JP5881613B2 - Conductive composition and method for forming conductive film - Google Patents

Conductive composition and method for forming conductive film Download PDF

Info

Publication number
JP5881613B2
JP5881613B2 JP2012544182A JP2012544182A JP5881613B2 JP 5881613 B2 JP5881613 B2 JP 5881613B2 JP 2012544182 A JP2012544182 A JP 2012544182A JP 2012544182 A JP2012544182 A JP 2012544182A JP 5881613 B2 JP5881613 B2 JP 5881613B2
Authority
JP
Japan
Prior art keywords
component
conductive composition
weight
composition
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012544182A
Other languages
Japanese (ja)
Other versions
JPWO2012066957A1 (en
Inventor
高松 秀機
秀機 高松
丸山 浩樹
浩樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2012544182A priority Critical patent/JP5881613B2/en
Publication of JPWO2012066957A1 publication Critical patent/JPWO2012066957A1/en
Application granted granted Critical
Publication of JP5881613B2 publication Critical patent/JP5881613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Description

本発明は、例えば電子部品の導電膜の形成に用いることのできる導電性組成物、及びその導電性組成物を用いた導電膜の形成方法に関する。   The present invention relates to a conductive composition that can be used, for example, for forming a conductive film of an electronic component, and a method for forming a conductive film using the conductive composition.

各種電子部品の導電回路を形成する方法として、サブトラクティブ法やアディティブ法などが知られている。アディティブ法においては、スクリーン印刷などの技術を用いて基板上に導電性組成物を塗布してパターンを形成し、この導電性組成物を所定の温度で焼成することによって導電膜(導電回路)が形成される。   As a method for forming a conductive circuit of various electronic components, a subtractive method, an additive method, and the like are known. In the additive method, a conductive composition is applied onto a substrate using a technique such as screen printing to form a pattern, and the conductive composition (conductive circuit) is formed by firing the conductive composition at a predetermined temperature. It is formed.

特許文献1には、銅粉と、エチレングリコールやジエチレングリコールなどのOH基を2個以上有する多価アルコールからなる溶剤と、リンゴ酸やクエン酸などのCOOH基を2個以上及びOH基を1個以上有する化合物からなる添加剤と、を含む導電性組成物が開示されている。この導電性組成物は、不活性雰囲気中だけでなく大気雰囲気中においても低温で焼成することが可能である。また、この導電性組成物によれば、フィラーである銅粒子の酸化を防ぐことが可能であって、良好な導電性を有する導電膜を形成することが可能である。   Patent Document 1 discloses copper powder, a solvent composed of a polyhydric alcohol having two or more OH groups such as ethylene glycol and diethylene glycol, two or more COOH groups such as malic acid and citric acid, and one OH group. An electrically conductive composition containing an additive composed of the above compound is disclosed. This conductive composition can be fired at a low temperature not only in an inert atmosphere but also in an air atmosphere. Moreover, according to this electroconductive composition, it is possible to prevent the copper particle which is a filler from oxidizing, and to form the electrically conductive film which has favorable electroconductivity.

特開2007−258123号公報JP 2007-258123 A

しかし、特許文献1に開示された導電性組成物は、大気雰囲気中での焼成可能な温度の範囲が150℃〜200℃ときわめて限定されている。このため、特許文献1に開示された導電性組成物は、焼成温度のコントロールが難しく、実用化が困難であるという問題があった。   However, the conductive composition disclosed in Patent Document 1 has an extremely limited temperature range of 150 ° C. to 200 ° C. that can be fired in the air atmosphere. For this reason, the conductive composition disclosed in Patent Document 1 has a problem that it is difficult to control the firing temperature and it is difficult to put it to practical use.

本発明は上記のような事情に鑑みてなされたものであって、大気雰囲気中での焼成が可能な導電性組成物及びそれを用いた導電膜の形成方法を提供することを目的とする。   This invention is made | formed in view of the above situations, Comprising: It aims at providing the formation method of the electrically conductive composition which can be baked in air | atmosphere, and its electrically conductive film.

本発明者らは、上記の課題を解決すべく研究を行った。その結果、銅などの卑金属を主体とする金属粉に、特定のカルボン酸及び特定のアミン化合物を加えることによって、大気雰囲気中での焼成が可能な導電性組成物が得られることを発見した。   The present inventors have studied to solve the above problems. As a result, it was discovered that a conductive composition that can be fired in an air atmosphere can be obtained by adding a specific carboxylic acid and a specific amine compound to a metal powder mainly composed of a base metal such as copper.

すなわち、本発明の導電性組成物は、
(A)卑金属を主体とする金属粉と、
(B)下記一般式(1)で表されるアミン化合物、もしくは、2個以上のアミノ基を有する脂肪族アミンと、
(C)脂肪族ヒドロキシ酸と、
を含有することを特徴とする。
That is, the conductive composition of the present invention is
(A) metal powder mainly composed of base metal;
(B) an amine compound represented by the following general formula (1), or an aliphatic amine having two or more amino groups;
(C) an aliphatic hydroxy acid;
It is characterized by containing.

−HN−R−O−R … (1)
(式中、Rは、炭素数2〜8のアルキレン基を表しており、R及びRは、それぞれ、H原子もしくは炭素数1〜4個のアルキル基を表している。)
R 2 —HN—R 1 —O—R 3 (1)
(In the formula, R 1 represents an alkylene group having 2 to 8 carbon atoms, and R 2 and R 3 each represents an H atom or an alkyl group having 1 to 4 carbon atoms.)

本発明の導電性組成物において、前記(B)成分は、OH基を有する脂肪族アミンであることが好ましい。   In the conductive composition of the present invention, the component (B) is preferably an aliphatic amine having an OH group.

前記(B)成分は、3−アミノ−1−プロパノール、3−メトキシプロピルアミン、N−メチルエタノールアミン、及び1,3−ジアミノプロパンから選ばれる少なくとも1つであることが好ましく、3−アミノ−1−プロパノールであることが特に好ましい。   The component (B) is preferably at least one selected from 3-amino-1-propanol, 3-methoxypropylamine, N-methylethanolamine, and 1,3-diaminopropane, Particularly preferred is 1-propanol.

本発明の導電性組成物において、前記(C)成分は、グリコール酸、乳酸、及びクエン酸から選ばれる少なくとも1つであることが好ましく、グリコール酸であることが特に好ましい。   In the conductive composition of the present invention, the component (C) is preferably at least one selected from glycolic acid, lactic acid, and citric acid, and particularly preferably glycolic acid.

