JPWO2009038094A1 - 太陽電池の製造方法 - Google Patents

太陽電池の製造方法 Download PDF

Info

Publication number
JPWO2009038094A1
JPWO2009038094A1 JP2009533160A JP2009533160A JPWO2009038094A1 JP WO2009038094 A1 JPWO2009038094 A1 JP WO2009038094A1 JP 2009533160 A JP2009533160 A JP 2009533160A JP 2009533160 A JP2009533160 A JP 2009533160A JP WO2009038094 A1 JPWO2009038094 A1 JP WO2009038094A1
Authority
JP
Japan
Prior art keywords
target
solar cell
zno
sputtering
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009533160A
Other languages
English (en)
Inventor
高橋 明久
明久 高橋
石橋 暁
暁 石橋
杉浦 功
功 杉浦
悟 高澤
悟 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of JPWO2009038094A1 publication Critical patent/JPWO2009038094A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の太陽電池の製造方法は、光入射側の電力取り出し電極として機能する上部電極が、ZnOを基本構成元素とする透明導電膜からなる太陽電池の製造方法であって、前記透明導電膜の形成材料を備えたターゲットに、340V以下のスパッタ電圧を印加しつつ、前記ターゲットの表面に水平磁場を発生させてスパッタを行うことにより、前記上部電極を形成する工程を備える。

