WO2007105636A1 - Process for production of ultrafine silver particles and ultrafine silver particles produced by the process - Google Patents
Process for production of ultrafine silver particles and ultrafine silver particles produced by the process Download PDFInfo
- Publication number
- WO2007105636A1 WO2007105636A1 PCT/JP2007/054682 JP2007054682W WO2007105636A1 WO 2007105636 A1 WO2007105636 A1 WO 2007105636A1 JP 2007054682 W JP2007054682 W JP 2007054682W WO 2007105636 A1 WO2007105636 A1 WO 2007105636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- silver particles
- fine silver
- fine
- particles
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
Definitions
- the invention according to the present application relates to a method for producing fine silver particles and fine silver particles obtained by the production method.
- an object is to provide fine silver particles suitable as a conductive paste or conductive filler for conductive ink used for forming fine wiring.
- silver pastes and silver inks containing conductive fillers such as metal powders have been used for relatively high temperature firing such as simultaneous firing with a ceramic substrate to form a circuit.
- conductive fillers such as metal powders
- Patent Document 2 As disclosed in Patent Document 2, conventional silver powder production uses a wet reduction process in which a silver ammine complex aqueous solution is produced with a silver nitrate solution and ammonia water, and an organic reducing agent is added thereto. It has been. In order to ensure low-temperature sinterability exceeding that of silver powder, silver ink containing silver nanoparticles has been proposed as disclosed in Patent Document 3.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2001-107101
- Patent Document 2 Japanese Patent Laid-Open No. 2002-334618
- Patent Document 3 Japanese Patent Laid-Open No. 2002-324966
- silver powder has a small amount of impurities. That is, the above-described wet reduction process is used for the production of silver powder, and the reducing agent, dispersant, etc. used in the process remain on the surface and inside of the silver powder particles. Therefore, it was an inevitable problem as long as the conventional manufacturing method was adopted. As the amount of impurities in the silver powder increases, the electrical resistance of the conductor formed using the conductive paste containing the silver powder increases.
- the inventors of the present invention have obtained fine silver particles having a particle size of nm level with excellent particle dispersibility by adopting the following production method. I came up with the idea of coming. Moreover, although a dispersant is used in this production method, the dispersant adhering to the silver particles can be easily removed afterwards.
- the method for producing fine silver particles according to the present invention is a method for producing fine silver particles by a wet reduction method, wherein each component of silver salt, chelating agent, and gelatin is used.
- a silver salt-containing solution containing a reducing agent-containing solution containing a reducing agent is mixed to cause a reduction reaction to obtain fine silver particles.
- the silver salt is preferably silver nitrate.
- the chelating agent comprises one or more selected from ethylenediamine complex, darconic acid, dalconate, pyrophosphate, pyrophosphate. It is preferable to use in combination.
- the reducing agent is a sulfite, formalin, hydroquinone, hydrazine, borohydride compound, or a combination of one or more selected. It is preferable to use it.
- the silver salt-containing solution used in the method for producing fine silver particles according to the present invention preferably includes a gelatin content of 0.oigZi to i.oogZi with respect to a silver content of lgZi.
- the silver salt-containing solution used in the method for producing fine silver particles according to the present invention preferably contains 0.lgZl to 50. OgZl as a silver content.
- the reducing agent-containing solution used in the method for producing fine silver particles according to the present invention preferably has a reducing agent concentration of 0.1 molZl to 10. OmolZl.
- Fine silver particles according to the present invention are fine silver particles obtained by the fine silver particle production method described in the above production method, and the average primary particle diameter thereof is It is characterized by being less than lOOnm.
- fine silver particles exhibiting good particle dispersibility and having a primary particle diameter of lOOnm or less can be produced.
- gelatin in this production method, it is easy to remove the gelatin component adhering to the surface of the particles after the production of the fine silver particles, and it is easy to remove the original silver fine particles without being affected by the dispersant. Low temperature sinterability can be obtained.
- the fine silver particles according to the present invention are produced by a method of producing fine silver particles by a wet reduction method. That is, a silver salt-containing solution containing silver salt, a chelating agent and gelatin is brought into contact with a reducing agent-containing solution containing a reducing agent to cause a reduction reaction to obtain fine silver particles.
- the present invention is to be described later It has a great feature in that it uses a combination of a salt agent and gelatin. And this gelatin is described as a concept including glue. This gelatin remains adhered to the particle surface of the resulting fine silver particles, but can be easily peeled off from the particle surface by chemical treatment afterwards.
- the gelatin content is preferably 0.oigZi to i.oogZi with respect to the silver content lg / 1. This is because when the gelatin content is less than 0. oigZi, it cannot function as a steric hindrance to prevent the reductive precipitation of fine silver particles and does not serve as a protective colloid. On the other hand, when the gelatin content exceeds 1.00 g, 1, the viscosity of the silver salt-containing solution will be affected, and the reduction precipitation rate of fine silver particles will be slowed, leading to a decrease in productivity. It is.
- the gelatin content in the range of 0.1 lgZl to 0.5 gZl. preferable.
- Silver nitrate is preferably used as the silver salt in the silver salt-containing solution used in the method for producing fine silver particles according to the present invention.
- the use of silver nitrate as the silver supply source is excellent in solubility in water and ionization characteristics in water, so that the reaction with the chelating agent described later can be carried out smoothly.
- the silver concentration in the silver salt-containing solution it is preferable to contain 0.lgZl to 50.OgZl as silver. If the silver concentration here exceeds 50. OgZl, fine particles with high particle dispersibility with a sharp particle size distribution tend to form coarse particles in the precipitated silver particles or tend to form agglomerated particles. Unable to get particles
- the force is in the range of 0.lgZl to 30.OgZl.
- the chelating agent in the silver salt-containing solution used in the method for producing fine silver particles according to the present invention is one or two selected from ethylenediamine complex salt, darconic acid, dalconate, pyrophosphate, pyrophosphate. It is preferable to use a combination of species or more.
- This chelating agent In addition, silver ions supplied with silver salt strength in a silver salt-containing solution are stabilized as chelate complexes.
- the chelating agent referred to here is that the addition amount is appropriately adjusted according to the amount of silver ions on the premise that it is in the range of the above-mentioned silver content, so that there is no particular limitation. I don't think so.
- the silver salt-containing solution is preferably contained at a concentration of 0.01 molZl to 5. OOmolZl.
- the chelating agent described here is in a range that efficiently forms a chelate complex with silver ions ionized in a solution such as a silver salt source as a silver ion supply source.
- ethylenediamine tetraacetic acid tetrasodium salt forms the most stable silver chelate complex, suppresses the growth of silver particles, and promotes the formation of silver precipitation nuclei. It becomes easy to generate.
- the addition amount of the chelating agent is originally determined according to the type of the chelating agent and the amount of silver in the solution.
- the chelating agent concentration is in the range of 0.01 molZl to 5.00 mol / 1, and therefore the general notation is adopted.
- the total concentration of the two or more chelating agents may be in the range of 0.01 molZl to 5.
- the reducing agent contained in the reducing agent-containing solution is selected from sulfites, formalin, hydroquinone, hydrazine, and borohydride compounds 1 It is preferable to use a species or a combination of two or more species.
- the sulfite referred to here is preferably one or more of sodium sulfite and potassium sulfite.
- sodium borohydride (SBH) or potassium borohydride as the borohydride compound.
- the reducing agent-containing solution mentioned here is preferably a solution containing 0.1 to 10. OmolZl of a reducing agent.
- the reducing agent is used according to the amount of silver in the silver-containing solution, and the concentration of the reducing agent is 0. If it is less than ImolZl, the reduction of the existing silver ions becomes insufficient, the industrial economy is not satisfied, the amount of the solution for causing the reduction reaction increases, and the waste liquid treatment load increases. On the other hand, if the concentration of the reducing agent exceeds 10. OmolZl, the reducing agent concentration becomes too high, and no matter how the solution is stirred during the reduction reaction, there is a local heterogeneity of the reduction reaction. There is a tendency that the particle size distribution of fine silver particles becomes broad, and that connected particles are easily formed.
- the progress of particle agglomeration resulting in reduction precipitation becomes remarkable, and when an organic reducing agent is used, the amount of impurities contained in the particles (in this specification, the amount of impurities is regarded as the carbon content) is rapidly increased. Begin to become.
- a reducing agent as a solution containing 1.0 molZl to 5. OmolZl. .
- OmolZl Maintaining the reducing agent concentration at 1. OmolZl to 5.
- OmolZl in the range of ⁇ 30 gZl is the most suitable condition for obtaining fine silver particles according to the present invention with good yield.
- the liquid temperature of the mixed solution obtained by mixing the silver salt-containing solution and the reducing agent-containing solution during the reduction reaction is preferably 40 ° C to 80 ° C. Therefore, it is preferable to prepare both the liquid temperature of the silver salt-containing solution before mixing and the liquid temperature of the reducing agent-containing solution so that the liquid temperature is 40 ° C to 80 ° C after mixing. If the temperature of the mixture is less than 40 ° C, appropriate industrial productivity with a slow reduction reaction cannot be obtained. On the other hand, when the liquid temperature of the mixed liquid exceeds 80 ° C, the reduction reaction rate increases, and at the same time, the evaporation of moisture becomes remarkable, and the concentration fluctuation during the reduction reaction increases, so that the obtained fine silver particles The particle size distribution is broad.
- the time required for the reduction reaction (hereinafter referred to as “reduction reaction time”) is preferably in the range of 20 minutes to 2 hours.
- the reduction reaction time is less than 20 minutes, even if the upper limit of the above liquid temperature is adopted, sufficient reduction reaction does not proceed.
- the reduction reaction time exceeds 2 hours, the reduction of silver ions existing within 2 hours is usually almost complete. Even if silver ions are present in the solution at this stage, Originally precipitated silver particles grow and fine silver particles having a particle size of lOOnm or less cannot be obtained.