本発明の導電性組成物は、分子中にOH基を1個以上有する直鎖状のエポキシ樹脂をさらに含むことが好ましい。   The conductive composition of the present invention preferably further contains a linear epoxy resin having one or more OH groups in the molecule.

前記(A)成分は、銅、ニッケル、亜鉛、錫、はんだから選ばれる少なくとも1つであることが好ましい。   The component (A) is preferably at least one selected from copper, nickel, zinc, tin, and solder.

また、本発明は、上記した導電性組成物を基板上に塗布した後に、70℃以上500℃以下で加熱することにより得られる導電膜を提供する。   Moreover, this invention provides the electrically conductive film obtained by apply | coating the above-mentioned electroconductive composition on a board | substrate, and heating at 70 degreeC or more and 500 degrees C or less.

さらに、本発明は、上記した導電性組成物のうちいずれかを基板上に塗布した後に、70℃以上500℃以下で加熱する熱処理工程を有する導電膜の形成方法を提供する。この方法において、前記熱処理工程は、大気雰囲気中で行われることが好ましい。   Furthermore, this invention provides the formation method of the electrically conductive film which has the heat processing process heated at 70 degreeC or more and 500 degrees C or less, after apply | coating one of above-described electrically conductive compositions on a board | substrate. In this method, the heat treatment step is preferably performed in an air atmosphere.

本発明によれば、大気雰囲気中での焼成が可能な導電性組成物及びそれを用いた導電膜の形成方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the formation method of the electrically conductive composition which can be baked in an atmospheric condition, and the electrically conductive film using the same can be provided.

以下、本発明を実施するための形態について詳細に説明する。
本実施形態に係る導電性組成物は、(A)卑金属を主体とする金属粉と、(B)下記一般式(1)で表されるアミン化合物、もしくは、2個以上のアミノ基を有する脂肪族アミンと、(C)脂肪族ヒドロキシ酸とを含有する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The conductive composition according to this embodiment includes (A) a metal powder mainly composed of a base metal, and (B) an amine compound represented by the following general formula (1), or a fat having two or more amino groups. A group amine and (C) an aliphatic hydroxy acid.

−HN−R−O−R … (1)
(式中、Rは、炭素数2〜8のアルキレン基を表しており、R及びRは、それぞれ、H原子もしくは炭素数1〜4個のアルキル基を表している。)
R 2 —HN—R 1 —O—R 3 (1)
(In the formula, R 1 represents an alkylene group having 2 to 8 carbon atoms, and R 2 and R 3 each represents an H atom or an alkyl group having 1 to 4 carbon atoms.)

上記(A)成分の「卑金属を主体とする金属粉」とは、卑金属を50重量%以上、好ましくは70%重量以上、より好ましくは90%重量以上含有する金属粉のことを意味する。したがって、卑金属のみからなる金属粉だけでなく、卑金属と他の金属との混合物からなる金属粉も、卑金属を50重量%以上含有しているのであれば、ここでいう「卑金属を主体とする金属粉」に含まれる。また、卑金属と他の金属との合金(例えば、スズと他の金属との合金であるハンダ)からなる金属粉も、卑金属であるスズを50重量%以上含有しているのであれば、ここでいう「卑金属を主体とする金属粉」に含まれる。   The “metal powder mainly composed of a base metal” as the component (A) means a metal powder containing a base metal in an amount of 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. Therefore, if not only metal powder consisting of only a base metal but also metal powder consisting of a mixture of a base metal and another metal contains 50% by weight or more of the base metal, the “metal mainly composed of base metal” is used here. Included in "powder". Further, if the metal powder made of an alloy of a base metal and another metal (for example, solder which is an alloy of tin and another metal) also contains 50% by weight or more of tin which is a base metal, here It is included in the “metal powder mainly composed of base metals”.

「卑金属」という言葉は、一般的に、「貴金属」の対義語として利用される。また、「卑金属」とは、金及び銀以外の金属全般を意味することもある。また、「卑金属」とは、化学的には、イオン化傾向が比較的大きく、高温雰囲気中で容易に酸化される性質を有する金属を意味することもある。
本発明で用いることのできる「卑金属」としては、例えば、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、タングステン、カドミウム、インジウム、スズ、アンチモン、などを挙げることができる。この中では、銅を用いることが最も好ましい。銅は、電気抵抗率が低く高い導電性が得られるとともに、プリント配線板における導電回路の形成に用いた場合にエレクトロマイグレーションの影響を受けにくいからである。
The term “base metal” is generally used as a synonym for “precious metal”. The “base metal” may mean all metals other than gold and silver. Further, “base metal” chemically means a metal having a relatively high tendency to ionize and having a property of being easily oxidized in a high temperature atmosphere.
Examples of the “base metal” that can be used in the present invention include iron, cobalt, nickel, copper, zinc, molybdenum, tungsten, cadmium, indium, tin, and antimony. Among these, it is most preferable to use copper. This is because copper has low electrical resistivity and high conductivity, and is less susceptible to electromigration when used for forming a conductive circuit on a printed wiring board.

上記(A)成分の「卑金属を主体とする金属粉」の平均粒子径は、特に限定するものではないが、1nm以上100μm以下であることが好ましく、100nm以上10μm以下であることがより好ましい。平均粒子径がこの範囲であると、導電性組成物を回路パターン印刷用の導電ペーストとして好適に用いることができる。なお、本明細書における平均粒子径は、レーザー回折散乱式粒度分布測定による、個数基準に基づく平均粒子径をいう。卑金属を主体とする金属粉は、例えば、電解法、還元法、アトマイズ法などの公知の方法で製造することが可能である。   The average particle diameter of the “metal powder mainly composed of base metal” of the component (A) is not particularly limited, but is preferably 1 nm or more and 100 μm or less, and more preferably 100 nm or more and 10 μm or less. When the average particle diameter is within this range, the conductive composition can be suitably used as a conductive paste for circuit pattern printing. In addition, the average particle diameter in this specification means the average particle diameter based on the number standard by laser diffraction scattering type particle size distribution measurement. The metal powder mainly composed of a base metal can be produced by a known method such as an electrolysis method, a reduction method, or an atomization method.

上記式(1)で表されるアミン化合物としては、2−アミノエタノール、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、3−メトキシプロピルアミン、N−メチルエタノールアミン、N−メチルプロパノールアミン、などを具体例として挙げることができる。   Examples of the amine compound represented by the above formula (1) include 2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, 3-methoxypropylamine, N-methylethanolamine, and N-methyl. Specific examples include propanolamine and the like.

