JP2020029611A - Production method of copper nanoparticle - Google Patents
Production method of copper nanoparticle Download PDFInfo
- Publication number
- JP2020029611A JP2020029611A JP2018157832A JP2018157832A JP2020029611A JP 2020029611 A JP2020029611 A JP 2020029611A JP 2018157832 A JP2018157832 A JP 2018157832A JP 2018157832 A JP2018157832 A JP 2018157832A JP 2020029611 A JP2020029611 A JP 2020029611A
- Authority
- JP
- Japan
- Prior art keywords
- copper nanoparticles
- copper
- pure water
- nanoparticles
- solid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、銅ナノ粒子の製造方法に関する。 The present invention relates to a method for producing copper nanoparticles.
金属ナノ粒子を溶液中に析出させる液相還元法が知られている。この液相還元法は、例えば錯化剤及び分散剤を含む溶液中で金属イオンを還元剤によって還元させることで金属ナノ粒子を溶液中に析出させるものである。液相還元法によって溶液中に析出した金属ナノ粒子は、溶液中の不純物を除去した後、純水等の溶媒が加えられ、濃度が調整されることで金属ナノインクとして用いられる。 A liquid phase reduction method for depositing metal nanoparticles in a solution is known. In this liquid phase reduction method, metal nanoparticles are precipitated in a solution by reducing metal ions with a reducing agent in a solution containing a complexing agent and a dispersing agent, for example. After removing impurities in the solution, the metal nanoparticles precipitated in the solution by the liquid phase reduction method are used as a metal nanoink by adjusting the concentration by adding a solvent such as pure water.
上記溶液中から金属ナノ粒子以外の不純物を除去する方法として、例えば遠心分離機を用いて金属ナノ粒子を遠心分離する方法が発案されている(特開2006−183092号公報参照)。 As a method for removing impurities other than metal nanoparticles from the solution, for example, a method of centrifuging metal nanoparticles using a centrifuge has been proposed (see JP-A-2006-183092).
しかしながら、上記公報に記載の製造方法は、遠心分離後の上記銅ナノ粒子を含む固相の分散性を高める点で課題を有する。つまり、上記液相還元法では、金属ナノ粒子の凝集を抑制するために、一般に還元剤及び分散剤を添加した水溶液中での銅イオンの還元が行われる。一方、水溶液中で合成した銅ナノ粒子は、不純物を除去するために、遠心分離脱水後に純水添加して洗浄する工程を繰り返して行う必要がある。その結果、この製造方法によっては、銅ナノ粒子の洗浄時に多量の純水を添加すると銅ナノ粒子表面に結合した分散剤が純水中に溶解して過剰に除去されてしまい、遠心分離後の上記銅ナノ粒子を含む固相の分散性が低くなるおそれがある。さらに、銅ナノ粒子は酸化されやすいことから、洗浄工程中の銅ナノ粒子の酸化を抑制する必要もある。 However, the production method described in the above publication has a problem in improving the dispersibility of the solid phase containing the copper nanoparticles after centrifugation. That is, in the liquid phase reduction method, copper ions are generally reduced in an aqueous solution to which a reducing agent and a dispersant are added in order to suppress aggregation of the metal nanoparticles. On the other hand, copper nanoparticles synthesized in an aqueous solution need to be repeatedly subjected to a step of adding pure water and washing after dehydration by centrifugation to remove impurities. As a result, depending on this manufacturing method, if a large amount of pure water is added during washing of the copper nanoparticles, the dispersant bound to the surface of the copper nanoparticles will be dissolved in the pure water and excessively removed, and after centrifugation, There is a possibility that the dispersibility of the solid phase containing the copper nanoparticles is reduced. Furthermore, since the copper nanoparticles are easily oxidized, it is necessary to suppress the oxidation of the copper nanoparticles during the cleaning step.
本発明は、このような事情に基づいてなされたものであり、洗浄時の水量を軽減して効率よく銅ナノ粒子の不純物を除去できるとともに、酸化が抑制されつつ分散性が良好な銅ナノ粒子を得ることができる銅ナノ粒子の製造方法の提供を目的とする。 The present invention has been made based on such circumstances, and can reduce the amount of water at the time of washing to efficiently remove impurities of the copper nanoparticles, and has excellent dispersibility while suppressing oxidation. It is an object of the present invention to provide a method for producing copper nanoparticles capable of obtaining the following.
上記課題を解決するためになされた本発明の一態様に係る金属ナノ粒子の製造方法は、 還元剤及び分散剤を添加した水溶液中での銅イオンの還元により平均粒子径200nm以下の銅ナノ粒子の分散液を調製する工程と、上記調製する工程後の銅ナノ粒子の分散液を液相と銅ナノ粒子を含む固相とに遠心分離する工程と、上記遠心分離する工程後の上記銅ナノ粒子を含む固相に純水を添加する工程と、上記純水を添加する工程後に上記銅ナノ粒子を含む固相を、タービン及びステータを備える高速回転式ホモジナイザーにより洗浄する工程とを備える。 Solution to Problem The method for producing metal nanoparticles according to one embodiment of the present invention, which has been made to solve the above-described problems, includes copper nanoparticles having an average particle diameter of 200 nm or less by reducing copper ions in an aqueous solution to which a reducing agent and a dispersant are added. A step of preparing a dispersion of the copper nanoparticles, a step of centrifuging the dispersion of the copper nanoparticles after the step of preparing into a liquid phase and a solid phase containing the copper nanoparticles, and the step of centrifuging the copper nanoparticles A step of adding pure water to a solid phase containing the particles; and a step of washing the solid phase containing the copper nanoparticles with a high-speed rotating homogenizer having a turbine and a stator after the step of adding the pure water.
本発明の銅ナノ粒子の製造方法は、洗浄時の水量を軽減して効率よく銅ナノ粒子の不純物を除去できるとともに、酸化が抑制されつつ分散性が良好な銅ナノ粒子を得ることができる。 ADVANTAGE OF THE INVENTION The manufacturing method of the copper nanoparticle of this invention can reduce the amount of water at the time of washing | cleaning, can remove the impurity of a copper nanoparticle efficiently, and can obtain the copper nanoparticle with favorable dispersibility while suppressing oxidation.
