50 parts by mass with respect to 100 parts by mass of the copper particles (A), according to any one of (1) to (11).
  • the content of the organic acid ester or amide (D) is 0.5 to 15 parts by mass with respect to 100 parts by mass of the thermosetting resin (C).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonate a polycarbonate
  • the conductive paste of the present invention can be cured at a temperature lower than the conventional temperature of less than 150 ° C., the formation of copper oxide is suppressed in a high humidity environment, and a low volume resistivity can be maintained for a long time.
  • a conductive film can be formed.
  • a resin or the like is used as an insulating base material, which is highly reliable as a wiring board or the like, and with a conductive film in which an increase in volume resistivity due to formation of an oxide film is suppressed.
  • a substrate can be obtained.
  • the conductive paste according to an embodiment of the present invention comprises a chelating agent (A) comprising a compound having a stability constant logK Cu of 5 to 15 between copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L. B), a thermosetting resin (C), and an ester or amide (D) of an organic acid having a pKa of 1 to 4, respectively.
  • A chelating agent
  • A comprising a compound having a stability constant logK Cu of 5 to 15 between copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L.
  • B a thermosetting resin
  • D ester or amide
  • the stability constant logK Cu with copper ions at 25 ° C. and ionic strength 0.1 mol / L is within a predetermined range as the chelating agent (B) together with the copper particles (A). Since a certain compound is blended, the amount of copper ions that react with oxygen or the like contained in the atmosphere can be reduced, and a conductive paste in which the formation of copper oxide is suppressed can be obtained.
  • the temperature is less than 150 ° C., more specifically 120 By heating at a low temperature of ⁇ 140 ° C., the conductive paste can be sufficiently cured, the amount of copper ions reacting with oxygen contained in the atmosphere can be reduced, and the formation of copper oxide is suppressed. It can be.
  • an oxide film containing copper oxide as a main component is difficult to form, and therefore, with a conductive film that suppresses an increase in volume resistivity even in a high humidity environment. It can be a substrate.
  • the conductive paste of the embodiment contains copper particles (A), a chelating agent (B), a thermosetting resin (C), and an ester or amide (D) of an organic acid having a pKa of 1 to 4.
  • A copper particles
  • B a chelating agent
  • C thermosetting resin
  • D ester or amide
  • the copper particles (A) serve as a conductive component of the conductive paste, and the surface oxygen concentration ratio O / Cu obtained by X-ray photoelectron spectroscopy is 0.5 or less.
  • the surface oxygen concentration ratio O / Cu obtained by X-ray photoelectron spectroscopy is simply referred to as “surface oxygen concentration ratio O / Cu”.
  • the surface oxygen concentration ratio O / Cu is represented by the ratio of the surface oxygen concentration (atomic%) to the surface copper concentration (atomic%) of the copper particles measured by X-ray photoelectron spectroscopy.
  • surface copper concentration (atomic%)” and “surface oxygen concentration (atomic%)” are respectively defined for the particle surface layer in the range from the copper particle surface to the depth of about 3 nm from the center to the center. These are measured values obtained by performing X-ray photoelectron spectroscopic analysis.
  • the range from the surface of the copper particle to the depth of about 3 nm toward the center is a range in which the surface state of the copper particle can be sufficiently grasped by measuring the concentration of each component in the particle region in this range.
  • the surface oxygen concentration ratio O / Cu of the copper particles (A) exceeds 0.5, the amount of copper oxide present on the surface of the copper particles (A) is excessive, and when a conductive film is formed, the contact resistance between the particles Is large and the volume resistivity may be high.
  • the copper particles (A) having a surface oxygen concentration ratio O / Cu of 0.5 or less the contact resistance between the copper particles can be reduced, and the conductivity of the conductive film can be improved.
  • the surface oxygen concentration ratio O / Cu of the copper particles (A) is preferably 0.3 or less.
  • the copper particles (A) have an oxygen concentration contained in the whole particles of 700 ppm or less.
  • the oxygen concentration contained in the copper particles can be measured using, for example, an oxygen concentration meter.
  • the copper particles (A) various copper particles can be used as long as the surface oxygen concentration ratio O / Cu is 0.5 or less.
  • the copper particles (A) may be metal copper particles, copper hydride fine particles, or metal copper fine particles obtained by heating copper hydride fine particles (hereinafter also referred to as copper fine particles).
  • copper fine particles metal copper particles, copper hydride fine particles, or metal copper fine particles obtained by heating copper hydride fine particles (hereinafter also referred to as copper fine particles).
  • the composite particle of the form which these metal copper particles and copper fine particle compounded may be sufficient. Examples of the composite particles include those in which copper fine particles are attached or bonded to the surface of metal copper particles. Details of the composite particles will be described later.
  • the average particle diameter of the copper particles (A) is preferably 0.01 to 20 ⁇ m.
  • the average particle diameter of the copper particles (A) can be appropriately adjusted within the range of 0.01 to 20 ⁇ m according to the shape of the copper particles (A). If the average particle diameter of a copper particle (A) is 0.01 micrometer or more, the flow characteristic of the electrically conductive paste containing this copper particle will become favorable. Moreover, if the average particle diameter of a copper particle (A) is 20 micrometers or less, it will become easy to produce fine wiring with the electrically conductive paste containing this copper particle.
  • the average particle size (average primary particle size) is preferably 0.3 to 20 ⁇ m. Further, when the copper particles (A) are composed only of copper fine particles, the average particle diameter of the aggregated particles is preferably 0.01 to 1 ⁇ m, and more preferably 0.02 to 0.4 ⁇ m. When the copper particles (A) contain metallic copper particles and the average particle size (average primary particle size) is 0.3 ⁇ m or more, the flow characteristics of the conductive paste containing the copper particles are good. Further, when the copper particles (A) are composed only of copper fine particles and the average particle diameter of the aggregated particles is 0.01 ⁇ m or more, the flow characteristics of the conductive paste containing the copper particles are good.
  • the copper particles (A) contain metallic copper particles and the average particle size (average primary particle size) is 20 ⁇ m or less, the conductive paste containing these copper particles makes it easy to produce fine wiring. Further, when the copper particles (A) are composed only of copper fine particles and the average particle diameter of the aggregated particles is 1 ⁇ m or less, it becomes easy to produce fine wiring by the conductive paste containing the copper particles.
  • the copper particles (A) having a surface oxygen concentration ratio O / Cu of 0.5 or less for example, the following copper particles (A1) to (A5) can be preferably used.
  • A1 Metallic copper particles having an average primary particle diameter of 0.3 to 20 ⁇ m.
  • A2) Metallic copper particles having an average primary particle size of 0.3 to 20 ⁇ m and copper hydride fine particles adhering to the surface of the metallic copper particles, the average particle of the aggregated particles Copper composite particles having copper hydride fine particles having a diameter of 20 to 400 nm.
  • Copper hydride fine particles, wherein the agglomerated particles have an average particle size of 10 nm to 1 ⁇ m.
  • metal copper particles the metal copper particles having an average primary particle size of 0.3 to 20 ⁇ m, and metal copper particles obtained by heating the copper hydride particles adhering to the surface of the metal copper particles, Composite metal copper particles having metal copper fine particles having an average particle diameter of 20 to 400 nm of the aggregated particles.
  • the composite metal copper particles (A4) are obtained by converting the copper hydride fine particles of the copper composite particles (A2) into metal copper fine particles by heat treatment.
  • the metal copper fine particles (A5) are obtained by converting the copper hydride fine particles (A3) by heat treatment.
  • the average particle size is determined as follows. That is, the average primary particle diameter of the metallic copper particles was measured by measuring the Feret diameter of 100 particles randomly selected from a scanning electron microscope (hereinafter referred to as “SEM”) image. It is calculated by averaging the diameters. The average particle diameter of the aggregated particles made of copper fine particles was measured by measuring the Feret diameter of 100 particles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image. The average particle size is calculated. Further, for example, in the case of a composite particle including copper particles that are metal copper particles and copper hydride fine particles attached to the surface of the copper particles, such as copper composite particles (A2), the entire composite particles are obtained by SEM. Observing, measuring the Feret diameter of the whole particle including the copper fine particles, and averaging the obtained particle diameter.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the composite metal copper particles (A4) in the present invention are obtained by attaching metal copper fine particles to at least a part of the surface of the metal copper particles.
  • “Composite metal copper particles” are obtained by heating “copper composite particles” in which copper hydride fine particles adhere to the surface of metal copper particles, and converting the copper hydride fine particles into metal copper fine particles.
  • the presence or absence of adhesion of fine particles on the surface of the metal copper particles can be confirmed by observing the SEM image.
  • the copper hydride fine particles attached to the surface of the metal copper particles can be identified using an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).
  • metal copper particles of the copper composite particles known copper particles generally used for conductive paste can be used.
  • the metal copper particles may have a spherical shape or a plate shape.
  • the average particle diameter of the metal copper particles of the copper composite particles is preferably 0.3 to 20 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the average particle size of the metallic copper particles is less than 0.3 ⁇ m, sufficient flow characteristics cannot be obtained when a conductive paste is obtained.
  • the average particle size of the metallic copper particles exceeds 20 ⁇ m, it may be difficult to produce fine wiring using the obtained conductive paste.
  • the average particle size of the metallic copper particles is more preferably 1 to 10 ⁇ m.
  • the average particle diameter of the metal copper particles is calculated by measuring the Feret diameters of 100 metal copper particles randomly selected from the SEM image and averaging the measured values.
  • the copper hydride fine particles of the copper composite particles exist mainly in a state where the copper hydride fine particles of about 1 to 20 nm are aggregated.
  • the particle shape of the copper hydride fine particles may be spherical or plate-shaped.
  • the average particle diameter of the aggregated particles of copper hydride fine particles is preferably 20 to 400 nm, more preferably 30 to 300 nm, and even more preferably 50 to 200 nm. Particularly preferred is 80 to 150 nm.
  • the average particle size of the aggregated particles of copper hydride fine particles is less than 20 nm, the copper hydride fine particles are likely to be fused and grown, and when a conductive film is formed, defects such as cracks due to volume shrinkage occur. There is a fear.
  • the average particle diameter of the copper hydride fine particles is calculated by measuring the Feret diameter of 100 copper hydride fine particles randomly selected from the TEM image and averaging the measured values.
  • the amount of the copper hydride fine particles adhering to the surface of the metal copper particles is preferably 5 to 50% by mass, more preferably 10 to 35% by mass of the amount of the metal copper particles.
  • the amount of the copper hydride fine particles is less than 5% by mass with respect to the amount of the metal copper particles, the conductive path is not sufficiently formed between the metal copper particles, and the effect of reducing the volume resistivity of the conductive film is sufficient. May not be obtained.
  • the amount of copper hydride fine particles exceeds 50% by mass with respect to the amount of metal copper particles, it becomes difficult to ensure sufficient fluidity as a conductive paste.
  • the amount of copper hydride fine particles adhering to the surface of the metal copper particles is, for example, the copper ion concentration in the water-soluble copper compound solution before adding the reducing agent and the reaction liquid after the completion of copper hydride fine particle production. It can be calculated from the difference from the remaining copper ion concentration.
  • the composite metal copper particles can reliably form a conductive path by the metal copper fine particles present between the metal copper particles, and the volume resistivity when the conductive metal copper particles are formed can be reduced. Further, as described above, by converting the copper hydride fine particles to the metal copper fine particles, the metal copper fine particles can be hardly separated from the metal copper particles. Therefore, it can be set as the electrically conductive paste by which the raise of the viscosity of the electrically conductive paste by the metal copper fine particle being liberated in the electrically conductive paste was suppressed.
  • the heat treatment of the copper composite particles is preferably performed at a temperature of 60 to 120 ° C, more preferably 60 to 100 ° C, and further preferably 60 to 90 ° C.
  • the heating temperature exceeds 120 ° C.
  • fusion between the metal copper fine particles is likely to occur, and the volume resistivity when the conductive film is formed may be increased.
  • the heating temperature is less than 60 ° C., the time required for the heat treatment becomes longer, which is not preferable from the viewpoint of production cost.
  • 3 mass% or less is preferable and, as for the residual moisture content of the composite metal copper particle obtained after heat processing, 1.5 mass% or less is more preferable.
  • the heat treatment of the copper composite particles is preferably performed under a reduced pressure of ⁇ 101 to ⁇ 50 kPa as a relative pressure.
  • a pressure higher than ⁇ 50 kPa the time required for drying becomes long, which is not preferable from the viewpoint of production cost.
  • the pressure during the heat treatment is less than ⁇ 101 kPa, it is necessary to use a large apparatus for removing excess solvent such as water and drying, which increases the manufacturing cost.
  • the average particle diameter of the metal copper particles in the “composite metal copper particles” is more preferably 1 to 10 ⁇ m.
  • the copper fine particles of the “composite metal copper particles” exist mainly in a state where copper fine particles of about 1 to 20 nm are aggregated, like the copper hydride fine particles in the copper composite particles.
  • the copper fine particles may have a spherical shape or a plate shape. If the average particle diameter of the aggregated particles of the copper fine particles is less than 20 nm, the copper fine particles are likely to be fused and grown, and there is a possibility that defects such as cracks accompanying volume shrinkage may occur when the conductive film is formed. On the other hand, if the average particle diameter of the aggregated particles of the copper fine particles exceeds 400 nm, the particle surface area is not sufficient, the surface melting phenomenon hardly occurs, and it becomes difficult to form a dense conductive film.
  • the average particle diameter of the aggregated particles of copper fine particles is more preferably 30 to 300 nm, and more preferably 50 to 200 nm. Particularly preferred is 80 to 150 nm.
  • the average particle diameter of the metallic copper particles is calculated by measuring the Feret diameters of 100 metallic copper particles randomly selected from the SEM image and averaging the measured values.
  • the average particle diameter of the copper fine particles is calculated by measuring the Feret diameter of 100 copper hydride fine particles randomly selected from the TEM image and averaging the measured values.
  • the copper particles (A) for example, “surface modified copper particles” obtained by reducing the surface of the copper particles can be suitably used.
  • the “surface-modified copper particles” in the present invention are obtained by reducing the surface of copper particles in a dispersion medium having a pH value of 3 or less.
  • “Surface modified copper particles” include, for example, (1) a step of dispersing copper particles in a dispersion medium to form a “copper dispersion”, and (2) a step of adjusting the pH value of the copper dispersion to a predetermined value or less. (3) It can be produced by a wet reduction method having the following steps (1) to (3) of adding a reducing agent to the copper dispersion.
  • the surface-modified copper particles obtained by the steps (1) to (3) are mainly composed of metallic copper particles.
  • the average primary particle diameter of the surface-modified copper particles is preferably 0.3 to 20 ⁇ m (metal copper particles (A1)).
  • metal copper particles (A1)) metal copper particles
  • the average primary particle diameter of the surface-modified copper particles is 20 ⁇ m or less, it becomes easy to produce a fine wiring by the conductive paste containing the copper particles.
  • the copper particle generally used as a conductive paste can be used for the copper particle disperse
  • the particle shape of the copper particles dispersed in the copper dispersion may be spherical or plate-shaped.
  • the average particle diameter of the copper particles dispersed in the copper dispersion is preferably 0.3 to 20 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the average particle diameter of the copper particles is obtained by measuring the Feret diameter of 100 metal copper particles randomly selected from the SEM image and calculating the average value.
  • the copper dispersion can be obtained by putting the above copper particles in powder form into a dispersion medium.
  • the concentration of copper particles in the copper dispersion is preferably 0.1 to 50% by mass.
  • concentration of the copper particles is less than 0.1% by mass, the amount of the dispersion medium contained in the copper dispersion becomes excessive, and the production efficiency may not be maintained at a sufficient level.
  • concentration of the copper particles exceeds 50% by mass, the influence of the aggregation between the particles becomes excessive, and the yield of the surface-modified copper particles may be reduced.
  • the concentration of the copper particles in the copper dispersion is in the range of 0.1 to 50% by mass, the surface-modified copper particles can be obtained in a high yield.
  • the dispersion medium for the copper dispersion is not particularly limited as long as it can disperse the copper particles, but those having high polarity can be suitably used.
  • the highly polar dispersion medium include water, alcohols such as methanol, ethanol and 2-propanol, glycols such as ethylene glycol, and a mixed medium obtained by mixing these.
  • water can be particularly preferably used.
  • the pH value of the copper dispersion liquid obtained by said (1) is adjusted.
  • the pH value can be adjusted by adding a pH adjuster to the copper dispersion.
  • An acid can be used as a pH adjuster for the copper dispersion.
  • the pH adjuster for the copper dispersion for example, carboxylic acids such as formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, and inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and the like can be suitably used.
  • the pH value of the copper dispersion is preferably 3 or less. By adjusting the pH value of the copper dispersion to 3 or less, the oxide film on the particle surface can be removed smoothly in the subsequent reduction treatment step, and the surface oxygen concentration of the resulting surface-modified copper particles can be reduced. . When the pH value of the dispersion exceeds 3, the effect of removing the oxide film formed on the copper particle surface cannot be sufficiently obtained, and the oxygen concentration on the copper particle surface may not be sufficiently reduced.
  • the pH value of the dispersion is preferably 0.5 or more. When the pH value of the dispersion is less than 0.5, copper ions are excessively eluted, and the surface modification of the copper particles may not proceed smoothly.
  • the pH value of the dispersion is more preferably from 0.5 to 2. If the pH value of the dispersion is 3 or less, the dispersion may be reduced as it is.
  • the reduction treatment is performed by adding a reducing agent to the copper dispersion whose pH value is adjusted.
  • the reducing agent added to the copper dispersion is at least selected from metal hydrides, hydride reducing agents, hypophosphorous acid, hypophosphites such as sodium hypophosphite, amine boranes such as dimethylamine borane, and formic acid.
  • metal hydrides include lithium hydride, potassium hydride, and calcium hydride.
  • Examples of the hydride reducing agent include lithium aluminum hydride, lithium borohydride, and sodium borohydride. Of these, hypophosphorous acid and sodium hypophosphite can be suitably used.
  • the copper oxide (Cu 2 O, CuO) present on the surface of the copper particles as the starting material can be reduced to copper atoms, thereby inhibiting conductivity. This can reduce the amount of copper oxide that becomes a factor.
  • the chelating agent (B) contained in the conductive paste of the embodiment of the present invention is composed of a compound that can coordinate with copper ions and form a complex with copper ions by the reaction represented by the following formula (1).
  • the stability constant logK Cu is an index indicating the strength of the binding force between the chelating agent and the metal, and can be obtained as a logarithmic value of the equilibrium constant K Cu in the reaction equation represented by the above formula (1).
  • K Cu can be obtained by the following formula (2).
  • a chelating agent (B) As a chelating agent (B), by compounding a compound having a stability constant logK Cu of 5 or more with copper ions, at least a part of the copper ions generated in the paste forms a complex with the chelating agent (B). I think that. Therefore, it is possible to reduce the amount of copper ions that react with moisture, oxygen, etc. (for example, O 2 , H 2 O, etc.) in the atmosphere, and to suppress the formation of copper oxide in the paste. In addition, since the chelating agent (B) is difficult to dissociate from copper ions, the state of the complex can be maintained for a long time even when left in a high humidity environment. Therefore, the conductive paste can form a conductive film in which an oxide film is hardly formed and an increase in volume resistivity is suppressed.
  • the stability constant logK Cu of the chelating agent (B) is less than 5, since the binding force to copper ions is not sufficient, the amount of copper ions that react with moisture, oxygen, etc. in the atmosphere cannot be sufficiently reduced, It becomes difficult to suppress the production of copper oxide. Moreover, when the stability number logK Cu of the chelating agent (B) exceeds 15, the binding force of the chelating agent (B) to the copper ions is too strong, which may inhibit the contact between the copper particles and reduce the conductivity. There is. This is presumably because the chelating agent (B) acts not only on the copper ions present on the surface of the copper particles but also on copper (metal copper).
  • the stability constant logK Cu is more preferably 7 to 14.
  • the functional group (a) containing a nitrogen atom and the functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring.
  • An aromatic compound in which the “nitrogen atom” of the functional group (a) and the “atom having a lone pair” of the functional group (b) are bonded via two or three atoms can be preferably used.
  • Examples of the atoms interposed between the “nitrogen atom” of the functional group (a) and the “atom having a lone pair” of the functional group (b) include a carbon atom. That is, as the chelating agent (B), among the aromatic compounds, the nitrogen atom of the functional group (a) and the atom having a lone pair of the functional group (b) have 2 or 3 carbon atoms. Those intervened and bonded are preferably used.
  • Suitable examples of the functional group (b) containing an atom other than a nitrogen atom having a lone electron pair include a hydroxyl group and a carboxyl group.
  • chelating agent (B) specifically, at least one selected from salicylhydroxamic acid, salicylaldoxime, and o-aminophenol can be used.
  • the content of the chelating agent (B) in the conductive paste is preferably 0.01 to 1 part by mass, more preferably 0.05 to 0.5 part by mass with respect to 100 parts by mass of the copper particles (A). preferable.
  • the content of the chelating agent (B) is less than 0.01 parts by mass, the effect of suppressing the increase in volume resistivity may not be sufficiently obtained when the conductive film is formed.
  • content of a chelating agent (B) exceeds 1 mass part, there exists a possibility that the contact of copper particles may be inhibited and electroconductivity may be reduced.
  • thermosetting resin (C) contained in the electrically conductive paste of embodiment of this invention, the well-known thermosetting resin used as a resin binder of a normal electrically conductive paste can be used.
  • thermosetting resin (C) a phenol resin, a melamine resin, a urea resin etc. can be used conveniently, for example. Among these, a phenol resin can be particularly preferably used. As the phenol resin, a novolac type phenol resin and a resol type phenol resin can be used, and among these, a resol type phenol resin can be particularly preferably used.
  • the above-mentioned thermosetting resin includes diallyl phthalate resin, unsaturated alkyd resin, epoxy resin, isocyanate resin, bismaleidotriazine resin, silicone resin and acrylic resin. You may contain suitably at least 1 type selected from resin.
  • the thermosetting resin (C) can be added as long as the cured resin component does not impair the conductivity.
  • the content of the thermosetting resin (C) in the conductive paste can be appropriately selected according to the ratio between the volume of the copper particles and the volume of the voids existing between the copper particles.
  • the amount is preferably 5 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the copper particles (A).
  • the content of the thermosetting resin (C) is less than 5 parts by mass, it becomes difficult to obtain sufficient flow characteristics as a conductive paste.
  • the content of the thermosetting resin (C) exceeds 50 parts by mass, contact between the copper particles is hindered by the cured resin component, and the volume resistivity of the conductor may be increased.
  • ⁇ Organic acid ester or amide (D)> In order to cure the ester or amide (D) of the organic acid contained in the conductive paste of the embodiment of the present invention at a temperature of less than 150 ° C. by promoting the curing of the thermosetting resin (C). Blended.
  • the organic acid constituting the ester or amide has a pKa of 1 to 4. If the pKa of the organic acid is less than 1, the storage stability of the conductive paste may be adversely affected. Moreover, when pKa of organic acid exceeds 4, the production
  • the pKa of the organic acid is more preferably 1 to 3.
  • Organic acids having a pKa of 1 to 4 include oxalic acid (1.27), maleic acid (1.92), malonic acid (2.86), salicylic acid (2.97), and fumaric acid (3.02). , Tartaric acid (3.06), citric acid (3.16), formic acid (3.76) and the like.
  • these organic acids having a pKa of 1 to 4 the reasons why esters or amides can be suitably used include the following.
  • Organic acid esters and amides are less reactive with metals compared to organic acids and therefore have little effect of corroding metals, and can suppress an increase in volume resistivity of the conductive film after curing.
  • the metal in the conductive paste may be corroded to increase the volume resistivity of the conductive film after curing.
  • Organic acid esters and amides have little effect on promoting the curing of the thermosetting resin in the paste when the paste is stored, and therefore have little adverse effect on the storage stability (pot life) of the conductive paste.
  • Examples of the ester or amide of the organic acid having a pKa of 1 to 4 include formamide, methyl salicylate, methyl formate, ethyl formate, dimethyl oxalate, dimethyl maleate, and dimethyl malonate. Although it is not limited to these, It is preferable that it is at least 1 sort (s) selected from these.
  • esters or amides of organic acids having a pKa of 1 to 4 esters or amides of organic acids not containing sulfur (S) can be preferably used. This is because S may react with copper to produce a sulfide, and even an organic acid ester or amide may adversely affect paste storage stability.
  • formamide, methyl salicylate, dimethyl oxalate, dimethyl malonate, and dimethyl maleate can be preferably used.
  • the content of the organic acid ester or amide (D) in the conductive paste is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the thermosetting resin (C). Is more preferable. If the content of the organic acid ester or amide (D) is less than 0.5 parts by mass, the effect of promoting the curing of the resin may not be sufficiently obtained. On the other hand, when content of the said organic acid ester or amide (D) exceeds 15 mass parts, there exists a possibility that the contact of copper particles may be inhibited and electroconductivity may be reduced.
  • the conductive paste of the present invention may contain a solvent and various additives (leveling agent, coupling agent, viscosity modifier, antioxidant, adhesive agent, etc.) in addition to the components (A) to (D).
  • additives leveling agent, coupling agent, viscosity modifier, antioxidant, adhesive agent, etc.
  • Other components such as.) May be included as long as the effects of the present invention are not impaired.
  • a solvent capable of dissolving the thermosetting resin in order to obtain a paste body having appropriate fluidity, it is preferable to contain a solvent capable of dissolving the thermosetting resin.
  • the solvent contained in the conductive paste examples include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl.
  • Ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and the like can be suitably used.
  • the amount of the solvent contained in the conductive paste is preferably 1 to 10% by mass with respect to the copper particles (A).
  • the conductive paste according to the embodiment of the present invention can be obtained by mixing the components (A) to (D) with other components such as a solvent.
  • the mixing of the components (A) to (D) can be carried out while heating at a temperature that does not cause curing of the thermosetting resin or volatilization of the solvent.
  • the temperature during mixing and stirring is preferably 10 to 40 ° C. More preferably, the temperature is 20 to 30 ° C.
  • the temperature at which the conductive paste is formed exceeds 40 ° C.
  • the thermosetting resin (C) may be cured in the paste or the particles may be fused. In order to prevent the copper particles from being oxidized during mixing, it is preferable to mix in a container substituted with an inert gas.
  • the conductive paste of the present invention described above, it is difficult to oxidize in the air, and it is possible to form a conductive film in which an increase in volume resistivity due to the formation of copper oxide is suppressed as compared with a conventional conductive paste.
  • the base material 10 with a conductive film of the present invention has a conductive film 12 formed by curing the above-described conductive paste on a base material 11.
  • This base material 10 with a conductive film is formed by applying the conductive paste to the surface of the base material 11 to form a conductive paste film, removing volatile components such as a solvent, and then the thermosetting resin (C ) Is cured to form the conductive film 12.
  • a glass substrate As the base material 11, a glass substrate, a plastic base material (for example, a film-like base material made of a polyimide film, a polyester film or the like), a fiber reinforced composite material (a glass fiber reinforced resin substrate or the like), a ceramic substrate, or the like is used. be able to.
  • the conductive paste of the present invention is used, the conductive film 12 is formed by curing the thermosetting resin (C) by heating at a temperature of less than 150 ° C. (for example, 120 to 140 ° C.), as will be described later. Therefore, a plastic substrate such as polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polycarbonate, or the like can be particularly preferably used.
  • Examples of the method for applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating. Among these, since a smooth wiring shape in which the occurrence of unevenness on the surface and side surfaces is suppressed can be efficiently formed on the substrate 11, the screen printing method is preferably used.
  • the curing of the thermosetting resin (C) can be performed by holding the substrate on which the conductive paste film is formed at a temperature of less than 150 ° C. (for example, 120 to 140 ° C.). By setting the curing temperature to 120 ° C. or higher, the thermosetting resin can be sufficiently cured. On the other hand, by setting the curing temperature to 140 ° C. or lower, curing can be performed without deforming the substrate even when a substrate such as a plastic film is used. Examples of the heating method include warm air heating, thermal radiation, and IR heating. Note that the conductive film may be formed in the air or in a nitrogen atmosphere with a small amount of oxygen.
  • the thickness of the conductive film 12 on the substrate 11 is preferably 1 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m, from the viewpoint of ensuring stable conductivity and maintaining the wiring shape. .
  • the volume resistivity of the conductive film 12 is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm or less. If the volume resistivity of the conductive film 12 exceeds 1.0 ⁇ 10 ⁇ 4 ⁇ cm, there is a possibility that sufficient conductivity cannot be obtained as a conductor for electronic equipment.
  • the conductive film 12 is formed using the conductive paste of the present invention described above, an oxide film made of copper oxide is hardly generated, and a conventional base material with a conductive film is formed. In comparison with, a substrate with a conductive film having a low volume resistivity and suppressed increase in volume resistivity even when used for a long time in a high humidity environment can be obtained.
  • Examples 1 to 4 are examples of the present invention, and examples 5 to 10 are comparative examples.
  • the copper particles were subjected to a reduction treatment to obtain copper particles (A) (surface modified copper particles). That is, first, 3.0 g of formic acid and 9.0 g of a 50 mass% hypophosphorous acid aqueous solution were put into a glass beaker, and the beaker was put in a water bath and kept at 40 ° C.
  • copper particles (trade name: “1400 YP”, average primary particle diameter: 7 ⁇ m, manufactured by Mitsui Mining & Smelting Co., Ltd.) are gradually added to this beaker and stirred for 30 minutes to obtain a “copper dispersion”. It was.
  • the obtained “copper dispersion liquid” was centrifuged at 3000 rpm for 10 minutes using a centrifuge to collect a precipitate. This precipitate was dispersed in 30 g of distilled water, and the aggregate was precipitated again by centrifugation, thereby separating the precipitate.
  • the obtained precipitate was heated at 80 ° C. for 60 minutes under a reduced pressure of ⁇ 35 kPa, and the residual water was volatilized and removed gradually to obtain copper particles (A-1) whose particle surfaces were modified. .
  • the surface oxygen concentration ratio O / Cu was calculated by dividing the obtained surface oxygen concentration by the surface copper concentration, the surface oxygen concentration ratio O / Cu of the copper particles (A-1) was 0.16.
  • the amount of oxygen in the copper particles (A-1) was 460 ppm as measured using an oximeter (manufactured by LECO, trade name: “ROH-600”).
  • Example 1 To a resin solution obtained by mixing 0.74 g of phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name: “Resitop PL 6220”, resin solid content: 58 mass%) and 0.43 g of ethylene glycol monobutyl ether acetate, 0. After adding 005 g and dissolving, 0.0215 g of formamide was added and dissolved. Next, 5.0 g of the copper particles (A-1) was blended in the obtained resin solution and mixed in a mortar to obtain a conductive paste 1.
  • phenol resin manufactured by Gunei Chemical Co., Ltd., trade name: “Resitop PL 6220”, resin solid content: 58 mass
  • 0.0215 g of formamide was added and dissolved.
  • 5.0 g of the copper particles (A-1) was blended in the obtained resin solution and mixed in a mortar to obtain a conductive paste 1.
  • This conductive paste 1 was applied to a wiring shape (band shape) having a width of 1 mm and a thickness of 20 ⁇ m on a PET substrate by a screen printing method, and heated at 130 ° C. for 15 minutes to cure the phenol resin.
  • the base material 1 with a conductive film having the conductive film 1 was formed.
  • Example 2 A conductive paste 2 was obtained in the same manner as in Example 1 except that 0.0215 g of formamide was changed to 0.0215 g of methyl salicylate. Subsequently, it replaced with the electrically conductive paste 1, and apply
  • Example 2 A conductive paste 2 was obtained in the same manner as in Example 1 except that 0.0215 g of formamide was changed to 0.0215 g of methyl salicylate. Subsequently, it replaced with the electrically conductive paste 1, and apply
  • Example 3 0.005 g of salicylhydroxamic acid was changed to 0.005 g of salicylaldoxime, and 0.0215 g of formamide was changed to 0.0215 g of dimethyl oxalate. Otherwise in the same manner as in Example 1, a conductive paste 3 was obtained. Subsequently, it replaced with the electrically conductive paste 1, and apply
  • Example 4 A conductive paste 4 was obtained in the same manner as in Example 3 except that 0.0215 g of dimethyl oxalate was changed to 0.0215 g of dimethyl maleate. Subsequently, it replaced with the electrically conductive paste 3, and applied the electrically conductive paste 4 on the PET board
  • Example 5 0.0215 g of formamide was not added to the resin solution. Otherwise in the same manner as in Example 1, a conductive paste 5 was obtained.
  • Example 6 A conductive paste 6 was obtained in the same manner as in Example 1 except that 0.0215 g of propylene carbonate was added to the resin solution instead of 0.0215 g of formamide.
  • Example 7 A conductive paste 7 was obtained in the same manner as in Example 1 except that 0.0215 g of phenyl acetate was added to the resin solution instead of 0.0215 g of formamide.
  • Example 8 A conductive paste 8 was obtained in the same manner as in Example 1 except that 0.0215 g of salicylic acid was added to the resin solution instead of 0.0215 g of formamide.
  • Example 9 A conductive paste 9 was obtained in the same manner as in Example 1 except that 0.0215 g of oxalic acid was added to the resin solution instead of 0.0215 g of formamide.
  • Example 10 A conductive paste 10 was obtained in the same manner as in Example 1 except that 0.0215 g of maleic acid was added to the resin solution instead of 0.0215 g of formamide.
  • conductive pastes 5 to 10 were respectively applied on a PET substrate and heated at 130 ° C. for 15 minutes to form conductive films 5 to 10. Otherwise in the same manner as in Example 1, substrates 5 to 10 with conductive film (Examples 5 to 10) were obtained.
  • the resistance values of the obtained conductive films 1 to 10 were measured using a resistance meter (trade name: “Milliohm Hitester” manufactured by Keithley) to determine the initial volume resistivity.
  • Durability test Durability tests were conducted on the substrates 1 to 10 with the conductive film in a high-temperature and high-humidity environment. That is, the resistance values of the conductive films 1 to 10 were measured after holding the conductive film-coated substrates 1 to 10 in a bath at 60 ° C. and 90% RH at a high temperature and high humidity for 240 hours. And the volume resistivity after a durability test was calculated
  • Table 1 shows the initial volume resistivity thus obtained and the rate of change (increase rate) of the volume resistivity after the durability test.
  • curing agent is shown with the addition amount (mass part) with respect to 100 mass parts of solid content of a phenol resin.
  • the conductive film substrates 1 to 4 in which the conductive films 1 to 4 are formed from the conductive pastes 1 to 4 containing an ester or amide of an organic acid having a pKa of 1 to 4 (Example 1)
  • the volume resistivity was low, and the fluctuation rate (increase rate) of the volume resistivity after the durability test in a high temperature and high humidity environment was also kept low.
  • the conductive film bases 8 to 10 (Examples 8 to 10) in which the conductive films 8 to 10 are formed by using the conductive pastes 8 to 10 in which an organic acid itself having a pKa of 1 to 4 is blended instead of an ester or an amide,
  • the fluctuation rate of the volume resistivity after the durability test in a high temperature and high humidity environment was as high as 23 to 26%, and the durability was inferior.
  • the conductive paste of the present invention can be cured at a temperature lower than the conventional temperature of less than 150 ° C., the formation of copper oxide is suppressed in a high humidity environment, and a low volume resistivity can be maintained for a long time.
  • a conductive film can be formed.
  • a resin or the like is used as an insulating base material, which is highly reliable as a wiring board or the like, and with a conductive film in which an increase in volume resistivity due to formation of an oxide film is suppressed.
  • a substrate can be obtained.