上記式(1)で表される化合物としては、OH基を有する脂肪族アミンを用いることが好ましい。すなわち、上記式(1)中のR及びRは、ともにH原子であることが好ましい。As the compound represented by the above formula (1), an aliphatic amine having an OH group is preferably used. That is, it is preferable that both R 2 and R 3 in the above formula (1) are H atoms.

上記式(1)で表される化合物としては、3−アミノ−1−プロパノールを用いることが最も好ましい。   Most preferably, 3-amino-1-propanol is used as the compound represented by the above formula (1).

上記(B)成分の「2個以上のアミノ基(−NH)を有する脂肪族アミン」とは、直鎖状もしくは分岐状の飽和炭化水素のH原子が、2個以上のアミノ基によって置換された化合物のことを意味する。すなわち、直鎖状もしくは分岐状の飽和炭化水素のH原子が2個のアミノ基によって置換されたジアミンを例にとると、下記の一般式(2)で表される化合物のことを意味する。The “aliphatic amine having two or more amino groups (—NH 2 )” as the component (B) means that the H atom of a linear or branched saturated hydrocarbon is substituted by two or more amino groups. It means the compound made. That is, taking a diamine in which the H atom of a linear or branched saturated hydrocarbon is substituted by two amino groups, it means a compound represented by the following general formula (2).

N−R−NH … 式(2)
(式中、Rは、アルキレン基を表している。)
H 2 N—R 4 —NH 2 Formula (2)
(In the formula, R 4 represents an alkylene group.)

上記式(2)において、Rは炭素数2〜12のアルキレン基が好ましく、炭素数2〜8のアルキレン基が更に好ましい。In the above formula (2), R 4 is preferably an alkylene group having 2 to 12 carbon atoms, and more preferably an alkylene group having 2 to 8 carbon atoms.

上記式(2)で表される化合物としては、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,8−ジアミノオクタン、1,10−ジアミノデカン、などを具体例として挙げることができる。この中では、1,3−ジアミノプロパンを用いることが最も好ましい。   Examples of the compound represented by the above formula (2) include 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,8-diaminooctane, 1,10-diaminodecane, and the like. Specific examples can be given. Of these, it is most preferable to use 1,3-diaminopropane.

上記(C)成分の「脂肪族ヒドロキシ酸」とは、OH基を有する脂肪族カルボン酸のことであり、グリコール酸、乳酸、グリセリン酸、ヒドロキシ酪酸、リンゴ酸、酒石酸、クエン酸、3−ヒドロキシプロピオン酸などを具体例として挙げることができる。この中では、グリコール酸、乳酸、及びクエン酸から選ばれる少なくとも1つを用いることが好ましく、グリコール酸を用いることが最も好ましい。   The “aliphatic hydroxy acid” of the component (C) is an aliphatic carboxylic acid having an OH group, and glycolic acid, lactic acid, glyceric acid, hydroxybutyric acid, malic acid, tartaric acid, citric acid, 3-hydroxy Specific examples include propionic acid and the like. Among these, it is preferable to use at least one selected from glycolic acid, lactic acid, and citric acid, and it is most preferable to use glycolic acid.

また、本発明の導電性組成物は、(D)分子中にOH基を1個以上有する直鎖状のエポキシ樹脂を含有することが好ましい。ここでいう「直鎖状」とは、分子中にベンゼン環を有しておらず、かつ、末端のエポキシ基を除いた部分において炭素が少なくとも3つ以上連続した直鎖構造を有することを意味する。本発明に用いることのできるこのようなエポキシ樹脂に特に制限はないが、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等を用いることができる。これらは、それぞれ、以下の式(3)〜(7)の構造を有している(なお、式(4)中のnは、1〜10である)。   Moreover, it is preferable that the electrically conductive composition of this invention contains the linear epoxy resin which has 1 or more of OH groups in (D) molecule | numerator. The term “linear” as used herein means that the molecule does not have a benzene ring and has a linear structure in which at least 3 carbons are continuous in the portion excluding the terminal epoxy group. To do. Such an epoxy resin that can be used in the present invention is not particularly limited. For example, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, etc. Can be used. Each of these has a structure of the following formulas (3) to (7) (in the formula (4), n is 1 to 10).

Figure 0005881613
Figure 0005881613

上記(A)〜(C)成分に、上記(D)成分「OH基を有する直鎖状のエポキシ樹脂」を加えることによって、導電性組成物の基板への塗布性や密着性を向上させることができる。これに対して、上記(A)〜(C)成分に、「OH基を有しないエポキシ樹脂」を加えた場合には、上記(B)及び(C)成分に対するエポキシ樹脂の相溶性が良くないために、このような効果を十分に得ることができない。   To improve the applicability and adhesion of the conductive composition to the substrate by adding the component (D) “linear epoxy resin having an OH group” to the components (A) to (C). Can do. On the other hand, when “epoxy resin having no OH group” is added to the components (A) to (C), the compatibility of the epoxy resin with the components (B) and (C) is not good. Therefore, such an effect cannot be obtained sufficiently.

また、上記(A)〜(C)成分に、上記(D)成分「OH基を有する直鎖状のエポキシ樹脂」を加えた場合には、エポキシ樹脂が酸素を遮断することによって卑金属粒子の表面が酸化するのを防止することができる。これにより、導電性組成物をより高い温度で焼成することが可能になり、より高い導電性をもつ導電膜を形成することが可能になる。   In addition, when the component (D) “linear epoxy resin having an OH group” is added to the components (A) to (C), the surface of the base metal particles is blocked by the epoxy resin blocking oxygen. Can be prevented from oxidizing. As a result, the conductive composition can be fired at a higher temperature, and a conductive film having higher conductivity can be formed.

上記(A)〜(C)成分、及び、必要に応じて(D)成分を加えて混合することによって、ペースト状の導電性組成物を得ることができる。
なお、上記した(A)〜(C)成分を混合する順番は任意であり、例えば、(A)〜(C)の成分を同時に混合してもよいし、(B)成分及び(C)成分を予め混合した後に、(A)成分を後から加えて混合してもよい。
By adding and mixing the above components (A) to (C) and, if necessary, the component (D), a paste-like conductive composition can be obtained.
In addition, the order which mixes above-mentioned (A)-(C) component is arbitrary, For example, you may mix the component of (A)-(C) simultaneously, (B) component and (C) component (A) component may be added later and mixed.

