JP2006045655A - Silver nanoparticle and production method therefor - Google Patents

Silver nanoparticle and production method therefor Download PDF

Info

Publication number
JP2006045655A
JP2006045655A JP2004232502A JP2004232502A JP2006045655A JP 2006045655 A JP2006045655 A JP 2006045655A JP 2004232502 A JP2004232502 A JP 2004232502A JP 2004232502 A JP2004232502 A JP 2004232502A JP 2006045655 A JP2006045655 A JP 2006045655A
Authority
JP
Japan
Prior art keywords
silver
solution
nitrate solution
silver nitrate
sodium citrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004232502A
Other languages
Japanese (ja)
Inventor
Takahiro Uno
貴博 宇野
Kazusuke Sato
一祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004232502A priority Critical patent/JP2006045655A/en
Publication of JP2006045655A publication Critical patent/JP2006045655A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver nanoparticle which is used for a raw material of a conductive paste for electronics industry or the like, and is superior in dispersibility, and to provide a production method therefor. <P>SOLUTION: In a process for obtaining the silver particle by reducing a silver nitrate solution with ferrous sulfate under the presence of sodium citrate, and collecting the formed silver nanoparticle, the method for producing the silver nanoparticle includes charging the silver nitrate solution in a short while of 10 seconds or shorter, when charging the silver nitrate solution into the mixed solution of ferrous sulfate and citric acid soda. The silver nanoparticles produced with the method are spherical particles having uniform diameters of 20 nm or smaller by average. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粒径がナノサイズの銀微粒子(銀ナノ粒子と云う)、特に電子工業用導電性ペースト等の原料となる分散性に優れた銀ナノ粒子とその製造方法に関する。 The present invention relates to a silver fine particle (referred to as a silver nanoparticle) having a nano particle size, particularly a silver nanoparticle excellent in dispersibility, which is a raw material for a conductive paste for electronic industry, and a method for producing the same.

近年、電子機器の高機能化が進み、これに伴って電子デバイスの小型高密度化が求められており、配線や電極などを形成するペースト材料の原料である銀粉末について、微細で分散性の良いものが求められている。 In recent years, electronic devices have become more sophisticated, and electronic devices have been required to be smaller and more dense. Silver powder, which is a raw material for paste materials used to form wiring and electrodes, is fine and dispersible. Good things are needed.

一般に金属微粒子の製造方法としては、CVD法や噴霧熱分解法などの気相法と、化学的な還元反応を利用した湿式法が知られているが、従来の湿式法によって製造した微粒子は凝集性が強く、単分散粒子が得られ難いため、凝集が少ない高純度の銀微粒子などは多くが気相法によって製造されていた。一方、気相法によって得た金属微粒子は単分散性に優れるが、製造コストが高く、かつ粒度制御が難しいと云う問題がある。そこで、金属微粒子の分散性に優れた湿式製造方法が試みられている。 Generally, as a method for producing metal fine particles, a vapor phase method such as a CVD method or a spray pyrolysis method and a wet method using a chemical reduction reaction are known, but fine particles produced by a conventional wet method are aggregated. Because of its high properties and difficulty in obtaining monodisperse particles, many high-purity silver fine particles with little aggregation have been produced by a gas phase method. On the other hand, metal fine particles obtained by a vapor phase method are excellent in monodispersibility, but have a problem that production costs are high and particle size control is difficult. Therefore, a wet manufacturing method excellent in dispersibility of metal fine particles has been attempted.