- fine silver powder It can be collected as (fine silver powder). However, it is preferable to store in a slurry state in order to maintain a very fine particle and a good dispersion state. In the case of storing in a slurry state, it is preferable to store the slurry in a silver particle slurry state using water as a solvent by washing by a conventional method. In order to obtain the fine silver particles according to the present invention in a dry state, various methods can be used, and the method and conditions are not particularly limited.
- Fine silver particles according to the present invention are fine silver particles obtained by the fine silver particle production method described in the above production method, and have an average primary particle diameter force. It is less than SlOOnm.
- the average primary particle size referred to here is the average primary particle size (hereinafter referred to as ⁇ D
- image analysis of fine silver powder observed using a scanning electron microscope (SEM) in this specification is performed using IP-1000PC manufactured by Asahi Engineering Co., Ltd., with a circularity threshold of 10 and an overlap of 20. Perform circular particle analysis to determine the average primary particle size D
- the average primary particle diameter D obtained by image processing of the observation image of this fine silver powder is obtained directly from the SEM observation image power.
- the film density of the conductive film obtained by the silver paste using the fine silver powder according to the present invention is as high as 4. OgZcm 3 or more.
- the film density here refers to a silver paste with a composition of 70 wt% fine silver particles, 5 wt% ethyl cellulose, and 25 wt% turbeneol. Create it on film and put it at 80 ° C The film density was measured after drying. Considering that the film density of the silver powder composed of conventional nanoparticles is less than 4. Og / cm 3 , the fine silver particles according to the present invention are excellent in dispersibility and packing property as nanoparticles. It is supported that Hereinafter, examples will be described.
- the reducing agent-containing solution was added all at once to the silver salt-containing solution to obtain a mixed solution. Then, while maintaining the liquid temperature of this mixed liquid at 50 ° C., stirring was performed for 1 hour to carry out a reduction reaction, thereby generating fine silver particles in the mixed liquid.
- FIG. 1 shows an electron microscope observation image (observation magnification: 100,000 times) of the fine silver particles A.
- the particles were observed with a transmission electron microscope as shown in FIG. 2, and it was confirmed that a gelatin coating was formed on the surface of the particles. It can be seen that the transparent layer around the grain in Fig. 2 is a gelatin coating, in which fine silver particles are present.
- This Example 2 is different only in that the amount of the ethylenediamine tetraacetic acid-4sodium salt, which is the chelating agent of Example 1, was changed and a silver salt-containing solution was prepared as follows.
- the amount of the ethylenediamine tetraacetic acid-4sodium salt, which is the chelating agent of Example 1 was changed and a silver salt-containing solution was prepared as follows.
- fine silver particles were produced in the same manner as in Example 1, and collected as a fine silver particle slurry state using pure water as a solvent.
- FIG. 3 shows a transmission electron microscope image (observation magnification: 500 000 times) of the fine silver particles B.
- This Comparative Example 1 is different in that the silver salt-containing solution was prepared as follows by omitting the ethylenediamine tetraacetic acid ⁇ 4 sodium salt which is the chelating agent of Example 1. That is, there is no chelating agent to see the state of the case.
- FIG. 5 shows an electron microscope observation image (observation magnification: 50000 times) of the fine silver particles C.
- FIG. 4 shows an electron microscope observation image (observation magnification: 100,000 times) of the fine silver particles D.
- the fine silver particles A and fine silver particles B according to the present invention described in Example 1 and Example 2 have a mean primary particle size of lOOnm or less.
- the film density measurement of the conductive film formed by the silver paste using the fine silver particles shows a good filling property exceeding 4. Og / cm 3 . Therefore, when the fine silver particles of each Example are used as a conductive base or a conductive filler of a conductive ink to form a conductor, it is possible to obtain a conductive film having a high film density and a low electric resistance. Become. In addition, there is little aggregation of particles and particle content It is also clear from the scanning or transmission electron microscope images in Fig. 1 or Fig. 3 that the powder has excellent dispersibility. Therefore, it can be expected that the surface shape of the formed conductor film will be smooth.
- the fine silver particles of Comparative Example 1 returned silver particles in a reaction system that did not contain the chelating agent, ethylenediamine tetraacetic acid / 4 sodium salt, even when gelatin was contained in the silver salt-containing solution.
- the particle dispersibility deteriorates. That is, from the scanning electron microscope observation image in FIG. 5, it is clear that the particles are agglomerated and the particle dispersibility is poor.
- the film density is 3.7 gZcm 3, which is lower than 4. OgZcm 3 .
- the fine silver particles of this comparative example as a conductive paste for conductive paste or conductive ink and forming a conductor, a conductive film having a high film density and a low electrical resistance cannot be obtained.
- the membrane can be expected to have a porous structure.
- the method for producing fine silver particles according to the present invention can utilize a conventional silver particle production apparatus by a wet method as it is, and does not require new production equipment. Therefore, it is possible to efficiently produce fine silver particles having a primary particle diameter on the order of nm showing good particle dispersibility without causing an increase in production cost.
- the fine silver particle silver powder according to the present invention can easily remove the gelatin component adhering to the particle surface later by using gelatin in the production process, and is not affected by the dispersant. It becomes possible to obtain the original low temperature sinterability of fine silver particles.
- FIG. 1 is a scanning electron microscope image of fine silver particles according to Example 1.
- FIG. 2 is a transmission electron microscope image of fine silver particles according to Example 1.
- FIG. 3 is a scanning electron microscope observation image of fine silver particles according to Example 2.
- IV Scanning electron microscope image of fine silver particles according to Comparative Example 1.
- 5 Scanning electron microscope image of fine silver particles according to Comparative Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
Abstract
The invention aims at providing ultrafine silver particles having diameters of nanometer order which exhibit low-temperature sinterability free from the influence of a dispersant and are reduced in the content of impurities to thereby attain lower electrical resistance and which are excellent in dispersibility. The aim is attained by a process for the production of ultrafine silver particles by a wet reduction method which is characterized by mixing a silver salt solution containing a silver salt, a chelating agent, and gelatin with a reducing agent solution containing a reducing agent and subjecting the obtained mixture to reduction to form ultrafine silver particles. The obtained ultrafine silver particles have a mean primary particle diameter of 100nm or below and are excellent in dispersibility.
Description
明 細 書 Specification
微粒銀粒子製造方法及びその製造方法で得られた微粒銀粒子 技術分野 Technical field of fine silver particle production method and fine silver particle obtained by the production method
[0001] 本件出願に係る発明は、微粒銀粒子製造方法及びその製造方法で得られた微粒 銀粒子に関する。特に微細配線の形成に用 ヽる導電性ペースト又は導電性インクの 導電性フィラーとして好適な微細銀粒子の提供を目的とする。 The invention according to the present application relates to a method for producing fine silver particles and fine silver particles obtained by the production method. In particular, an object is to provide fine silver particles suitable as a conductive paste or conductive filler for conductive ink used for forming fine wiring.
背景技術 Background art
[0002] 従来から、金属粉等の導電性フィラーを含む銀ペースト、銀インクは、セラミック基 板と同時焼成して回路形成に用いる等の相対的に高温での焼成用途の他、特許文 献 1に開示されているように、プリント配線板の配線回路、ビアホール充填、部品実装 用接着剤等の種々の榭脂成分と混合して硬化させて用いるような用途が存在してい る。後者のような用途においては、導電フィラーとしての銀粉の粉粒同士が焼結する ことなぐ粉粒同士の接触のみで電気的導電性を得るというのが一般的であった。 Conventionally, silver pastes and silver inks containing conductive fillers such as metal powders have been used for relatively high temperature firing such as simultaneous firing with a ceramic substrate to form a circuit. As disclosed in No. 1, there are applications in which it is mixed with various resin components such as printed circuit board wiring circuits, via hole filling, and component mounting adhesives and cured. In applications such as the latter, it has been common to obtain electrical conductivity only by contacting the powder particles without sintering the powder particles of the silver powder as the conductive filler.
[0003] ところが、近年は、銀粉を用いて形成した導体に対する電気抵抗の低減と、高い接 続信頼性とが要求され、榭脂成分の硬化と共にフィラーである銀粉自体も焼結して 導電性を発揮する銀インクあるいは銀ペーストに対する要求が高まっている。一般に 、このような要求に応えるには、焼結温度を下げることを考え、導電性フィラーである 銀粉の粒子を微細化する努力が払われてきた。 However, in recent years, there has been a demand for reduction in electrical resistance and high connection reliability with respect to conductors formed using silver powder. As the resin component hardens, the filler silver powder itself is also sintered to become conductive. There is a growing demand for silver inks or silver pastes that exhibit the same. In general, in order to meet such requirements, efforts have been made to refine the particles of silver powder, which is a conductive filler, in consideration of lowering the sintering temperature.
[0004] 従来力 の銀粉製造は、特許文献 2に開示されているように、硝酸銀溶液とアンモ ニァ水とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元 プロセスが採用されてきた。そして、このような銀粉を超える低温焼結性を確保しょう と、特許文献 3に開示されているような、銀ナノ粒子を含む銀インクが提唱されてきた [0004] As disclosed in Patent Document 2, conventional silver powder production uses a wet reduction process in which a silver ammine complex aqueous solution is produced with a silver nitrate solution and ammonia water, and an organic reducing agent is added thereto. It has been. In order to ensure low-temperature sinterability exceeding that of silver powder, silver ink containing silver nanoparticles has been proposed as disclosed in Patent Document 3.