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
本発明の一態様に係る銅ナノ粒子の製造方法は、還元剤及び分散剤を添加した水溶液中での銅イオンの還元により平均粒子径200nm以下の銅ナノ粒子の分散液を調製する工程と、上記調製する工程後の銅ナノ粒子の分散液を液相と銅ナノ粒子を含む固相とに遠心分離する工程と、上記遠心分離する工程後の上記銅ナノ粒子を含む固相に純水を添加する工程と、上記純水を添加する工程後に上記銅ナノ粒子を含む固相を、タービン及びステータを備える高速回転式ホモジナイザーにより洗浄する工程とを備える。 The method for producing copper nanoparticles according to one embodiment of the present invention includes a step of preparing a dispersion of copper nanoparticles having an average particle diameter of 200 nm or less by reducing copper ions in an aqueous solution to which a reducing agent and a dispersant are added, A step of centrifuging the dispersion of the copper nanoparticles after the step of preparing into a liquid phase and a solid phase containing the copper nanoparticles, and pure water into the solid phase containing the copper nanoparticles after the step of centrifuging. A step of adding, and after the step of adding the pure water, a step of washing the solid phase containing the copper nanoparticles with a high-speed rotary homogenizer having a turbine and a stator.
当該銅ナノ粒子の製造方法は、上記純水を添加する工程後に上記銅ナノ粒子を含む固相を、タービン及びステータを備える高速回転式ホモジナイザーにより洗浄する工程を備えるので、銅ナノ粒子を含む固相の純水への分散性に優れる。そのため、少量の純水で不純物の除去効果を大きく向上でき、洗浄回数も大きく軽減できる。また、銅ナノ粒子の表面には、上記銅ナノ粒子の分散液を調製する工程における銅イオンの還元時に用いられた分散剤が結合しているが、多量の純水を用いて上記洗浄する工程を行うと、上記分散剤が銅ナノ粒子の表面から過剰に取り除かれるおそれがある。当該銅ナノ粒子の製造方法は、洗浄する工程でタービン及びステータを備える高速回転式ホモジナイザーを用いることで、洗浄時の水量を減少できるので、上記分散剤が銅ナノ粒子の表面から過剰に取り除かれることを抑制できる。さらに、タービン及びステータを備える高速回転式ホモジナイザーは、撹拌力を適度に抑制できるので、過剰な撹拌による銅ナノ粒子の酸化の進行を軽減できる。従って、当該銅ナノ粒子の製造方法は、洗浄時の水量を軽減して効率よく銅ナノ粒子の不純物を除去できるとともに、銅ナノ粒子の酸化を抑制しつつ、分散性が良好な銅ナノ粒子を得ることができる。 The method for producing copper nanoparticles includes a step of washing the solid phase containing the copper nanoparticles with a high-speed rotating homogenizer having a turbine and a stator after the step of adding the pure water. Excellent phase dispersibility in pure water. Therefore, the effect of removing impurities can be greatly improved with a small amount of pure water, and the number of times of cleaning can be greatly reduced. In addition, the surface of the copper nanoparticles is bound with the dispersant used during the reduction of copper ions in the step of preparing the dispersion of the copper nanoparticles, but the step of washing with a large amount of pure water. , The dispersant may be excessively removed from the surface of the copper nanoparticles. The method for producing the copper nanoparticles, by using a high-speed rotary homogenizer having a turbine and a stator in the cleaning step, the amount of water during cleaning can be reduced, so that the dispersant is excessively removed from the surface of the copper nanoparticles. Can be suppressed. Furthermore, the high-speed rotary homogenizer including the turbine and the stator can moderately suppress the stirring force, so that the progress of oxidation of the copper nanoparticles due to excessive stirring can be reduced. Therefore, the method for producing the copper nanoparticles, while reducing the amount of water during washing, can efficiently remove the impurities of the copper nanoparticles, while suppressing the oxidation of the copper nanoparticles, copper nanoparticles with good dispersibility. Obtainable.
上記洗浄する工程における上記高速回転式ホモジナイザーの回転数が3000rpm以上25000rpm以下であることが好ましい。このように、上記洗浄する工程における上記高速回転式ホモジナイザーの回転数が3000rpm以上25000rpm以下であることで、銅ナノ粒子の不純物を除去する効果、銅ナノ粒子の酸化を抑制する効果及び分散性をより向上できる。 It is preferable that the number of revolutions of the high-speed rotation type homogenizer in the washing step is not less than 3000 rpm and not more than 25000 rpm. As described above, the rotation speed of the high-speed rotating homogenizer in the washing step is 3000 rpm or more and 25000 rpm or less, so that the effect of removing impurities of copper nanoparticles, the effect of suppressing oxidation of copper nanoparticles, and the dispersibility are reduced. Can be further improved.
当該銅ナノ粒子の製造方法は、上記洗浄する工程を減圧下で行うことが好ましい。このように、上記洗浄する工程を減圧下で行うことで酸化の要因となる純水中の溶存酸素を除去できるので、酸化されやすい銅ナノ粒子の酸化を抑制できる。 In the method for producing copper nanoparticles, the washing step is preferably performed under reduced pressure. As described above, by performing the above-described washing step under reduced pressure, dissolved oxygen in pure water that causes oxidation can be removed, so that oxidation of copper nanoparticles that are easily oxidized can be suppressed.
当該銅ナノ粒子の製造方法は、上記純水を添加する工程で、上記純水に予め上記分散剤を添加することが好ましい。このように、上記純水を添加する工程で純水に予め上記分散剤を添加することで、洗浄工程で、上記分散剤が銅ナノ粒子の表面から過剰に取り除かれることを抑制できる。 In the method for producing copper nanoparticles, it is preferable to add the dispersant to the pure water in advance in the step of adding the pure water. In this way, by adding the dispersant to the pure water in the step of adding the pure water in advance, it is possible to suppress the dispersant from being excessively removed from the surface of the copper nanoparticles in the washing step.