銀微粉末の湿式製造方法としては、(イ)硝酸銀などの銀塩溶液に水酸化ナトリウムを加えて酸化銀を形成し、または炭酸ナトリウムを加えて炭酸銀を形成し、これにヒドラジン等によって還元する方法が従来から知られているが、この方法によって得られる銀粒子は不定形で凝集した粒子が多い。そこで、(ロ)銀塩または銀アミン錯体を還元して銀微粉を製造する方法において、有機還元剤と亜硫酸塩およびアルカリで調整した還元剤溶液を硝酸銀溶液等に加えて銀を沈澱させ、これを回収し乾燥することによって、サブミクロンの樹枝状や単分散の球状銀粉末を製造する方法(特許文献1)や、(ハ)銀塩または銀アンモニア錯体を還元して銀微粉を製造する方法において、還元剤としてハイドロキノンと亜硫酸塩を用い、25〜60℃の液温で反応させることによって分散性のよい球状銀微粒子を製造する方法が知られている(特許文献2)。しかし、これらの製造方法によって得られる銀微粒子は粒径のバラツキが大きいと云う問題がある。 As a wet production method of silver fine powder, (a) silver hydroxide is added to a silver salt solution such as silver nitrate to form silver oxide, or sodium carbonate is added to form silver carbonate, which is reduced with hydrazine or the like. The silver particle obtained by this method is known to be irregular and agglomerated in many cases. Therefore, (b) in a method for producing silver fine powder by reducing a silver salt or silver amine complex, a reducing agent solution prepared with an organic reducing agent, sulfite and alkali is added to a silver nitrate solution or the like to precipitate silver. By recovering and drying the powder to produce submicron dendritic or monodispersed spherical silver powder (Patent Document 1), or (iii) a method of producing silver fine powder by reducing silver salt or silver ammonia complex Is known to produce spherical silver fine particles with good dispersibility by using hydroquinone and sulfite as a reducing agent and reacting at a liquid temperature of 25 to 60 ° C. (Patent Document 2). However, the silver fine particles obtained by these production methods have a problem that there is a large variation in particle diameter.

銀粒子の粒径を制御する湿式製造方法として、硝酸銀を還元する際にクエン酸ナトリウムを保護剤として用いるクエン酸法が知られている。具体的には、例えば、(ホ)クエン酸ナトリウムと硫酸第一鉄との混合溶液に硝酸溶液を攪拌下で混合し、5〜50℃で反応させて銀微粒子を生成させ、これを回収して媒体に分散させる銀コロイド液の製造方法(特許文献3)、(ヘ)クエン酸ナトリウム水溶液を攪拌しながら硫酸第一鉄水溶液を添加して均一に混合し、これを激しく攪拌しながら硝酸銀水溶液を添加して銀コロイドを生成させる方法(特許文献4)が知られている。
特開平4−59904号公報 特開平8−134513号公報 特許第3429958号公報
As a wet manufacturing method for controlling the particle size of silver particles, a citric acid method using sodium citrate as a protective agent when silver nitrate is reduced is known. Specifically, for example, (e) a nitric acid solution is mixed with a mixed solution of sodium citrate and ferrous sulfate under stirring, and reacted at 5 to 50 ° C. to produce silver fine particles, which are recovered. A method for producing a silver colloid liquid to be dispersed in a medium (Patent Document 3), (f) An aqueous ferrous sulfate solution is added and mixed uniformly while stirring an aqueous sodium citrate solution, and an aqueous silver nitrate solution is stirred vigorously. There is known a method (Patent Document 4) for adding silver to produce a silver colloid.
JP-A-4-59904 JP-A-8-134513 Japanese Patent No. 3429958

従来の上記クエン酸法によって銀ナノ粒子を製造する方法は、硝酸銀溶液と硫酸第一鉄溶液とを反応させる際に、何れも硝酸銀溶液を数分間の比較的長い時間かけて投入し、かつ激しい攪拌下で混合している。例えば、上記(ヘ)の方法では1000rpm以上の攪拌強度下で混合しており、これは実用装置では相当に厳しい条件である。しかも、得られる銀粒子の粒径が不均一である。 In the conventional method for producing silver nanoparticles by the citric acid method, when the silver nitrate solution and the ferrous sulfate solution are reacted, the silver nitrate solution is charged over a relatively long time of several minutes, and is intense. Mixing under stirring. For example, in the above method (f), mixing is performed under a stirring intensity of 1000 rpm or more, which is a considerably severe condition in a practical apparatus. Moreover, the particle size of the silver particles obtained is not uniform.