[0005] 特許文献 1 :特開 2001— 107101号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-107101
特許文献 2 :特開 2002— 334618号公報 Patent Document 2: Japanese Patent Laid-Open No. 2002-334618
特許文献 3:特開 2002— 324966号公報 Patent Document 3: Japanese Patent Laid-Open No. 2002-324966
発明の開示
発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] しかしながら、銀粉を初めとする金属粉では、粒子の微粒化と良好な粒子分散性と を両立させることは困難である。例えば、上記特許文献 1に開示されているように、銀 ナノ粒子を含む銀インクの場合には、ナノ粒子の分散性を確保するため、保護コロイ ドとして多量の分散剤を添加するのが一般的である。このような場合に使用される分 散剤は、銀ナノ粒子の焼結温度よりも高い分解温度の分散剤が使用されるのが一般 的であり、銀ナノ粒子自体の低温焼結特性を充分に生かしきれな 、と 、う欠点がある [0006] However, with metal powders such as silver powder, it is difficult to achieve both atomization of particles and good particle dispersibility. For example, as disclosed in Patent Document 1 above, in the case of a silver ink containing silver nanoparticles, it is common to add a large amount of a dispersant as a protective colloid in order to ensure the dispersibility of the nanoparticles. Is. The dispersing agent used in such a case is generally a dispersing agent having a decomposition temperature higher than the sintering temperature of the silver nanoparticles, and the low temperature sintering characteristics of the silver nanoparticles themselves are sufficiently obtained. There are drawbacks such as
[0007] また、銀粉に不純物量の少ないことが求められてきた。即ち、銀粉の製造は、上述 した湿式還元プロセスが採用されており、そのプロセスで使用する還元剤、分散剤等 が銀粉の粉粒表面及び内部に残留するのである。従って、従来の製造方法を採用 する以上、不可避的な問題であった。そして、銀粉の不純物量が増加すると、その銀 粉を含ませた導電性ペースト等を用いて形成した導体の電気的抵抗が増加するの である。 [0007] Further, it has been demanded that silver powder has a small amount of impurities. That is, the above-described wet reduction process is used for the production of silver powder, and the reducing agent, dispersant, etc. used in the process remain on the surface and inside of the silver powder particles. Therefore, it was an inevitable problem as long as the conventional manufacturing method was adopted. As the amount of impurities in the silver powder increases, the electrical resistance of the conductor formed using the conductive paste containing the silver powder increases.
[0008] 以上のことから、巿場では、良好な粒子分散性を示す nmオーダーの 1次粒子径を 備える微粒銀粒子であって、分散剤の影響を受けない低温焼結性を示し、且つ、低 抵抗を実現するための不純物含有量が少ない製品への要求が行われてきた。 課題を解決するための手段 [0008] From the above, in the field, fine silver particles having a primary particle diameter on the order of nm showing good particle dispersibility, exhibiting low-temperature sinterability that is not affected by the dispersant, and There has been a demand for products with low impurity content to achieve low resistance. Means for solving the problem
[0009] そこで、本件発明者等は、鋭意研究の結果、以下のような製造方法を採用すること によって、粒子分散性に優れた nmレベルの粒径を備えた微粒銀粒子を得ることが出 来ることに想到したのである。しかも、この製造方法でも分散剤を使用するが、銀粒子 に付着した分散剤は、事後的に容易に除去可能なものである。 [0009] Therefore, as a result of intensive research, the inventors of the present invention have obtained fine silver particles having a particle size of nm level with excellent particle dispersibility by adopting the following production method. I came up with the idea of coming. Moreover, although a dispersant is used in this production method, the dispersant adhering to the silver particles can be easily removed afterwards.
[0010] 本件発明に係る微粒銀粒子の製造方法: 本件発明に係る微粒銀粒子の製造方法 は、湿式還元法による微粒銀粒子の製造方法であって、銀塩、キレート剤、ゼラチン の各成分を含有した銀塩含有溶液と、還元剤を含んだ還元剤含有溶液とを混合させ て還元反応を起こさせ微粒銀粒子を得ることを特徴とするものである。 [0010] The method for producing fine silver particles according to the present invention: The method for producing fine silver particles according to the present invention is a method for producing fine silver particles by a wet reduction method, wherein each component of silver salt, chelating agent, and gelatin is used. A silver salt-containing solution containing a reducing agent-containing solution containing a reducing agent is mixed to cause a reduction reaction to obtain fine silver particles.
[0011] 本件発明に係る微粒銀粒子の製造方法において、前記銀塩は、硝酸銀を用いるこ とが好ましい。
[0012] 本件発明に係る微粒銀粒子の製造方法において、前記キレート剤は、エチレンジ アミン錯塩、ダルコン酸、ダルコン酸塩、ピロリン酸、ピロリン酸塩カゝら選ばれる 1種又 は 2種以上を組み合わせて用いることが好まし 、。 [0011] In the method for producing fine silver particles according to the present invention, the silver salt is preferably silver nitrate. [0012] In the method for producing fine silver particles according to the present invention, the chelating agent comprises one or more selected from ethylenediamine complex, darconic acid, dalconate, pyrophosphate, pyrophosphate. It is preferable to use in combination.
[0013] 本件発明に係る微粒銀粒子の製造方法にぉ ヽて、前記還元剤は、亜硫酸塩、ホ ルマリン、ヒドロキノン、ヒドラジン、水素化ホウ素化合物力 選ばれる 1種又は 2種以 上を組み合わせて用いることが好まし 、。 [0013] In the method for producing fine silver particles according to the present invention, the reducing agent is a sulfite, formalin, hydroquinone, hydrazine, borohydride compound, or a combination of one or more selected. It is preferable to use it.
[0014] 本件発明に係る微粒銀粒子の製造方法に用いる前記銀塩含有溶液は、銀含有量 lgZiに対して、ゼラチン含有量が 0. oigZi〜i. oogZiを含むことが好ましい。 [0014] The silver salt-containing solution used in the method for producing fine silver particles according to the present invention preferably includes a gelatin content of 0.oigZi to i.oogZi with respect to a silver content of lgZi.
[0015] 本件発明に係る微粒銀粒子の製造方法に用いる前記銀塩含有溶液は、その銀含 有量が銀として 0. lgZl〜50. OgZlを含むことが好ましい。 [0015] The silver salt-containing solution used in the method for producing fine silver particles according to the present invention preferably contains 0.lgZl to 50. OgZl as a silver content.
[0016] 本件発明に係る微粒銀粒子の製造方法に用いる前記還元剤含有溶液は、還元剤 濃度が 0. lmolZl〜10. OmolZlであることが好ましい。 [0016] The reducing agent-containing solution used in the method for producing fine silver particles according to the present invention preferably has a reducing agent concentration of 0.1 molZl to 10. OmolZl.
[0017] 本件発明に係る微粒銀粒子: 本件発明に係る微粒銀粒子は、上記製造方法に記 載の微粒銀粒子製造方法により得られた微粒銀粒子であって、その平均 1次粒子径 が lOOnm以下であることを特徴としたものである。 [0017] Fine silver particles according to the present invention: The fine silver particles according to the present invention are fine silver particles obtained by the fine silver particle production method described in the above production method, and the average primary particle diameter thereof is It is characterized by being less than lOOnm.
発明の効果 The invention's effect
[0018] 本件発明に係る微粒銀粒子の製造方法を採用することで、良好な粒子分散性を示 し、且つ、 lOOnm以下の 1次粒子径を備える微粒銀粒子の製造が可能である。そし て、この製造方法において、ゼラチンを用いることで、微粒銀粒子の製造後に、粒子 表面に付着したゼラチン成分を除去することも容易で、分散剤の影響を受けな 、微 粒銀粒子本来の低温焼結性を得ることが可能となる。 [0018] By employing the method for producing fine silver particles according to the present invention, fine silver particles exhibiting good particle dispersibility and having a primary particle diameter of lOOnm or less can be produced. In addition, by using gelatin in this production method, it is easy to remove the gelatin component adhering to the surface of the particles after the production of the fine silver particles, and it is easy to remove the original silver fine particles without being affected by the dispersant. Low temperature sinterability can be obtained.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本件発明に係る微粒銀粒子の製造方法及び微粒銀粒子の最良の形態に関 して説明する。 Hereinafter, the method for producing fine silver particles and the best form of fine silver particles according to the present invention will be described.
[0020] 本件発明に係る微粒銀粒子の製造形態: 本件発明に係る微粒銀粒子の製造は、 湿式還元法による微粒銀粒子の製造方法を採用する。即ち、銀塩、キレート剤、ゼラ チンの各成分を含有した銀塩含有溶液と、還元剤を含んだ還元剤含有溶液とを接 触させ還元反応を起こさせ微粒銀粒子を得るのである。本件発明は、後述するキレ
ート剤とゼラチンとを組み合わせて用いた点に大きな特徴を有する。そして、このゼラ チンとは、膠をも含む概念として記述している。このゼラチンは、得られる微粒銀粒子 の粒子表面に付着残留するが、事後的に化学的処理によって容易に粒子表面から 剥離除去可能なものである。 Production form of fine silver particles according to the present invention: The fine silver particles according to the present invention are produced by a method of producing fine silver particles by a wet reduction method. That is, a silver salt-containing solution containing silver salt, a chelating agent and gelatin is brought into contact with a reducing agent-containing solution containing a reducing agent to cause a reduction reaction to obtain fine silver particles. The present invention is to be described later It has a great feature in that it uses a combination of a salt agent and gelatin. And this gelatin is described as a concept including glue. This gelatin remains adhered to the particle surface of the resulting fine silver particles, but can be easily peeled off from the particle surface by chemical treatment afterwards.