Abstract

Provided is a conductive paste which is capable of forming a conductive film that is able to maintain low volume resistivity for a long period of time, while being suppressed in the formation of an oxide coating film. A conductive paste which contains (A) copper particles, (B) a chelating agent which is composed of a compound that has a stability constant logKcu with copper ions of 5-15 at 25°C at an ionic strength of 0.1 mol/L, (C) a thermosetting resin and (D) an ester or amide of an organic acid having a pKa of 1-4. A conductive film is formed by applying the conductive paste onto a base and then heating and curing the conductive paste at a temperature of less than 150°C.

Description

導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
 本発明は、導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法に関する。 The present invention relates to a conductive paste, a base material with a conductive film using the same, and a method for manufacturing a base material with a conductive film.
 従来、電子部品や印刷配線板(プリント基板)等の配線導体の形成に、導電ペーストを用いる方法が知られている。このうち、例えばプリント基板の製造は、ガラス、セラミックス等からなる絶縁性基材上に導電ペーストを所望のパターン形状に塗布した後、150℃以上に加熱して焼成し、配線パターンを形成することにより行われている。 Conventionally, a method of using a conductive paste for forming a wiring conductor such as an electronic component or a printed wiring board (printed circuit board) is known. Of these, for example, in the production of printed circuit boards, a conductive paste is applied in a desired pattern shape on an insulating substrate made of glass, ceramics, etc., and then heated to 150 ° C. or higher to be baked to form a wiring pattern. It is done by.
 導電ペーストとしては、高い導電性を確保する観点から、銀(Ag)を主成分とした銀ペーストが主として適用されていた。しかしながら、銀ペーストは、高温高湿の環境下で通電すると、銀原子がイオン化して電界に引かれて移動するイオンマイグレーション(銀の電析)が生じ易い。配線パターンにイオンマイグレーションが生じると、配線間でショートが生じるなどの不具合が発生し、配線基板の信頼性が妨げられるおそれがある。 As the conductive paste, a silver paste mainly composed of silver (Ag) was mainly applied from the viewpoint of ensuring high conductivity. However, when the silver paste is energized in a high-temperature and high-humidity environment, ion migration (silver electrodeposition) in which silver atoms are ionized and moved by being attracted by an electric field is likely to occur. If ion migration occurs in the wiring pattern, problems such as a short circuit between the wirings occur, which may hinder the reliability of the wiring board.
 電子機器や配線基板の信頼性を高める観点から、導電ペーストとして、銀ペーストに代えて銅ペーストを用いる技術が提案されている。銅ペーストは、マイグレーション現象が生じにくいため、電気回路の接続信頼性を高めることが可能である。 From the viewpoint of improving the reliability of electronic devices and wiring boards, a technique has been proposed in which a copper paste is used instead of a silver paste as a conductive paste. Since the copper paste hardly causes a migration phenomenon, it is possible to improve the connection reliability of the electric circuit.
 しかしながら、一般に銅は酸化し易いため、高湿度の環境下で大気中に放置すると、大気中の水分や酸素等との反応により酸化銅を生じやすい。このため、銅ペーストを焼成して形成した導電膜は、酸化被膜の影響で体積抵抗率が高くなり易いという問題がある。 However, since copper is generally easy to oxidize, when left in the atmosphere in a high humidity environment, copper oxide is likely to be produced due to reaction with moisture, oxygen, etc. in the atmosphere. For this reason, the conductive film formed by baking the copper paste has a problem that the volume resistivity tends to be high due to the influence of the oxide film.
 このような問題を解決するため、銅ペーストに配合する銅粉末を湿式還元法により製造する技術が提案されている(例えば、特許文献1、特許文献2参照。)。しかしながら、上述した従来からの技術によっても、配線導体用の導電ペーストにおける酸化被膜の形成による体積抵抗率の上昇は、十分に改善されていないのが実情であった。 In order to solve such a problem, a technique for producing a copper powder blended in a copper paste by a wet reduction method has been proposed (for example, refer to Patent Document 1 and Patent Document 2). However, even with the above-described conventional technique, the increase in volume resistivity due to the formation of an oxide film in the conductive paste for wiring conductors has not been sufficiently improved.
 一方、近年、プリント基板の絶縁性基材として、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネートのような樹脂基材が使用されているため、このような基材の耐熱温度よりも十分に低い150℃未満の温度、具体的には120~140℃で加熱することにより配線パターンとなる導電膜を形成し得る導電ペーストが求められている。 On the other hand, in recent years, resin base materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate have been used as insulating base materials for printed circuit boards. There is a need for a conductive paste capable of forming a conductive film to be a wiring pattern by heating at a sufficiently low temperature of less than 150 ° C., specifically, 120 to 140 ° C.
 しかしながら、前記した従来からの銅ペーストを120~140℃という低い温度で加熱した場合には、銅ペースト中の樹脂の硬化が不十分となり、熱硬化性樹脂中のメチロール基のOH基の残存率が高くなり、銅ペーストにより形成された膜の親水性が増大する。その結果、高湿度の環境下で銅ペーストにより形成された膜中に水蒸気が拡散しやすくなるため、拡散した水分や酸素等との反応により酸化銅を生じやすく、体積抵抗率が大きく上昇するという問題があった。 However, when the conventional copper paste is heated at a temperature as low as 120 to 140 ° C., the resin in the copper paste is insufficiently cured, and the residual ratio of methylol group OH groups in the thermosetting resin. And the hydrophilicity of the film formed of the copper paste increases. As a result, since water vapor easily diffuses in the film formed of copper paste in a high humidity environment, copper oxide is likely to be generated by reaction with diffused moisture, oxygen, etc., and the volume resistivity is greatly increased. There was a problem.
日本国特開2007-184143号公報Japanese Unexamined Patent Publication No. 2007-184143 日本国特開平1-158081号公報Japanese Unexamined Patent Publication No. 1-158081
 本発明は、上記課題を解決するためになされたものであって、従来よりも低い温度で硬化させて酸化被膜の形成を抑制することができ、低い体積抵抗率を長期間維持し得る導電膜を形成可能な導電ペーストの提供を目的とする。また、本発明は、上記導電ペーストを用いた導電膜を有する導電膜付き基材の提供を目的とする。 The present invention has been made to solve the above-described problems, and is a conductive film that can be cured at a lower temperature than before to suppress the formation of an oxide film and can maintain a low volume resistivity for a long period of time. It is an object to provide a conductive paste capable of forming a film. Moreover, this invention aims at provision of the base material with the electrically conductive film which has the electrically conductive film using the said electrically conductive paste.
 本発明は、以下の導電ペースト、導電膜付き基材、及び、導電膜付き基材の製造方法を提供する。
 (1)銅粒子(A)と、25℃、イオン強度0.1mol/Lにおける銅イオンとの安定度定数logKCuが5~15である化合物からなるキレート剤(B)と、熱硬化性樹脂(C)と、pKaが1~4の有機酸の、エステルまたはアミド(D)を含有することを特徴とする導電ペースト。
The present invention provides the following conductive paste, a substrate with a conductive film, and a method for producing a substrate with a conductive film.
(1) a chelating agent (B) comprising a compound having a stability constant logK Cu of 5 to 15 between copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L, and a thermosetting resin A conductive paste comprising (C) and an ester or amide (D) of an organic acid having a pKa of 1 to 4.
 (2)前記銅粒子(A)は、X線光電子分光法によって求められる表面酸素濃度比O/Cuが0.5以下である(1)記載の導電ペースト。 (2) The conductive paste according to (1), wherein the copper particles (A) have a surface oxygen concentration ratio O / Cu calculated by X-ray photoelectron spectroscopy of 0.5 or less.
 (3)前記銅粒子(A)は、pH値が3以下の分散媒中で還元処理された表面改質銅粒子である(1)または(2)に記載の導電ペースト。
 (4)前記銅粒子(A)は、平均一次粒子径が0.3~20μmの金属銅粒子表面に、平均一次粒子径が1~20nmの金属銅微粒子が凝集して付着した複合金属銅粒子である(1)乃至(3)のいずれか1つに記載の導電ペースト。
(3) The conductive paste according to (1) or (2), wherein the copper particles (A) are surface-modified copper particles reduced in a dispersion medium having a pH value of 3 or less.
(4) The copper particles (A) are composite metal copper particles in which metal copper fine particles having an average primary particle diameter of 1 to 20 nm are aggregated and adhered to the surface of the metal copper particles having an average primary particle diameter of 0.3 to 20 μm. The conductive paste according to any one of (1) to (3).
 (5)前記キレート剤(B)は、窒素原子を含む官能基(a)と、窒素原子以外の孤立電子対を有する原子を含む官能基(b)とが、芳香環のオルト位に配置された芳香族化合物である(1)乃至(4)のいずれか1つに記載の導電ペースト。
 (6)前記窒素原子以外の孤立電子対を有する原子を含む官能基(b)は、水酸基またはカルボキシル基である(5)記載の導電ペースト。
 (7)前記窒素原子と前記窒素原子以外の孤立電子対を有する原子とは、2個または3個の原子を介在して結合している(5)または(6)記載の導電ペースト。
 (8)前記キレート剤(B)は、サリチルヒドロキサム酸、サリチルアルドキシムおよびo-アミノフェノールからなる群から選択される少なくとも1種である(1)乃至(7)のいずれか1つに記載の導電ペースト。
(5) In the chelating agent (B), the functional group (a) containing a nitrogen atom and the functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring. The conductive paste according to any one of (1) to (4), which is an aromatic compound.
(6) The conductive paste according to (5), wherein the functional group (b) containing an atom having a lone electron pair other than the nitrogen atom is a hydroxyl group or a carboxyl group.
(7) The conductive paste according to (5) or (6), wherein the nitrogen atom and an atom having a lone electron pair other than the nitrogen atom are bonded via two or three atoms.
(8) The chelating agent (B) is at least one selected from the group consisting of salicylhydroxamic acid, salicylaldoxime and o-aminophenol, according to any one of (1) to (7) Conductive paste.
 (9)前記熱硬化性樹脂(C)は、フェノール樹脂、メラミン樹脂および尿素樹脂からなる群から選択される少なくとも1種である(1)乃至(8)のいずれか1つに記載の導電ペースト。
 (10)前記有機酸のエステルまたはアミド(D)は、ホルムアミド、サリチル酸メチル、シュウ酸ジメチル、マロン酸ジメチルおよびマレイン酸ジメチルからなる群から選択される少なくとも1種である(1)乃至(9)のいずれか1つに記載の導電ペースト。
(9) The conductive paste according to any one of (1) to (8), wherein the thermosetting resin (C) is at least one selected from the group consisting of a phenol resin, a melamine resin, and a urea resin. .
(10) The organic acid ester or amide (D) is at least one selected from the group consisting of formamide, methyl salicylate, dimethyl oxalate, dimethyl malonate and dimethyl maleate (1) to (9) The electrically conductive paste as described in any one of these.
 (11)前記キレート剤(B)の含有量は、前記銅粒子(A)100質量部に対して0.01~1質量部である(1)乃至(10)のいずれか1つに記載の導電ペースト。
 (12)前記熱硬化性樹脂(C)の含有量は、前記銅粒子(A)100質量部に対して5~50質量部である(1)乃至(11)のいずれか1つに記載の導電ペースト。
 (13)前記有機酸のエステルまたはアミド(D)の含有量は、前記熱硬化性樹脂(C)100質量部に対して0.5~15質量部である(1)乃至(12)のいずれか1つに記載の導電ペースト。
(11) The content of the chelating agent (B) is 0.01 to 1 part by mass with respect to 100 parts by mass of the copper particles (A), according to any one of (1) to (10). Conductive paste.
(12) The content of the thermosetting resin (C) is 5 to 50 parts by mass with respect to 100 parts by mass of the copper particles (A), according to any one of (1) to (11). Conductive paste.
(13) The content of the organic acid ester or amide (D) is 0.5 to 15 parts by mass with respect to 100 parts by mass of the thermosetting resin (C). The electrically conductive paste as described in any one.
 (14)基材と、該基材上に(1)乃至(13)のいずれか1つに記載の導電ペーストを硬化させて形成された導電膜を有する導電膜付き基材。
 (15)前記基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)およびポリカーボネートからなる群から選択される少なくとも1種である(14)記載の導電膜付き基材。
 (16)前記導電膜の体積抵抗率が1.0×10-4Ωcm以下である(14)または(15)記載の導電膜付き基材。
(14) A base material with a conductive film having a base material and a conductive film formed by curing the conductive paste according to any one of (1) to (13) on the base material.
(15) The base material with a conductive film according to (14), wherein the base material is at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate.
(16) The substrate with a conductive film according to (14) or (15), wherein the conductive film has a volume resistivity of 1.0 × 10 −4 Ωcm or less.
 (17)(1)乃至(13)のいずれか1つに記載の導電ペーストを基材上に塗布する工程と、前記導電ペーストを150℃未満の温度で加熱し硬化させて導電膜を形成する工程と、を含む導電膜付き基材の製造方法。 (17) A step of applying the conductive paste according to any one of (1) to (13) on a substrate, and heating and curing the conductive paste at a temperature of less than 150 ° C. to form a conductive film. And a process for producing a substrate with a conductive film.
 本発明の導電ペーストによれば、150℃未満という従来より低い温度で硬化させることが可能であり、高湿度の環境下で酸化銅の形成が抑制され、低い体積抵抗率を長期間維持し得る導電膜を形成することができる。また、このような導電ペーストを用いることで、絶縁基材として樹脂等が使用し、配線基板等としての信頼性が高く、また酸化被膜の形成による体積抵抗率の上昇が抑制された導電膜付き基材を得ることができる。 According to the conductive paste of the present invention, it can be cured at a temperature lower than the conventional temperature of less than 150 ° C., the formation of copper oxide is suppressed in a high humidity environment, and a low volume resistivity can be maintained for a long time. A conductive film can be formed. In addition, by using such a conductive paste, a resin or the like is used as an insulating base material, which is highly reliable as a wiring board or the like, and with a conductive film in which an increase in volume resistivity due to formation of an oxide film is suppressed. A substrate can be obtained.
本発明の導電膜付き基材の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the base material with an electrically conductive film of this invention.
 以下、本発明の実施の形態について詳細に説明する。
 本発明の実施形態である導電ペーストは、銅粒子(A)と、25℃、イオン強度0.1mol/Lにおける銅イオンとの安定度定数logKCuが5~15である化合物からなるキレート剤(B)と、熱硬化性樹脂(C)と、pKaが1~4の有機酸のエステルまたはアミド(D)をそれぞれ含有する。
Hereinafter, embodiments of the present invention will be described in detail.
The conductive paste according to an embodiment of the present invention comprises a chelating agent (A) comprising a compound having a stability constant logK Cu of 5 to 15 between copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L. B), a thermosetting resin (C), and an ester or amide (D) of an organic acid having a pKa of 1 to 4, respectively.
 本発明の実施形態の導電ペーストによれば、銅粒子(A)とともに、キレート剤(B)として、25℃、イオン強度0.1mol/Lにおける銅イオンとの安定度定数logKCuが所定範囲にある化合物が配合されているので、大気中に含まれる酸素等と反応する銅イオンの量を低減でき、酸化銅の形成が抑制された導電ペーストとすることができる。 According to the conductive paste of the embodiment of the present invention, the stability constant logK Cu with copper ions at 25 ° C. and ionic strength 0.1 mol / L is within a predetermined range as the chelating agent (B) together with the copper particles (A). Since a certain compound is blended, the amount of copper ions that react with oxygen or the like contained in the atmosphere can be reduced, and a conductive paste in which the formation of copper oxide is suppressed can be obtained.
 また、熱硬化性樹脂(C)の硬化剤(硬化促進剤)として、pKaが1~4の有機酸のエステルまたはアミド(D)が配合されているので、150℃未満より具体的には120~140℃の低い温度で加熱することで、導電ペーストを十分に硬化することができ、大気中に含まれる酸素と反応する銅イオンの量を低減でき、酸化銅の形成が抑制された導電ペーストとすることができる。 Further, since an ester or amide (D) of an organic acid having a pKa of 1 to 4 is blended as a curing agent (curing accelerator) of the thermosetting resin (C), the temperature is less than 150 ° C., more specifically 120 By heating at a low temperature of ˜140 ° C., the conductive paste can be sufficiently cured, the amount of copper ions reacting with oxygen contained in the atmosphere can be reduced, and the formation of copper oxide is suppressed. It can be.
 さらに、このような導電ペーストで形成された導電膜においては、酸化銅を主成分とする酸化被膜が形成されにくいため、高湿度の環境下でも、体積抵抗率の上昇が抑制された導電膜付き基材とすることができる。 Furthermore, in a conductive film formed of such a conductive paste, an oxide film containing copper oxide as a main component is difficult to form, and therefore, with a conductive film that suppresses an increase in volume resistivity even in a high humidity environment. It can be a substrate.
[導電ペースト]
 実施形態の導電ペーストは、銅粒子(A)とキレート剤(B)と熱硬化性樹脂(C)、およびpKaが1~4の有機酸の、エステルまたはアミド(D)を含有する。以下、導電ペーストを構成する各成分について説明する。
[Conductive paste]
The conductive paste of the embodiment contains copper particles (A), a chelating agent (B), a thermosetting resin (C), and an ester or amide (D) of an organic acid having a pKa of 1 to 4. Hereinafter, each component which comprises an electrically conductive paste is demonstrated.
<銅粒子(A)>
 銅粒子(A)は、導電ペーストの導電成分となるものであり、X線光電子分光法によって求められる表面酸素濃度比O/Cuが0.5以下である。以下、X線光電子分光法によって求められる表面酸素濃度比O/Cuを、単に「表面酸素濃度比O/Cu」と示す。
<Copper particles (A)>
The copper particles (A) serve as a conductive component of the conductive paste, and the surface oxygen concentration ratio O / Cu obtained by X-ray photoelectron spectroscopy is 0.5 or less. Hereinafter, the surface oxygen concentration ratio O / Cu obtained by X-ray photoelectron spectroscopy is simply referred to as “surface oxygen concentration ratio O / Cu”.
 表面酸素濃度比O/Cuは、X線光電子分光分析により測定した、銅粒子の表面銅濃度(原子%)に対する表面酸素濃度(原子%)の比で表される。本明細書において、「表面銅濃度(原子%)」および「表面酸素濃度(原子%)」は、それぞれ、銅粒子表面から中心に向けて約3nmの深さまでの範囲の粒子表層域に対して、X線光電子分光分析を行って得た測定値である。銅粒子表面から中心に向けて約3nmの深さまでの範囲は、この範囲の粒子領域について各成分の濃度測定を行うことで、銅粒子の表面状態が十分に把握される範囲である。 The surface oxygen concentration ratio O / Cu is represented by the ratio of the surface oxygen concentration (atomic%) to the surface copper concentration (atomic%) of the copper particles measured by X-ray photoelectron spectroscopy. In the present specification, “surface copper concentration (atomic%)” and “surface oxygen concentration (atomic%)” are respectively defined for the particle surface layer in the range from the copper particle surface to the depth of about 3 nm from the center to the center. These are measured values obtained by performing X-ray photoelectron spectroscopic analysis. The range from the surface of the copper particle to the depth of about 3 nm toward the center is a range in which the surface state of the copper particle can be sufficiently grasped by measuring the concentration of each component in the particle region in this range.