本発明の導電性組成物中における上記(A)〜(C)成分の混合比率は、特に限定するものではないが、(A)成分100重量部に対して、(B)成分1〜50重量部、(C)成分1〜50重量部であることが好ましい。より好ましくは、(A)成分100重量部に対して、(B)成分5〜25重量部、(C)成分5〜25重量部である。最も好ましくは、(A)成分100重量部に対して、(B)成分5〜10重量部、(C)成分5〜10重量部である。
(B)及び(C)成分の混合比率が上記よりも少ない場合、高い導電性を持つ導電膜が得られなくなる可能性がある。また、(B)及び(C)成分の混合比率が上記よりも多い場合、導電性組成物の粘度が低くなりすぎてスクリーン印刷時における基板への塗布性能に悪影響を及ぼすおそれがある。
The mixing ratio of the components (A) to (C) in the conductive composition of the present invention is not particularly limited, but the component (B) is 1 to 50 weights per 100 parts by weight of the component (A). Part, (C) component 1-50 parts by weight is preferred. More preferably, they are 5-25 weight part of (B) component and 5-25 weight part of (C) component with respect to 100 weight part of (A) component. Most preferably, they are 5-10 weight part of (B) component and 5-10 weight part of (C) component with respect to 100 weight part of (A) component.
When the mixing ratio of the components (B) and (C) is less than the above, a conductive film having high conductivity may not be obtained. Moreover, when there are more mixing ratios of (B) and (C) component than the above, there exists a possibility that the viscosity of an electroconductive composition may become low too much and may have a bad influence on the application | coating performance to the board | substrate at the time of screen printing.

本発明の導電性組成物には、上記(A)〜(D)成分以外にも、必要に応じて、基板上への印刷に適した粘度に調整するための溶剤や有機バインダなどを添加することができる。溶剤や有機バインダとしては、例えば、特開2007−258123号公報などに開示された公知のものを用いることができる。導電性組成物を希釈して粘度を低下させるための溶剤としては、例えば水、メタノール、エタノール、1,3−プロパンジオール、エチレングリコールモノアセテート、ヒドロキシ酢酸エチルなどを用いることができる。   In addition to the components (A) to (D), a solvent or an organic binder for adjusting the viscosity to be suitable for printing on the substrate is added to the conductive composition of the present invention, if necessary. be able to. As the solvent and the organic binder, for example, known ones disclosed in JP 2007-258123 A can be used. As a solvent for diluting the conductive composition to lower the viscosity, for example, water, methanol, ethanol, 1,3-propanediol, ethylene glycol monoacetate, ethyl hydroxyacetate, or the like can be used.

次に、上記のようにして得られた導電性組成物を用いて基板上に導電膜を形成する方法について説明する。
上記(A)〜(C)成分、及び、必要に応じて(D)成分を混合してペースト状の導電性組成物を調製した後、この導電性組成物を基板上に塗布する。塗布方法としては、例えば、スクリーン印刷法などの公知の方法を用いることができる。
Next, a method for forming a conductive film on a substrate using the conductive composition obtained as described above will be described.
The components (A) to (C) and, if necessary, the component (D) are mixed to prepare a paste-like conductive composition, and then the conductive composition is applied onto a substrate. As a coating method, for example, a known method such as a screen printing method can be used.

基板上にペースト状の導電性組成物を塗布した後、この導電性組成物を70℃以上500℃以下の温度で焼成する(熱処理工程)。焼成温度がこの範囲よりも低い場合、導電性組成物中の有機物の揮散や熱分解が不十分となり、有機物残渣によって導電膜の導電性を阻害するおそれがある。反対に、焼成温度がこの範囲よりも高い場合、導電性組成物中の卑金属粒子の表面が容易に酸化してしまうために、高い導電性を持つ導電膜を得られなくなる可能性がある。焼成温度のより好ましい範囲は、150℃以上500℃以下である。   After applying the paste-like conductive composition on the substrate, the conductive composition is fired at a temperature of 70 ° C. or higher and 500 ° C. or lower (heat treatment step). When the firing temperature is lower than this range, the volatilization or thermal decomposition of the organic matter in the conductive composition becomes insufficient, and the conductivity of the conductive film may be hindered by the organic matter residue. On the other hand, when the firing temperature is higher than this range, the surface of the base metal particles in the conductive composition is easily oxidized, so that a conductive film having high conductivity may not be obtained. A more preferable range of the firing temperature is 150 ° C. or more and 500 ° C. or less.

焼成温度の好ましい範囲は、上記(A)成分の卑金属の種類によって異なってくる。また、導電性組成物に上記(D)成分が含有されているか否かによっても異なってくる。
例えば、上記(A)成分の卑金属として銅を用いた場合であって、かつ、上記(D)成分を含有しない場合には、150〜400℃で焼成するのが好ましく、200〜350℃で焼成するのがより好ましい。上記(A)成分の卑金属として銅を用いた場合であって、かつ、上記(D)成分を含有する場合には、250〜500℃で焼成するのが好ましく、350〜500℃で焼成するのがより好ましい。上記(A)成分の卑金属としてニッケルを用いた場合であって、かつ、上記(D)成分を含有しない場合には、150〜400℃で焼成するのが好ましく、200〜350℃で焼成するのがより好ましい。上記(A)成分の卑金属としてニッケルを用いた場合であって、かつ、上記(D)成分を含有する場合には、250〜500℃で焼成するのが好ましく、350〜500℃で焼成するのがより好ましい。上記(A)成分の卑金属としてはんだを用いた場合であって、かつ、上記(D)成分を含有しない場合には、導電性組成物を80〜300℃で焼成するのが好ましく、80〜150℃で焼成するのがより好ましい。上記(A)成分の卑金属として錫を用いた場合であって、かつ、上記(D)成分を含有しない場合には、80〜230℃で焼成するのが好ましく、80〜150℃で焼成するのがより好ましい。
The preferable range of the firing temperature varies depending on the type of the base metal of the component (A). Further, it varies depending on whether or not the component (D) is contained in the conductive composition.
For example, when copper is used as the base metal of the component (A) and does not contain the component (D), it is preferably fired at 150 to 400 ° C, and fired at 200 to 350 ° C. More preferably. When copper is used as the base metal of the component (A) and the component (D) is contained, it is preferably fired at 250 to 500 ° C, and fired at 350 to 500 ° C. Is more preferable. When nickel is used as the base metal of the component (A) and does not contain the component (D), it is preferably fired at 150 to 400 ° C, and fired at 200 to 350 ° C. Is more preferable. When nickel is used as the base metal of the component (A) and contains the component (D), it is preferably fired at 250 to 500 ° C., and fired at 350 to 500 ° C. Is more preferable. When solder is used as the base metal of the component (A) and the component (D) is not contained, the conductive composition is preferably fired at 80 to 300 ° C. More preferably, baking is performed at a temperature of 0 ° C. When tin is used as the base metal of the component (A) and does not contain the component (D), firing is preferably performed at 80 to 230 ° C., and is performed at 80 to 150 ° C. Is more preferable.