当該銅ナノ粒子の製造方法は、上記純水を添加する工程で、上記純水に予め不活性ガスバブリングを行うことにより上記純水中の溶存酸素を除去することが好ましい。このように純水に予め不活性ガスバブリングを行うことにより、酸化の要因となる純水中の溶存酸素を除去することで、酸化されやすい銅ナノ粒子の酸化を抑制できる。 In the method for producing copper nanoparticles, it is preferable that in the step of adding the pure water, dissolved oxygen in the pure water is removed by performing an inert gas bubbling on the pure water in advance. In this way, by performing inert gas bubbling on pure water in advance, by removing dissolved oxygen in pure water that causes oxidation, oxidation of copper nanoparticles that are easily oxidized can be suppressed.
なお、本発明において、銅ナノ粒子の分散液における銅ナノ粒子の「平均粒子径」とは、動的光散乱法で測定した体積基準の累積分布から算出されるメジアン径(D50)をいう。 In the present invention, the “average particle diameter” of the copper nanoparticles in the copper nanoparticle dispersion refers to a median diameter (D50) calculated from a volume-based cumulative distribution measured by a dynamic light scattering method.
[本発明の実施形態の詳細]
<銅ナノ粒子の製造方法>
以下、本発明に係る銅ナノ粒子の製造方法の各実施形態について図面を参照しつつ詳説する。
[Details of Embodiment of the Present Invention]
<Method for producing copper nanoparticles>
Hereinafter, each embodiment of the method for producing copper nanoparticles according to the present invention will be described in detail with reference to the drawings.
図1は、本発明の一実施形態の銅ナノ粒子の製造方法の手順を示す。当該銅ナノ粒子の製造方法は、還元剤及び分散剤を添加した水溶液中での銅イオンの還元により平均粒子径200nm以下の銅ナノ粒子の分散液を調製する工程(銅ナノ粒子分散液調製工程:ステップS1)と、上記調製する工程後の銅ナノ粒子の分散液を液相と銅ナノ粒子を含む固相とに遠心分離する工程(遠心分離工程:ステップS2)と、上記遠心分離する工程後の上記銅ナノ粒子を含む固相に純水を添加する工程(純水添加工程:ステップS3)と、上記純水を添加する工程後に上記銅ナノ粒子を含む固相をタービン及びステータを備える高速回転式ホモジナイザーにより洗浄する工程(洗浄工程:ステップS4)とを備える。また、上記純水を添加する工程及び上記洗浄する工程は、必要に応じて複数回繰り返すことができる。なお、当該銅ナノ粒子の製造方法によって得られる銅ナノ粒子は、溶媒により濃度を調製することにより、銅ナノインクを製造できる。この銅ナノインクは、例えばプリント配線板のベースフィルム上に銅ナノ粒子の焼結体層を形成するのに用いられる。 FIG. 1 shows a procedure of a method for producing copper nanoparticles according to one embodiment of the present invention. The method for producing copper nanoparticles includes a step of preparing a dispersion of copper nanoparticles having an average particle diameter of 200 nm or less by reducing copper ions in an aqueous solution to which a reducing agent and a dispersant are added (a copper nanoparticle dispersion liquid preparation step). : Step S1), a step of centrifuging the dispersion liquid of the copper nanoparticles after the preparation step into a liquid phase and a solid phase containing the copper nanoparticles (centrifugation step: Step S2), and the step of centrifugation The subsequent step of adding pure water to the solid phase containing the copper nanoparticles (pure water adding step: step S3), and the solid phase containing the copper nanoparticles after the step of adding the pure water is provided with a turbine and a stator. Washing with a high-speed rotating homogenizer (washing step: step S4). Further, the step of adding the pure water and the step of washing can be repeated a plurality of times as necessary. The copper nanoparticles obtained by the method for producing copper nanoparticles can be used to prepare a copper nanoink by adjusting the concentration with a solvent. This copper nanoink is used, for example, to form a sintered body layer of copper nanoparticles on a base film of a printed wiring board.
[銅ナノ粒子分散液調製工程]
銅ナノ粒子分散液調製工程では、還元剤及び分散剤を添加した水溶液中での銅イオンの還元により平均粒子径200nm以下の銅ナノ粒子の分散液を調製する。例えば水に銅ナノ粒子を形成する銅イオンのもとになる水溶性の銅化合物と、分散剤及び錯化剤とを溶解させると共に、還元剤を加えて一定時間銅イオンを還元反応させる。この液相還元法で製造される銅ナノ粒子は、形状が球状又は粒状で揃っており、しかも平均粒子径が50nm以下の微細な粒子とすることができる。上記銅イオンのもとになる水溶性の銅化合物としては、硝酸銅(II)三水和物(Cu(NO3)2・3H2O)、硫酸銅(II)五水和物(CuSO4・5H2O)等が挙げられる。
[Copper nanoparticle dispersion liquid preparation step]
In the copper nanoparticle dispersion preparation step, a copper nanoparticle dispersion having an average particle diameter of 200 nm or less is prepared by reducing copper ions in an aqueous solution to which a reducing agent and a dispersant are added. For example, a water-soluble copper compound which forms copper ions forming copper nanoparticles in water, a dispersant and a complexing agent are dissolved, and a reducing agent is added to cause a reduction reaction of the copper ions for a certain period of time. The copper nanoparticles produced by the liquid phase reduction method can be fine particles having a uniform spherical or granular shape and an average particle diameter of 50 nm or less. Examples of the water-soluble copper compound from which the copper ions are formed include copper (II) nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) and copper (II) sulfate pentahydrate (CuSO 4 .5H 2 O) and the like.
上記還元剤としては、液相(水溶液)の反応系において、銅イオンを還元及び析出させることができる種々の還元剤を用いることができる。この還元剤としては、例えば水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、3価のチタンイオンや2価のコバルトイオン等の遷移金属のイオン、アスコルビン酸、グルコースやフルクトース等の還元性糖類、エチレングリコールやグリセリン等の多価アルコールなどが挙げられる。中でも、還元剤としては3価のチタンイオンが好ましい。なお、3価のチタンイオンを還元剤とする液相還元法は、チタンレドックス法という。チタンレドックス法では、3価のチタンイオンが4価に酸化される際の酸化還元作用によって銅イオンを還元し、銅ナノ粒子を析出させる。このチタンレドックス法によると、微細かつ均一な粒子径を有する銅ナノ粒子を形成しやすい。 As the reducing agent, various reducing agents capable of reducing and precipitating copper ions in a liquid phase (aqueous solution) reaction system can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, ions of transition metals such as trivalent titanium ions and divalent cobalt ions, ascorbic acid, reducing sugars such as glucose and fructose, Examples include polyhydric alcohols such as ethylene glycol and glycerin. Among them, a trivalent titanium ion is preferable as the reducing agent. The liquid phase reduction method using trivalent titanium ions as a reducing agent is referred to as a titanium redox method. In the titanium redox method, copper ions are reduced by redox action when trivalent titanium ions are oxidized to tetravalent, and copper nanoparticles are precipitated. According to the titanium redox method, it is easy to form copper nanoparticles having a fine and uniform particle diameter.