 銅粒子(A)の表面酸素濃度比O/Cuが0.5を超えると、銅粒子(A)表面の酸化銅の存在量が過多であり、導電膜としたときに、粒子間の接触抵抗が大きく、体積抵抗率が高くなるおそれがある。表面酸素濃度比O/Cuが0.5以下である銅粒子(A)を用いることで、銅粒子間の接触抵抗を低減でき、導電膜としたときの導電性を向上させることができる。銅粒子(A)の表面酸素濃度比O/Cuは、0.3以下であることが好ましい。 When the surface oxygen concentration ratio O / Cu of the copper particles (A) exceeds 0.5, the amount of copper oxide present on the surface of the copper particles (A) is excessive, and when a conductive film is formed, the contact resistance between the particles Is large and the volume resistivity may be high. By using the copper particles (A) having a surface oxygen concentration ratio O / Cu of 0.5 or less, the contact resistance between the copper particles can be reduced, and the conductivity of the conductive film can be improved. The surface oxygen concentration ratio O / Cu of the copper particles (A) is preferably 0.3 or less.
 また、銅粒子(A)は、粒子全体に含まれる酸素濃度が700ppm以下であることが好ましい。銅粒子に含まれる酸素濃度は、例えば酸素濃度計を用いて測定できる。 Further, it is preferable that the copper particles (A) have an oxygen concentration contained in the whole particles of 700 ppm or less. The oxygen concentration contained in the copper particles can be measured using, for example, an oxygen concentration meter.
 銅粒子(A)としては、表面酸素濃度比O/Cuが0.5以下のものであれば、種々の銅粒子を使用できる。銅粒子(A)は、金属銅粒子であってもよく、水素化銅微粒子、または水素化銅微粒子を加熱した金属銅微粒子(以下、銅微粒子ともいう)であってもよい。また、銅粒子(A)としては、これら金属銅粒子と銅微粒子とが複合した形の複合粒子であってもよい。複合粒子としては、例えば金属銅粒子の表面に銅微粒子が付着または結合した形態のものを挙げることができる。複合粒子については、詳細は後述する。 As the copper particles (A), various copper particles can be used as long as the surface oxygen concentration ratio O / Cu is 0.5 or less. The copper particles (A) may be metal copper particles, copper hydride fine particles, or metal copper fine particles obtained by heating copper hydride fine particles (hereinafter also referred to as copper fine particles). Moreover, as a copper particle (A), the composite particle of the form which these metal copper particles and copper fine particle compounded may be sufficient. Examples of the composite particles include those in which copper fine particles are attached or bonded to the surface of metal copper particles. Details of the composite particles will be described later.
 銅粒子(A)の平均粒子径は0.01~20μmであることが好ましい。銅粒子(A)の平均粒子径は、銅粒子(A)の形状に応じて、0.01~20μmの範囲内において適宜調整できる。銅粒子(A)の平均粒子径が0.01μm以上であれば、この銅粒子を含む導電ペーストの流動特性が良好となる。また、銅粒子(A)の平均粒子径が20μm以下であれば、この銅粒子を含む導電ペーストにより、微細配線を作製し易くなる。 The average particle diameter of the copper particles (A) is preferably 0.01 to 20 μm. The average particle diameter of the copper particles (A) can be appropriately adjusted within the range of 0.01 to 20 μm according to the shape of the copper particles (A). If the average particle diameter of a copper particle (A) is 0.01 micrometer or more, the flow characteristic of the electrically conductive paste containing this copper particle will become favorable. Moreover, if the average particle diameter of a copper particle (A) is 20 micrometers or less, it will become easy to produce fine wiring with the electrically conductive paste containing this copper particle.
 銅粒子(A)が金属銅粒子を含む場合、その平均粒子径(平均一次粒子径)は0.3~20μmであることが好ましい。また、銅粒子(A)が銅微粒子のみからなる場合、その凝集粒子の平均粒子径は0.01~1μmであることが好ましく、0.02~0.4μmであることがより好ましい。
 銅粒子(A)が金属銅粒子を含む場合にその平均粒子径(平均一次粒子径)が0.3μm以上の場合、この銅粒子を含む導電ペーストの流動特性が良好となる。また、銅粒子(A)が銅微粒子のみからなる場合にその凝集粒子の平均粒子径が0.01μm以上の場合には、この銅粒子を含む導電ペーストの流動特性が良好となる。
When the copper particles (A) contain metallic copper particles, the average particle size (average primary particle size) is preferably 0.3 to 20 μm. Further, when the copper particles (A) are composed only of copper fine particles, the average particle diameter of the aggregated particles is preferably 0.01 to 1 μm, and more preferably 0.02 to 0.4 μm.
When the copper particles (A) contain metallic copper particles and the average particle size (average primary particle size) is 0.3 μm or more, the flow characteristics of the conductive paste containing the copper particles are good. Further, when the copper particles (A) are composed only of copper fine particles and the average particle diameter of the aggregated particles is 0.01 μm or more, the flow characteristics of the conductive paste containing the copper particles are good.
 また、銅粒子(A)が金属銅粒子を含む場合にその平均粒子径(平均一次粒子径)が20μm以下の場合には、この銅粒子を含む導電ペーストにより、微細配線を作製しやすくなる。また、銅粒子(A)が銅微粒子のみからなる場合にその凝集粒子の平均粒子径が1μm以下の場合には、この銅粒子を含む導電ペーストにより、微細配線を作製しやすくなる。 Also, when the copper particles (A) contain metallic copper particles and the average particle size (average primary particle size) is 20 μm or less, the conductive paste containing these copper particles makes it easy to produce fine wiring. Further, when the copper particles (A) are composed only of copper fine particles and the average particle diameter of the aggregated particles is 1 μm or less, it becomes easy to produce fine wiring by the conductive paste containing the copper particles.
 表面酸素濃度比O/Cuが0.5以下の銅粒子(A)としては、例えば、下記銅粒子(A1)~(A5)を好適に使用できる。
 (A1)金属銅粒子であって、その平均一次粒子径が0.3~20μmである金属銅粒子。
 (A2)金属銅粒子であって、その平均一次粒子径が0.3~20μmである金属銅粒子と、上記金属銅粒子表面に付着した水素化銅微粒子であって、その凝集粒子の平均粒子径が20~400nmである水素化銅微粒子と、を有する銅複合粒子。
 (A3)水素化銅微粒子であって、その凝集粒子の平均粒子径が10nm~1μmである水素化銅微粒子。
 (A4)金属銅粒子であって、その平均一次粒子径が0.3~20μmである金属銅粒子と、上記金属銅粒子表面に付着した水素化銅微粒子を加熱した金属銅微粒子であって、その凝集粒子の平均粒子径が20~400nmである金属銅微粒子と、を有する複合金属銅粒子。
 (A5)金属銅微粒子であって、その凝集粒子の平均粒子径が10nm~1μmである金属銅微粒子。
As the copper particles (A) having a surface oxygen concentration ratio O / Cu of 0.5 or less, for example, the following copper particles (A1) to (A5) can be preferably used.
(A1) Metallic copper particles having an average primary particle diameter of 0.3 to 20 μm.
(A2) Metallic copper particles having an average primary particle size of 0.3 to 20 μm and copper hydride fine particles adhering to the surface of the metallic copper particles, the average particle of the aggregated particles Copper composite particles having copper hydride fine particles having a diameter of 20 to 400 nm.
(A3) Copper hydride fine particles, wherein the agglomerated particles have an average particle size of 10 nm to 1 μm.
(A4) metal copper particles, the metal copper particles having an average primary particle size of 0.3 to 20 μm, and metal copper particles obtained by heating the copper hydride particles adhering to the surface of the metal copper particles, Composite metal copper particles having metal copper fine particles having an average particle diameter of 20 to 400 nm of the aggregated particles.
(A5) Metallic copper fine particles, wherein the aggregated particles have an average particle size of 10 nm to 1 μm.
 なお、複合金属銅粒子(A4)は、銅複合粒子(A2)の水素化銅微粒子が、加熱処理により金属銅微粒子に変換されたものである。また、金属銅微粒子(A5)は、水素化銅微粒子(A3)が加熱処理により変換されたものである。 The composite metal copper particles (A4) are obtained by converting the copper hydride fine particles of the copper composite particles (A2) into metal copper fine particles by heat treatment. The metal copper fine particles (A5) are obtained by converting the copper hydride fine particles (A3) by heat treatment.
 本明細書中において、平均粒子径は、以下のようにして求めたものである。
 すなわち、金属銅粒子についての平均一次粒子径は、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、これらの粒子径を平均して算出したものである。
 また、銅微粒子からなる凝集粒子の平均粒子径は、透過型電子顕微鏡(以下、「TEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、これらの粒子径を平均して算出したものである。
 また、例えば銅複合粒子(A2)のように、金属銅粒子である銅粒子と、この銅粒子表面に付着した水素化銅微粒子とを含む複合粒子の場合には、この複合粒子全体をSEMによって観察し、銅微粒子も含む粒子全体のFeret径を測定し、得られた粒子径を平均して算出したものである。
In the present specification, the average particle size is determined as follows.
That is, the average primary particle diameter of the metallic copper particles was measured by measuring the Feret diameter of 100 particles randomly selected from a scanning electron microscope (hereinafter referred to as “SEM”) image. It is calculated by averaging the diameters.
The average particle diameter of the aggregated particles made of copper fine particles was measured by measuring the Feret diameter of 100 particles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image. The average particle size is calculated.
Further, for example, in the case of a composite particle including copper particles that are metal copper particles and copper hydride fine particles attached to the surface of the copper particles, such as copper composite particles (A2), the entire composite particles are obtained by SEM. Observing, measuring the Feret diameter of the whole particle including the copper fine particles, and averaging the obtained particle diameter.
 本発明における複合金属銅粒子(A4)は、既に述べたように、金属銅粒子表面の少なくとも一部に、金属銅微粒子を付着させたものである。「複合金属銅粒子」は、金属銅粒子表面に水素化銅微粒子が付着してなる「銅複合粒子」を加熱し、水素化銅微粒子を金属銅微粒子に変換して得られるものである。なお、金属銅粒子表面の微粒子の付着の有無は、SEM像を観察して確認できる。また、金属銅粒子の表面に付着した水素化銅微粒子の同定は、X線回折装置(リガク社製、TTR-III)を用いて行うことができる。 As described above, the composite metal copper particles (A4) in the present invention are obtained by attaching metal copper fine particles to at least a part of the surface of the metal copper particles. “Composite metal copper particles” are obtained by heating “copper composite particles” in which copper hydride fine particles adhere to the surface of metal copper particles, and converting the copper hydride fine particles into metal copper fine particles. In addition, the presence or absence of adhesion of fine particles on the surface of the metal copper particles can be confirmed by observing the SEM image. The copper hydride fine particles attached to the surface of the metal copper particles can be identified using an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).
 銅複合粒子の金属銅粒子は、導電ペーストに一般的に用いられる公知の銅粒子を使用できる。金属銅粒子の粒子形状は、球状であってもよく、板状であってもよい。 As the metal copper particles of the copper composite particles, known copper particles generally used for conductive paste can be used. The metal copper particles may have a spherical shape or a plate shape.
 銅複合粒子の金属銅粒子の平均粒子径は、0.3~20μmであることが好ましく、1~10μmであることがより好ましい。
 金属銅粒子の平均粒子径が0.3μm未満であると、導電ペーストとしたときに、十分な流動特性を得られない。一方、金属銅粒子の平均粒子径が20μmを超えると、得られる導電ペーストによる、微細配線の作製が困難となるおそれがある。金属銅粒子の平均粒子径は、1~10μmであることがより好ましい。なお、金属銅粒子の平均粒子径は、SEM像の中から無作為に選出した100個の金属銅粒子のFeret径を測定し、この測定値を平均して算出したものである。
The average particle diameter of the metal copper particles of the copper composite particles is preferably 0.3 to 20 μm, and more preferably 1 to 10 μm.
When the average particle size of the metallic copper particles is less than 0.3 μm, sufficient flow characteristics cannot be obtained when a conductive paste is obtained. On the other hand, when the average particle diameter of the metal copper particles exceeds 20 μm, it may be difficult to produce fine wiring using the obtained conductive paste. The average particle size of the metallic copper particles is more preferably 1 to 10 μm. The average particle diameter of the metal copper particles is calculated by measuring the Feret diameters of 100 metal copper particles randomly selected from the SEM image and averaging the measured values.
 銅複合粒子の水素化銅微粒子は、主として1~20nm程度の水素化銅微粒子が凝集した状態で存在している。水素化銅微粒子の粒子形状は球状であってもよく、板状であってもよい。水素化銅微粒子の凝集粒子の平均粒子径は、20~400nmであることが好ましく、30~300nmであることがより好ましく、50~200nmであることがより好ましい。特に好ましくは80~150nmである。水素化銅微粒子の凝集粒子の平均粒子径が20nm未満であると、水素化銅微粒子の融着・成長が生じ易くなり、導電膜としたときに、体積収縮に伴うクラック等の不具合が発生するおそれがある。一方、水素化銅微粒子の凝集粒子の平均粒子径が400nmを超えると、粒子表面積が十分でなく、表面融解現象が生じ難くなり、緻密な導電膜を形成するのが難しくなるおそれがある。水素化銅微粒子の平均粒子径は、TEM像の中から無作為に選出した100個の水素化銅微粒子のFeret径を測定し、その測定値を平均して算出したものである。 The copper hydride fine particles of the copper composite particles exist mainly in a state where the copper hydride fine particles of about 1 to 20 nm are aggregated. The particle shape of the copper hydride fine particles may be spherical or plate-shaped. The average particle diameter of the aggregated particles of copper hydride fine particles is preferably 20 to 400 nm, more preferably 30 to 300 nm, and even more preferably 50 to 200 nm. Particularly preferred is 80 to 150 nm. When the average particle size of the aggregated particles of copper hydride fine particles is less than 20 nm, the copper hydride fine particles are likely to be fused and grown, and when a conductive film is formed, defects such as cracks due to volume shrinkage occur. There is a fear. On the other hand, when the average particle diameter of the aggregated particles of copper hydride fine particles exceeds 400 nm, the particle surface area is not sufficient, the surface melting phenomenon hardly occurs, and it may be difficult to form a dense conductive film. The average particle diameter of the copper hydride fine particles is calculated by measuring the Feret diameter of 100 copper hydride fine particles randomly selected from the TEM image and averaging the measured values.
 金属銅粒子表面に付着する水素化銅微粒子の量は、金属銅粒子の量の5~50質量%であることが好ましく、10~35質量%であることがより好ましい。
 水素化銅微粒子の量が、金属銅粒子の量に対して5質量%未満であると、金属銅粒子間に導電パスが十分に形成されず、導電膜の体積抵抗率を低減する効果を十分に得られないおそれがある。一方、水素化銅微粒子の量が、金属銅粒子の量に対して50質量%を超えると、導電ペーストとして十分な流動性を確保するのが困難となる。
 なお、金属銅粒子の表面に付着した水素化銅微粒子の量は、例えば、還元剤を加える前の水溶性銅化合物溶液中の銅イオン濃度と、水素化銅微粒子生成終了後の反応液中に残存する銅イオン濃度との差から算出できる。
The amount of the copper hydride fine particles adhering to the surface of the metal copper particles is preferably 5 to 50% by mass, more preferably 10 to 35% by mass of the amount of the metal copper particles.
When the amount of the copper hydride fine particles is less than 5% by mass with respect to the amount of the metal copper particles, the conductive path is not sufficiently formed between the metal copper particles, and the effect of reducing the volume resistivity of the conductive film is sufficient. May not be obtained. On the other hand, if the amount of copper hydride fine particles exceeds 50% by mass with respect to the amount of metal copper particles, it becomes difficult to ensure sufficient fluidity as a conductive paste.
The amount of copper hydride fine particles adhering to the surface of the metal copper particles is, for example, the copper ion concentration in the water-soluble copper compound solution before adding the reducing agent and the reaction liquid after the completion of copper hydride fine particle production. It can be calculated from the difference from the remaining copper ion concentration.
 複合金属銅粒子は、金属銅粒子間に存在する金属銅微粒子によって、導電パスを確実に形成でき、導電膜としたときの体積抵抗率を低減できる。また、上記のように、水素化銅微粒子を金属銅微粒子に変換することで、金属銅粒子からの金属銅微粒子の剥離を生じ難いものとできる。従って、導電ペースト中に金属銅微粒子が遊離することによる、導電ペーストの粘度上昇が抑制された導電ペーストとできる。 The composite metal copper particles can reliably form a conductive path by the metal copper fine particles present between the metal copper particles, and the volume resistivity when the conductive metal copper particles are formed can be reduced. Further, as described above, by converting the copper hydride fine particles to the metal copper fine particles, the metal copper fine particles can be hardly separated from the metal copper particles. Therefore, it can be set as the electrically conductive paste by which the raise of the viscosity of the electrically conductive paste by the metal copper fine particle being liberated in the electrically conductive paste was suppressed.
 銅複合粒子の加熱処理は、60~120℃の温度で行うことが好ましく、60~100℃で行うことがより好ましく、60~90℃で行うことがさらに好ましい。加熱温度が120℃を超えると、金属銅微粒子同士の融着が生じ易くなり、導電膜としたときの体積抵抗率が高くなるおそれがある。一方、加熱温度が60℃未満であると、加熱処理に要する時間が長くなり、製造コストの面から好ましくない。なお、加熱処理後に得られた複合金属銅粒子の残存水分量は、3質量%以下が好ましく、1.5質量%以下がより好ましい。 The heat treatment of the copper composite particles is preferably performed at a temperature of 60 to 120 ° C, more preferably 60 to 100 ° C, and further preferably 60 to 90 ° C. When the heating temperature exceeds 120 ° C., fusion between the metal copper fine particles is likely to occur, and the volume resistivity when the conductive film is formed may be increased. On the other hand, when the heating temperature is less than 60 ° C., the time required for the heat treatment becomes longer, which is not preferable from the viewpoint of production cost. In addition, 3 mass% or less is preferable and, as for the residual moisture content of the composite metal copper particle obtained after heat processing, 1.5 mass% or less is more preferable.