本発明は、従来の製造方法における上記問題を解決したものであり、硝酸銀溶液を投入する際に激しい攪拌を必要とせず、穏やかな製造条件によって粒径が均一な銀ナノ粒子を効率よく製造する方法と、この方法によって製造した銀ナノ粒子を提供する。 The present invention solves the above-described problems in the conventional production method, and does not require vigorous stirring when adding a silver nitrate solution, and efficiently produces silver nanoparticles having a uniform particle size under mild production conditions. A method and silver nanoparticles produced by this method are provided.

本発明によれば、以下の構成からなる銀ナノ粒子とその製造方法が提供される。
(1)硝酸銀溶液を、クエン酸ソーダの存在下で、硫酸第一鉄によって還元し、生成した銀粒子を回収して銀ナノ粒子を得る方法において、硫酸第一鉄とクエン酸ソーダの混合溶液に硝酸銀溶液を投入する際に、硝酸銀溶液の投入を10秒以内の短時間で行うことを特徴とする銀ナノ粒子の製造方法。
(2)上記(1)に記載の方法によって製造された平均粒径20nm以下の粒径が均一な球状銀ナノ粒子。
According to this invention, the silver nanoparticle which consists of the following structures and its manufacturing method are provided.
(1) In a method in which a silver nitrate solution is reduced with ferrous sulfate in the presence of sodium citrate and the silver particles generated are recovered to obtain silver nanoparticles, a mixed solution of ferrous sulfate and sodium citrate A method for producing silver nanoparticles, wherein the silver nitrate solution is charged in a short time of 10 seconds or less when the silver nitrate solution is charged into the solution.
(2) Spherical silver nanoparticles having a uniform particle size with an average particle size of 20 nm or less produced by the method described in (1) above.

〔具体的な説明〕
本発明に係る製造方法のフローを図1に示す。図示するように、本発明の製造方法は、硝酸銀溶液を、クエン酸ソーダの存在下で、硫酸第一鉄によって還元し、生成した銀粒子を回収して銀ナノ粒子を得る方法において、硫酸第一鉄とクエン酸ソーダの混合溶液に硝酸銀溶液を投入する際に、硝酸銀溶液の投入を10秒以内の短時間で行うことを特徴とする銀ナノ粒子の製造方法である。
[Specific description]
The flow of the manufacturing method according to the present invention is shown in FIG. As shown in the figure, the production method of the present invention is a method in which a silver nitrate solution is reduced with ferrous sulfate in the presence of sodium citrate, and the produced silver particles are recovered to obtain silver nanoparticles. In the method for producing silver nanoparticles, the silver nitrate solution is charged in a short time within 10 seconds when the silver nitrate solution is charged into the mixed solution of ferrous iron and sodium citrate.

硝酸銀溶液に還元剤を加えて銀を還元し、生成した粒子を回収して銀ナノ粒子を製造する方法において、還元剤として硫酸第一鉄を用い、保護剤としてクエン酸ソーダを用いる。これらは予め混合して用いると良い。 In a method for reducing silver by adding a reducing agent to a silver nitrate solution and collecting the generated particles to produce silver nanoparticles, ferrous sulfate is used as the reducing agent and sodium citrate is used as the protective agent. These may be mixed and used in advance.

硝酸銀溶液の銀濃度は1〜200g/Lが適当である。銀濃度がこれより高いと保護剤であるクエン酸ソーダの量も多くする必要があり、このため液の粘性が大きくなるので取扱い難くなる。また、生成した銀微粒子が凝集しやすくなる。一方、銀濃度がこれより小さいと製造効率が低くなる。なお、硫酸第一鉄の量は硝酸銀を十分に還元できればよく、硝酸銀に対して等モルよりやや多い量であれば良い。 The silver concentration of the silver nitrate solution is suitably 1 to 200 g / L. If the silver concentration is higher than this, it is necessary to increase the amount of sodium citrate, which is a protective agent, and the viscosity of the liquid increases, which makes handling difficult. Further, the generated silver fine particles are likely to aggregate. On the other hand, when the silver concentration is smaller than this, the production efficiency is lowered. The amount of ferrous sulfate only needs to be sufficient to reduce silver nitrate, and may be an amount slightly larger than equimolar with respect to silver nitrate.