また、上記(A)成分の卑金属の種類によっては、導電性組成物を室温(20℃)付近で乾燥させるだけで導電膜を形成することが可能である。例えば、上記(A)成分の卑金属として亜鉛を用いた場合には、導電性組成物を室温付近で乾燥させるだけで導電膜を形成することが可能である。   Further, depending on the type of the base metal of the component (A), it is possible to form a conductive film simply by drying the conductive composition at around room temperature (20 ° C.). For example, when zinc is used as the base metal of the component (A), it is possible to form a conductive film by simply drying the conductive composition near room temperature.

上記(A)成分の卑金属として亜鉛を用いた場合であって、かつ、上記(D)成分を含有しない場合には、導電性組成物を室温付近で乾燥させるか、もしくは、300℃以下の温度で焼成するのが好ましく、80〜150℃で焼成するのがより好ましい。上記(A)成分の卑金属として亜鉛を用いた場合であって、かつ、上記(D)成分を含有する場合には、100〜300℃で焼成するのが好ましく、150〜300℃で焼成するのがより好ましい。   When zinc is used as the base metal of the component (A) and does not contain the component (D), the conductive composition is dried near room temperature or a temperature of 300 ° C. or lower. Is preferably fired at 80 to 150 ° C. When zinc is used as the base metal of the component (A) and the component (D) is contained, it is preferably fired at 100 to 300 ° C, and fired at 150 to 300 ° C. Is more preferable.

なお、導電性組成物を70℃以上500℃以下で加熱して焼成する工程は、導電性組成物の周囲に大気(酸素)が存在する大気雰囲気中で行ってもよく、大気から酸素を排除した窒素雰囲気中で行ってもよい。導電性組成物を室温付近で乾燥させる工程も、導電性組成物の周囲に大気(酸素)が存在する大気雰囲気中で行ってもよく、大気から酸素を排除した窒素雰囲気中で行ってもよい。   Note that the step of heating and baking the conductive composition at 70 ° C. or higher and 500 ° C. or lower may be performed in an air atmosphere in which air (oxygen) exists around the conductive composition, and oxygen is excluded from the air. May be performed in a nitrogen atmosphere. The step of drying the conductive composition near room temperature may also be performed in an air atmosphere in which air (oxygen) exists around the conductive composition, or may be performed in a nitrogen atmosphere excluding oxygen from the air. .

このようにして得られた導電膜は、膜中に卑金属からなる粒子が存在しているために高い導電性を有している。特に、上記(A)成分として銅粉を用いた場合には、銅は抵抗率が低くかつエレクトロマイグレーションの影響を受けにくい材料であるため、高い導電性及び耐マイグレーション性を有する導電膜を得ることができる。   The conductive film thus obtained has high conductivity because particles made of a base metal are present in the film. In particular, when copper powder is used as the component (A), copper is a material that has a low resistivity and is not easily affected by electromigration, so that a conductive film having high conductivity and migration resistance is obtained. Can do.

本発明の導電性組成物を焼成することによって得られた導電膜は、各種電子部品の導電回路、例えば、プリント基板における回路パターンの形成に用いることができる。   The electrically conductive film obtained by baking the electrically conductive composition of this invention can be used for formation of the circuit pattern in a conductive circuit of various electronic components, for example, a printed circuit board.

本発明の導電性組成物は、周囲に酸素が存在する大気雰囲気中において焼成することが可能である。したがって、焼成炉の内部を窒素雰囲気にするための大掛かりな設備等が不要であり、低コストで導電性組成物を焼成することができる。   The conductive composition of the present invention can be fired in an air atmosphere in which oxygen is present. Therefore, a large facility for making the inside of the firing furnace a nitrogen atmosphere is unnecessary, and the conductive composition can be fired at a low cost.

本発明の導電性組成物によれば、高い導電性を持つ導電膜を形成することができる。本発明の導電性組成物によってこのような効果が得られる理由は、以下の通りであると考えられる。   According to the conductive composition of the present invention, a conductive film having high conductivity can be formed. The reason why such an effect can be obtained by the conductive composition of the present invention is considered as follows.

すなわち、導電性組成物中に上記(C)成分が含まれることによって、卑金属からなる粒子表面の薄い酸化層が、有機酸のフラックス効果で除去される。
この酸化層が除去された粒子表面において、上記(B)及び(C)成分が、ある種の錯体を形成すると考えられる。そして、導電性組成物が大気雰囲気中で加熱される際には、この錯体が保護層となって、卑金属からなる粒子の表面の酸化を抑制しながら熱分解すると考えられる。これにより、導電性組成物を大気雰囲気中で焼成した場合であっても、高い導電性を有する導電膜を形成できると考えられる。
That is, when the component (C) is contained in the conductive composition, the thin oxide layer on the particle surface made of a base metal is removed by the organic acid flux effect.
It is considered that the components (B) and (C) form a kind of complex on the particle surface from which the oxide layer has been removed. And when an electroconductive composition is heated in an atmospheric condition, this complex becomes a protective layer, and it is thought that it thermally decomposes, suppressing the oxidation of the surface of the particle | grains which consist of a base metal. Thereby, even if it is a case where a conductive composition is baked in air | atmosphere atmosphere, it is thought that the electrically conductive film which has high electroconductivity can be formed.

なお、上記の本発明の効果が得られる理由は、現時点の知見に基づく本発明者らの推測であり、本発明の範囲を何ら制限するものではない。   The reason why the above-described effects of the present invention are obtained is the inventors' estimation based on the present knowledge, and does not limit the scope of the present invention.

以下、本発明の実施例1〜12について説明するが、本発明はこれらに限定されるものではない。   Examples 1 to 12 of the present invention will be described below, but the present invention is not limited thereto.