 銅複合粒子の加熱処理は、相対圧力で-101~-50kPaの減圧下で行うことが好ましい。-50kPaより大きい圧力下で加熱処理を行うと、乾燥に要する時間が長くなり、製造コストの面から好ましくない。一方、加熱処理時の圧力を-101kPa未満とすると、例えば水等の余分な溶媒の除去、乾燥に、大型の装置を用いることが必要となり、かえって製造コストが高くなる。 The heat treatment of the copper composite particles is preferably performed under a reduced pressure of −101 to −50 kPa as a relative pressure. When the heat treatment is performed under a pressure higher than −50 kPa, the time required for drying becomes long, which is not preferable from the viewpoint of production cost. On the other hand, if the pressure during the heat treatment is less than −101 kPa, it is necessary to use a large apparatus for removing excess solvent such as water and drying, which increases the manufacturing cost.
 「複合金属銅粒子」の金属銅粒子の平均粒子径が0.3μm未満であると、導電ペーストとしたときに、十分な流動特性を得られないおそれがある。一方、金属銅粒子の平均粒子径が20μmを超えると、得られる導電ペーストによる、微細配線の作製が難しくなるおそれがある。「複合金属銅粒子」における金属銅粒子の平均粒子径は、1~10μmであることがより好ましい。 When the average particle size of the metal copper particles of the “composite metal copper particles” is less than 0.3 μm, there is a possibility that sufficient flow characteristics cannot be obtained when a conductive paste is obtained. On the other hand, when the average particle diameter of the metal copper particles exceeds 20 μm, it may be difficult to produce fine wiring by the obtained conductive paste. The average particle diameter of the metal copper particles in the “composite metal copper particles” is more preferably 1 to 10 μm.
 「複合金属銅粒子」の銅微粒子は、銅複合粒子における水素化銅微粒子と同様に、主として1~20nm程度の銅微粒子が凝集した状態で存在している。銅微粒子の粒子形状は球状であってもよく、板状であってもよい。銅微粒子の凝集粒子の平均粒子径が20nm未満であると、銅微粒子の融着・成長が生じ易くなり、導電膜としたときに、体積収縮に伴うクラック等の不具合が発生するおそれがある。一方、銅微粒子の凝集粒子の平均粒子径が400nmを超えると、粒子表面積が十分でなく、表面融解現象が生じ難くなり、緻密な導電膜を形成するのが困難となる。銅微粒子の凝集粒子の平均粒子径は、30~300nmであることがより好ましく、50~200nmであることがより好ましい。特に好ましくは80~150nmである。 The copper fine particles of the “composite metal copper particles” exist mainly in a state where copper fine particles of about 1 to 20 nm are aggregated, like the copper hydride fine particles in the copper composite particles. The copper fine particles may have a spherical shape or a plate shape. If the average particle diameter of the aggregated particles of the copper fine particles is less than 20 nm, the copper fine particles are likely to be fused and grown, and there is a possibility that defects such as cracks accompanying volume shrinkage may occur when the conductive film is formed. On the other hand, if the average particle diameter of the aggregated particles of the copper fine particles exceeds 400 nm, the particle surface area is not sufficient, the surface melting phenomenon hardly occurs, and it becomes difficult to form a dense conductive film. The average particle diameter of the aggregated particles of copper fine particles is more preferably 30 to 300 nm, and more preferably 50 to 200 nm. Particularly preferred is 80 to 150 nm.
 なお、金属銅粒子の平均粒子径は、SEM像の中から無作為に選出した100個の金属銅粒子のFeret径を測定し、この測定値を平均して算出したものである。また、銅微粒子の平均粒子径は、TEM像の中から無作為に選出した100個の水素化銅微粒子のFeret径を測定し、その測定値を平均して算出したものである。 In addition, the average particle diameter of the metallic copper particles is calculated by measuring the Feret diameters of 100 metallic copper particles randomly selected from the SEM image and averaging the measured values. The average particle diameter of the copper fine particles is calculated by measuring the Feret diameter of 100 copper hydride fine particles randomly selected from the TEM image and averaging the measured values.
 また、銅粒子(A)としては、例えば銅粒子表面を還元処理してなる「表面改質銅粒子」が好適に使用できる。 
 本発明における「表面改質銅粒子」は、銅粒子表面を、pH値が3以下の分散媒中で還元処理して得られる。「表面改質銅粒子」は、例えば、(1)銅粒子を分散媒に分散して「銅分散液」とする工程、(2)銅分散液のpH値を所定値以下に調整する工程、(3)銅分散液に還元剤を添加する工程、の下記の(1)~(3)の工程を有する、湿式還元法により製造できる。
Moreover, as the copper particles (A), for example, “surface modified copper particles” obtained by reducing the surface of the copper particles can be suitably used.
The “surface-modified copper particles” in the present invention are obtained by reducing the surface of copper particles in a dispersion medium having a pH value of 3 or less. “Surface modified copper particles” include, for example, (1) a step of dispersing copper particles in a dispersion medium to form a “copper dispersion”, and (2) a step of adjusting the pH value of the copper dispersion to a predetermined value or less. (3) It can be produced by a wet reduction method having the following steps (1) to (3) of adding a reducing agent to the copper dispersion.
 上記(1)~(3)の工程により得られる表面改質銅粒子は、主に金属銅粒子で構成されるものである。表面改質銅粒子の平均一次粒子径は0.3~20μmであることが好ましい(金属銅粒子(A1))。表面改質銅粒子において、その平均一次粒子径が0.3μm以上であれば、この銅粒子を含む導電ペーストの流動特性が良好となる。また、表面改質銅粒子の平均一次粒子径が20μm以下であれば、この銅粒子を含む導電ペーストにより、微細配線を作製しやすくなる。 The surface-modified copper particles obtained by the steps (1) to (3) are mainly composed of metallic copper particles. The average primary particle diameter of the surface-modified copper particles is preferably 0.3 to 20 μm (metal copper particles (A1)). In the surface-modified copper particles, if the average primary particle diameter is 0.3 μm or more, the flow characteristics of the conductive paste containing the copper particles are good. Moreover, if the average primary particle diameter of the surface-modified copper particles is 20 μm or less, it becomes easy to produce a fine wiring by the conductive paste containing the copper particles.
 以下に、表面改質銅粒子を製造する工程(1)~(3)について説明する。 The steps (1) to (3) for producing the surface-modified copper particles will be described below.
(1)銅分散液の作製
 銅分散液に分散させる銅粒子は、導電ペーストとして一般に用いられる銅粒子を用いることができる。銅分散液に分散させる銅粒子の粒子形状は球状であってもよく、板状であってもよい。
(1) Preparation of copper dispersion The copper particle generally used as a conductive paste can be used for the copper particle disperse | distributed to a copper dispersion. The particle shape of the copper particles dispersed in the copper dispersion may be spherical or plate-shaped.
 銅分散液に分散させる銅粒子の平均粒子径は、0.3~20μmであることが好ましく、1~10μmであることがより好ましい。銅粒子の平均粒子径が0.3μm未満であると、導電ペーストの流動性を低下させるおそれがある。一方、銅粒子の平均粒子径が20μmを超えると、得られる導電ペーストでの微細配線の作製が困難となる。銅粒子の平均粒子径を0.3~20μmとすることで、流動性が良好で、かつ微細配線の作製に適した導電ペーストとできる。
 なお、銅粒子の平均粒子径は、SEM像の中から無作為に選出した100個の金属銅粒子のFeret径を測定し、その平均値を算出して得たものである。
The average particle diameter of the copper particles dispersed in the copper dispersion is preferably 0.3 to 20 μm, and more preferably 1 to 10 μm. There exists a possibility that the fluidity | liquidity of an electrically conductive paste may fall that the average particle diameter of a copper particle is less than 0.3 micrometer. On the other hand, when the average particle diameter of the copper particles exceeds 20 μm, it becomes difficult to produce fine wiring with the obtained conductive paste. By setting the average particle diameter of the copper particles to 0.3 to 20 μm, it is possible to obtain a conductive paste having good fluidity and suitable for the production of fine wiring.
The average particle diameter of the copper particles is obtained by measuring the Feret diameter of 100 metal copper particles randomly selected from the SEM image and calculating the average value.
 銅分散液は、上記の銅粒子を粉末状としたものを、分散媒に投入して得ることができる。銅分散液の銅粒子の濃度は、0.1~50質量%であることが好ましい。銅粒子の濃度が0.1質量%未満であると、銅分散液に含まれる分散媒量が過多となり、生産効率を十分なレベルに維持できないおそれがある。一方、銅粒子の濃度が50質量%を超えると、粒子同士の凝集の影響が過大となり、表面改質銅粒子の収率が低減するおそれがある。銅分散液の銅粒子の濃度を0.1~50質量%の範囲とすることで、表面改質銅粒子を高収率で得ることができる。 The copper dispersion can be obtained by putting the above copper particles in powder form into a dispersion medium. The concentration of copper particles in the copper dispersion is preferably 0.1 to 50% by mass. When the concentration of the copper particles is less than 0.1% by mass, the amount of the dispersion medium contained in the copper dispersion becomes excessive, and the production efficiency may not be maintained at a sufficient level. On the other hand, when the concentration of the copper particles exceeds 50% by mass, the influence of the aggregation between the particles becomes excessive, and the yield of the surface-modified copper particles may be reduced. When the concentration of the copper particles in the copper dispersion is in the range of 0.1 to 50% by mass, the surface-modified copper particles can be obtained in a high yield.
 銅分散液の分散媒としては、銅粒子を分散可能なものであれば特に限定されないが、高極性を有するものが好適に使用できる。高極性の分散媒としては、例えば、水、メタノール、エタノール、2-プロパノール等のアルコール類、エチレングリコール等のグリコール類、およびこれらを混合した混合媒体等を使用できる。高極性の分散媒としては、特に水を好適に使用できる。 The dispersion medium for the copper dispersion is not particularly limited as long as it can disperse the copper particles, but those having high polarity can be suitably used. Examples of the highly polar dispersion medium include water, alcohols such as methanol, ethanol and 2-propanol, glycols such as ethylene glycol, and a mixed medium obtained by mixing these. As the highly polar dispersion medium, water can be particularly preferably used.
(2)銅分散液のpH値の調整
 上記(1)で得られた銅分散液のpH値を調整する。pH値の調整は、銅分散液にpH調整剤を添加して行うことができる。
 銅分散液のpH調整剤としては、酸を使用できる。銅分散液のpH調整剤としては、例えばギ酸、クエン酸、マレイン酸、マロン酸、酢酸、プロピオン酸等のカルボン酸や、硫酸、硝酸、塩酸等の無機酸を好適に使用できる。
(2) Adjustment of pH value of copper dispersion liquid The pH value of the copper dispersion liquid obtained by said (1) is adjusted. The pH value can be adjusted by adding a pH adjuster to the copper dispersion.
An acid can be used as a pH adjuster for the copper dispersion. As the pH adjuster for the copper dispersion, for example, carboxylic acids such as formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid, and inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and the like can be suitably used.
 銅分散液のpH値は3以下とすることが好ましい。銅分散液のpH値を3以下とすることで、後の還元処理工程で、粒子表面の酸化膜の除去を円滑に行うことができ、得られる表面改質銅粒子の表面酸素濃度を低減できる。分散液のpH値が3を超えると、銅粒子表面に形成された酸化膜を除去する効果を十分に得ることができず、銅粒子表面の酸素濃度を十分に低減できないおそれがある。一方、分散液のpH値は0.5以上とすることが好ましい。分散液のpH値が0.5未満であると、銅イオンが過度に溶出し、銅粒子の表面改質が円滑に進行し難くなるおそれがある。分散液のpH値は、0.5以上2以下とすることがより好ましい。なお、分散液のpH値が3以下の場合は、この分散液をそのまま還元処理してもよい。 The pH value of the copper dispersion is preferably 3 or less. By adjusting the pH value of the copper dispersion to 3 or less, the oxide film on the particle surface can be removed smoothly in the subsequent reduction treatment step, and the surface oxygen concentration of the resulting surface-modified copper particles can be reduced. . When the pH value of the dispersion exceeds 3, the effect of removing the oxide film formed on the copper particle surface cannot be sufficiently obtained, and the oxygen concentration on the copper particle surface may not be sufficiently reduced. On the other hand, the pH value of the dispersion is preferably 0.5 or more. When the pH value of the dispersion is less than 0.5, copper ions are excessively eluted, and the surface modification of the copper particles may not proceed smoothly. The pH value of the dispersion is more preferably from 0.5 to 2. If the pH value of the dispersion is 3 or less, the dispersion may be reduced as it is.
(3)銅分散液の還元処理
 pH値を調整した銅分散液に還元剤を添加して還元処理を行う。
 銅分散液に添加する還元剤としては、金属水素化物、ヒドリド還元剤、次亜リン酸、次亜リン酸ナトリウムなどの次亜リン酸塩、ジメチルアミンボラン等のアミンボラン、およびギ酸から選ばれる少なくとも1種を使用できる。金属水素化物としては、水素化リチウム、水素化カリウム、および水素化カルシウムが挙げられる。ヒドリド還元剤としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、および水素化ホウ素ナトリウムが挙げられる。これらのうち、次亜リン酸、次亜リン酸ナトリウムを好適に用いることができる。
(3) Reduction treatment of copper dispersion The reduction treatment is performed by adding a reducing agent to the copper dispersion whose pH value is adjusted.
The reducing agent added to the copper dispersion is at least selected from metal hydrides, hydride reducing agents, hypophosphorous acid, hypophosphites such as sodium hypophosphite, amine boranes such as dimethylamine borane, and formic acid. One type can be used. Metal hydrides include lithium hydride, potassium hydride, and calcium hydride. Examples of the hydride reducing agent include lithium aluminum hydride, lithium borohydride, and sodium borohydride. Of these, hypophosphorous acid and sodium hypophosphite can be suitably used.
 上記工程(1)~(3)の表面処理を行うことで、出発原料としての銅粒子表面に存在していた酸化銅(CuO、CuO)を、銅原子に還元でき、導電性を阻害する要因となる酸化銅の存在量を低減できる。 By performing the surface treatment in the above steps (1) to (3), the copper oxide (Cu 2 O, CuO) present on the surface of the copper particles as the starting material can be reduced to copper atoms, thereby inhibiting conductivity. This can reduce the amount of copper oxide that becomes a factor.
<キレート剤(B)>
 本発明の実施形態の導電ペーストに含有されるキレート剤(B)は、銅イオンに配位し、下記式(1)で示す反応により銅イオンと錯体を形成し得る化合物からなるものである。
<Chelating agent (B)>
The chelating agent (B) contained in the conductive paste of the embodiment of the present invention is composed of a compound that can coordinate with copper ions and form a complex with copper ions by the reaction represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ただし、式中の記号は以下の意味を示す。
M:銅イオン
Z:キレート剤(B)
MZ:錯塩
x:銅1個と結合するキレート剤(B)の数
However, the symbols in the formulas have the following meanings.
M: Copper ion Z: Chelating agent (B)
MZ: Complex salt x: Number of chelating agent (B) binding to one copper
 キレート剤(B)は、25℃、イオン強度0.1mol/Lでの、上記式(1)のx=1の場合における銅イオンとの安定度定数logKCuが5~15である化合物からなるものである。安定度定数logKCuは、キレート剤と金属との結合力の強さを示す指標であり、上記式(1)で示した反応式の平衡定数KCuの対数値として求めることができる。KCuは、具体的には、下記式(2)により求めることができる。 The chelating agent (B) is composed of a compound having a stability constant logK Cu of 5 to 15 with copper ions in the case of x = 1 in the above formula (1) at 25 ° C. and an ionic strength of 0.1 mol / L. Is. The stability constant logK Cu is an index indicating the strength of the binding force between the chelating agent and the metal, and can be obtained as a logarithmic value of the equilibrium constant K Cu in the reaction equation represented by the above formula (1). Specifically, K Cu can be obtained by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(上記式(2)において、[ ]は括弧内の各成分の濃度を表す。) (In the above formula (2), [] represents the concentration of each component in parentheses.)
 本発明における「安定度定数logKCu」に関し、種々の化合物についての具体的な数値としては、例えば、化学便欄(丸善)、Stability Constants of Metal-Ion Complexes(PERGAMON PRESS)、Journal of Chemical Engineering Data(ACS Publications)等の文献に記載されている。 With respect to the “stability constant logK Cu ” in the present invention, specific numerical values for various compounds include, for example, chemical column (Maruzen), Stability Constants of Metal-Ion Complexes (PERGAMON PRESS), Journal of Chemical Engineering. (ACS Publications).
 キレート剤(B)として、銅イオンとの前記安定度定数logKCuが5以上の化合物を配合することで、ペースト内で生じた銅イオンの少なくとも一部は、キレート剤(B)と錯体を形成すると考えられる。そのため、大気中の水分や酸素等(例えばO、HO等。)と反応する銅イオンの量を低減でき、ペースト内での酸化銅の形成を抑制できる。また、キレート剤(B)は、銅イオンと解離しにくいため、高湿度の環境下で放置しても錯体の状態を長期間維持することができる。そのため、酸化被膜が形成されにくく、体積抵抗率の上昇が抑制された導電膜を形成可能な導電ペーストとできる。 As a chelating agent (B), by compounding a compound having a stability constant logK Cu of 5 or more with copper ions, at least a part of the copper ions generated in the paste forms a complex with the chelating agent (B). I think that. Therefore, it is possible to reduce the amount of copper ions that react with moisture, oxygen, etc. (for example, O 2 , H 2 O, etc.) in the atmosphere, and to suppress the formation of copper oxide in the paste. In addition, since the chelating agent (B) is difficult to dissociate from copper ions, the state of the complex can be maintained for a long time even when left in a high humidity environment. Therefore, the conductive paste can form a conductive film in which an oxide film is hardly formed and an increase in volume resistivity is suppressed.
 キレート剤(B)の前記安定度定数logKCuが5未満であると、銅イオンに対する結合力が十分でないため、大気中の水分や酸素等と反応する銅イオンの量を十分に低減できず、酸化銅の生成を抑制することが困難となる。また、キレート剤(B)の前記安定度数logKCuが15を超えると、キレート剤(B)の銅イオンに対する結合力が強すぎて、銅粒子同士の接触を阻害し、導電性を低下させるおそれがある。これは、キレート剤(B)が、銅粒子表面に存在する銅イオンだけでなく、銅(金属銅)にも作用するためと推定される。安定度定数logKCuは、より好ましくは7~14である。 When the stability constant logK Cu of the chelating agent (B) is less than 5, since the binding force to copper ions is not sufficient, the amount of copper ions that react with moisture, oxygen, etc. in the atmosphere cannot be sufficiently reduced, It becomes difficult to suppress the production of copper oxide. Moreover, when the stability number logK Cu of the chelating agent (B) exceeds 15, the binding force of the chelating agent (B) to the copper ions is too strong, which may inhibit the contact between the copper particles and reduce the conductivity. There is. This is presumably because the chelating agent (B) acts not only on the copper ions present on the surface of the copper particles but also on copper (metal copper). The stability constant logK Cu is more preferably 7 to 14.