上記分散剤は、周辺部材の劣化防止の観点より、硫黄、リン、ホウ素、ハロゲン及びアルカリを含まないものが好ましい。好ましい分散剤としては、ポリエチレンイミン、ポリビニルピロリドン等の窒素含有高分子分散剤、ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボキシ基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、スチレン−マレイン酸共重合体、オレフィン−マレイン酸共重合体、1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤などを挙げることができる。 The dispersant preferably does not contain sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing deterioration of peripheral members. As preferred dispersants, nitrogen-containing polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, polyacrylic acid, hydrocarbon-based polymer dispersants having a carboxy group in a molecule such as carboxymethylcellulose, poval (polyvinyl alcohol), Polymer dispersants having a polar group such as a styrene-maleic acid copolymer, an olefin-maleic acid copolymer, and a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule can be exemplified.
上記錯化剤としては、例えばクエン酸ナトリウム、酒石酸ナトリウム、酢酸ナトリウム、グルコン酸、チオ硫酸ナトリウム、アンモニア、エチレンジアミン四酢酸等が挙げられ、これらの1種又は2種以上を用いることができる。中でも、上記錯化剤としてはクエン酸ナトリウムが好ましい。 Examples of the complexing agent include sodium citrate, sodium tartrate, sodium acetate, gluconic acid, sodium thiosulfate, ammonia, ethylenediaminetetraacetic acid, and the like, and one or more of these can be used. Among them, sodium citrate is preferable as the complexing agent.
銅ナノ粒子の粒子径を調整するには、銅化合物、分散剤及び還元剤の種類並びに配合割合を調整すると共に、銅化合物を還元反応させる際に、攪拌速度、温度、時間、pH等を調整すればよい。反応系のpHの下限としては7が好ましく、反応系のpHの上限としては13が好ましい。反応系のpHを上記範囲とすることで、微小な粒子径の銅ナノ粒子を得ることができる。このときpH調整剤を用いることで、反応系のpHを上記範囲に容易に調整することができる。このpH調整剤としては、塩酸、硫酸、硝酸、水酸化ナトリウム、炭酸ナトリウム、アンモニア等の一般的な酸又はアルカリが使用できるが、特に周辺部材の劣化を防止するために、アルカリ金属、アルカリ土類金属、ハロゲン元素、硫黄、リン、ホウ素等の不純物を含まない硝酸及び炭酸ナトリウムが好ましい。 To adjust the particle size of the copper nanoparticles, adjust the type and blending ratio of the copper compound, dispersant and reducing agent, and adjust the stirring speed, temperature, time, pH, etc., when the copper compound undergoes the reduction reaction. do it. The lower limit of the pH of the reaction system is preferably 7, and the upper limit of the pH of the reaction system is preferably 13. By setting the pH of the reaction system within the above range, copper nanoparticles having a fine particle diameter can be obtained. At this time, the pH of the reaction system can be easily adjusted to the above range by using the pH adjuster. As the pH adjuster, common acids or alkalis such as hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, sodium carbonate, and ammonia can be used. Particularly, in order to prevent deterioration of peripheral members, an alkali metal, an alkaline earth, or the like is used. Nitric acid and sodium carbonate which do not contain impurities such as metals, halogens, sulfur, phosphorus and boron are preferred.
銅ナノ粒子の分散液における銅ナノ粒子の含有割合としては、例えば0.1質量%以上5.0質量%以下が好ましい。 The content ratio of the copper nanoparticles in the dispersion liquid of the copper nanoparticles is preferably, for example, 0.1% by mass or more and 5.0% by mass or less.
銅ナノ粒子の平均粒子径の下限としては、1nmが好ましく、10nmがより好ましい。一方、銅ナノ粒子の平均粒子径の上限としては、200nmであり、150nmが好ましい。銅ナノ粒子の平均粒子径が上記下限に満たない場合、例えば銅ナノ粒子を銅ナノインクに用いた場合に、銅ナノ粒子の分散性及び安定性が低下することにより、プリント配線板用基板のベースフィルムの表面に均一に積層することが容易でなくなるおそれがある。一方、銅ナノ粒子の平均粒子径が上記上限を超える場合、例えば銅ナノ粒子を銅ナノインクに用いた場合に、形成される銅ナノインクの乾燥塗膜の焼結体層中の空隙が大きくなり、十分な導電性が得られないおそれがある。 The lower limit of the average particle diameter of the copper nanoparticles is preferably 1 nm, more preferably 10 nm. On the other hand, the upper limit of the average particle diameter of the copper nanoparticles is 200 nm, preferably 150 nm. When the average particle diameter of the copper nanoparticles is less than the lower limit, for example, when the copper nanoparticles are used in the copper nanoink, the dispersibility and stability of the copper nanoparticles are reduced, so that the base of the printed wiring board substrate is reduced. There is a possibility that uniform lamination on the surface of the film may not be easy. On the other hand, when the average particle diameter of the copper nanoparticles exceeds the upper limit, for example, when copper nanoparticles are used for the copper nanoink, the voids in the sintered body layer of the dried coating film of the formed copper nanoink increase, Sufficient conductivity may not be obtained.
[遠心分離工程]
遠心分離工程では、上記調製する工程後の銅ナノ粒子の分散液を液相と銅ナノ粒子を含む固相とに遠心分離する。上記遠心分離は遠心分離装置により行うことができる。
[Centrifugation step]
In the centrifugation step, the dispersion liquid of the copper nanoparticles after the preparation step is centrifuged into a liquid phase and a solid phase containing the copper nanoparticles. The centrifugation can be performed by a centrifuge.