(実施例1)
上記(A)成分として銅粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、200℃で10分間加熱して導電膜を形成した。また、同様に調製した組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた2つの導電膜の比抵抗値をそれぞれ測定したところ、0.8×10−4[Ω・cm]、0.5×10−4[Ω・cm]という結果が得られた。
Example 1
A conductive composition is prepared by mixing 100 parts by weight of copper powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 200 degreeC for 10 minute (s), and the electrically conductive film was formed. Moreover, after apply | coating the composition prepared similarly on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance values of the two conductive films thus obtained were measured, the results of 0.8 × 10 −4 [Ω · cm] and 0.5 × 10 −4 [Ω · cm] were obtained. It was.

(実施例2)
上記(A)成分として銅粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分として乳酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、2.5×10−4[Ω・cm]という結果が得られた。
(Example 2)
A conductive composition was prepared by mixing 100 parts by weight of copper powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of lactic acid as the component (C). . As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 2.5 × 10 −4 [Ω · cm] was obtained.

(実施例3)
上記(A)成分として銅粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてクエン酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、1.5×10−4[Ω・cm]という結果が得られた。
(Example 3)
A conductive composition is prepared by mixing 100 parts by weight of copper powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of citric acid as the component (C). did. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 1.5 × 10 −4 [Ω · cm] was obtained.

(実施例4)
上記(A)成分として銅粉100重量部、上記(B)成分として1,3−ジアミノプロパン5重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、1.0×10−4[Ω・cm]という結果が得られた。
Example 4
A conductive composition was prepared by mixing 100 parts by weight of copper powder as the component (A), 5 parts by weight of 1,3-diaminopropane as the component (B), and 10 parts by weight of glycolic acid as the component (C). . As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 1.0 × 10 −4 [Ω · cm] was obtained.

(実施例5)
上記(A)成分として銅粉100重量部、上記(B)成分として3−メトキシプロピルアミン10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、0.9×10−4[Ω・cm]という結果が得られた。
(Example 5)
A conductive composition was prepared by mixing 100 parts by weight of copper powder as the component (A), 10 parts by weight of 3-methoxypropylamine as the component (B), and 10 parts by weight of glycolic acid as the component (C). As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 0.9 × 10 −4 [Ω · cm] was obtained.

(実施例6)
上記(A)成分として銅粉100重量部、上記(B)成分としてN−メチルエタノールアミン10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、1.1×10−4[Ω・cm]という結果が得られた。
(Example 6)
A conductive composition was prepared by mixing 100 parts by weight of copper powder as the component (A), 10 parts by weight of N-methylethanolamine as the component (B), and 10 parts by weight of glycolic acid as the component (C). As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 300 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 1.1 × 10 −4 [Ω · cm] was obtained.

(実施例7)
上記(A)成分として銅粉100重量部、上記(B)成分として3−アミノ−1−プロパノール2重量部、上記(C)成分としてグリコール酸5重量部、及び、上記(D)成分としてソルビトールポリグリシジルエーテル10重量部を混合して導電性組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、500℃で10分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、0.2×10−4[Ω・cm]という結果が得られた。
(Example 7)
100 parts by weight of copper powder as the component (A), 2 parts by weight of 3-amino-1-propanol as the component (B), 5 parts by weight of glycolic acid as the component (C), and sorbitol as the component (D) A conductive composition was prepared by mixing 10 parts by weight of polyglycidyl ether. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 500 degreeC for 10 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 0.2 × 10 −4 [Ω · cm] was obtained.

(実施例8)
上記(A)成分としてニッケル粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。ニッケル粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、150℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、5.0×10−4[Ω・cm]という結果が得られた。
(Example 8)
A conductive composition is prepared by mixing 100 parts by weight of nickel powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the nickel powder, a spherical powder having an average particle diameter of 1 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 150 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 5.0 × 10 −4 [Ω · cm] was obtained.

(実施例9)
上記(A)成分として亜鉛粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。亜鉛粉としては、平均粒径が4μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、150℃で5分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、0.2×10−4[Ω・cm]という結果が得られた。
Example 9
A conductive composition is prepared by mixing 100 parts by weight of zinc powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the zinc powder, a spherical powder having an average particle diameter of 4 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 150 degreeC for 5 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 0.2 × 10 −4 [Ω · cm] was obtained.

(実施例10)
上記(A)成分としてはんだ粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。はんだ粉としては、重量比でSn:Ag:Cu=96.5:3:0.5の合金からなる平均粒径が4μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、150℃で10分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、0.6×10−4[Ω・cm]という結果が得られた。
(Example 10)
A conductive composition is prepared by mixing 100 parts by weight of solder powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the solder powder, a spherical powder having an average particle diameter of 4 μm made of an alloy of Sn: Ag: Cu = 96.5: 3: 0.5 by weight ratio was used. After apply | coating the obtained composition on a board | substrate, it heated at 150 degreeC for 10 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 0.6 × 10 −4 [Ω · cm] was obtained.

(実施例11)
上記(A)成分として亜鉛粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。亜鉛粉としては、平均粒径が4μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、室温(20℃)で24時間放置して乾燥させることによって導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、2.0×10−4[Ω・cm]という結果が得られた。
(Example 11)
A conductive composition is prepared by mixing 100 parts by weight of zinc powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the zinc powder, a spherical powder having an average particle diameter of 4 μm was used. After apply | coating the obtained composition on a board | substrate, it was left to dry at room temperature (20 degreeC) for 24 hours, and the electrically conductive film was formed. When the specific resistance value of the conductive film thus obtained was measured, a result of 2.0 × 10 −4 [Ω · cm] was obtained.

(実施例12)
上記(A)成分として錫粉100重量部、上記(B)成分として3−アミノ−1−プロパノール10重量部、上記(C)成分としてグリコール酸10重量部を混合して導電性組成物を調製した。錫粉としては、平均粒径が5μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、150℃で10分間加熱して導電膜を形成した。このようにして得られた導電膜の比抵抗値を測定したところ、0.6×10−4[Ω・cm]という結果が得られた。
(Example 12)
A conductive composition is prepared by mixing 100 parts by weight of tin powder as the component (A), 10 parts by weight of 3-amino-1-propanol as the component (B), and 10 parts by weight of glycolic acid as the component (C). did. As the tin powder, a spherical powder having an average particle diameter of 5 μm was used. After apply | coating the obtained composition on a board | substrate, it heated at 150 degreeC for 10 minute (s), and formed the electrically conductive film. When the specific resistance value of the conductive film thus obtained was measured, a result of 0.6 × 10 −4 [Ω · cm] was obtained.