 キレート剤(B)としては、窒素原子を含む官能基(a)と、窒素原子以外の孤立電子対を有する原子を含む官能基(b)とが、芳香環のオルト位に配置されており、官能基(a)の「窒素原子」と官能基(b)の「孤立電子対を有する原子」とが、2個または3個の原子を介在して結合した芳香族化合物を好適に使用できる。
 上記の分子構造を有する化合物を、キレート剤(B)として配合することで、銅イオンと安定した錯体を形成できる。
As the chelating agent (B), the functional group (a) containing a nitrogen atom and the functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring, An aromatic compound in which the “nitrogen atom” of the functional group (a) and the “atom having a lone pair” of the functional group (b) are bonded via two or three atoms can be preferably used.
By compounding the compound having the molecular structure as a chelating agent (B), a stable complex with copper ions can be formed.
 官能基(a)の「窒素原子」と官能基(b)の「孤立電子対を有する原子」との間に介在する原子としては、炭素原子が挙げられる。すなわち、キレート剤(B)としては、前記芳香族化合物の中でも、官能基(a)の窒素原子と官能基(b)の孤立電子対を有する原子とが、2個または3個の炭素原子を介在して結合しているものが、好適に用いられる。 Examples of the atoms interposed between the “nitrogen atom” of the functional group (a) and the “atom having a lone pair” of the functional group (b) include a carbon atom. That is, as the chelating agent (B), among the aromatic compounds, the nitrogen atom of the functional group (a) and the atom having a lone pair of the functional group (b) have 2 or 3 carbon atoms. Those intervened and bonded are preferably used.
 孤立電子対を有する、窒素原子以外の原子を含む官能基(b)として好適なものとしては、例えば、水酸基、カルボキシル基等を挙げることができる。 Suitable examples of the functional group (b) containing an atom other than a nitrogen atom having a lone electron pair include a hydroxyl group and a carboxyl group.
 キレート剤(B)として、具体的には、サリチルヒドロキサム酸、サリチルアルドキシム、o-アミノフェノールから選択される少なくとも1種を使用できる。 As the chelating agent (B), specifically, at least one selected from salicylhydroxamic acid, salicylaldoxime, and o-aminophenol can be used.
 キレート剤(B)として、サリチルアルドキシムを用いた場合には、下記式(I)で示す反応により、銅イオンとの錯体が形成される。 When salicylaldoxime is used as the chelating agent (B), a complex with copper ions is formed by the reaction represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 導電ペーストにおけるキレート剤(B)の含有量は、前記銅粒子(A)100質量部に対して、0.01~1質量部であることが好ましく、0.05~0.5質量部がより好ましい。
 キレート剤(B)の含有量が0.01質量部未満であると、導電膜としたとき、体積抵抗率の上昇を抑制する効果を十分に得られないおそれがある。一方、キレート剤(B)の含有量が1質量部を超えると、銅粒子同士の接触を阻害し、導電性を低下させるおそれがある。
The content of the chelating agent (B) in the conductive paste is preferably 0.01 to 1 part by mass, more preferably 0.05 to 0.5 part by mass with respect to 100 parts by mass of the copper particles (A). preferable.
When the content of the chelating agent (B) is less than 0.01 parts by mass, the effect of suppressing the increase in volume resistivity may not be sufficiently obtained when the conductive film is formed. On the other hand, when content of a chelating agent (B) exceeds 1 mass part, there exists a possibility that the contact of copper particles may be inhibited and electroconductivity may be reduced.
<熱硬化性樹脂(C)>
 本発明の実施形態の導電ペーストに含有される熱硬化性樹脂(C)としては、通常の導電ペーストの樹脂バインダとして用いられる公知の熱硬化性樹脂を用いることができる。
<Thermosetting resin (C)>
As thermosetting resin (C) contained in the electrically conductive paste of embodiment of this invention, the well-known thermosetting resin used as a resin binder of a normal electrically conductive paste can be used.
 熱硬化性樹脂(C)としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂等を好適に使用できる。これらの中でも、フェノール樹脂が特に好適に使用できる。フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂を使用できるが、これらの中でも、レゾール型フェノール樹脂を特に好適に使用できる。
 なお、樹脂のガラス転移点(Tg)を調節するために、上述の熱硬化性樹脂中に、ジアリルフェタレート樹脂、不飽和アルキド樹脂、エポキシ樹脂、イソシアネート樹脂、ビスマレイドトリアジン樹脂、シリコーン樹脂およびアクリル樹脂から選択される少なくとも一種を適宜含有してもよい。
As a thermosetting resin (C), a phenol resin, a melamine resin, a urea resin etc. can be used conveniently, for example. Among these, a phenol resin can be particularly preferably used. As the phenol resin, a novolac type phenol resin and a resol type phenol resin can be used, and among these, a resol type phenol resin can be particularly preferably used.
In order to adjust the glass transition point (Tg) of the resin, the above-mentioned thermosetting resin includes diallyl phthalate resin, unsaturated alkyd resin, epoxy resin, isocyanate resin, bismaleidotriazine resin, silicone resin and acrylic resin. You may contain suitably at least 1 type selected from resin.
 熱硬化性樹脂(C)は、硬化後の樹脂成分が導電性を阻害しない範囲で添加できる。
 導電ペーストにおける熱硬化性樹脂(C)の含有量は、銅粒子の体積と、銅粒子間に存在する空隙の体積との比率に応じて適宜選択できる。銅粒子(A)100質量部に対して5~50質量部であることが好ましく、5~20質量部であることがより好ましい。熱硬化性樹脂(C)の含有量が5質量部未満であると、導電ペーストとして十分な流動特性を得るのが困難となる。一方、熱硬化性樹脂(C)の含有量が50質量部を超えると、硬化後の樹脂成分により銅粒子間の接触が妨げられて、導電体の体積抵抗率を上昇させるおそれがある。
The thermosetting resin (C) can be added as long as the cured resin component does not impair the conductivity.
The content of the thermosetting resin (C) in the conductive paste can be appropriately selected according to the ratio between the volume of the copper particles and the volume of the voids existing between the copper particles. The amount is preferably 5 to 50 parts by mass, more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the copper particles (A). When the content of the thermosetting resin (C) is less than 5 parts by mass, it becomes difficult to obtain sufficient flow characteristics as a conductive paste. On the other hand, when the content of the thermosetting resin (C) exceeds 50 parts by mass, contact between the copper particles is hindered by the cured resin component, and the volume resistivity of the conductor may be increased.
<有機酸の、エステルまたはアミド(D)>
 本発明の実施形態の導電ペーストに含有される有機酸の、エステルまたはアミド(D)は、前記熱硬化性樹脂(C)の硬化を促進することで、150℃未満の温度で硬化させるために配合される。エステルまたはアミドを構成する有機酸は、pKaが1~4のものとする。有機酸のpKaが1未満であると、導電ペーストの保存性に悪影響を及ぼすおそれがある。また、有機酸のpKaが4を超えると、前記熱硬化性樹脂(C)の硬化を促進する中間体の生成が遅くなり、結果として樹脂の硬化促進効果が得られないおそれがある。有機酸のpKaは、より好ましくは1~3である。
<Organic acid ester or amide (D)>
In order to cure the ester or amide (D) of the organic acid contained in the conductive paste of the embodiment of the present invention at a temperature of less than 150 ° C. by promoting the curing of the thermosetting resin (C). Blended. The organic acid constituting the ester or amide has a pKa of 1 to 4. If the pKa of the organic acid is less than 1, the storage stability of the conductive paste may be adversely affected. Moreover, when pKa of organic acid exceeds 4, the production | generation of the intermediate body which accelerates | stimulates hardening of the said thermosetting resin (C) becomes slow, and there exists a possibility that the hardening acceleration effect of resin may not be acquired as a result. The pKa of the organic acid is more preferably 1 to 3.
 pKaが1~4である有機酸としては、シュウ酸(1.27)、マレイン酸(1.92)、マロン酸(2.86)、サリチル酸(2.97)、フマル酸(3.02)、酒石酸(3.06)、クエン酸(3.16)、ギ酸(3.76)等が挙げられる。
 これらのpKaが1~4である有機酸の中で、エステルまたはアミドが好適に使用できる理由としては、以下のことが挙げられる。
Organic acids having a pKa of 1 to 4 include oxalic acid (1.27), maleic acid (1.92), malonic acid (2.86), salicylic acid (2.97), and fumaric acid (3.02). , Tartaric acid (3.06), citric acid (3.16), formic acid (3.76) and the like.
Among these organic acids having a pKa of 1 to 4, the reasons why esters or amides can be suitably used include the following.
 (1)pKaが1~4の有機酸の、エステルまたはアミドを用いると、熱硬化性樹脂(例えば、フェノール樹脂やメラミン樹脂、尿素樹脂)の中間体を安定に存在させる効果が大きい。なぜならば、上述のエステルまたはアミドは、前記熱硬化性樹脂の中間体であるジメチレンエーテル型の中間体に配位する。この配位により、反応部位の一方のメチロール基の酸素上の電子密度が増大し、相対するメチロール基の炭素上の電子密度が減少する。そのため、ジメチレンエーテル型の中間体が安定に存在するので、中間体の反応確率が上昇し硬化が促進される。その結果、硬化後の導電膜の高温高湿時の耐久性を向上させることができる。 (1) When an ester or amide of an organic acid having a pKa of 1 to 4 is used, the effect of allowing an intermediate of a thermosetting resin (for example, a phenol resin, a melamine resin, or a urea resin) to exist stably is large. This is because the above-mentioned ester or amide is coordinated to a dimethylene ether type intermediate which is an intermediate of the thermosetting resin. This coordination increases the electron density on oxygen of one methylol group at the reaction site, and decreases the electron density on carbon of the opposite methylol group. Therefore, since the dimethylene ether type intermediate is present stably, the reaction probability of the intermediate is increased and curing is promoted. As a result, the durability of the cured conductive film at high temperature and high humidity can be improved.
 (2)pKaが1~4の有機酸の、エステルまたはアミドの配位により、上述の中間体のメチレンカルボニウムイオンの反応性を大きく向上させることが可能である。そのため、硬化促進への寄与が大きく、硬化後の導電膜の高温高湿時の耐久性を向上させることができる。 (2) The reactivity of the above-mentioned intermediate methylenecarbonium ion can be greatly improved by coordination of an ester or amide of an organic acid having a pKa of 1 to 4. Therefore, the contribution to the acceleration of curing is large, and the durability of the conductive film after curing at high temperature and high humidity can be improved.
 (3)有機酸のエステルやアミドは、有機酸と比較して金属との反応性が小さいために金属を腐食する効果が小さく、硬化後の導電膜の体積抵抗率の上昇を抑えることができる。pKaが1~4である有機酸単体を使用した場合は、導電ペースト中の金属を腐食して硬化後の導電膜の体積抵抗率を上昇させるおそれがある。 (3) Organic acid esters and amides are less reactive with metals compared to organic acids and therefore have little effect of corroding metals, and can suppress an increase in volume resistivity of the conductive film after curing. . When a single organic acid having a pKa of 1 to 4 is used, the metal in the conductive paste may be corroded to increase the volume resistivity of the conductive film after curing.
 (4)有機酸のエステルやアミドは、ペースト保存時にペースト中の熱硬化性樹脂の硬化を促進する効果が小さいので、導電ペーストの保存性(ポットライフ)に与える悪影響が小さい。 (4) Organic acid esters and amides have little effect on promoting the curing of the thermosetting resin in the paste when the paste is stored, and therefore have little adverse effect on the storage stability (pot life) of the conductive paste.
 (5)有機酸のエステルやアミドは、硬化後の導電膜の耐久性向上に寄与するキレート剤の働きを阻害しないので、耐久性を十分に維持できる。 (5) Since organic acid esters and amides do not inhibit the action of chelating agents that contribute to improving the durability of the conductive film after curing, the durability can be sufficiently maintained.
 前記したpKaが1~4である有機酸の、エステルまたはアミドとしては、例えば、ホルムアミド、サリチル酸メチル、ギ酸メチル、ギ酸エチル、シュウ酸ジメチル、マレイン酸ジメチル、マロン酸ジメチル等が挙げられる。これらに限定されるものではないが、これらから選択される少なくとも1種であることが好ましい。
 これらのpKaが1~4である有機酸の、エステルまたはアミドの中でも、硫黄(S)を含有しない有機酸の、エステルまたはアミドを好適に使用できる。この理由としては、Sが銅と反応して硫化物を生成するおそれがあるので、有機酸のエステルやアミドであってもペースト保存性に悪影響を与えるおそれがあるからである。具体的には、ホルムアミド、サリチル酸メチル、シュウ酸ジメチル、マロン酸ジメチル、マレイン酸ジメチルを好適に使用できる。
Examples of the ester or amide of the organic acid having a pKa of 1 to 4 include formamide, methyl salicylate, methyl formate, ethyl formate, dimethyl oxalate, dimethyl maleate, and dimethyl malonate. Although it is not limited to these, It is preferable that it is at least 1 sort (s) selected from these.
Among these esters or amides of organic acids having a pKa of 1 to 4, esters or amides of organic acids not containing sulfur (S) can be preferably used. This is because S may react with copper to produce a sulfide, and even an organic acid ester or amide may adversely affect paste storage stability. Specifically, formamide, methyl salicylate, dimethyl oxalate, dimethyl malonate, and dimethyl maleate can be preferably used.
 導電ペーストにおける前記有機酸エステルまたはアミド(D)の含有量は、前記熱硬化性樹脂(C)100質量部に対して、0.5~15質量部であることが好ましく、1~10質量部がより好ましい。前記有機酸エステルまたはアミド(D)の含有量が0.5質量部未満であると、樹脂の硬化を促進する効果を十分に得られないおそれがある。一方、前記有機酸エステルまたはアミド(D)の含有量が15質量部を超えると、銅粒子同士の接触を阻害し、導電性を低下させるおそれがある。 The content of the organic acid ester or amide (D) in the conductive paste is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the thermosetting resin (C). Is more preferable. If the content of the organic acid ester or amide (D) is less than 0.5 parts by mass, the effect of promoting the curing of the resin may not be sufficiently obtained. On the other hand, when content of the said organic acid ester or amide (D) exceeds 15 mass parts, there exists a possibility that the contact of copper particles may be inhibited and electroconductivity may be reduced.
<その他の成分>
 本発明の導電ペーストは、必要に応じて、前記(A)~(D)の各成分に加えて溶剤や各種添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤、密着剤等。)等のその他の成分を、本発明の効果を損なわない範囲で含んでいてもよい。特に、適度な流動性を有するペースト体を得るために、熱硬化性樹脂を溶解し得る溶剤を含有させることが好ましい。
<Other ingredients>
If necessary, the conductive paste of the present invention may contain a solvent and various additives (leveling agent, coupling agent, viscosity modifier, antioxidant, adhesive agent, etc.) in addition to the components (A) to (D). Other components such as.) May be included as long as the effects of the present invention are not impaired. In particular, in order to obtain a paste body having appropriate fluidity, it is preferable to contain a solvent capable of dissolving the thermosetting resin.
 導電ペーストに含有させる溶剤としては、例えば、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等を好適に使用できる。
 印刷用ペースト体として適度な粘度範囲とする観点から、導電ペーストに含有させる溶剤の量は、銅粒子(A)に対して1~10質量%が好ましい。
Examples of the solvent contained in the conductive paste include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl. Ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and the like can be suitably used.
From the viewpoint of setting an appropriate viscosity range for the printing paste body, the amount of the solvent contained in the conductive paste is preferably 1 to 10% by mass with respect to the copper particles (A).
 本発明の実施形態の導電ペーストは、前記(A)~(D)の各成分を、溶剤等のその他の成分と混合して得ることができる。 The conductive paste according to the embodiment of the present invention can be obtained by mixing the components (A) to (D) with other components such as a solvent.
 前記(A)~(D)の各成分を混合する時には、熱硬化性樹脂の硬化や溶剤の揮発が生じない程度の温度で、加熱しながら行うことができる。混合、撹拌時の温度は、10~40℃とすることが好ましい。より好ましくは20~30℃とする。導電ペーストを形成するときに、10℃以上の温度にすることで、ペーストの粘度を十分に低下させることができ、撹拌を円滑かつ十分に行うことができる。また、銅粒子表面に生成した水素化銅を銅原子とすることができる。一方、導電ペーストを形成するときの温度が40℃を超えると、ペースト中で熱硬化性樹脂(C)の硬化が生じたり、粒子同士の融着が生じたりするおそれがある。
 なお、混合時に銅粒子が酸化されるのを防止するため、不活性ガスで置換した容器内で混合することが好ましい。
The mixing of the components (A) to (D) can be carried out while heating at a temperature that does not cause curing of the thermosetting resin or volatilization of the solvent. The temperature during mixing and stirring is preferably 10 to 40 ° C. More preferably, the temperature is 20 to 30 ° C. When forming the conductive paste, by setting the temperature to 10 ° C. or higher, the viscosity of the paste can be sufficiently reduced, and stirring can be performed smoothly and sufficiently. Moreover, the copper hydride produced | generated on the copper particle surface can be made into a copper atom. On the other hand, when the temperature at which the conductive paste is formed exceeds 40 ° C., the thermosetting resin (C) may be cured in the paste or the particles may be fused.
In order to prevent the copper particles from being oxidized during mixing, it is preferable to mix in a container substituted with an inert gas.
 以上説明した本発明の導電ペーストによれば、空気中でも酸化されにくく、従来の導電ペーストと比較して、酸化銅の生成による体積抵抗率の上昇が抑制された導電膜を形成できる。 According to the conductive paste of the present invention described above, it is difficult to oxidize in the air, and it is possible to form a conductive film in which an increase in volume resistivity due to the formation of copper oxide is suppressed as compared with a conventional conductive paste.
[導電膜付き基材]
 例えば図1に示すように、本発明の導電膜付き基材10は、基材11上に上述した導電ペーストを硬化させて形成された導電膜12を有する。この導電膜付き基材10は、前記導電ペーストを基材11の表面に塗布して導電ペースト膜を形成し、溶剤等の揮発性成分を除去した後、導電ペースト中の熱硬化性樹脂(C)を硬化させて導電膜12を形成することにより、製造できる。
[Substrate with conductive film]
For example, as shown in FIG. 1, the base material 10 with a conductive film of the present invention has a conductive film 12 formed by curing the above-described conductive paste on a base material 11. This base material 10 with a conductive film is formed by applying the conductive paste to the surface of the base material 11 to form a conductive paste film, removing volatile components such as a solvent, and then the thermosetting resin (C ) Is cured to form the conductive film 12.
 基材11としては、ガラス基板、プラスチック基材(例えば、ポリイミドフィルム、ポリエステルフィルム等からなるフィルム状の基材。)、繊維強化複合材料(ガラス繊維強化樹脂基板等。)、セラミックス基板等を用いることができる。本発明の導電ペーストを使用した場合には、後述するように、150℃未満(例えば、120~140℃)の温度での加熱により熱硬化性樹脂(C)を硬化させて導電膜12を形成することができるので、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)のようなポリエステル、ポリカーボネート等のプラスチック基材を特に好適に使用できる。 As the base material 11, a glass substrate, a plastic base material (for example, a film-like base material made of a polyimide film, a polyester film or the like), a fiber reinforced composite material (a glass fiber reinforced resin substrate or the like), a ceramic substrate, or the like is used. be able to. When the conductive paste of the present invention is used, the conductive film 12 is formed by curing the thermosetting resin (C) by heating at a temperature of less than 150 ° C. (for example, 120 to 140 ° C.), as will be described later. Therefore, a plastic substrate such as polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polycarbonate, or the like can be particularly preferably used.