クエン酸ソーダの量は銀のモル数の2倍〜7倍が適当であり、3倍程度が好ましい。クエン酸ソーダの量がこれより少ないと、銀微粒子に対する吸着量が減少し、凝集を十分に抑制できなくなる。一方、クエン酸ソーダの量が上記範囲より多いと、液の粘性が大きくなるので取扱い難くなる。 The amount of sodium citrate is suitably 2 to 7 times the number of moles of silver, preferably about 3 times. If the amount of sodium citrate is less than this, the amount of adsorption on the silver fine particles decreases, and aggregation cannot be sufficiently suppressed. On the other hand, if the amount of sodium citrate is larger than the above range, the liquid becomes so viscous that it becomes difficult to handle.

硫酸第一鉄とクエン酸ソーダをあらかじめ混合しておき、室温下、この混合溶液に硝酸銀溶液を投入し、硝酸銀を還元する。本発明の製造方法は、硫酸第一鉄とクエン酸ソーダの混合溶液に硝酸銀溶液を投入する際に、硝酸銀溶液の投入を10秒以内の短時間で行う。硝酸銀溶液を短時間で投入することによって、結果として粒子径の揃った銀ナノ粒子が得られる。 Ferrous sulfate and sodium citrate are mixed in advance, and a silver nitrate solution is added to the mixed solution at room temperature to reduce the silver nitrate. In the production method of the present invention, when a silver nitrate solution is charged into a mixed solution of ferrous sulfate and sodium citrate, the silver nitrate solution is charged in a short time within 10 seconds. By introducing the silver nitrate solution in a short time, silver nanoparticles having a uniform particle size are obtained as a result.

硝酸銀溶液を、長い時間、例えば数分〜十数分かけて添加すると、混合初期に生成した粒子が核となり、その後に供給された硝酸銀の還元によって生じた銀が初期に生成した粒子の成長に費やされるため、粗大粒子が混在するようになり、結果的に粒径の不揃いな銀粒子になる。 When a silver nitrate solution is added over a long period of time, for example, several minutes to several tens of minutes, the grains generated in the initial stage of mixing become nuclei, and then the silver produced by the reduction of the supplied silver nitrate is used to grow the grains that were initially generated. As a result, coarse particles are mixed, resulting in silver particles having irregular particle sizes.

硫酸第一鉄とクエン酸ソーダの混合溶液に硝酸銀溶液を投入した後、数十秒、300rpm前後の回転数で攪拌し、全体に均一な反応を完結させる。1000rpm以上で激しく攪拌する必要はない。この反応によって銀が還元され、粒径がナノメートルサイズの銀超微粒子(銀ナノ粒子)を含む銀コロイド液が得られる。 After putting the silver nitrate solution into the mixed solution of ferrous sulfate and sodium citrate, the mixture is stirred for several tens of seconds at a rotational speed of about 300 rpm to complete a uniform reaction throughout. There is no need to stir vigorously above 1000 rpm. Silver is reduced by this reaction, and a silver colloid liquid containing silver ultrafine particles (silver nanoparticles) having a particle size of nanometer is obtained.

この銀コロイド液を遠心分離などによって固液分離し、分離した固形分をクエン酸ソーダで洗浄した後に回収する。回収した固形分を水に分散させて銀ナノ粒子が分散した銀コロイド液を得る。 The silver colloid liquid is separated into solid and liquid by centrifugation or the like, and the separated solid is recovered after washing with sodium citrate. The collected solid content is dispersed in water to obtain a silver colloid liquid in which silver nanoparticles are dispersed.

本発明の上記製造方法によれば、平均粒径20nm以下の粒径が均一な球状銀ナノ粒子を得ることができる。また、本発明の製造方法は、硝酸銀溶液を混合する際に、激しく攪拌する必要がなく、従って、装置の負担が少なく、効率よく銀ナノ粒子を製造することができる。 According to the production method of the present invention, spherical silver nanoparticles having a uniform particle diameter of 20 nm or less can be obtained. In addition, the production method of the present invention does not require vigorous stirring when mixing the silver nitrate solution, and therefore the silver nanoparticle can be efficiently produced with less burden on the apparatus.