以下、本発明の比較例1〜4について説明する。   Hereinafter, Comparative Examples 1 to 4 of the present invention will be described.

(比較例1)
銅粉100重量部、3−アミノ−1−プロパノール10重量部、プロピオン酸10重量部を混合して組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、200℃で10分間加熱して膜を形成した。このようにして得られた膜は導電性を有するものではなく、「導電膜」といえるものではなかった。
(Comparative Example 1)
A composition was prepared by mixing 100 parts by weight of copper powder, 10 parts by weight of 3-amino-1-propanol, and 10 parts by weight of propionic acid. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After the obtained composition was applied on a substrate, it was heated at 200 ° C. for 10 minutes to form a film. The film thus obtained was not conductive and could not be called a “conductive film”.

(比較例2)
銅粉100重量部、3−アミノ−1−プロパノール10重量部、p−ヒドロキシ安息香酸10重量部を混合して組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、200℃で10分間加熱して膜を形成した。このようにして得られた膜は導電性を有するものではなく、「導電膜」といえるものではなかった。
(Comparative Example 2)
A composition was prepared by mixing 100 parts by weight of copper powder, 10 parts by weight of 3-amino-1-propanol, and 10 parts by weight of p-hydroxybenzoic acid. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After the obtained composition was applied on a substrate, it was heated at 200 ° C. for 10 minutes to form a film. The film thus obtained was not conductive and could not be called a “conductive film”.

(比較例3)
銅粉100重量部、1−アミノプロパン10重量部、グリコール酸10重量部を混合して組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、200℃で10分間加熱して膜を形成した。このようにして得られた膜は導電性を有するものではなく、「導電膜」といえるものではなかった。
(Comparative Example 3)
A composition was prepared by mixing 100 parts by weight of copper powder, 10 parts by weight of 1-aminopropane, and 10 parts by weight of glycolic acid. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. After the obtained composition was applied on a substrate, it was heated at 200 ° C. for 10 minutes to form a film. The film thus obtained was not conductive and could not be called a “conductive film”.

(比較例4)
銅粉100重量部、乳酸10重量部を混合して組成物を調製した。銅粉としては、平均粒径が1μmの球状粉を用いた。得られた組成物を基板上に塗布した後に、300℃で5分間加熱して膜を形成した。このようにして得られた膜は導電性を有するものではなく、「導電膜」といえるものではなかった。
(Comparative Example 4)
A composition was prepared by mixing 100 parts by weight of copper powder and 10 parts by weight of lactic acid. As the copper powder, a spherical powder having an average particle diameter of 1 μm was used. The obtained composition was applied onto a substrate and then heated at 300 ° C. for 5 minutes to form a film. The film thus obtained was not conductive and could not be called a “conductive film”.

上記実施例1〜12及び上記比較例1〜4の結果をまとめたものを、以下の表1、表2にそれぞれ示す。   The results of Examples 1 to 12 and Comparative Examples 1 to 4 are summarized in Tables 1 and 2 below.

Figure 0005881613
Figure 0005881613

Figure 0005881613
Figure 0005881613

実施例1〜12の結果をみれば分かる通り、本発明の導電性組成物によれば、比抵抗値の低い(つまり導電性の高い)導電膜が得られることが判明した。   As can be seen from the results of Examples 1 to 12, it has been found that according to the conductive composition of the present invention, a conductive film having a low specific resistance value (that is, a high conductivity) can be obtained.

実施例1、2、3の結果を比較すれば分かる通り、上記(C)成分としてグリコール酸を用いた導電性組成物は、他のヒドロキシ酸(乳酸、クエン酸)を用いた場合よりも高い導電性を有する導電膜が得られることが判明した。   As can be seen by comparing the results of Examples 1, 2, and 3, the conductive composition using glycolic acid as the component (C) is higher than the case of using other hydroxy acids (lactic acid and citric acid). It has been found that a conductive film having conductivity can be obtained.

実施例1、4、5、6の結果を比較すれば分かる通り、上記(B)成分として3−アミノ−1−プロパノールを用いた導電性組成物は、他のアミン化合物(1,3−ジアミノプロパン、3−メトキシプロピルアミン、N−メチルエタノールアミン)を用いた場合よりも高い導電性を有する導電膜が得られることが判明した。   As can be seen from the comparison of the results of Examples 1, 4, 5, and 6, the conductive composition using 3-amino-1-propanol as the component (B) was obtained by using other amine compounds (1,3-diamino). It has been found that a conductive film having higher conductivity than that obtained using propane, 3-methoxypropylamine, N-methylethanolamine) can be obtained.

実施例1、7の結果を比較すれば分かる通り、上記(A)〜(C)成分に加えて上記(D)成分を含有する導電性組成物(実施例7)は、上記(D)成分を含有しない導電性組成物(実施例1)よりも高温で焼成が可能であり、かつ、高い導電性を有する導電膜が得られることが判明した。   As can be seen from the comparison of the results of Examples 1 and 7, the conductive composition (Example 7) containing the above component (D) in addition to the above components (A) to (C) is composed of the above component (D). It has been found that a conductive film that can be fired at a higher temperature than a conductive composition containing no hydrogen (Example 1) and that has high conductivity can be obtained.

実施例1と比較例1の結果を比較すれば分かる通り、上記(C)成分に代えてOH基を有しない脂肪族カルボン酸を加えた場合には、高い導電性を有する導電膜が得られないことが判明した。   As can be seen by comparing the results of Example 1 and Comparative Example 1, when an aliphatic carboxylic acid having no OH group is added instead of the component (C), a conductive film having high conductivity is obtained. Not found out.

実施例1と比較例2の結果を比較すれば分かる通り、上記(C)成分に代えて芳香族ヒドロキシ酸を加えた場合には、高い導電性を有する導電膜が得られないことが判明した。   As can be seen by comparing the results of Example 1 and Comparative Example 2, it was found that when an aromatic hydroxy acid was added instead of the component (C), a conductive film having high conductivity could not be obtained. .

実施例1と比較例3の結果を比較すれば分かる通り、上記(B)成分に代えてアミノ基が1個でかつOH基を有しないアミン化合物を加えた場合には、高い導電性を有する導電膜が得られないことが判明した。   As can be seen by comparing the results of Example 1 and Comparative Example 3, when an amine compound having one amino group and no OH group is added in place of the component (B), it has high conductivity. It was found that a conductive film could not be obtained.