遠心分離工程における遠心加速度の下限としては、10000Gが好ましく、20000Gがより好ましい。上記遠心加速度が上記下限に満たないと、銅ナノ粒子を十分に遠心分離することができないおそれがある。なお、上記遠心加速度の上限としては、特に限定されないが、例えば120000Gとすることができる。上記遠心加速度が上記上限を超えると、遠心分離後の銅ナノ粒子を含む固相の濃度が高くなり過ぎて、この銅ナノ粒子を含む固相が容器等に固着し歩留まりが低下するおそれがある。 The lower limit of the centrifugal acceleration in the centrifugation step is preferably 10,000 G, more preferably 20,000 G. If the centrifugal acceleration is less than the lower limit, the copper nanoparticles may not be sufficiently centrifuged. The upper limit of the centrifugal acceleration is not particularly limited, but may be, for example, 120,000 G. If the centrifugal acceleration exceeds the upper limit, the concentration of the solid phase containing the copper nanoparticles after centrifugation becomes too high, and the solid phase containing the copper nanoparticles may adhere to a container or the like, and the yield may be reduced. .
[純水添加工程]
純水添加工程では、上記遠心分離する工程後の上記銅ナノ粒子を含む固相に純水を添加する。具体的には遠心分離後の銅ナノ粒子を含む固相を容器に取りだした後、純水を加えながらガラス棒で撹拌する。
[Pure water addition step]
In the pure water addition step, pure water is added to the solid phase containing the copper nanoparticles after the centrifugation step. Specifically, after taking out the solid phase containing the copper nanoparticles after centrifugation into a container, the mixture is stirred with a glass rod while adding pure water.
上記純水添加工程では、上記純水に予め上記分散剤を添加することが好ましい。上記分散剤の添加量の下限としては、上記固相に対して0.1質量%が好ましく、1.0質量%がより好ましい。上記分散剤の添加量が上記下限に満たないと、洗浄工程で、上記分散剤が銅ナノ粒子の表面から過剰に取り除かれることに対する抑制効果が十分得られないおそれがある。上記分散剤の添加量の上限としては、上記固相に対して10.0質量%が好ましく、5.0質量%がより好ましい。上記分散剤の添加量が上記上限を超えると、分散剤が粒子洗浄後に残留しやすく、焼結工程での残渣となるおそれがある。 In the pure water adding step, it is preferable to add the dispersant to the pure water in advance. The lower limit of the amount of the dispersant added is preferably 0.1% by mass, more preferably 1.0% by mass, based on the solid phase. If the amount of the dispersant added is less than the lower limit, there is a possibility that the effect of suppressing the excessive removal of the dispersant from the surface of the copper nanoparticles in the washing step may not be sufficiently obtained. The upper limit of the amount of the dispersant added is preferably 10.0% by mass with respect to the solid phase, and more preferably 5.0% by mass. When the amount of the dispersant exceeds the upper limit, the dispersant may easily remain after the particles are washed, and may be a residue in the sintering step.
上記純水添加工程では、上記純水に予め不活性ガスバブリングを行うことにより上記純水中の溶存酸素を除去することが好ましい。純水に予め不活性ガスバブリングを行うことにより純水中の溶存酸素を除去することで、酸化されやすい銅ナノ粒子の酸化を抑制できる。 In the pure water addition step, it is preferable to remove dissolved oxygen in the pure water by performing an inert gas bubbling on the pure water in advance. By removing the dissolved oxygen in the pure water by performing inert gas bubbling on the pure water in advance, it is possible to suppress the oxidation of the copper nanoparticles that are easily oxidized.
不活性ガスとは、銅ナノ粒子を腐食させない気体であって、酸素濃度が低い気体、具体的には酸素の体積含有量が10%以下、好ましくは1%以下の気体をいう。上記不活性ガスとしては、例えば窒素ガス、アルゴンガス等が挙げられる。中でも、安価な窒素ガスが好ましい。 The inert gas is a gas that does not corrode the copper nanoparticles and has a low oxygen concentration, specifically a gas having a volume content of oxygen of 10% or less, preferably 1% or less. Examples of the inert gas include a nitrogen gas and an argon gas. Among them, inexpensive nitrogen gas is preferable.
上記不活性ガスバブリングにおける純水に対する不活性ガスのバブリング量としては、100ml/L以上500ml/L以下が好ましい。上記不活性ガスのバブリング量が上記範囲であることで、効果的に純水中の溶存酸素を除去できる。 The bubbling amount of the inert gas with respect to the pure water in the above inert gas bubbling is preferably 100 ml / L or more and 500 ml / L or less. When the bubbling amount of the inert gas is within the above range, dissolved oxygen in pure water can be effectively removed.
また、純水中の最終的な溶存酸素量としては、1.0mg/L以下が好ましい。純水中の最終的な溶存酸素量を上記範囲とすることで、酸化されやすい銅ナノ粒子の酸化を効果的に抑制できる。 Further, the final dissolved oxygen content in pure water is preferably 1.0 mg / L or less. By setting the final dissolved oxygen amount in pure water within the above range, the oxidation of the copper nanoparticles that are easily oxidized can be effectively suppressed.
[洗浄工程]
洗浄工程では、上記純水添加工程後に銅ナノ粒子の分散液をタービン及びステータを備えるホモジナイザーにより撹拌する。本工程では、銅ナノ粒子の分散液をタービン及びステータを備える高速回転式ホモジナイザーにより撹拌することで、洗浄時の水量を減少できるので、上記分散剤が銅ナノ粒子の表面から過剰に取り除かれることを抑制できる。さらに、タービン及びステータを備える高速回転式ホモジナイザーは、撹拌力を適度に抑制できるので、過剰な撹拌による銅ナノ粒子の酸化の進行を軽減できる。
[Washing process]
In the washing step, the dispersion of the copper nanoparticles is stirred by the homogenizer having the turbine and the stator after the pure water addition step. In this step, the amount of water at the time of washing can be reduced by stirring the dispersion liquid of the copper nanoparticles with the high-speed rotating homogenizer including the turbine and the stator, so that the dispersant is excessively removed from the surface of the copper nanoparticles. Can be suppressed. Furthermore, the high-speed rotation type homogenizer including the turbine and the stator can moderately suppress the stirring force, so that the progress of oxidation of the copper nanoparticles due to excessive stirring can be reduced.