[0021] この前記銀塩含有溶液において、銀含有量 lg/1に対して、ゼラチン含有量が 0. oigZi〜i. oogZiとすることが好ましい。ゼラチン含有量が 0. oigZi未満の場合 には、還元析出する微粒銀粒子の連結を防止するための立体障害として機能し得ず 保護コロイドとしての役割を果たさないからである。一方、ゼラチン含有量が 1. 00g ,1を超える場合には、銀塩含有溶液の粘度にも影響を与えるようになり、微粒銀粒 子の還元析出速度が遅くなり、生産性の低下を招くのである。そして、適度な還元析 出速度を得ることができ、且つ、安定した析出粒子の粒子分散性を得るためには、ゼ ラチン含有量を 0. lgZl〜0. 5gZlの範囲とすることが、より好ましい。また、粒子表 面へのゼラチン残留量を減らし、事後的に剥離除去することを予定すると、可能な限 りゼラチン濃度を希薄にして用いることが好まし 、。 In the silver salt-containing solution, the gelatin content is preferably 0.oigZi to i.oogZi with respect to the silver content lg / 1. This is because when the gelatin content is less than 0. oigZi, it cannot function as a steric hindrance to prevent the reductive precipitation of fine silver particles and does not serve as a protective colloid. On the other hand, when the gelatin content exceeds 1.00 g, 1, the viscosity of the silver salt-containing solution will be affected, and the reduction precipitation rate of fine silver particles will be slowed, leading to a decrease in productivity. It is. In order to obtain an appropriate reduction deposition rate and to obtain stable particle dispersibility of the precipitated particles, it is more preferable to set the gelatin content in the range of 0.1 lgZl to 0.5 gZl. preferable. In addition, if it is planned to reduce the amount of gelatin remaining on the particle surface and exfoliate it later, it is preferable to dilute the gelatin concentration as much as possible.
[0022] 本件発明に係る微粒銀粒子の製造方法で用いる銀塩含有溶液中の前記銀塩とし ては、硝酸銀を用いることが好ましい。このように銀の供給源として硝酸銀を用いるの は、水に対する溶解性に優れ、水中での電離特性に優れるため、後述するキレート 剤との反応が円滑に行えるのである。銀塩含有溶液中の銀濃度に関しては、銀とし て 0. lgZl〜50. OgZlを含むことが好ましい。ここでの銀濃度が 50. OgZlを超える ものとすると、析出する銀粒子に粗粒が混入したり、凝集粒子が生成する傾向があり 、粒度分布のシャープな高粒子分散性を備えた微粒銀粒子を得ることができなくなる[0022] Silver nitrate is preferably used as the silver salt in the silver salt-containing solution used in the method for producing fine silver particles according to the present invention. The use of silver nitrate as the silver supply source is excellent in solubility in water and ionization characteristics in water, so that the reaction with the chelating agent described later can be carried out smoothly. Regarding the silver concentration in the silver salt-containing solution, it is preferable to contain 0.lgZl to 50.OgZl as silver. If the silver concentration here exceeds 50. OgZl, fine particles with high particle dispersibility with a sharp particle size distribution tend to form coarse particles in the precipitated silver particles or tend to form agglomerated particles. Unable to get particles
。これに対し、銀濃度が 0. lgZi未満となると、微粒銀粒子として良好なものが得られ る力 還元析出する粒径にバラツキが生じやすぐ且つ、必要とされる工業的生産性 を満足しないものになる。そして、粒度分布のより安定ィ匕を図る観点力もは、銀として. On the other hand, when the silver concentration is less than 0.1 lgZi, good power can be obtained as fine silver particles. The particle size resulting from reduction and precipitation easily varies, and the required industrial productivity is not satisfied. Become a thing. And the viewpoint power to make the particle size distribution more stable
0. lgZl〜30. OgZlの範囲とすること力、より好ましい。 More preferably, the force is in the range of 0.lgZl to 30.OgZl.
[0023] 本件発明に係る微粒銀粒子の製造方法に用いる銀塩含有溶液中の前記キレート 剤は、エチレンジァミン錯塩、ダルコン酸、ダルコン酸塩、ピロリン酸、ピロリン酸塩か ら選ばれる 1種又は 2種以上を組み合わせて用いることが好ましい。このキレート剤は
、銀塩含有溶液中で銀塩力も供給された銀イオンをキレート錯体として安定化させる ものである。そして、ここで掲げるキレート剤と、上記ゼラチンとを組み合わせて用いる ことで、初めて nmオーダーの粒径を備える微粒銀粒子を効率よく生産することが可 能となる。 [0023] The chelating agent in the silver salt-containing solution used in the method for producing fine silver particles according to the present invention is one or two selected from ethylenediamine complex salt, darconic acid, dalconate, pyrophosphate, pyrophosphate. It is preferable to use a combination of species or more. This chelating agent In addition, silver ions supplied with silver salt strength in a silver salt-containing solution are stabilized as chelate complexes. By using a combination of the chelating agent listed here and the above gelatin, it becomes possible for the first time to efficiently produce fine silver particles having a particle size of nm order.
[0024] ここで言うキレート剤は、上記銀含有量の範囲であることを前提として、銀イオンの 量に応じて適宜、その添加量が調整されるものであるため、特段の限定は要さないと 考える。しかし、本件発明の場合には、銀塩含有溶液中に 0. 01molZl〜5. OOmol Zlの濃度で含ませることが好ましい。ここに記載したキレート剤が、銀イオン供給源 である銀塩カゝら溶液中に電離した銀イオンと効率よくキレート錯体を形成する範囲で ある。中でも、エチレンジァミン 4酢酸 ·4ナトリウム塩を用いることで、最も安定した銀 キレート錯体を形成し、銀粒子の成長を抑制すると共に、銀の析出核の生成を促進 するため、より微細なナノ粒子を生成しやすくなる。ここで、キレート剤の添加量は、本 来、キレート剤の種類、溶液中の銀量に応じて定められるものである。しかしながら、 上述のいずれのキレート錯体を用いても、キレート剤濃度は、 0. 01molZl〜5. 00 mol/1の範囲に適正量が存在するため、一般ィ匕した標記を採用している。そして、 2 種以上のキレート剤を併用する場合には、 2種以上のキレート剤のトータル濃度が 0. 01molZl〜5. OOmolZl濃度の範囲となればよい。キレート剤濃度が 0. Olmol/1 未満の場合には、粒子の成長が遅ぐ粒子同士の凝集が顕著となる傾向となる。一 方、キレート剤濃度が 5. OOmolZlを超えるものとすると、銀粒子の成長が速くなり、 粒径の大きな銀粒子となる。 [0024] The chelating agent referred to here is that the addition amount is appropriately adjusted according to the amount of silver ions on the premise that it is in the range of the above-mentioned silver content, so that there is no particular limitation. I don't think so. However, in the case of the present invention, the silver salt-containing solution is preferably contained at a concentration of 0.01 molZl to 5. OOmolZl. The chelating agent described here is in a range that efficiently forms a chelate complex with silver ions ionized in a solution such as a silver salt source as a silver ion supply source. Among them, ethylenediamine tetraacetic acid tetrasodium salt forms the most stable silver chelate complex, suppresses the growth of silver particles, and promotes the formation of silver precipitation nuclei. It becomes easy to generate. Here, the addition amount of the chelating agent is originally determined according to the type of the chelating agent and the amount of silver in the solution. However, even if any of the above-mentioned chelate complexes is used, the chelating agent concentration is in the range of 0.01 molZl to 5.00 mol / 1, and therefore the general notation is adopted. When two or more chelating agents are used in combination, the total concentration of the two or more chelating agents may be in the range of 0.01 molZl to 5. OOmolZl. When the chelating agent concentration is less than 0. Olmol / 1, the aggregation of particles with slow particle growth tends to be remarkable. On the other hand, if the chelating agent concentration exceeds 5.OOmolZl, the silver particles grow faster and become larger silver particles.
[0025] 本件発明に係る微粒銀粒子の製造方法にお!、て、還元剤含有溶液に含ませる前 記還元剤は、亜硫酸塩、ホルマリン、ヒドロキノン、ヒドラジン、水素化ホウ素化合物か ら選ばれる 1種又は 2種以上を組み合わせて用いることが好ましい。そして、ここで言 う亜硫酸塩とは、亜硫酸ナトリウム、亜硫酸カリウムのいずれか一種又は二種以上を 用いることが好ましい。また、亜硫酸水素化ホウ素化合物とは、水素化ホウ素ナトリウ ム(SBH)又は水素化ホウ素カリウムを用いることが好ま U、。ここで言う還元剤含有 溶液には、還元剤を、 0. lmolZl〜10. OmolZl含有する溶液とする事が好ましい 。還元剤は銀含有溶液中の銀量に応じて使用するものであり、当該還元剤濃度が 0
. ImolZl未満の場合には、存在する銀イオンの還元が不十分となり、工業的経済 性を満足しなくなり、還元反応を起こさせるときの溶液量が多くなり、廃液処理負荷が 大きくなる。一方、当該還元剤濃度が 10. OmolZlを超えると、還元剤濃度が濃くな り過ぎて、還元反応時の溶液攪拌を如何に行っても、還元反応の場所的不均一が生 じ、得られる微粒銀粒子の粒度分布がブロードになる、連結粒子が生成しやすくなる 等の傾向が発生する。また、還元析出する粒子凝集の進行が著しくなり、有機還元 剤を用いた場合には粒子に含まれる不純物量 (本件明細書では、不純物量を炭素 含有量として捉えている。)が急激に多くなり始める。そして、より安定した還元析出反 応を起こさせ、粒度分布の優れた微粒銀粒子を安定的に生産するためには、還元剤 を 1. 0molZl〜5. OmolZl含有する溶液とする事力 より好ましい。 [0025] In the method for producing fine silver particles according to the present invention, the reducing agent contained in the reducing agent-containing solution is selected from sulfites, formalin, hydroquinone, hydrazine, and borohydride compounds 1 It is preferable to use a species or a combination of two or more species. The sulfite referred to here is preferably one or more of sodium sulfite and potassium sulfite. In addition, it is preferable to use sodium borohydride (SBH) or potassium borohydride as the borohydride compound. The reducing agent-containing solution mentioned here is preferably a solution containing 0.1 to 10. OmolZl of a reducing agent. The reducing agent is used according to the amount of silver in the silver-containing solution, and the concentration of the reducing agent is 0. If it is less than ImolZl, the reduction of the existing silver ions becomes insufficient, the industrial economy is not satisfied, the amount of the solution for causing the reduction reaction increases, and the waste liquid treatment load increases. On the other hand, if the concentration of the reducing agent exceeds 10. OmolZl, the reducing agent concentration becomes too high, and no matter how the solution is stirred during the reduction reaction, there is a local heterogeneity of the reduction reaction. There is a tendency that the particle size distribution of fine silver particles becomes broad, and that connected particles are easily formed. In addition, the progress of particle agglomeration resulting in reduction precipitation becomes remarkable, and when an organic reducing agent is used, the amount of impurities contained in the particles (in this specification, the amount of impurities is regarded as the carbon content) is rapidly increased. Begin to become. In order to cause a more stable reduction precipitation reaction and stably produce fine silver particles having an excellent particle size distribution, it is more preferable to use a reducing agent as a solution containing 1.0 molZl to 5. OmolZl. .