比較例4の結果を見れば分かる通り、上記(A)及び(C)成分のみを含有する組成物を焼成した場合には、高い導電性を有する導電膜が得られないことが判明した。   As can be seen from the results of Comparative Example 4, it was found that when a composition containing only the components (A) and (C) was baked, a conductive film having high conductivity could not be obtained.

Claims (6)

(A)卑金属を主体とする金属粉と、
(B)下記一般式(1)で表されるアミン化合物、もしくは、2個以上のアミノ基を有する脂肪族アミンと、
(C)脂肪族ヒドロキシ酸と、を含有し、
前記(B)成分は、3−アミノ−1−プロパノール、3−メトキシプロピルアミン、N−メチルエタノールアミン、及び1,3−ジアミノプロパンから選ばれる少なくとも1つであることを特徴とする導電性組成物。
−HN−R−O−R … (1)
(式中、Rは、炭素数2〜8のアルキレン基を表しており、R及びRは、それぞれ、H原子もしくは炭素数1〜4個のアルキル基を表している。)
(A) metal powder mainly composed of base metal;
(B) an amine compound represented by the following general formula (1), or an aliphatic amine having two or more amino groups;
(C) an aliphatic hydroxy acid ,
The component (B) is at least one selected from 3-amino-1-propanol, 3-methoxypropylamine, N-methylethanolamine, and 1,3-diaminopropane. object.
R 2 —HN—R 1 —O—R 3 (1)
(In the formula, R 1 represents an alkylene group having 2 to 8 carbon atoms, and R 2 and R 3 each represents an H atom or an alkyl group having 1 to 4 carbon atoms.)
前記(C)成分は、グリコール酸、乳酸、及びクエン酸から選ばれる少なくとも1つであることを特徴とする請求項1に記載の導電性組成物。 The conductive composition according to claim 1 , wherein the component (C) is at least one selected from glycolic acid, lactic acid, and citric acid. 分子中にOH基を1個以上有する直鎖状のエポキシ樹脂をさらに含む請求項1または請求項2に記載の導電性組成物。 The conductive composition according to claim 1 or 2 , further comprising a linear epoxy resin having at least one OH group in the molecule. 前記(A)成分は、銅、ニッケル、亜鉛、錫、はんだから選ばれる少なくとも1つであることを特徴とする請求項1から請求項のうちいずれか1項に記載の導電性組成物。 The electrically conductive composition according to any one of claims 1 to 3 , wherein the component (A) is at least one selected from copper, nickel, zinc, tin, and solder. 請求項1から請求項のうちいずれか1項に記載の導電性組成物を基板上に塗布した後に、70℃以上500℃以下で加熱する熱処理工程を有する導電膜の形成方法。 After applying the conductive composition according to the substrate to any one of claims 1 to claim 4, the conductive pattern forming method comprising a heat treatment step of heating at 70 ° C. or higher 500 ° C. or less. 前記熱処理工程が大気雰囲気中で行われることを特徴とする請求項に記載の導電膜の形成方法。 The method for forming a conductive film according to claim 5 , wherein the heat treatment step is performed in an air atmosphere.
JP2012544182A 2010-11-19 2011-11-07 Conductive composition and method for forming conductive film Active JP5881613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544182A JP5881613B2 (en) 2010-11-19 2011-11-07 Conductive composition and method for forming conductive film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010258984 2010-11-19
JP2010258984 2010-11-19
PCT/JP2011/075585 WO2012066957A1 (en) 2010-11-19 2011-11-07 Conductive composition, conductive film, and method for forming conductive film
JP2012544182A JP5881613B2 (en) 2010-11-19 2011-11-07 Conductive composition and method for forming conductive film

Publications (2)

Publication Number Publication Date
JPWO2012066957A1 JPWO2012066957A1 (en) 2014-05-12
JP5881613B2 true JP5881613B2 (en) 2016-03-09

Family

ID=46083892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012544182A Active JP5881613B2 (en) 2010-11-19 2011-11-07 Conductive composition and method for forming conductive film

Country Status (3)

Country Link
JP (1) JP5881613B2 (en)
TW (1) TWI537986B (en)
WO (1) WO2012066957A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776180B2 (en) * 2010-12-21 2015-09-09 東ソー株式会社 Conductive ink composition and electrically conducting portion produced using the same
JP5769340B2 (en) * 2011-09-14 2015-08-26 ナミックス株式会社 Conductive composition and conductive film
JP6503219B2 (en) * 2014-10-30 2019-04-17 日華化学株式会社 Conductive ink composition and conductive member produced thereby
CN111627698B (en) * 2020-06-08 2022-05-17 江苏国瓷泓源光电科技有限公司 Nickel inner electrode slurry for MLCC

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2008226726A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Conductive paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2008226726A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Conductive paste

Also Published As

Publication number Publication date
TWI537986B (en) 2016-06-11
TW201230067A (en) 2012-07-16
JPWO2012066957A1 (en) 2014-05-12
WO2012066957A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
JP2006049147A (en) Conductive paste
JP2016527665A (en) Photosintering of polymer thick film copper conductor composition
EP1594928A2 (en) High conductivity inks with improved adhesion
JP2007258123A (en) Conductive composition and conductive film forming method
JP2619289B2 (en) Copper conductive composition
JP5881613B2 (en) Conductive composition and method for forming conductive film
JP2007227156A (en) Conductive paste, and printed wiring board using it
TW201227754A (en) Conductive paste and base with conductive film
JP2020076155A (en) Silver-coated copper powder and method for producing the same
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
EP3335223B1 (en) Photonic sintering of a polymer thick film copper conductor composition
CN104425054B (en) Conductive paste and the base material with conducting film
JP4089368B2 (en) Conductive paste
JP5769340B2 (en) Conductive composition and conductive film
JPH0649272A (en) Electrically conductive composition
WO2019009146A1 (en) Electrically conductive paste
JP6681437B2 (en) Conductive paste
JPH0619075B2 (en) Conductive paint that can be soldered
JPH0415270A (en) Electrically conductive paste
JP2628734B2 (en) Conductive paste
JP3243655B2 (en) Hybrid IC
JP3316746B2 (en) Conductive paint
JPS6121576B2 (en)
JPH06164185A (en) Hybrid ic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250