上記洗浄工程における上記高速回転式ホモジナイザーの回転数の下限としては、3000rpmPaが好ましく、5000rpmPaがより好ましい。上記高速回転式ホモジナイザーの回転数が上記下限に満たない場合、不純物の除去効果が十分でないおそれがある。一方、上記回転数の上限としては、25000rpmPaが好ましく、20000rpmPaがより好ましい。上記回転数が上記上限を超える場合、過剰な撹拌によるナノ粒子の酸化の進行が生じるおそれがある。 The lower limit of the rotation speed of the high-speed rotating homogenizer in the washing step is preferably 3000 rpm, and more preferably 5000 rpm. If the rotation speed of the high-speed rotation type homogenizer is less than the lower limit, the effect of removing impurities may not be sufficient. On the other hand, the upper limit of the rotation speed is preferably 25,000 rpmPa, and more preferably 20,000 rpmPa. When the rotation speed exceeds the upper limit, oxidation of the nanoparticles may proceed due to excessive stirring.
上記洗浄工程は、減圧下で行うことが好ましい。上記洗浄工程を減圧下で行うことで酸化の要因となる純水中の溶存酸素を除去できるので、酸化されやすい銅ナノ粒子の酸化を抑制できる。 The washing step is preferably performed under reduced pressure. By performing the above-mentioned washing step under reduced pressure, dissolved oxygen in pure water that causes oxidation can be removed, so that oxidation of copper nanoparticles that are easily oxidized can be suppressed.
減圧条件としては、100000Pa以下が好ましく、10000Pa以下がより好ましい。 The reduced pressure condition is preferably 100,000 Pa or less, more preferably 10,000 Pa or less.
当該銅ナノ粒子の製造方法により製造された銅ナノ粒子は、例えば上述の洗浄工程後に再度遠心分離により濃縮した後に、銅ナノ粒子の分散液の銅ナノ粒子の濃度を調整することにより、銅ナノインクを製造することができる。 Copper nanoparticles produced by the method for producing copper nanoparticles, for example, after concentration by centrifugation again after the washing step described above, by adjusting the concentration of copper nanoparticles in the dispersion of copper nanoparticles, copper nano-ink Can be manufactured.
当該銅ナノ粒子の製造方法によれば、洗浄時の水量を軽減して効率よく銅ナノ粒子の不純物を除去できるとともに、酸化が抑制されつつ分散性が良好な銅ナノ粒子を得ることができる。 According to the method for producing copper nanoparticles, the amount of water at the time of washing can be reduced, impurities in the copper nanoparticles can be efficiently removed, and copper nanoparticles having good dispersibility while suppressing oxidation can be obtained.
[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is not limited to the configuration of the above-described embodiment, but is indicated by the appended claims, and is intended to include all modifications within the scope and meaning equivalent to the appended claims. You.
上記実施形態においては、純水を添加する工程で、純水に予め不活性ガスバブリングを行うことを説明したが、洗浄工程中に純水に不活性ガスバブリングを行うことにより純水中の溶存酸素を除去してもよい。 In the above-described embodiment, it has been described that the inert gas bubbling is performed in advance on the pure water in the step of adding the pure water, but the dissolution in the pure water is performed by performing the inert gas bubbling on the pure water during the cleaning process. Oxygen may be removed.
以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
<銅ナノ粒子>
[No.1]
(1)銅ナノ粒子分散液調製工程
初めに、反応タンクに還元剤としての20%三塩化チタン溶液を160g0.1M、pH調整剤としての炭酸ナトリウムを100g、錯化剤としてのクエン酸ナトリウムを180g、及び分散剤としてのポリビニルピロリドン(分子量30000)6gを純水1.8Lに溶解し、この水溶液を40℃に保温した。この水溶液に同温度で保温した50%硝酸銅水溶液を40g0.04Mの水溶液を撹拌しながら2秒で投入して、銅ナノ粒子5gを析出させ銅ナノ粒子の分散液を調製した。
<Copper nanoparticles>
[No. 1]
(1) Copper nanoparticle dispersion liquid preparation step First, 160 g of 0.1% of a 20% titanium trichloride solution as a reducing agent, 100 g of sodium carbonate as a pH adjuster, and sodium citrate as a complexing agent were added to a reaction tank. 180 g of polyvinylpyrrolidone (molecular weight: 30,000) as a dispersing agent were dissolved in 1.8 L of pure water, and the aqueous solution was kept at 40 ° C. To this aqueous solution, 40 g of a 50% aqueous solution of copper nitrate kept at the same temperature was added in 2 seconds while stirring a 0.04 M aqueous solution to precipitate 5 g of copper nanoparticles to prepare a dispersion of copper nanoparticles.
(2)遠心分離工程
上記調製後の銅ナノ粒子の分散液を遠心加速度20000Gで10分間遠心分離し、濃縮した。
(2) Centrifugation Step The dispersion of copper nanoparticles prepared as described above was centrifuged at a centrifugal acceleration of 20000 G for 10 minutes and concentrated.
(3)純水添加工程
次に、上記銅ナノ粒子5gを含む固相に純水300gを添加した。
(3) Pure Water Addition Step Next, 300 g of pure water was added to the solid phase containing 5 g of the copper nanoparticles.
(4)洗浄工程
次に、上記純水添加後の銅ナノ粒子の分散液をプライミクス株式会社製のタービン及びステータを備える高速回転式ホモジナイザー「ラボ・リューション」を用いて、回転数8000rpmで5分間撹拌することで銅ナノ粒子を洗浄した。
(4) Cleaning Step Next, the dispersion liquid of the copper nanoparticles after the addition of the pure water was subjected to a rotation at 8000 rpm using a high-speed rotary homogenizer “Lab Lution” having a turbine and a stator manufactured by Primix Co., Ltd. at 5 rpm. The copper nanoparticles were washed by stirring for minutes.
(5)再遠心分離工程
次に、上記洗浄工程後の銅ナノ粒子の分散液を遠心加速度20000Gで10分間再度遠心分離を行い、濃縮した。
(5) Re-centrifugation step Next, the dispersion liquid of the copper nanoparticles after the washing step was centrifuged again at a centrifugal acceleration of 20000 G for 10 minutes, and concentrated.