[0026] 以上のことから、銀塩含有溶液と、還元剤を含んだ還元剤含有溶液とを混合させ還 元反応を起こさせ微粒銀粒子を得る際には、混合液中の銀濃度 (銀として)が lgZi[0026] From the above, when the silver salt-containing solution and the reducing agent-containing solution containing the reducing agent are mixed to cause a reduction reaction to obtain fine silver particles, the silver concentration (silver As) lgZi
〜30gZlの範囲として、当該還元剤濃度を 1. OmolZl〜5. OmolZlに維持するこ とが、本件発明にかかる微粒銀粒子を歩留まり良く得るのに最も適した条件と言える Maintaining the reducing agent concentration at 1. OmolZl to 5. OmolZl in the range of ˜30 gZl is the most suitable condition for obtaining fine silver particles according to the present invention with good yield.
[0027] そして、還元反応を行わせる際の、銀塩含有溶液と還元剤含有溶液とを混合した 混合液の液温は、 40°C〜80°Cの温度であることが好ましい。従って、混合後に 40°C 〜80°Cの液温となるように、混合する前の銀塩含有溶液の液温及び還元剤含有溶 液の双方の液温を調製することが好まし 、。当該混合液の液温が 40°C未満の場合 には、還元反応の進行が遅ぐ適正な工業的生産性が得られない。一方、当該混合 液の液温が 80°Cを超える場合には、還元反応速度が速くなり、同時に、水分蒸発が 顕著になり、還元反応時の濃度変動が大きくなるため、得られる微粒銀粒子の粒度 分布がブロードになる。 [0027] The liquid temperature of the mixed solution obtained by mixing the silver salt-containing solution and the reducing agent-containing solution during the reduction reaction is preferably 40 ° C to 80 ° C. Therefore, it is preferable to prepare both the liquid temperature of the silver salt-containing solution before mixing and the liquid temperature of the reducing agent-containing solution so that the liquid temperature is 40 ° C to 80 ° C after mixing. If the temperature of the mixture is less than 40 ° C, appropriate industrial productivity with a slow reduction reaction cannot be obtained. On the other hand, when the liquid temperature of the mixed liquid exceeds 80 ° C, the reduction reaction rate increases, and at the same time, the evaporation of moisture becomes remarkable, and the concentration fluctuation during the reduction reaction increases, so that the obtained fine silver particles The particle size distribution is broad.
[0028] 更に、還元反応に要する時間(以下、「還元反応時間」と称する。)は、 20分〜 2時 間の範囲を採用する事が好ましい。還元反応時間が 20分未満の場合には、上記液 温の上限値を採用しても、十分な還元反応が進行していない。これに対し、還元反 応時間が 2時間を超えるものとしても、 2時間以内に存在する銀イオンの還元は殆ど 終了するのが通常である。仮に、この段階で溶液中に銀イオンが存在していても、還
元析出する銀粒子が成長して、 lOOnm以下の粒径の微粒銀粒子が得られなくなる。 Furthermore, the time required for the reduction reaction (hereinafter referred to as “reduction reaction time”) is preferably in the range of 20 minutes to 2 hours. When the reduction reaction time is less than 20 minutes, even if the upper limit of the above liquid temperature is adopted, sufficient reduction reaction does not proceed. On the other hand, even if the reduction reaction time exceeds 2 hours, the reduction of silver ions existing within 2 hours is usually almost complete. Even if silver ions are present in the solution at this stage, Originally precipitated silver particles grow and fine silver particles having a particle size of lOOnm or less cannot be obtained.
[0029] 以上のようにして得られた微粒銀粒子は、濾別、洗浄、脱水、乾燥して微粒銀粒子 [0029] The fine silver particles obtained as described above are filtered, washed, dehydrated and dried to obtain fine silver particles.
(微粒銀粉)として採取することが可能である。しかし、極めて微粒で、良好な分散状 態を維持するためスラリー状態で保存することが好まし 、。スラリー状態で保存する 場合には、定法によって洗浄を行い、水を溶媒とした銀粒子スラリーの状態で保存す ることが好ましい。なお、本件発明に係る微粒銀粒子を、乾燥状態で得るには、種々 の方法を用いることが可能であり、特に、その手法、条件に関する限定は要さないも のである。 It can be collected as (fine silver powder). However, it is preferable to store in a slurry state in order to maintain a very fine particle and a good dispersion state. In the case of storing in a slurry state, it is preferable to store the slurry in a silver particle slurry state using water as a solvent by washing by a conventional method. In order to obtain the fine silver particles according to the present invention in a dry state, various methods can be used, and the method and conditions are not particularly limited.
[0030] 本件発明に係る微粒銀粒子: 本件発明に係る微粒銀粒子は、上記製造方法に記 載の微粒銀粒子製造方法により得られた微粒銀粒子であって、その平均 1次粒子径 力 SlOOnm以下であることを特徴とする。ここで言う平均 1次粒子径とは、走査型電子 顕微鏡像の画像解析により得られる 1次粒子の平均粒径 (以下、「D [0030] Fine silver particles according to the present invention: The fine silver particles according to the present invention are fine silver particles obtained by the fine silver particle production method described in the above production method, and have an average primary particle diameter force. It is less than SlOOnm. The average primary particle size referred to here is the average primary particle size (hereinafter referred to as `` D
IA」と称する。)で ある。ここで、本件発明にかかる微粒銀粒子の場合には倍率 30000倍以上を採用し て得られた観察像の中にある粒子を画像解析することにより得られる平均粒径のこと である。なお、本件明細書における走査型電子顕微鏡 (SEM)を用いて観察される 微粒銀粉の画像解析は、旭エンジニアリング株式会社製の IP— 1000PCを用いて、 円度しきい値 10、重なり度 20として円形粒子解析を行い、平均 1次粒子径 D を求 Referred to as “IA”. ). Here, in the case of fine silver particles according to the present invention, the average particle diameter obtained by image analysis of particles in an observed image obtained by employing a magnification of 30000 times or more. In addition, the image analysis of fine silver powder observed using a scanning electron microscope (SEM) in this specification is performed using IP-1000PC manufactured by Asahi Engineering Co., Ltd., with a circularity threshold of 10 and an overlap of 20. Perform circular particle analysis to determine the average primary particle size D
IA IA
めたものである。この微粒銀粉の観察像を画像処理することにより得られる平均 1次 粒子径 D は、 SEM観察像力 直接得るものであるため、 1次粒子の粒径が確実に It is a thing. The average primary particle diameter D obtained by image processing of the observation image of this fine silver powder is obtained directly from the SEM observation image power.
IA IA
捉えられていることになる。本件発明で言う微粒銀粒子の D は、本件発明者らが観 It will be caught. The D of the fine silver particles referred to in the present invention is observed by the present inventors.
IA IA
察する限り 15nm〜100nmの範囲に殆どが入ってくる力 現実には更に微細な粒径 のものが確認できる場合もあり、下限値を敢えて明記していないのである。 As far as we can see, the force almost falls within the range of 15 nm to 100 nm. In reality, a finer particle size may be confirmed, and the lower limit is not clearly stated.
[0031] 以下、本件発明にかかる微粒銀粒子を特定する事の出来る粉体特性に関して述 ベておく。更に、上記してきた粉体特性を備える効果として、本件発明にかかる微粒 銀粉を用いた銀ペーストにより得られる導電膜の膜密度は 4. OgZcm3以上という高 いものとなるのである。ここで言う膜密度は、微粒銀粒子 70wt%、ェチルセルロース 5wt%、タービネオール 25wt%の組成の銀ペーストを作製して、アプリケータを用い て約 300 μ m厚さの銀ペースト塗膜をポリエステルフィルム上に作成し、これを 80°C
で乾燥後に膜密度の測定を行った。なお、従来のナノ粒子により構成される銀粉の 膜密度が 4. Og/cm3未満であることを考慮すれば、本件発明にかかる微粒銀粒子 は、ナノ粒子としても分散性及び充填性に優れたものであるとの裏付けになる。以下 、実施例に関して説明する。 [0031] Hereinafter, the powder characteristics capable of specifying the fine silver particles according to the present invention will be described. Furthermore, as an effect having the above-mentioned powder characteristics, the film density of the conductive film obtained by the silver paste using the fine silver powder according to the present invention is as high as 4. OgZcm 3 or more. The film density here refers to a silver paste with a composition of 70 wt% fine silver particles, 5 wt% ethyl cellulose, and 25 wt% turbeneol. Create it on film and put it at 80 ° C The film density was measured after drying. Considering that the film density of the silver powder composed of conventional nanoparticles is less than 4. Og / cm 3 , the fine silver particles according to the present invention are excellent in dispersibility and packing property as nanoparticles. It is supported that Hereinafter, examples will be described.