 導電ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。
 これらの中でも、表面および側面における凹凸の発生が抑制された滑らかな配線形状を、基材11上に効率的に形成することができるので、スクリーン印刷法が好適に用いられる。
Examples of the method for applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.
Among these, since a smooth wiring shape in which the occurrence of unevenness on the surface and side surfaces is suppressed can be efficiently formed on the substrate 11, the screen printing method is preferably used.
 熱硬化性樹脂(C)の硬化は、導電ペースト膜を形成した基材を150℃未満(例えば、120~140℃)の温度で保持することにより行うことができる。硬化温度を120℃以上とすることにより、熱硬化性樹脂を十分に硬化させることができる。一方、硬化温度を140℃以下とすることにより、プラスチックフィルム等の基材を用いた場合でも、基材を変形させずに硬化を行うことができる。加熱方法としては、温風加熱、熱輻射、IR加熱等の方法が挙げられる。なお、導電膜の形成は、空気中で行ってもよく、また酸素量が少ない窒素雰囲気下等で行ってもよい。 The curing of the thermosetting resin (C) can be performed by holding the substrate on which the conductive paste film is formed at a temperature of less than 150 ° C. (for example, 120 to 140 ° C.). By setting the curing temperature to 120 ° C. or higher, the thermosetting resin can be sufficiently cured. On the other hand, by setting the curing temperature to 140 ° C. or lower, curing can be performed without deforming the substrate even when a substrate such as a plastic film is used. Examples of the heating method include warm air heating, thermal radiation, and IR heating. Note that the conductive film may be formed in the air or in a nitrogen atmosphere with a small amount of oxygen.
 基材11上の導電膜12の厚さは、安定な導電性を確保し、かつ配線形状を維持し易くする観点から、1~200μmであることが好ましく、5~100μmであることがより好ましい。また、導電膜12の体積抵抗率は、1.0×10-4Ωcm以下であることが好ましい。導電膜12の体積抵抗率が1.0×10-4Ωcmを超えると、電子機器用の導電体として、十分な導電性を得られないおそれがある。 The thickness of the conductive film 12 on the substrate 11 is preferably 1 to 200 μm, and more preferably 5 to 100 μm, from the viewpoint of ensuring stable conductivity and maintaining the wiring shape. . The volume resistivity of the conductive film 12 is preferably 1.0 × 10 −4 Ωcm or less. If the volume resistivity of the conductive film 12 exceeds 1.0 × 10 −4 Ωcm, there is a possibility that sufficient conductivity cannot be obtained as a conductor for electronic equipment.
 本発明に係る導電膜付き基材10においては、上述した本発明の導電ペーストを用いて導電膜12を形成しているため、酸化銅による酸化被膜が生成しにくく、従来の導電膜付き基材と比較して、体積抵抗率が低く、また高湿度の環境下で長期間使用しても体積抵抗率の上昇が抑制された導電膜付き基材とできる。 In the base material 10 with a conductive film according to the present invention, since the conductive film 12 is formed using the conductive paste of the present invention described above, an oxide film made of copper oxide is hardly generated, and a conventional base material with a conductive film is formed. In comparison with, a substrate with a conductive film having a low volume resistivity and suppressed increase in volume resistivity even when used for a long time in a high humidity environment can be obtained.
 以上、本発明の導電膜付き基材について一例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて適宜構成を変更することができる。また、本発明の導電膜付き基材の製造方法では、各部の形成順序等についても、導電膜付き基材の製造が可能な限度において適宜変更することができる。 As mentioned above, although an example was given and demonstrated about the base material with an electrically conductive film of this invention, a structure can be suitably changed as needed in the limit which is not contrary to the meaning of this invention. Moreover, in the manufacturing method of the base material with a conductive film of this invention, it can change suitably about the formation order of each part etc. in the limit in which manufacture of a base material with a conductive film is possible.
 以下、本発明を実施例によりさらに詳細に説明する。例1~4は本発明の実施例であり、例5~10は比較例である。 Hereinafter, the present invention will be described in more detail with reference to examples. Examples 1 to 4 are examples of the present invention, and examples 5 to 10 are comparative examples.
 銅粒子に還元処理を施し、銅粒子(A)(表面改質銅粒子)を得た。
 すなわち、まず、ガラス製ビーカーにギ酸3.0gと50質量%次亜リン酸水溶液9.0gとを投入し、このビーカーをウォーターバスに入れて40℃に保持した。
The copper particles were subjected to a reduction treatment to obtain copper particles (A) (surface modified copper particles).
That is, first, 3.0 g of formic acid and 9.0 g of a 50 mass% hypophosphorous acid aqueous solution were put into a glass beaker, and the beaker was put in a water bath and kept at 40 ° C.
 次いで、このビーカー内に、銅粒子(三井金属鉱業社製、商品名:「1400YP」、平均一次粒子径7μm)5.0gを徐々に添加し、30分間撹拌して「銅分散液」を得た。得られた「銅分散液」から、遠心分離器を使用し回転数3000rpmで10分間遠心分離して、沈殿物を回収した。この沈殿物を蒸留水30gに分散させ、遠心分離によって再び凝集物を沈殿させ、沈殿物を分離した。得られた沈殿物を、-35kPaの減圧下、80℃で60分間加熱し、残留水分を揮発させて徐々に除去して、粒子表面が改質された銅粒子(A-1)を得た。 Next, 5.0 g of copper particles (trade name: “1400 YP”, average primary particle diameter: 7 μm, manufactured by Mitsui Mining & Smelting Co., Ltd.) are gradually added to this beaker and stirred for 30 minutes to obtain a “copper dispersion”. It was. The obtained “copper dispersion liquid” was centrifuged at 3000 rpm for 10 minutes using a centrifuge to collect a precipitate. This precipitate was dispersed in 30 g of distilled water, and the aggregate was precipitated again by centrifugation, thereby separating the precipitate. The obtained precipitate was heated at 80 ° C. for 60 minutes under a reduced pressure of −35 kPa, and the residual water was volatilized and removed gradually to obtain copper particles (A-1) whose particle surfaces were modified. .
 得られた銅粒子(A-1)について、X線光電子分光分析装置(アルバック・ファイ社製、商品名:「ESCA5500」)により、下記の条件で表面酸素濃度[原子%]および表面銅濃度[原子%]の測定を行った。
・分析面積:800mmΦ
・Pass Energy:93.9eV
・Energy Step:0.8eV/step
About the obtained copper particles (A-1), the surface oxygen concentration [atomic%] and the surface copper concentration [under the following conditions were measured by an X-ray photoelectron spectrometer (trade name: “ESCA5500” manufactured by ULVAC-PHI). Atomic%] was measured.
・ Analysis area: 800mm 2 Φ
・ Pass Energy: 93.9eV
・ Energy Step: 0.8eV / step
 得られた表面酸素濃度を表面銅濃度で除して、表面酸素濃度比O/Cuを算出したところ、銅粒子(A-1)の表面酸素濃度比O/Cuは0.16であった。
 なお、銅粒子(A-1)中の酸素量を、酸素量計(LECO社製、商品名:「ROH-600」)を用いて測定したところ、460ppmであった。
When the surface oxygen concentration ratio O / Cu was calculated by dividing the obtained surface oxygen concentration by the surface copper concentration, the surface oxygen concentration ratio O / Cu of the copper particles (A-1) was 0.16.
The amount of oxygen in the copper particles (A-1) was 460 ppm as measured using an oximeter (manufactured by LECO, trade name: “ROH-600”).
(例1)
 フェノール樹脂(群栄化学社製、商品名:「レジトップPL6220」、樹脂固形分58質量%)0.74gとエチレングリコールモノブチルエーテルアセテート0.43gとを混合した樹脂溶液に、サリチルヒドロキサム酸0.005gを加えて溶解させた後、ホルムアミド0.0215gを加えて溶解させた。次いで、得られた樹脂溶液に、前記銅粒子(A-1)5.0gを配合し、乳鉢中で混合して導電ペースト1を得た。
(Example 1)
To a resin solution obtained by mixing 0.74 g of phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name: “Resitop PL 6220”, resin solid content: 58 mass%) and 0.43 g of ethylene glycol monobutyl ether acetate, 0. After adding 005 g and dissolving, 0.0215 g of formamide was added and dissolved. Next, 5.0 g of the copper particles (A-1) was blended in the obtained resin solution and mixed in a mortar to obtain a conductive paste 1.
 この導電ペースト1を、PET基板上にスクリーン印刷法により幅1mm、厚さ20μmの配線形状(帯状)に塗布し、130℃で15分間加熱してフェノール樹脂を硬化させた。こうして、導電膜1を有する導電膜付き基材1を形成した。 This conductive paste 1 was applied to a wiring shape (band shape) having a width of 1 mm and a thickness of 20 μm on a PET substrate by a screen printing method, and heated at 130 ° C. for 15 minutes to cure the phenol resin. Thus, the base material 1 with a conductive film having the conductive film 1 was formed.
(例2)
 ホルムアミド0.0215gをサリチル酸メチル0.0215gに変更したこと以外は、実施例1と同様にして、導電ペースト2を得た。次いで、導電ペースト1に代えて、PET基板上に導電ペースト2を塗布し、導電膜2を形成したこと以外は例1と同様にして、導電膜付き基材2を得た。
(Example 2)
A conductive paste 2 was obtained in the same manner as in Example 1 except that 0.0215 g of formamide was changed to 0.0215 g of methyl salicylate. Subsequently, it replaced with the electrically conductive paste 1, and apply | coated the electrically conductive paste 2 on the PET board | substrate, and obtained the base material 2 with an electrically conductive film similarly to Example 1 except having formed the electrically conductive film 2. FIG.
(例3)
 サリチルヒドロキサム酸0.005gをサリチルアルドキシム0.005gに変更し、ホルムアミド0.0215gをシュウ酸ジメチル0.0215gに変更した。それ以外は例1と同様にして、導電ペースト3を得た。次いで、導電ペースト1に代えて、PET基板上に導電ペースト3を塗布し、導電膜3を形成したこと以外は例1と同様にして、導電膜付き基材3を得た。
(Example 3)
0.005 g of salicylhydroxamic acid was changed to 0.005 g of salicylaldoxime, and 0.0215 g of formamide was changed to 0.0215 g of dimethyl oxalate. Otherwise in the same manner as in Example 1, a conductive paste 3 was obtained. Subsequently, it replaced with the electrically conductive paste 1, and apply | coated the electrically conductive paste 3 on the PET board | substrate, and obtained the base material 3 with an electrically conductive film similarly to Example 1 except having formed the electrically conductive film 3. FIG.
(例4)
 シュウ酸ジメチル0.0215gをマレイン酸ジメチル0.0215gに変更したこと以外は、例3と同様にして、導電ペースト4を得た。次いで、導電ペースト3に代えて、PET基板上に導電ペースト4を塗布し、導電膜4を形成したこと以外は例3と同様にして、導電膜付き基材4を得た。
(Example 4)
A conductive paste 4 was obtained in the same manner as in Example 3 except that 0.0215 g of dimethyl oxalate was changed to 0.0215 g of dimethyl maleate. Subsequently, it replaced with the electrically conductive paste 3, and applied the electrically conductive paste 4 on the PET board | substrate, and except having formed the electrically conductive film 4, it carried out similarly to Example 3, and obtained the base material 4 with the electrically conductive film.
(例5)
 樹脂溶液にホルムアミド0.0215gを添加しなかった。それ以外は例1と同様にして、導電ペースト5を得た。
(Example 5)
0.0215 g of formamide was not added to the resin solution. Otherwise in the same manner as in Example 1, a conductive paste 5 was obtained.
(例6)
 ホルムアミド0.0215gに代えて、プロピレンカーボネート0.0215gを樹脂溶液に添加したこと以外は例1と同様にして、導電ペースト6を得た。
(Example 6)
A conductive paste 6 was obtained in the same manner as in Example 1 except that 0.0215 g of propylene carbonate was added to the resin solution instead of 0.0215 g of formamide.
(例7)
 ホルムアミド0.0215gに代えて、酢酸フェニル0.0215gを樹脂溶液に添加したこと以外は例1と同様にして、導電ペースト7を得た。
(Example 7)
A conductive paste 7 was obtained in the same manner as in Example 1 except that 0.0215 g of phenyl acetate was added to the resin solution instead of 0.0215 g of formamide.
(例8)
 ホルムアミド0.0215gに代えて、サリチル酸0.0215gを樹脂溶液に添加したこと以外は例1と同様にして、導電ペースト8を得た。
(Example 8)
A conductive paste 8 was obtained in the same manner as in Example 1 except that 0.0215 g of salicylic acid was added to the resin solution instead of 0.0215 g of formamide.
(例9)
 ホルムアミド0.0215gに代えて、シュウ酸0.0215gを樹脂溶液に添加したこと以外は例1と同様にして、導電ペースト9を得た。
(Example 9)
A conductive paste 9 was obtained in the same manner as in Example 1 except that 0.0215 g of oxalic acid was added to the resin solution instead of 0.0215 g of formamide.
(例10)
 ホルムアミド0.0215gに代えて、マレイン酸0.0215gを樹脂溶液に添加したこと以外は例1と同様にして、導電ペースト10を得た。
(Example 10)
A conductive paste 10 was obtained in the same manner as in Example 1 except that 0.0215 g of maleic acid was added to the resin solution instead of 0.0215 g of formamide.
 次に、導電ペースト1に代えて、PET基板上に導電ペースト5~10をそれぞれ塗布し、130℃で15分間加熱して導電膜5~10を形成した。それ以外は、例1と同様にして、導電膜付き基材5~10(例5~10)を得た。 Next, instead of the conductive paste 1, conductive pastes 5 to 10 were respectively applied on a PET substrate and heated at 130 ° C. for 15 minutes to form conductive films 5 to 10. Otherwise in the same manner as in Example 1, substrates 5 to 10 with conductive film (Examples 5 to 10) were obtained.
(導電体配線の抵抗)
 得られた導電膜1~10の抵抗値を、抵抗値計(ケースレー社製、商品名:「ミリオームハイテスタ」)を用いて測定し、初期の体積抵抗率を求めた。
(Conductor wiring resistance)
The resistance values of the obtained conductive films 1 to 10 were measured using a resistance meter (trade name: “Milliohm Hitester” manufactured by Keithley) to determine the initial volume resistivity.
(耐久性試験)
 導電膜付き基材1~10について、高温高湿の環境下での耐久性試験を行った。すなわち、導電膜付き基材1~10を60℃、90%RHの高温高湿とした槽内で240時間保持した後、導電膜1~10の抵抗値を測定した。そして、耐久性試験後の体積抵抗率を求めた。
(Durability test)
Durability tests were conducted on the substrates 1 to 10 with the conductive film in a high-temperature and high-humidity environment. That is, the resistance values of the conductive films 1 to 10 were measured after holding the conductive film-coated substrates 1 to 10 in a bath at 60 ° C. and 90% RH at a high temperature and high humidity for 240 hours. And the volume resistivity after a durability test was calculated | required.
 こうして得られた初期の体積抵抗率と、耐久性試験後の体積抵抗率の変動率(上昇率)を、表1に示す。
 なお、表1において、硬化剤の添加量は、フェノール樹脂の固形分100質量部に対する添加量(質量部)で示したものである。
Table 1 shows the initial volume resistivity thus obtained and the rate of change (increase rate) of the volume resistivity after the durability test.
In addition, in Table 1, the addition amount of a hardening | curing agent is shown with the addition amount (mass part) with respect to 100 mass parts of solid content of a phenol resin.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなように、pKaが1~4である有機酸の、エステルまたはアミドを配合した導電ペースト1~4により導電膜1~4を形成した導電膜付き基材1~4(例1~4)では、体積抵抗率が低く、かつ高温高湿環境下での耐久性試験後の体積抵抗率の変動率(上昇率)も低く抑えられていた。 As is apparent from Table 1, the conductive film substrates 1 to 4 in which the conductive films 1 to 4 are formed from the conductive pastes 1 to 4 containing an ester or amide of an organic acid having a pKa of 1 to 4 (Example 1) In (4) to (4), the volume resistivity was low, and the fluctuation rate (increase rate) of the volume resistivity after the durability test in a high temperature and high humidity environment was also kept low.
 一方、有機酸のエステルまたはアミドを配合せずに形成した導電ペースト5により、導電膜5を形成した導電膜付き基材5(例5)では、高温高湿環境下での耐久性試験後の体積抵抗率の変動率が20%と高く、耐久性に劣るものであった。 On the other hand, in the base material 5 with the conductive film in which the conductive film 5 is formed with the conductive paste 5 formed without blending the ester or amide of the organic acid (Example 5), after the durability test in a high temperature and high humidity environment. The variation rate of the volume resistivity was as high as 20%, and the durability was poor.
 また、pKaが4を超える有機酸の、エステルまたはアミドを配合した導電ペースト6、7により導電膜6~7を形成した導電膜付き基材6~7(例6および7)では、高温高湿環境下での耐久性試験後の体積抵抗率の変動率が20~27%とさらに高くなっており、耐久性に劣るものであった。
 さらに、エステルまたはアミドではなく、pKaが1~4の有機酸そのものを配合した導電ペースト8~10により導電膜8~10を形成した導電膜付き基材8~10(例8~10)でも、高温高湿環境下での耐久性試験後の体積抵抗率の変動率が23~26%と高くなっており、耐久性に劣るものであった。
In addition, in the base materials 6 to 7 with conductive films 6 to 7 (Examples 6 and 7) in which the conductive films 6 to 7 are formed by the conductive pastes 6 and 7 containing an ester or amide of an organic acid having a pKa of more than 4, high temperature and high humidity The variation rate of the volume resistivity after the durability test under the environment was further increased to 20 to 27%, and the durability was inferior.
Furthermore, the conductive film bases 8 to 10 (Examples 8 to 10) in which the conductive films 8 to 10 are formed by using the conductive pastes 8 to 10 in which an organic acid itself having a pKa of 1 to 4 is blended instead of an ester or an amide, The fluctuation rate of the volume resistivity after the durability test in a high temperature and high humidity environment was as high as 23 to 26%, and the durability was inferior.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2011年5月23日出願の日本特許出願2011-114604に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2011-114604 filed on May 23, 2011, the contents of which are incorporated herein by reference.
 本発明の導電ペーストによれば、150℃未満という従来より低い温度で硬化させることが可能であり、高湿度の環境下で酸化銅の形成が抑制され、低い体積抵抗率を長期間維持し得る導電膜を形成することができる。また、このような導電ペーストを用いることで、絶縁基材として樹脂等が使用し、配線基板等としての信頼性が高く、また酸化被膜の形成による体積抵抗率の上昇が抑制された導電膜付き基材を得ることができる。 According to the conductive paste of the present invention, it can be cured at a temperature lower than the conventional temperature of less than 150 ° C., the formation of copper oxide is suppressed in a high humidity environment, and a low volume resistivity can be maintained for a long time. A conductive film can be formed. In addition, by using such a conductive paste, a resin or the like is used as an insulating base material, which is highly reliable as a wiring board or the like, and with a conductive film in which an increase in volume resistivity due to formation of an oxide film is suppressed. A substrate can be obtained.
10…導電膜付き基材、11…基材、12…導電膜。 DESCRIPTION OF SYMBOLS 10 ... Base material with a conductive film, 11 ... Base material, 12 ... Conductive film.