Description

本発明は、太陽電池の製造方法に関する。
本願は、2007年09月19日に、日本国に出願された特願2007−242608号に基づき優先権を主張し、その内容をここに援用する。
従来から、太陽電池の電極として透明導電材料であるITO(In−SnO)が利用されている。しかしながら、ITOの原料となるインジウム(In)は希少金属であり、今後は入手困難によるコスト上昇が予想される。そこで、ITOに替わる透明導電材料として、豊富かつ安価なZnO系材料が注目されている(例えば、特許文献1参照)。ZnO系材料は、大型基板への均一成膜が可能なスパッタリングに適しており、In系材料のターゲットを変更することで簡単に成膜することが可能である。またZnO系材料は、In系材料のように絶縁性の高い低級酸化物(InO)を持たない。
特開平9−87833号公報
ZnO系材料は、ITOに次ぐ低抵抗の材料であるものの、その一般的な比抵抗は500〜1000μΩcmであり、ITOの2.5〜5倍の値になっている。太陽電池の電極材料としてZnO系材料を利用する場合には、その比抵抗の高さが太陽電池の電力取り出し効率を低下させることになる。そのため、ZnO系材料のさらなる低抵抗化が望まれている。
そこで、本発明は、上述の事情に鑑みてなされたものであり、比抵抗が低いZnO系材料からなる透明導電膜を有する太陽電池の製造方法の提供を目的とする。
本願の発明者は、成膜時のスパッタ電圧および磁場強度が、ZnO系膜の比抵抗に影響を与えることを見出した。ZnO系膜の比抵抗が膜厚や酸化度によって大きく変化することは従来から知られていたが、この膜厚や酸化度のばらつきによるノイズが大きいため、比抵抗のスパッタ電圧依存性および磁場強度依存性は確認されていなかった。近時、太陽電池用の透明電極として厚膜のZnO系膜の形成方法を開発するにあたり、初めて比抵抗のスパッタ電圧依存性および磁場強度依存性を見出したのである。
本発明は上記課題を解決して係る目的を達成するために以下の手段を採用した。
(1)本発明に係る太陽電池の製造方法は、光入射側の電力取り出し電極として機能する上部電極が、ZnOを基本構成元素とする透明導電膜からなる太陽電池の製造方法であって、前記透明導電膜の形成材料を備えたターゲットに、340V以下のスパッタ電圧を印加しつつ、前記ターゲットの表面に水平磁場を発生させてスパッタを行うことにより、前記上部電極を形成する工程を備える。
(2)前記ターゲットに備えられた前記透明導電膜の形成材料は、Alを含む物質をZnOに添加した材料であるのが好ましい。
(3)前記上部電極の形成工程では、前記ターゲットの表面における前記水平磁場の強度の最大値を600ガウス以上にしてスパッタを行うのが好ましい。
上記(1)に記載の太陽電池の製造方法によれば、結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い透明導電膜を得ることができる。また、太陽電池の上部電極にこの透明導電膜を構成することで、上部電極に隣接して形成されているセルに対して光を透過することができる。また、光起電力で発生した電子を取り出す電気伝導性を確保することもできる。
上記(2)の場合、ターゲットに備えられた透明導電膜の形成材料に、Alを含む物質をZnOに添加した材料を採用することで、ZnO系膜の中でも特に比抵抗が低い透明導電膜を得ることができる。
(4)前記ターゲットの表面に前記水平磁場を発生させる磁場発生手段が、前記ターゲットの裏面に沿って配置された第1極性の第1磁石および第2極性の第2磁石を備え、前記第2磁石が、前記第1磁石を包囲するように配置されているのが好ましい。
この場合、ターゲットの表面に強い水平磁場を発生させることができるので、結晶格子の整ったZnO系膜を形成することが可能になる。したがって、比抵抗が低く耐熱性に優れた透明導電膜を得ることができる。
(5)前記上部電極の形成工程では、前記ターゲットの表面に前記水平磁場を発生させる磁場発生手段と前記ターゲットとの相対位置を変化させつつスパッタを行うのが好ましい。
この場合、非エロージョン領域を減少させることができる。また、ターゲットの使用効率を向上させ、投入パワーを増大させることもできる。
(6)前記上部電極の形成工程では、前記上部電極を形成する基板と前記ターゲットとの相対位置を変化させつつスパッタを行うのが好ましい。
この場合、基板全体に対して均質な透明導電膜を得ることができる。
(7)前記スパッタ電圧の印加は、直流電源および高周波電源を併用して行うのが好ましい。
この場合、スパッタ電圧を低下させることが可能になる。これにより、結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い透明導電膜を得ることができる。
本発明によれば、結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い透明導電膜を有した太陽電池を得ることができる。
図1は、本発明の一実施形態に係るマグネトロンスパッタ装置の概略構成図である。 図2は、成膜室の平面図である。 図3は、スパッタカソード機構の正面図である。 図4は、マグネトロンスパッタ装置の変形例である。 図5は、太陽電池の概略構成図である。 図6は、水平磁場強度とスパッタ電圧との関係を示すグラフである。 図7は、ZnO系膜の膜厚と比抵抗との関係を示すグラフである。 図8は、スパッタ電圧と比抵抗との関係を示すグラフである。 図9Aは、アニール処理温度が350℃以下の際の、アニール処理温度と比抵抗との関係を示すグラフである。 図9Bは、アニール処理温度が350℃以上の際の、アニール処理温度と比抵抗との関係を示すグラフである。