実施例 1 Example 1
[0032] 本実施例では、銀塩として lOOgの硝酸銀、キレート剤として 150gのエチレンジアミ ン 4酢酸 · 4ナトリウム塩、 15gのゼラチンの各成分を 2. 0リットルの純水に攪拌して溶 解させ、液温 50°Cの銀塩含有溶液を調製した。このときの銀塩含有溶液中の銀濃度 31. 8gZl (銀として)、キレート剤濃度 75gZl(l. 66molZD、ゼラチン濃度 7. 5g [0032] In this example, lOOg of silver nitrate as silver salt, 150g of ethylenediaminetetraacetic acid / 4sodium salt as chelating agent, and 15g of gelatin were dissolved in 2.0 liters of pure water by stirring. A silver salt-containing solution having a liquid temperature of 50 ° C. was prepared. Silver concentration 31.8gZl (as silver) in the silver salt-containing solution at this time, chelating agent concentration 75gZl (l. 66molZD, gelatin concentration 7.5g
Ziである。 Zi.
[0033] 一方、還元剤である亜硫酸カリウム 150gを 2. 0リットルの純水に攪拌して溶解させ 、液温 50°Cの還元剤含有溶液を調製した。このときの還元剤含有溶液の還元剤濃 度は 75gZl (0. 47molZDである。 On the other hand, 150 g of potassium sulfite as a reducing agent was dissolved in 2.0 liters of pure water with stirring to prepare a reducing agent-containing solution having a liquid temperature of 50 ° C. The reducing agent concentration of the reducing agent-containing solution at this time is 75 gZl (0.47 molZD).
[0034] 次に、上記銀塩含有溶液に対し、上記還元剤含有溶液を一括で添加し混合液とし た。そして、この混合液の液温を 50°Cに維持したまま、 1時間の攪拌を行い還元反応 を行い、混合液中に微粒銀粒子を生成した。 [0034] Next, the reducing agent-containing solution was added all at once to the silver salt-containing solution to obtain a mixed solution. Then, while maintaining the liquid temperature of this mixed liquid at 50 ° C., stirring was performed for 1 hour to carry out a reduction reaction, thereby generating fine silver particles in the mixed liquid.
[0035] 以上のようにして得られた微粒銀粒子を、限外濾過法によって洗浄し余分な不純 物を除去して、純水を溶媒とした微粒銀粒子スラリーの状態として採取した。 [0035] The fine silver particles obtained as described above were washed by an ultrafiltration method to remove excess impurities, and collected as a fine silver particle slurry using pure water as a solvent.
[0036] 以上のようにして得られた微粒銀粒子の粉体特性は、表 1に他の実施例及び比較 例と同様に掲載した。この実施例 1で得られた微粒銀粒子は、微粒銀粒子 Aと称する 。そして、図 1には、この微粒銀粒子 Aの電子顕微鏡観察像 (観察倍率:100000倍) を示した。また、微粒銀粒子 Aに関しては、図 2に示すように透過型電子顕微鏡によ る粒子観察を行い、粒子表面にゼラチン被膜が形成されていることを確認した。図 2 の粒子の周囲の透明に見える部分の層がゼラチン被膜であり、その中に微粒銀粒子 が存在することが分かる。 [0036] The powder properties of the fine silver particles obtained as described above are listed in Table 1 in the same manner as in the other Examples and Comparative Examples. The fine silver particles obtained in Example 1 are referred to as fine silver particles A. FIG. 1 shows an electron microscope observation image (observation magnification: 100,000 times) of the fine silver particles A. As for the fine silver particles A, the particles were observed with a transmission electron microscope as shown in FIG. 2, and it was confirmed that a gelatin coating was formed on the surface of the particles. It can be seen that the transparent layer around the grain in Fig. 2 is a gelatin coating, in which fine silver particles are present.
実施例 2 Example 2
[0037] この実施例 2では、実施例 1のキレート剤であるエチレンジァミン 4酢酸 ·4ナトリウム 塩の添加量を変え、以下のようにして銀塩含有溶液を調製した点が異なるのみであ
る。 [0037] This Example 2 is different only in that the amount of the ethylenediamine tetraacetic acid-4sodium salt, which is the chelating agent of Example 1, was changed and a silver salt-containing solution was prepared as follows. The
[0038] 本実施例では、銀塩として 100gの硝酸銀、キレート剤として 300gのエチレンジアミ ン 4酢酸 · 4ナトリウム塩、 15gのゼラチンの各成分を 2. 0リットルの純水に攪拌して溶 解させ、液温 50°Cの銀塩含有溶液を調製した。このときの銀塩含有溶液中の銀濃度 31. 8gZl (銀として)、キレート剤濃度 150gZl、ゼラチン濃度 7. 5gZlである。 [0038] In this example, 100 g of silver nitrate as a silver salt, 300 g of ethylenediaminetetraacetic acid, tetrasodium salt, and 15 g of gelatin as a chelating agent were stirred and dissolved in 2.0 liters of pure water. A silver salt-containing solution having a liquid temperature of 50 ° C. was prepared. The silver concentration in the silver salt-containing solution at this time is 31.8 gZl (as silver), the chelating agent concentration is 150 gZl, and the gelatin concentration is 7.5 gZl.
[0039] 以下、実施例 1と同様にして微粒銀粒子を製造し、純水を溶媒とした微粒銀粒子ス ラリーの状態として採取した。 Hereinafter, fine silver particles were produced in the same manner as in Example 1, and collected as a fine silver particle slurry state using pure water as a solvent.
[0040] 以上のようにして得られた微粒銀粒子の粉体特性は、表 1に他の実施例及び比較 例と同様に掲載した。この実施例 2で得られた微粒銀粒子は、微粒銀粒子 Bと称する 。そして、図 3には、この微粒銀粒子 Bの透過型電子顕微鏡観察像 (観察倍率 : 500 000倍)を示した。 [0040] The powder characteristics of the fine silver particles obtained as described above are listed in Table 1 in the same manner as in the other Examples and Comparative Examples. The fine silver particles obtained in Example 2 are referred to as fine silver particles B. FIG. 3 shows a transmission electron microscope image (observation magnification: 500 000 times) of the fine silver particles B.
比較例 Comparative example
[0041] [比較例 1] [0041] [Comparative Example 1]
この比較例 1では、実施例 1のキレート剤であるエチレンジァミン 4酢酸 ·4ナトリウム 塩を省略して、以下のようにして銀塩含有溶液を調製した点が異なる。即ち、キレート 剤が無 、場合の状態を見るためのものである。 This Comparative Example 1 is different in that the silver salt-containing solution was prepared as follows by omitting the ethylenediamine tetraacetic acid · 4 sodium salt which is the chelating agent of Example 1. That is, there is no chelating agent to see the state of the case.
[0042] 本比較例では、銀塩として 100gの硝酸銀、 15gのゼラチンの各成分を 2. 0リットル の純水に攪拌して溶解させ、液温 50°Cの銀塩含有溶液を調製した。このときの銀塩 含有溶液中の銀濃度 31. 8gZl (銀として)、ゼラチン濃度 7. 5gZlである。 [0042] In this comparative example, 100 g of silver nitrate and 15 g of gelatin as silver salts were dissolved in 2.0 liters of pure water with stirring to prepare a silver salt-containing solution having a liquid temperature of 50 ° C. At this time, the silver concentration in the silver salt-containing solution was 31.8 gZl (as silver), and the gelatin concentration was 7.5 gZl.
[0043] 以下、実施例 1と同様にして微粒銀粒子を製造し、純水を溶媒とした微粒銀粒子ス ラリーの状態として採取した。 [0043] Hereinafter, fine silver particles were produced in the same manner as in Example 1, and collected as a fine silver particle slurry state using pure water as a solvent.
[0044] 以上のようにして得られた微粒銀粒子の粉体特性は、表 1に他の実施例及び比較 例と同様に掲載した。この比較例で得られた微粒銀粒子は、微粒銀粒子 Cと称する。 そして、図 5には、この微粒銀粒子 Cの電子顕微鏡観察像 (観察倍率 : 50000倍)を 示した。 [0044] The powder characteristics of the fine silver particles obtained as described above are listed in Table 1 in the same manner as in the other Examples and Comparative Examples. The fine silver particles obtained in this comparative example are referred to as fine silver particles C. FIG. 5 shows an electron microscope observation image (observation magnification: 50000 times) of the fine silver particles C.
[0045] [比較例 2] [0045] [Comparative Example 2]
この比較例 2では、実施例 1のキレート剤であるエチレンジァミン 4酢酸 ·4ナトリウム 塩に代えてクェン酸' 1水和物を用いて、以下のようにして銀塩含有溶液を調製した
点が異なるのみである。 In Comparative Example 2, a silver salt-containing solution was prepared in the following manner by using quenoic acid monohydrate instead of ethylenediamine tetraacetic acid-4 sodium salt, which is the chelating agent of Example 1. Only the point is different.
[0046] 本実施例では、銀塩として lOOgの硝酸銀、キレート剤として 150gのクェン酸' 1水 和物、分散剤として 15gのゼラチンの各成分を 2. 0リットルの純水に攪拌して溶解さ せ、液温 50°Cの銀塩含有溶液を調製した。このときの銀塩含有溶液中の銀濃度 31 . 8gZl (銀として)、キレート剤濃度 75gZl、ゼラチン濃度 7. 5gZlである。 [0046] In this example, lOOg of silver nitrate as a silver salt, 150 g of citrate '1 hydrate as a chelating agent, and 15 g of gelatin as a dispersing agent were dissolved in 2.0 liters of pure water by stirring. Then, a silver salt-containing solution having a liquid temperature of 50 ° C. was prepared. The silver concentration in the silver salt-containing solution at this time is 31.8 gZl (as silver), the chelating agent concentration is 75 gZl, and the gelatin concentration is 7.5 gZl.
[0047] 以下、実施例 1と同様にして微粒銀粒子を製造し、純水を溶媒とした微粒銀粒子ス ラリーの状態として採取した。 [0047] Hereinafter, fine silver particles were produced in the same manner as in Example 1, and collected as a fine silver particle slurry state using pure water as a solvent.