Claims (17)

  1.  銅粒子(A)と、25℃、イオン強度0.1mol/Lにおける銅イオンとの安定度定数logKCuが5~15である化合物からなるキレート剤(B)と、熱硬化性樹脂(C)と、pKaが1~4の有機酸の、エステルまたはアミド(D)を含有することを特徴とする導電ペースト。 A chelating agent (B) composed of a compound having a stability constant logK Cu of 5 to 15 between the copper particles (A) and copper ions at 25 ° C. and an ionic strength of 0.1 mol / L, and a thermosetting resin (C) And a conductive paste comprising an ester or amide (D) of an organic acid having a pKa of 1 to 4.
  2.  前記銅粒子(A)は、X線光電子分光法によって求められる表面酸素濃度比O/Cuが0.5以下である請求項1記載の導電ペースト。 2. The conductive paste according to claim 1, wherein the copper particles (A) have a surface oxygen concentration ratio O / Cu calculated by X-ray photoelectron spectroscopy of 0.5 or less.
  3.  前記銅粒子(A)は、pH値が3以下の分散媒中で還元処理された表面改質銅粒子である請求項1または2に記載の導電ペースト。 The conductive paste according to claim 1 or 2, wherein the copper particles (A) are surface-modified copper particles that have been reduced in a dispersion medium having a pH value of 3 or less.
  4.  前記銅粒子(A)は、平均一次粒子径が0.3~20μmの金属銅粒子表面に、平均一次粒子径が1~20nmの金属銅微粒子が凝集して付着した複合金属銅粒子である請求項1乃至3のいずれか1項記載の導電ペースト。 The copper particles (A) are composite metal copper particles in which metal copper fine particles having an average primary particle diameter of 1 to 20 nm are aggregated and adhered to the surface of the metal copper particles having an average primary particle diameter of 0.3 to 20 μm. Item 4. The conductive paste according to any one of Items 1 to 3.
  5.  前記キレート剤(B)は、窒素原子を含む官能基(a)と、窒素原子以外の孤立電子対を有する原子を含む官能基(b)とが、芳香環のオルト位に配置された芳香族化合物である請求項1乃至4のいずれか1項記載の導電ペースト。 The chelating agent (B) is an aromatic in which a functional group (a) containing a nitrogen atom and a functional group (b) containing an atom having a lone pair other than the nitrogen atom are arranged at the ortho position of the aromatic ring. The conductive paste according to any one of claims 1 to 4, which is a compound.
  6.  前記窒素原子以外の孤立電子対を有する原子を含む官能基(b)は、水酸基またはカルボキシル基である請求項5記載の導電ペースト。 The conductive paste according to claim 5, wherein the functional group (b) containing an atom having a lone electron pair other than the nitrogen atom is a hydroxyl group or a carboxyl group.
  7.  前記窒素原子と前記窒素原子以外の孤立電子対を有する原子とは、2個または3個の原子を介在して結合している請求項5または6記載の導電ペースト。 The conductive paste according to claim 5 or 6, wherein the nitrogen atom and an atom having a lone electron pair other than the nitrogen atom are bonded via two or three atoms.
  8.  前記キレート剤(B)は、サリチルヒドロキサム酸、サリチルアルドキシムおよびo-アミノフェノールからなる群から選択される少なくとも1種である請求項1乃至7のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 1 to 7, wherein the chelating agent (B) is at least one selected from the group consisting of salicylhydroxamic acid, salicylaldoxime and o-aminophenol.
  9.  前記熱硬化性樹脂(C)は、フェノール樹脂、メラミン樹脂および尿素樹脂からなる群から選択される少なくとも1種である請求項1乃至8のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 1 to 8, wherein the thermosetting resin (C) is at least one selected from the group consisting of a phenol resin, a melamine resin, and a urea resin.
  10.  前記有機酸のエステルまたはアミド(D)は、ホルムアミド、サリチル酸メチル、シュウ酸ジメチル、マロン酸ジメチルおよびマレイン酸ジメチルからなる群から選択される少なくとも1種である請求項1乃至9のいずれか1項記載の導電ペースト。 10. The organic acid ester or amide (D) is at least one selected from the group consisting of formamide, methyl salicylate, dimethyl oxalate, dimethyl malonate, and dimethyl maleate. The electrically conductive paste as described.
  11.  前記キレート剤(B)の含有量は、前記銅粒子(A)100質量部に対して0.01~1質量部である請求項1乃至10のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 1 to 10, wherein a content of the chelating agent (B) is 0.01 to 1 part by mass with respect to 100 parts by mass of the copper particles (A).
  12.  前記熱硬化性樹脂(C)の含有量は、前記銅粒子(A)100質量部に対して5~50質量部である請求項1乃至11のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 1 to 11, wherein a content of the thermosetting resin (C) is 5 to 50 parts by mass with respect to 100 parts by mass of the copper particles (A).
  13.  前記有機酸のエステルまたはアミド(D)の含有量は、前記熱硬化性樹脂(C)100質量部に対して0.5~15質量部である請求項1乃至12のいずれか1項記載の導電ペースト。 The content of the organic acid ester or amide (D) is 0.5 to 15 parts by mass with respect to 100 parts by mass of the thermosetting resin (C). Conductive paste.
  14.  基材と、該基材上に請求項1乃至13のいずれか1項記載の導電ペーストを硬化させて形成された導電膜を有する導電膜付き基材。 A base material with a conductive film having a base material and a conductive film formed by curing the conductive paste according to any one of claims 1 to 13 on the base material.
  15.  前記基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)およびポリカーボネートからなる群から選択される少なくとも1種である請求項14記載の導電膜付き基材。 The base material with a conductive film according to claim 14, wherein the base material is at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate.
  16.  前記導電膜の体積抵抗率が1.0×10-4Ωcm以下である請求項14または15記載の導電膜付き基材。 The substrate with a conductive film according to claim 14 or 15, wherein the conductive film has a volume resistivity of 1.0 × 10 -4 Ωcm or less.
  17.  請求項1乃至13のいずれか1項記載の導電ペーストを基材上に塗布する工程と、前記導電ペーストを150℃未満の温度で加熱し硬化させて導電膜を形成する工程と、を含む導電膜付き基材の製造方法。 A process comprising: applying a conductive paste according to any one of claims 1 to 13 on a substrate; and heating and curing the conductive paste at a temperature of less than 150 ° C. to form a conductive film. The manufacturing method of a base material with a film.
PCT/JP2012/063100 2011-05-23 2012-05-22 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film WO2012161201A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137030588A KR20140038413A (en) 2011-05-23 2012-05-22 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP2013516387A JPWO2012161201A1 (en) 2011-05-23 2012-05-22 Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
CN201280025384.1A CN103582918A (en) 2011-05-23 2012-05-22 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-114604 2011-05-23
JP2011114604 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012161201A1 true WO2012161201A1 (en) 2012-11-29