(銅ナノインクの製造)
上記洗浄工程後に濃縮した銅ナノ粒子に純水を20g加えた後、濃度を25質量%に調整して銅ナノインクを製造した。
(Manufacture of copper nano ink)
After adding 20 g of pure water to the copper nanoparticles concentrated after the washing step, the concentration was adjusted to 25% by mass to produce a copper nanoink.
[No.2〜No.6]
条件を表1の通りとした以外、No.1と同様の手順によって銅ナノインクを製造した。
[No. 2-No. 6]
The conditions of No. A copper nanoink was manufactured in the same procedure as in Example 1.
(不純物)
銅ナノ粒子No.1〜No.6によって得られた銅ナノインクについて不純物の有無をサーモフィッシャーサイエンティフィック社製のイオンクロマトグラフィーシステム「ICS−2100」及び同社のICP発光分析装置「iCAP6300」を用いて測定し、以下の基準で評価した。
A:不純物が検出されなかった
B:不純物が僅かに検出された
C:不純物が大量に検出された
(impurities)
Copper nanoparticles no. 1 to No. The presence or absence of impurities in the copper nano-ink obtained in No. 6 was measured using the ion chromatography system “ICS-2100” manufactured by Thermo Fisher Scientific Co., Ltd. and the ICP emission spectrometer “iCAP6300” manufactured by the company, and evaluated according to the following criteria. did.
A: no impurities were detected B: impurities were slightly detected C: impurities were detected in large quantities
(分散性)
上記洗浄工程後に遠心分離を行い、銅ナノ粒子を含む固相に純水を添加した状態における銅ナノ粒子凝集物の大きさを測定した。ミクロンオーダーまで測定可能なレーザー回折式粒度分布計、島津製作所社SALD−2300によって銅ナノ粒子の分散性を以下の基準で評価した。
A:銅ナノ粒子凝集物ピークが存在せず、分散性が優れる
B:銅ナノ粒子凝集物ピークの大きさが0.5μm未満であり、分散性が良好である
C:銅ナノ粒子凝集物ピークの大きさが0.5μm以上であり、分散性が劣る
(Dispersibility)
After the washing step, centrifugation was performed, and the size of the copper nanoparticle aggregate in a state where pure water was added to the solid phase containing the copper nanoparticles was measured. The dispersibility of the copper nanoparticles was evaluated according to the following criteria using a laser diffraction particle size distribution analyzer, SALD-2300 manufactured by Shimadzu Corporation, capable of measuring to the order of microns.
A: No copper nanoparticle aggregate peak is present, and the dispersibility is excellent. B: Copper nanoparticle aggregate peak is less than 0.5 μm and the dispersibility is good. C: Copper nanoparticle aggregate peak. Is 0.5 μm or more, and dispersibility is poor.
(平均粒子径)
銅ナノ粒子No.1〜No.6によって得られた銅ナノインクに含まれる銅ナノ粒子の平均粒子径(D50)は、マイクロトラック・ベル社製の「NanoTrac Wave」を用い、動的光散乱法で測定した体積基準の累積分布から算出した。
(Average particle size)
Copper nanoparticles no. 1 to No. The average particle size (D50) of the copper nanoparticles contained in the copper nanoink obtained in 6 was obtained from the volume-based cumulative distribution measured by dynamic light scattering using "NanoTrac Wave" manufactured by Microtrac Bell. Calculated.
(粒子径分布)
マイクロトラック・ベル社製の「NanoTrac Wave」を用い、銅ナノ粒子No.1〜No.6によって得られた銅ナノインクに含まれる銅ナノ粒子の粒子径分布を測定した。銅ナノ粒子の粒子径の最小値と最大値を表1に示す。
(Particle size distribution)
Using “NanoTrac Wave” manufactured by Microtrac Bell Co., Ltd., copper nanoparticle No. 1 to No. The particle size distribution of the copper nanoparticles contained in the copper nanoink obtained in 6 was measured. Table 1 shows the minimum and maximum values of the particle size of the copper nanoparticles.
(酸化度)
銅ナノ粒子の分散液をガラス基板に塗布乾燥した膜について、X線回折法により酸化度を測定した。
(Degree of oxidation)
The degree of oxidation was measured by an X-ray diffraction method for a film obtained by applying a dispersion liquid of copper nanoparticles on a glass substrate and drying.
銅ナノ粒子No.1〜No.6における上記分散性、不純物、平均粒子径、粒子径分布及び銅ナノ粒子の酸化度の評価結果を表2に示す。 Copper nanoparticles no. 1 to No. Table 2 shows the evaluation results of the dispersibility, impurities, average particle size, particle size distribution, and oxidation degree of copper nanoparticles in Example 6.
表2に示すように、タービン及びステータを備える高速回転式ホモジナイザーを用いて洗浄工程を行った銅ナノ粒子No.1〜No.4は、洗浄回数が少ないにも係わらず、不純物除去効果、分散性及び酸化抑制性の全てにおいて良好な銅ナノ粒子を得ることができた。特に、純水添加工程で分散剤を添加した銅ナノ粒子No.1及びNo.2は、粒子径及び粒子径分布が小さかった。また、高速回転式ホモジナイザーの回転数を8000rpm以上にすることで、洗浄回数が1回でも高い不純物除去効果が得られた。さらに、銅ナノ粒子No.3の結果から、高速回転式ホモジナイザーを用いて洗浄工程を行うことで、分散剤を添加しなくても分散性及び平均粒子径が良好であることがわかる。 As shown in Table 2, the cleaning process was performed using a high-speed rotary homogenizer having a turbine and a stator. 1 to No. No. 4 was able to obtain excellent copper nanoparticles in all of the impurity removing effect, dispersibility, and oxidation inhibiting property despite the small number of washings. In particular, the copper nanoparticles No. to which the dispersant was added in the pure water addition step. 1 and No. 1 In No. 2, the particle size and the particle size distribution were small. In addition, by setting the rotation speed of the high-speed rotation type homogenizer to 8000 rpm or more, a high impurity removing effect was obtained even when the number of times of washing was one. Furthermore, the copper nanoparticles No. From the result of No. 3, it can be seen that by performing the washing step using a high-speed rotation type homogenizer, the dispersibility and the average particle diameter are good even without adding a dispersant.