[0048] 以上のようにして得られた微粒銀粒子の粉体特性は、表 1に他の実施例及び比較 例と同様に掲載した。この比較例 1で得られた微粒銀粒子は、微粒銀粒子 Dと称する 。そして、図 4には、この微粒銀粒子 Dの電子顕微鏡観察像 (観察倍率:100000倍) を示した。 [0048] The powder characteristics of the fine silver particles obtained as described above are listed in Table 1 in the same manner as in the other Examples and Comparative Examples. The fine silver particles obtained in Comparative Example 1 are referred to as fine silver particles D. FIG. 4 shows an electron microscope observation image (observation magnification: 100,000 times) of the fine silver particles D.
[0049] <実施例と比較例との対比検討 > 上述の各実施例と比較例とを表 1を参照しつつ 対比することとする。 <Consideration between Example and Comparative Example> The above-described Examples and Comparative Examples will be compared with reference to Table 1.
[0050] [表 1] [0050] [Table 1]
[0051] 表 1から分力ゝるように、実施例 1及び実施例 2に記載の本件発明に係る微粒銀粒子 A及び微粒銀粒子 Bは、平均 1次粒子径が lOOnm以下の粒径を備え、その微粒銀 粒子を用いた銀ペーストにより形成した導電膜の膜密度測定でも、 4. Og/cm3を超 える良好な充填性を示している。従って、この各実施例の微粒銀粒子を導電性べ一 スト又は導電性インクの導電性フィラーとして用い、導体形成を行うと、膜密度が高く 、電気抵抗の低い導電膜を得ることが可能となる。また、粒子の凝集が少なく粒子分
散性に優れることも図 1又は図 3の走査型又は透過型電子顕微鏡観察像から明らか である。従って、形成した導体膜の表面形状も滑らかなものとなることが予想できる。 [0051] As can be seen from Table 1, the fine silver particles A and fine silver particles B according to the present invention described in Example 1 and Example 2 have a mean primary particle size of lOOnm or less. In addition, the film density measurement of the conductive film formed by the silver paste using the fine silver particles shows a good filling property exceeding 4. Og / cm 3 . Therefore, when the fine silver particles of each Example are used as a conductive base or a conductive filler of a conductive ink to form a conductor, it is possible to obtain a conductive film having a high film density and a low electric resistance. Become. In addition, there is little aggregation of particles and particle content It is also clear from the scanning or transmission electron microscope images in Fig. 1 or Fig. 3 that the powder has excellent dispersibility. Therefore, it can be expected that the surface shape of the formed conductor film will be smooth.
[0052] これに対し、比較例 1の微粒銀粒子は、銀塩含有溶液にゼラチンを含ませても、キ レート剤であるエチレンジァミン 4酢酸 · 4ナトリウム塩を含まない反応系で銀粒子を還 元析出させると粒子分散性が悪くなることを証明する結果となっている。即ち、図 5の 走査型電子顕微鏡観察像を見れば、明らかに粒子の凝集が起きており、粒子分散 性に乏しい事が分かる。更に、膜密度は 3. 7gZcm3であり、 4. OgZcm3を下回って いる。従って、この比較例の微粒銀粒子を導電性ペースト又は導電性インクの導電 性フイラ一として用い、導体形成を行っても、膜密度が高ぐ電気抵抗の低い導電膜 は得られず、当該導体膜はポーラスな構造となることが予想できる。 [0052] In contrast, the fine silver particles of Comparative Example 1 returned silver particles in a reaction system that did not contain the chelating agent, ethylenediamine tetraacetic acid / 4 sodium salt, even when gelatin was contained in the silver salt-containing solution. This is a result demonstrating that when the original precipitation is performed, the particle dispersibility deteriorates. That is, from the scanning electron microscope observation image in FIG. 5, it is clear that the particles are agglomerated and the particle dispersibility is poor. Furthermore, the film density is 3.7 gZcm 3, which is lower than 4. OgZcm 3 . Therefore, using the fine silver particles of this comparative example as a conductive paste for conductive paste or conductive ink and forming a conductor, a conductive film having a high film density and a low electrical resistance cannot be obtained. The membrane can be expected to have a porous structure.
[0053] 更に、比較例 2では、キレート剤としてのエチレンジァミン 4酢酸 ·4ナトリウム塩に代 えてクェン酸.1水和物を用いて微粒銀粒子 Dを得て 、る。この微粒銀粒子 Dを用い た膜密度の測定でも 4. OgZcm3を超える良好な充填性を示し、また、粒子の凝集が 少なく粒子分散性に優れることも図 4の走査型電子顕微鏡観察像から明らかである。 しかしながら、平均 1次粒子径が lOOnmを超えるものとなり、平均 1次粒子径 lOOnm 以下を安定的に生産することは出来ないことが理解できる。 [0053] Further, in Comparative Example 2, fine silver particles D are obtained by using citrate monohydrate instead of ethylenediamine tetraacetic acid / 4 sodium salt as a chelating agent. The film density measurement using these fine silver particles D also showed good packing properties exceeding 4. OgZcm 3, and the fact that there was little aggregation of particles and excellent particle dispersibility was also observed from the scanning electron microscope image of FIG. it is obvious. However, it can be understood that the average primary particle size exceeds lOOnm, and it is impossible to stably produce an average primary particle size of lOOnm or less.
産業上の利用可能性 Industrial applicability
[0054] 本件発明に係る微粒銀粒子の製造方法は、従来の湿式法による銀粒子の製造装 置をそのまま利用できるものであり、新たな製造設備を要するものではない。従って、 製造コストの増大を招くことなぐ良好な粒子分散性を示す nmオーダーの 1次粒子 径を備える微粒銀粒子の効率の良い製造が可能である。そして、本件発明に係る微 粒銀粒子銀粉は、その製造過程において、ゼラチンを用いることで、事後的に粒子 表面に付着したゼラチン成分を除去することも容易で、分散剤の影響を受けな 、微 粒銀粒子本来の低温焼結性を得ることが可能となる。 [0054] The method for producing fine silver particles according to the present invention can utilize a conventional silver particle production apparatus by a wet method as it is, and does not require new production equipment. Therefore, it is possible to efficiently produce fine silver particles having a primary particle diameter on the order of nm showing good particle dispersibility without causing an increase in production cost. The fine silver particle silver powder according to the present invention can easily remove the gelatin component adhering to the particle surface later by using gelatin in the production process, and is not affected by the dispersant. It becomes possible to obtain the original low temperature sinterability of fine silver particles.
図面の簡単な説明 Brief Description of Drawings
[0055] [図 1]実施例 1に係る微粒銀粒子の走査型電子顕微鏡観察像である。 FIG. 1 is a scanning electron microscope image of fine silver particles according to Example 1.
[図 2]実施例 1に係る微粒銀粒子の透過型電子顕微鏡観察像である。 FIG. 2 is a transmission electron microscope image of fine silver particles according to Example 1.
[図 3]実施例 2に係る微粒銀粒子の走査型電子顕微鏡観察像である。
圆 4]比較例 1に係る微粒銀粒子の走査型電子顕微鏡観察像である。 圆 5]比較例 2に係る微粒銀粒子の走査型電子顕微鏡観察像である。
FIG. 3 is a scanning electron microscope observation image of fine silver particles according to Example 2. IV] Scanning electron microscope image of fine silver particles according to Comparative Example 1.圆 5] Scanning electron microscope image of fine silver particles according to Comparative Example 2.
Claims
[1] 湿式還元法による微粒銀粒子の製造方法であって、 [1] A method for producing fine silver particles by a wet reduction method,
銀塩、キレート剤、ゼラチンの各成分を含有した銀塩含有溶液と、還元剤を含んだ 還元剤含有溶液とを混合して還元反応を起こさせ微粒銀粒子を得ることを特徴とす る微粒銀粒子製造方法。 Fine particles characterized in that a silver salt-containing solution containing silver salt, a chelating agent, and gelatin components and a reducing agent-containing solution containing a reducing agent are mixed to cause a reduction reaction to obtain fine silver particles. Silver particle manufacturing method.
[2] 前記銀塩は、硝酸銀を用いる請求項 1に記載の微粒銀粒子製造方法。 2. The method for producing fine silver particles according to claim 1, wherein the silver salt uses silver nitrate.
[3] 前記キレート剤は、エチレンジァミン錯塩、ダルコン酸、ダルコン酸塩、ピロリン酸、ピ 口リン酸塩力 選ばれる 1種又は 2種以上を組み合わせて用いた請求項 1又は請求 項 2に記載の微粒銀粒子製造方法。 [3] The chelating agent according to claim 1 or 2, wherein the chelating agent is one or a combination of two or more selected from ethylenediamine complex, darconic acid, dalconate, pyrophosphate, and pyrophosphate. A method for producing fine silver particles.
[4] 前記還元剤は、亜硫酸塩、ホルマリン、ヒドロキノン、ヒドラジン、水素化ホウ素化合物 力 選ばれる 1種又は 2種以上を組み合わせて用いた請求項 1〜請求項 3のいずれ かに記載の微粒銀粒子製造方法。 [4] The fine-grained silver according to any one of claims 1 to 3, wherein the reducing agent is a sulfite, formalin, hydroquinone, hydrazine, borohydride compound, or one selected from a combination of two or more. Particle manufacturing method.
[5] 前記銀塩含有溶液は、銀含有量 lg/1に対して、ゼラチン含有量が 0. 01g/l〜l. [5] The silver salt-containing solution has a gelatin content of 0.01 g / l to l.l with respect to a silver content of lg / 1.
OOgZlを含むものである請求項 1〜請求項 4のいずれかに記載の微粒銀粒子製造 方法。 The method for producing fine silver particles according to any one of claims 1 to 4, comprising OOgZl.