Family

ID=47217277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063100 WO2012161201A1 (en) 2011-05-23 2012-05-22 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film

Country Status (5)

Country Link
JP (1) JPWO2012161201A1 (en)
KR (1) KR20140038413A (en)
CN (1) CN103582918A (en)
TW (1) TW201301303A (en)
WO (1) WO2012161201A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049992A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Composition for forming conductive film and method for producing conductive film using the same
JP2015090899A (en) * 2013-11-05 2015-05-11 古河電気工業株式会社 Connection structure and copper particle-containing paste for forming the connection structure
WO2016031860A1 (en) * 2014-08-28 2016-03-03 石原産業株式会社 Metallic copper particles, and production method therefor
WO2017029884A1 (en) * 2015-08-20 2017-02-23 タツタ電線株式会社 Conductive composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482596B (en) * 2015-02-27 2022-11-22 昭和电工材料株式会社 Copper-containing particle, conductor-forming composition, method for producing conductor, and device
CN108899108A (en) * 2018-06-06 2018-11-27 彩虹集团新能源股份有限公司 A kind of low temperature touch screen printing silver paste and preparation method thereof
CN113707362A (en) * 2021-07-23 2021-11-26 厦门大学 High-conductivity copper paste, preparation method, flexible high-conductivity copper film and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158081A (en) * 1987-07-24 1989-06-21 Mitsubishi Petrochem Co Ltd Copper-based electrically conductive coating composition
JP2000021235A (en) * 1998-07-02 2000-01-21 Mitsui Mining & Smelting Co Ltd Copper-base conductive paste
JP2002038053A (en) * 2000-07-25 2002-02-06 Sumitomo Metal Mining Co Ltd Coating fluid for forming transparent conductive layer
JP2006128005A (en) * 2004-10-29 2006-05-18 Murata Mfg Co Ltd Conductive paste and printed circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160603A (en) * 1986-01-08 1987-07-16 昭和高分子株式会社 Conducting paste
JPH05217422A (en) * 1992-02-04 1993-08-27 Kao Corp Conductive paste and conductive coating
JPH05325635A (en) * 1992-05-15 1993-12-10 Kao Corp Conductive phase and conductive coating film
JPH06100804A (en) * 1992-09-18 1994-04-12 Asahi Chem Ind Co Ltd Conductive paste composition
JPH09282940A (en) * 1996-04-11 1997-10-31 Sumitomo Bakelite Co Ltd Conductive copper paste composition
JP4460731B2 (en) * 2000-07-18 2010-05-12 ハリマ化成株式会社 Conductive paste and method for preparing the same
JP4078990B2 (en) * 2003-01-23 2008-04-23 松下電器産業株式会社 Conductive paste, circuit forming substrate using the conductive paste, and manufacturing method thereof
JP2006260951A (en) * 2005-03-17 2006-09-28 Osaka Univ Conductive copper paste
JP4848674B2 (en) * 2005-06-03 2011-12-28 日本電気株式会社 Resin metal composite conductive material and method for producing the same
WO2009116349A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film
CN103262173A (en) * 2010-12-10 2013-08-21 旭硝子株式会社 Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158081A (en) * 1987-07-24 1989-06-21 Mitsubishi Petrochem Co Ltd Copper-based electrically conductive coating composition
JP2000021235A (en) * 1998-07-02 2000-01-21 Mitsui Mining & Smelting Co Ltd Copper-base conductive paste
JP2002038053A (en) * 2000-07-25 2002-02-06 Sumitomo Metal Mining Co Ltd Coating fluid for forming transparent conductive layer
JP2006128005A (en) * 2004-10-29 2006-05-18 Murata Mfg Co Ltd Conductive paste and printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049992A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Composition for forming conductive film and method for producing conductive film using the same
JP2015090899A (en) * 2013-11-05 2015-05-11 古河電気工業株式会社 Connection structure and copper particle-containing paste for forming the connection structure
WO2016031860A1 (en) * 2014-08-28 2016-03-03 石原産業株式会社 Metallic copper particles, and production method therefor
CN106715009A (en) * 2014-08-28 2017-05-24 石原产业株式会社 Metallic copper particles, and production method therefor
JPWO2016031860A1 (en) * 2014-08-28 2017-06-15 石原産業株式会社 Metallic copper particles and method for producing the same
WO2017029884A1 (en) * 2015-08-20 2017-02-23 タツタ電線株式会社 Conductive composition

Also Published As

Publication number Publication date
KR20140038413A (en) 2014-03-28
TW201301303A (en) 2013-01-01
CN103582918A (en) 2014-02-12
JPWO2012161201A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
TWI501260B (en) Conductive paste and substrate with conductive film
JP5720693B2 (en) Method for producing conductive copper particles
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
JP2013140687A (en) Conductive paste, base material with conductive film and method for manufacturing base material with conductive film
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
TW201327582A (en) Conductive paste and method of preparing conductive paste
JP5881613B2 (en) Conductive composition and method for forming conductive film
WO2009098985A1 (en) Copper hydride nanoparticle, process for producing the same, metallic paste, and article
TWI631160B (en) Conductive paste and substrate with conductive film
TWI597345B (en) Conductive paste and attached conductive film substrate
JP2017130393A (en) Conductive paste and method for forming silver film
JP2011017067A (en) Method for producing surface-modified copper grain, composition for forming conductor, method for producing conductor film, and article
JP2014049191A (en) Conductive paste and substrate with conductive membrane
JPWO2019069936A1 (en) Silver fine particle dispersion
JP2019121568A (en) Manufacturing method of solder adhesive metal paste conductive film
JP2013110011A (en) Conductive paste
JP2016183302A (en) Method for manufacturing conductive adhesive
WO2018155393A1 (en) Electroconductive paste
JP2016046136A (en) Conductive paste and substrate with conductive film
JP2013084411A (en) Conductive paste and method for producing the same, base material with conductive film, and method for manufacturing base material with conductive film
JP2019016592A (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516387

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790298

Country of ref document: EP

Kind code of ref document: A1