以下に本発明の実施例と比較例を示す。
〔実施例1〕
硫酸第一鉄とクエン酸ソーダをおのおの0.25mol/Lおよび0.5mol/Lの濃度で含む水溶液500mLに、濃度0.83mol/Lの硝酸銀溶液100mLを3秒間で添加した。温度は20℃であり、混合後、300rpmで30秒間攪拌した。この反応で生成した銀コロイド液を3000rpmで遠心分離を行い、固形分を回収してこれを水で再分散させ、銀固形分10重量%の銀コロイド液を得た。このコロイド液中の銀粒子をTEM(透過電子顕微鏡)で観察したところ6〜7nmでサイズの揃った球状銀ナノ粒子であった。
Examples of the present invention and comparative examples are shown below.
[Example 1]
To 500 mL of an aqueous solution containing ferrous sulfate and sodium citrate at concentrations of 0.25 mol / L and 0.5 mol / L, 100 mL of a 0.83 mol / L silver nitrate solution was added over 3 seconds. The temperature was 20 ° C., and after mixing, the mixture was stirred at 300 rpm for 30 seconds. The colloidal silver solution produced by this reaction was centrifuged at 3000 rpm, the solid content was collected and redispersed with water to obtain a silver colloidal solution having a silver solid content of 10% by weight. When the silver particles in the colloidal liquid were observed with a TEM (transmission electron microscope), they were spherical silver nanoparticles having a uniform size of 6 to 7 nm.

〔実施例2〕
硫酸第一鉄とクエン酸ソーダをおのおの0.5mol/Lおよび0.9mol/Lの濃度で含む水溶液500mLに、濃度1.7mol/Lの硝酸銀溶液100mLを5秒間で添加した。温度は20℃であり、混合後、300rpmで30秒間攪拌した。この反応で生成した銀コロイド液を3000rpmで遠心分離を行い、固形分を回収してこれを水で再分散させ、銀固形分10重量%の銀コロイド液を得た。このコロイド液中の銀粒子をTEM(透過電子顕微鏡)で観察したところ6〜7nmでサイズの揃った球状ナノ粒子であった。
[Example 2]
To 500 mL of an aqueous solution containing ferrous sulfate and sodium citrate at concentrations of 0.5 mol / L and 0.9 mol / L, 100 mL of a silver nitrate solution having a concentration of 1.7 mol / L was added over 5 seconds. The temperature was 20 ° C., and after mixing, the mixture was stirred at 300 rpm for 30 seconds. The colloidal silver solution produced by this reaction was centrifuged at 3000 rpm, the solid content was collected and redispersed with water to obtain a silver colloidal solution having a silver solid content of 10% by weight. When the silver particles in the colloidal liquid were observed with a TEM (transmission electron microscope), they were spherical nanoparticles having a uniform size of 6 to 7 nm.

〔比較例〕
硝酸銀溶液の添加速度条件を3分間で添加した他は実施例1と同様の条件で反応させた。これで得られたコロイド液を実施例1と同様の条件で遠心分離して固形分を回収し、これを水分散させ銀固形分10重量%の銀コロイド液を得た。このコロイド液中の銀粒子をTEM観察したところ、最大径70nmから最小径数nmまでの銀粒子が混在した状態で、部分的に凝集している粒子が認められた。
[Comparative Example]
The reaction was carried out under the same conditions as in Example 1 except that the addition rate condition of the silver nitrate solution was added in 3 minutes. The colloidal solution thus obtained was centrifuged under the same conditions as in Example 1 to recover the solid content, which was dispersed in water to obtain a silver colloidal solution having a silver solid content of 10% by weight. When the silver particles in the colloidal liquid were observed with a TEM, partially agglomerated particles were observed in a state where silver particles having a maximum diameter of 70 nm to a minimum diameter of several nm were mixed.