一方、高速回転式ホモジナイザーの代わりにミキサ−を用いて洗浄工程を行った銅ナノ粒子No.5〜No.6は、不純物除去効果及び分散性が劣り、洗浄回数を増やしても不純物が残存していた。また、銅ナノ粒子No.6の結果から、洗浄回数を増やすことで、銅ナノ粒子の酸化度が高くなることがわかる。 On the other hand, a copper nanoparticle No. which was subjected to a washing step using a mixer instead of a high-speed rotating homogenizer. 5-No. Sample No. 6 was inferior in the effect of removing impurities and dispersibility, and the impurities remained even when the number of times of cleaning was increased. In addition, the copper nanoparticles No. From the result of No. 6, it is understood that the degree of oxidation of the copper nanoparticles is increased by increasing the number of times of washing.
以上の結果から、当該銅ナノ粒子の製造方法は、洗浄時の水量を軽減して効率よく銅ナノ粒子の不純物を除去できるとともに、酸化が抑制されつつ分散性が良好な銅ナノ粒子を得ることができることが示された。 From the above results, the method for producing copper nanoparticles can reduce the amount of water during washing to efficiently remove impurities of copper nanoparticles, and obtain copper nanoparticles having good dispersibility while suppressing oxidation. It was shown that it could be.
本発明は、銅ナノインクの乾燥塗膜の焼結体層の形成に広く適用でき、特にプリント配線板等の電子部品の製造に好適に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to the formation of a sintered layer of a dried coating film of copper nanoink, and can be suitably used particularly for the production of electronic components such as printed wiring boards.
S1 銅ナノ粒子分散液調製工程
S2 遠心分離工程
S3 純水添加工程
S4 洗浄工程
S1 Copper nanoparticle dispersion liquid preparation step S2 Centrifugal separation step S3 Pure water addition step S4 Washing step
Claims (5)
上記調製する工程後の銅ナノ粒子の分散液を液相と銅ナノ粒子を含む固相とに遠心分離する工程と、
上記遠心分離する工程後の上記銅ナノ粒子を含む固相に純水を添加する工程と、
上記純水を添加する工程後に上記銅ナノ粒子を含む固相を、タービン及びステータを備える高速回転式ホモジナイザーにより洗浄する工程と
を備える銅ナノ粒子の製造方法。 A step of preparing a dispersion of copper nanoparticles having an average particle diameter of 200 nm or less by reduction of copper ions in an aqueous solution to which a reducing agent and a dispersant have been added,
A step of centrifuging the dispersion of the copper nanoparticles after the preparing step into a liquid phase and a solid phase containing the copper nanoparticles,
A step of adding pure water to the solid phase containing the copper nanoparticles after the step of centrifugation,
Washing the solid phase containing the copper nanoparticles with a high-speed rotary homogenizer having a turbine and a stator after the step of adding the pure water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018157832A JP2020029611A (en) | 2018-08-24 | 2018-08-24 | Production method of copper nanoparticle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018157832A JP2020029611A (en) | 2018-08-24 | 2018-08-24 | Production method of copper nanoparticle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020029611A true JP2020029611A (en) | 2020-02-27 |
Family
ID=69623940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018157832A Pending JP2020029611A (en) | 2018-08-24 | 2018-08-24 | Production method of copper nanoparticle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020029611A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114316363A (en) * | 2021-12-27 | 2022-04-12 | 江阴恒兴涂料有限公司 | Carbon nano-copper modifier and preparation method thereof |
CN114749677A (en) * | 2022-04-26 | 2022-07-15 | 苏州星翰新材料科技有限公司 | Preparation method and application of micron copper powder |
-
2018
- 2018-08-24 JP JP2018157832A patent/JP2020029611A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114316363A (en) * | 2021-12-27 | 2022-04-12 | 江阴恒兴涂料有限公司 | Carbon nano-copper modifier and preparation method thereof |
CN114749677A (en) * | 2022-04-26 | 2022-07-15 | 苏州星翰新材料科技有限公司 | Preparation method and application of micron copper powder |
CN114749677B (en) * | 2022-04-26 | 2023-04-11 | 苏州星翰新材料科技有限公司 | Preparation method and application of micron copper powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4698648B2 (en) | Method for producing cubic shaped copper nanoparticles | |
US11254825B2 (en) | Conductive pastes using bimodal particle size distribution | |
Wu | Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC | |
JP5065607B2 (en) | Fine silver particle production method and fine silver particle obtained by the production method | |
JP5519938B2 (en) | Method for producing copper powder for conductive paste | |
JP2013541640A (en) | Silver particles and method for producing the same | |
JP2012525506A (en) | Silver particles and method for producing the same | |
JP2018523758A (en) | Method for producing silver powder for high-temperature sintered conductive paste | |
JP6536581B2 (en) | Fine metal particle dispersion | |
JP5076753B2 (en) | Method for producing high-concentration metal nanoparticle dispersion | |
JP2020029611A (en) | Production method of copper nanoparticle | |
JP2012172170A (en) | Method for producing metal particles | |
JP2010150619A (en) | Method for producing copper nanoparticle | |
JP4746534B2 (en) | Method for producing silver nanoparticles | |
JP4433743B2 (en) | Method for producing copper fine particles | |
JP7136117B2 (en) | Method for producing copper nanoparticles | |
WO2019135306A1 (en) | Copper nano ink production method and copper nano ink | |
JP2017101268A (en) | Spherical silver powder and manufacturing method and conductive paste | |
JP7302350B2 (en) | Copper nanoink, substrate for printed wiring board, and method for producing copper nanoink | |
US11752734B2 (en) | Base material for printed circuit board and printed circuit board | |
JP2008223101A (en) | Method for producing metal grain | |
JP2020031196A (en) | Copper nano ink, substrate for printed wiring board, and method of manufacturing copper nano ink | |
JP7069311B2 (en) | How to make silver powder and conductive paste containing silver powder | |
JP6230022B2 (en) | Ag-coated Al-Si alloy particles, method for producing the same, and conductive paste | |
JP2010070775A (en) | METHOD FOR PRODUCING Sn-CONTAINING POWDER, Sn-CONTAINING POWDER, AND PASTE FOR SOLDER USING THE Sn-CONTAINING POWDER |