[6] 前記銀塩含有溶液は、その銀含有量が銀として 0. lgZl〜50. OgZlを含むもので ある請求項 1〜請求項 5のいずれかに記載の微粒銀粒子製造方法。 [6] The method for producing fine silver particles according to any one of [1] to [5], wherein the silver salt-containing solution contains 0.1 lgZl to 50. OgZl as silver.
[7] 前記還元剤含有溶液は、還元剤濃度が 0. lmolZl〜10. OmolZlである請求項 17. The reducing agent-containing solution has a reducing agent concentration of 0.1 molZl to 10. OmolZl.
〜請求項 6の 、ずれかに記載の微粒銀粒子製造方法。 The method for producing fine silver particles according to claim 6.
[8] 請求項 1〜請求項 7のいずれかに記載の微粒銀粒子製造方法により得られた微粒 銀粒子であって、その平均 1次粒子径が lOOnm以下であることを特徴とした微粒銀 粒子。
[8] Fine silver particles obtained by the method for producing fine silver particles according to any one of claims 1 to 7, wherein the average primary particle diameter is lOOnm or less. particle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066417A JP5065607B2 (en) | 2006-03-10 | 2006-03-10 | Fine silver particle production method and fine silver particle obtained by the production method |
JP2006-066417 | 2006-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007105636A1 true WO2007105636A1 (en) | 2007-09-20 |
Family
ID=38509459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/054682 WO2007105636A1 (en) | 2006-03-10 | 2007-03-09 | Process for production of ultrafine silver particles and ultrafine silver particles produced by the process |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5065607B2 (en) |
KR (1) | KR20080100365A (en) |
CN (1) | CN101384388A (en) |
TW (1) | TW200734090A (en) |
WO (1) | WO2007105636A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2281646A1 (en) * | 2009-07-02 | 2011-02-09 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials |
CN102211203A (en) * | 2010-04-06 | 2011-10-12 | 中国科学院理化技术研究所 | Silver nanoparticles and method for producing silver nanoparticle array |
JPWO2012147945A1 (en) * | 2011-04-28 | 2014-07-28 | Dowaエレクトロニクス株式会社 | Flat silver fine particles, method for producing the same, paste using the same, and printed circuit using the paste |
US9496068B2 (en) | 2009-04-17 | 2016-11-15 | Yamagata University | Coated silver nanoparticles and manufacturing method therefor |
US20220023947A1 (en) * | 2018-11-30 | 2022-01-27 | Ls-Nikko Copper Inc. | Method for producing silver powder with adjustable shrinkage |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5355007B2 (en) * | 2008-09-17 | 2013-11-27 | Dowaエレクトロニクス株式会社 | Method for producing spherical silver powder |
TWI453076B (en) * | 2009-02-11 | 2014-09-21 | Univ Nat Cheng Kung | Synthesis of nanosize-controllable core-shell materials |
CN101497135B (en) * | 2009-03-12 | 2010-09-22 | 宁波大学 | Method for preparing spherical silver nano granule |
SG182421A1 (en) * | 2010-01-15 | 2012-08-30 | Cambrios Technologies Corp | Low-haze transparent conductors |
US8591624B2 (en) * | 2010-02-25 | 2013-11-26 | National Tsing Hua University | Methods for preparing hydrophobic metal nanoparticles and precursors used therein |
CN103203468B (en) * | 2013-04-17 | 2016-05-25 | 苏州冷石纳米材料科技有限公司 | A kind of preparation method of nano silver wire |
CN105562716A (en) * | 2014-10-11 | 2016-05-11 | 南京理工大学 | Preparing method for transition metal nano particles |
CN104625084B (en) * | 2014-12-31 | 2016-08-24 | 烟台佳隆纳米产业有限公司 | A kind of method utilizing cryogenic technique to prepare and preserve colourless nano silver colloidal sol |
JP6220966B2 (en) * | 2015-04-17 | 2017-10-25 | バンドー化学株式会社 | Silver fine particle composition |
KR102007861B1 (en) * | 2016-10-13 | 2019-08-06 | 엘에스니꼬동제련 주식회사 | The manufacturing method of silver paste using the silver powder |
KR102033545B1 (en) * | 2017-06-05 | 2019-10-17 | 대주전자재료 주식회사 | Silver particle and method of manufacture thereof |
EP3689498A4 (en) * | 2017-09-27 | 2021-03-24 | DOWA Electronics Materials Co., Ltd. | Silver powder mixture, method for producing same, and conductive paste |
CN114558583B (en) * | 2022-02-23 | 2023-06-30 | 无锡东恒新能源科技有限公司 | Method for synthesizing superfine catalyst powder |
CN116671515A (en) * | 2023-04-23 | 2023-09-01 | 合创(广州)科技研究有限公司 | Nano silver antibacterial liquid and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004100013A (en) * | 2002-09-12 | 2004-04-02 | Mitsui Mining & Smelting Co Ltd | Low aggregative silver powder and its manufacturing method, and conductive paste using low aggregative silver powder |
JP2004183010A (en) * | 2002-11-29 | 2004-07-02 | Mitsui Mining & Smelting Co Ltd | Silver powder composed of extremely thin plate-like silver particle, its manufacturing method, and conductive paste |
JP2006045655A (en) * | 2004-08-09 | 2006-02-16 | Mitsubishi Materials Corp | Silver nanoparticle and production method therefor |
-
2006
- 2006-03-10 JP JP2006066417A patent/JP5065607B2/en active Active
-
2007
- 2007-03-08 TW TW096108005A patent/TW200734090A/en unknown
- 2007-03-09 KR KR1020087022136A patent/KR20080100365A/en not_active Application Discontinuation
- 2007-03-09 WO PCT/JP2007/054682 patent/WO2007105636A1/en active Application Filing
- 2007-03-09 CN CNA2007800057686A patent/CN101384388A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004100013A (en) * | 2002-09-12 | 2004-04-02 | Mitsui Mining & Smelting Co Ltd | Low aggregative silver powder and its manufacturing method, and conductive paste using low aggregative silver powder |
JP2004183010A (en) * | 2002-11-29 | 2004-07-02 | Mitsui Mining & Smelting Co Ltd | Silver powder composed of extremely thin plate-like silver particle, its manufacturing method, and conductive paste |
JP2006045655A (en) * | 2004-08-09 | 2006-02-16 | Mitsubishi Materials Corp | Silver nanoparticle and production method therefor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496068B2 (en) | 2009-04-17 | 2016-11-15 | Yamagata University | Coated silver nanoparticles and manufacturing method therefor |
EP2281646A1 (en) * | 2009-07-02 | 2011-02-09 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Method and kit for manufacturing metal nanoparticles and metal-containing nanostructured composite materials |
CN102211203A (en) * | 2010-04-06 | 2011-10-12 | 中国科学院理化技术研究所 | Silver nanoparticles and method for producing silver nanoparticle array |
JPWO2012147945A1 (en) * | 2011-04-28 | 2014-07-28 | Dowaエレクトロニクス株式会社 | Flat silver fine particles, method for producing the same, paste using the same, and printed circuit using the paste |
JP5969988B2 (en) * | 2011-04-28 | 2016-08-17 | Dowaエレクトロニクス株式会社 | Flat silver fine particles, method for producing the same, paste using the same, and method for producing a printed circuit using the paste |
US20220023947A1 (en) * | 2018-11-30 | 2022-01-27 | Ls-Nikko Copper Inc. | Method for producing silver powder with adjustable shrinkage |
US12090556B2 (en) * | 2018-11-30 | 2024-09-17 | Ls Mnm Inc. | Method for producing silver powder with adjustable shrinkage |
Also Published As
Publication number | Publication date |
---|---|
JP5065607B2 (en) | 2012-11-07 |
CN101384388A (en) | 2009-03-11 |
JP2007239077A (en) | 2007-09-20 |
KR20080100365A (en) | 2008-11-17 |
TW200734090A (en) | 2007-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007105636A1 (en) | Process for production of ultrafine silver particles and ultrafine silver particles produced by the process | |
JP5898400B2 (en) | Copper fine particles, production method thereof, and copper fine particle dispersion | |
CN101195170A (en) | Method for preparing superfine copper powder | |
US11767443B2 (en) | Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture | |
WO2014080662A1 (en) | Copper powder and method for producing same | |
JP5392910B2 (en) | Method for producing copper fine particles | |
WO2009116349A1 (en) | Copper nanoparticle-coated copper filler, method for producing the same, copper paste, and article having metal film | |
JP2008031491A (en) | Fine copper powder, its manufacturing method and conductive paste | |
CN101784352B (en) | Preparation method of copper particle composition | |
JP5074837B2 (en) | Method for producing flat silver powder, flat silver powder, and conductive paste | |
WO2006068061A1 (en) | Superfine copper powder slurry and process for producing the same | |
JP5424545B2 (en) | Copper fine particles, production method thereof, and copper fine particle dispersion | |
JP4651533B2 (en) | Method for producing copper particles | |
JP2022136081A (en) | Copper oxide particle composition, conductive paste, and conductive ink | |
JP2006118010A (en) | Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE | |
JP6278969B2 (en) | Silver coated copper powder | |
JP2007291513A (en) | Silver particle | |
JP2005281781A (en) | Method for producing copper nanoparticle | |
JP2017039991A (en) | Silver-coated copper powder, method for producing the same, and conductive paste using the same | |
JP2008069457A (en) | Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste | |
JP2008007859A (en) | Silver particle | |
JP6102697B2 (en) | Aqueous silver colloidal liquid, method for producing the same, and ink using aqueous silver colloidal liquid | |
JP5593699B2 (en) | Copper hydride nanoparticles, method for producing the same, metal paste and article | |
JP2020029611A (en) | Production method of copper nanoparticle | |
JP6722495B2 (en) | Silver-coated copper powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200780005768.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087022136 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07738167 Country of ref document: EP Kind code of ref document: A1 |