本発明の製造方法を示す工程図Process drawing showing the production method of the present invention

Claims (2)

硝酸銀溶液を、クエン酸ソーダの存在下で、硫酸第一鉄によって還元し、生成した銀粒子を回収して銀ナノ粒子を得る方法において、硫酸第一鉄とクエン酸ソーダの混合溶液に硝酸銀溶液を投入する際に、硝酸銀溶液の投入を10秒以内の短時間で行うことを特徴とする銀ナノ粒子の製造方法。
In a method of reducing silver nitrate solution with ferrous sulfate in the presence of sodium citrate and collecting the generated silver particles to obtain silver nanoparticles, a silver nitrate solution is added to a mixed solution of ferrous sulfate and sodium citrate. The method for producing silver nanoparticles is characterized in that the silver nitrate solution is charged in a short time of 10 seconds or less.
請求項1に記載の方法によって製造された平均粒径20nm以下の粒径が均一な球状銀ナノ粒子。


A spherical silver nanoparticle having a uniform particle diameter of 20 nm or less, produced by the method according to claim 1.


JP2004232502A 2004-08-09 2004-08-09 Silver nanoparticle and production method therefor Withdrawn JP2006045655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232502A JP2006045655A (en) 2004-08-09 2004-08-09 Silver nanoparticle and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232502A JP2006045655A (en) 2004-08-09 2004-08-09 Silver nanoparticle and production method therefor

Publications (1)

Publication Number Publication Date
JP2006045655A true JP2006045655A (en) 2006-02-16

Family

ID=36024576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232502A Withdrawn JP2006045655A (en) 2004-08-09 2004-08-09 Silver nanoparticle and production method therefor

Country Status (1)

Country Link
JP (1) JP2006045655A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105636A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
WO2007117625A3 (en) * 2006-04-07 2007-12-21 Eastman Kodak Co Production of silver sulfate grains
WO2008105456A1 (en) * 2007-02-27 2008-09-04 Mitsubishi Materials Corporation Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP2009197324A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
JP2009531547A (en) * 2006-03-23 2009-09-03 ザ ユニバーシティー オブ リンカーン Preparation of stable silver colloids
JP2009197323A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
CN103357885A (en) * 2012-04-01 2013-10-23 深圳市宇驰检测技术有限公司 Preparation method and application for Raman-enhanced silver colloid
TWI477332B (en) * 2007-02-27 2015-03-21 Mitsubishi Materials Corp Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle
WO2015118885A1 (en) * 2014-02-07 2015-08-13 株式会社Nbcメッシュテック Bactericidal composition for bacterial skin disease
CN105268993A (en) * 2012-11-29 2016-01-27 江苏理工学院 Method for preparing flaky nano silver powder
JP2016069381A (en) * 2014-09-26 2016-05-09 株式会社Nbcメッシュテック Antifugal composition
CN105965029A (en) * 2016-06-02 2016-09-28 山东大学 Method for synthesizing water-soluble monodisperse spherical-like gold-silver alloy nano-particles
CN106216664A (en) * 2016-09-20 2016-12-14 华东理工大学 A kind of method preparing monocrystalline spherical silver nano-particle and the silver nano-grain being consequently formed
WO2021106171A1 (en) 2019-11-28 2021-06-03 エム・テクニック株式会社 Method for producing fine particles of silver
CN113414400A (en) * 2021-06-22 2021-09-21 山东建邦胶体材料有限公司 High-dispersibility silver powder for preparing silver paste on front surface of solar cell and preparation method thereof
CN113953523A (en) * 2021-10-12 2022-01-21 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder
CN115502408A (en) * 2022-09-21 2022-12-23 四川工程职业技术学院 Preparation method of flower-like silver powder

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105636A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JP2009531547A (en) * 2006-03-23 2009-09-03 ザ ユニバーシティー オブ リンカーン Preparation of stable silver colloids
WO2007117625A3 (en) * 2006-04-07 2007-12-21 Eastman Kodak Co Production of silver sulfate grains
US9580811B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
WO2008105456A1 (en) * 2007-02-27 2008-09-04 Mitsubishi Materials Corporation Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
TWI477332B (en) * 2007-02-27 2015-03-21 Mitsubishi Materials Corp Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP2009197324A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
JP2009197323A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof
CN103357885A (en) * 2012-04-01 2013-10-23 深圳市宇驰检测技术有限公司 Preparation method and application for Raman-enhanced silver colloid
CN105268993B (en) * 2012-11-29 2019-01-25 江苏理工学院 A method of preparing flaky nanometer silver powder
CN105268993A (en) * 2012-11-29 2016-01-27 江苏理工学院 Method for preparing flaky nano silver powder
WO2015118885A1 (en) * 2014-02-07 2015-08-13 株式会社Nbcメッシュテック Bactericidal composition for bacterial skin disease
JPWO2015118885A1 (en) * 2014-02-07 2017-03-23 株式会社Nbcメッシュテック Bactericidal composition for bacterial skin diseases
JP2016069381A (en) * 2014-09-26 2016-05-09 株式会社Nbcメッシュテック Antifugal composition
CN105965029A (en) * 2016-06-02 2016-09-28 山东大学 Method for synthesizing water-soluble monodisperse spherical-like gold-silver alloy nano-particles
CN105965029B (en) * 2016-06-02 2017-12-01 山东大学 The synthetic method of water-soluble monodispersed spherical gold-silver alloy nano particle
CN106216664B (en) * 2016-09-20 2018-10-16 华东理工大学 A kind of method preparing monocrystalline spherical shape silver nano-grain and the silver nano-grain being consequently formed
CN106216664A (en) * 2016-09-20 2016-12-14 华东理工大学 A kind of method preparing monocrystalline spherical silver nano-particle and the silver nano-grain being consequently formed
WO2021106171A1 (en) 2019-11-28 2021-06-03 エム・テクニック株式会社 Method for producing fine particles of silver
KR20220106128A (en) 2019-11-28 2022-07-28 엠. 테크닉 가부시키가이샤 Method for producing fine silver particles
CN113414400A (en) * 2021-06-22 2021-09-21 山东建邦胶体材料有限公司 High-dispersibility silver powder for preparing silver paste on front surface of solar cell and preparation method thereof
CN113414400B (en) * 2021-06-22 2022-03-22 山东建邦胶体材料有限公司 High-dispersibility silver powder for preparing silver paste on front surface of solar cell and preparation method thereof
CN113953523A (en) * 2021-10-12 2022-01-21 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder
CN113953523B (en) * 2021-10-12 2023-09-22 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder
CN115502408A (en) * 2022-09-21 2022-12-23 四川工程职业技术学院 Preparation method of flower-like silver powder

Similar Documents

Publication Publication Date Title
JP2006045655A (en) Silver nanoparticle and production method therefor
Songping et al. Preparation of micron size copper powder with chemical reduction method
Goia et al. Tailoring the particle size of monodispersed colloidal gold
Lee et al. Preparation and growth mechanism of uniform colloidal copper oxide by the controlled double-jet precipitation
TWI277469B (en) Silver particle powder and its production method
JP5155393B2 (en) Spherical cuprous oxide aggregate particle composition and method for producing the same
JP5392910B2 (en) Method for producing copper fine particles
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP2010513718A (en) Method for producing monodisperse and stable nanometallic silver and product obtained by said method
JP5235193B2 (en) Spherical copper fine powder and method for producing the same
JP2009120949A (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
CN103204525A (en) Application of lactam as solvent in nano-grade material preparation
JP4496026B2 (en) Method for producing metallic copper fine particles
LIU et al. Effects of reaction parameters on preparation of Cu nanoparticles via aqueous solution reduction method with NaBH4
CN110711581A (en) Copper-based composite metal oxide mesomorphic microsphere and preparation method and application thereof
Duan et al. Characterization of ZnSe microspheres synthesized under different hydrothermal conditions
CN108452816B (en) Small-particle-size metal phosphide nanoparticle/reduced graphene composite material and preparation method thereof
Vacassy et al. Nanostructured zinc sulphide phosphors
Cai et al. Spherically aggregated Cu 2 O–Ta hybrid sub-microparticles with modulated size and improved chemical stability
Adiatama et al. Synthesis and Characteristic of Nanosilica From Geothermal Sludge: Effect Of Surfactant
JP4484043B2 (en) Method for producing Ag nanoparticles
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
JPH10265812A (en) Production of superfine silver particle
Liu et al. Ionic liquid-assisted complex-solvothermal synthesis of ZnSe hollow microspheres
JP2011225974A (en) Method of manufacturing silver nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090414