符号の説明
5 基板
10 マグネトロンスパッタ装置
22 ターゲット
26 DC電源(電圧印加手段)
30 磁気回路(磁場発生手段)
31 第1磁石
32 第2磁石
50 太陽電池
51 ガラス基板(基板)
53 上部電極
本発明の実施形態に係る太陽電池の製造方法につき、図面を用いて説明する。
(マグネトロンスパッタ装置)
図1は、マグネトロンスパッタ装置の概略構成図である。本実施形態のスパッタ装置10は、インターバック式のスパッタ装置であって、基板(不図示)の仕込み/取出し室12と、基板に対する成膜室14とを備えている。仕込み/取出し室12には、ロータリーポンプ等の粗引き排気手段12pが接続され、成膜室14には、ターボ分子ポンプ等の高真空排気手段14pが接続されている。本実施形態のスパッタ装置10では、基板を縦型支持して仕込み/取出し室12に搬入し、粗引き排気手段12pで仕込み/取出し室12を排気する。次に、高真空排気手段14pで高真空排気した成膜室14に基板を搬送し、成膜処理を行う。成膜後の基板は、仕込み/取出し室12を介して外部に搬出する。
成膜室14には、Ar等のスパッタガスを供給するガス供給手段17が接続されている。ガス供給手段17からは、O等の反応ガスを供給することも可能である。成膜室14には、スパッタカソード機構20が縦型に配置されている。
図2は、成膜室14の平面図である。スパッタカソード機構20は、成膜室14の幅方向における一方側面に配置されている。成膜室14の他方側面には、基板5を加熱するヒータ18が配置されている。
スパッタカソード機構20は、主にターゲット22と、背面プレート24と、磁気回路30とを備えている。背面プレート24は、DC電源26に接続され、負電位に保持されている。背面プレート24の表面には、ZnO系膜の形成材料をロウ材でボンディングしたターゲット22が配置されている。ZnO系膜の形成材料は、Alを含む物質をZnOに添加した材料である。
ガス供給手段17から成膜室14にスパッタガスを供給し、DC電源26により背面プレート24にスパッタ電圧を印加する。すると、成膜室14内でプラズマにより励起されたスパッタガスのイオンが、ターゲット22に衝突してZnO系膜の形成材料の原子を飛び出させる。飛び出した原子を基板5に付着させることにより、基板5にZnO系膜が形成される。
背面プレート24の裏面に沿って、ターゲット22の表面に水平磁場を発生させる磁気回路30が配置されている。磁気回路30は、背面プレート24側の表面の極性が相互に異なる第1磁石31と第2磁石32とを備えている。
図3は、スパッタカソード機構20の背面図である。第1磁石31は直線状に配置され、第2磁石32は第1磁石31の周縁部から所定距離を置いて額縁状に配置されている。
この第1磁石31および第2磁石32がヨーク34に装着されて、磁気回路ユニット30aが形成されている。また複数(本実施形態では2個)の磁気回路ユニット30a,30bがブラケット35により連結されて、磁気回路30が構成されている。
図2に示すように、背面プレート24側の極性が異なる第1磁石31と第2磁石32とにより、磁力線36で表される磁場が発生する。これにより、第1磁石31と第2磁石32との間におけるターゲット22の表面では、垂直磁場が0(水平磁場が最大)となる位置37が発生する。この位置37に高密度プラズマが生成することで、成膜速度を向上させることができる。
この位置37では、ターゲット22が最も深くエロージョンする。この位置37が固定されないようにしてターゲットの利用効率(寿命)を向上させるため、またターゲットとカソードとの冷却効率を上げてアーキング等を改善するため、磁気回路30は、水平方向に揺動可能に形成されている。ターゲット22の上下端ではエロージョンの形状が矩形や半円形となるため、磁気回路30は垂直方向にも揺動可能に形成されている。具体的には、磁気回路30のブラケット35を水平方向と垂直方向とに独立して往復運動させる一対のアクチュエータ(不図示)を備えている。これらの水平方向アクチュエータおよび垂直方向アクチュエータを異なる周期で駆動することにより、磁気回路30がターゲット22と平行な面内でジグザグ運動しうるようになっている。
(変形例)
図4は、マグネトロンスパッタ装置の変形例である。このスパッタ装置100は、インライン式のスパッタ装置であって、仕込み室12と、成膜室14と、取出し室16とを順に備えている。このスパッタ装置100では、基板を縦型支持して仕込み室12に搬入し、粗引き排気手段12pで仕込み室12を排気する。次に、高真空排気手段14pで高真空排気した成膜室14に基板5を搬送し、成膜処理を行う。成膜後の基板5は、粗引き排気手段16pで排気した取出し室16から外部に搬出する。
成膜室14には、複数(本変形例では3個)のスパッタカソード機構20が、基板5の搬送方向に並んで配置されている。各スパッタカソード機構20は、上記実施形態と同様に構成されている。本変形例では、複数のスパッタカソード機構20の前を基板5が通過する過程で、各スパッタカソード機構20により基板5の表面にZnO系膜を形成する。
これにより、均質なZnO系膜を形成することが可能になり、また成膜処理のスループットを向上させることができる。
(太陽電池)
本実施形態で製造する太陽電池について、図5に基づいて説明する。図5は太陽電池の概略構成図である。
図5に示すように、太陽電池50は、表面を構成するガラス基板51と、ガラス基板51上に設けられた透明導電膜からなる上部電極53と、アモルファスシリコンで構成されたトップセル55と、トップセル55と後述するボトムセル59との間に設けられた透明導電膜からなる中間電極57と、微結晶シリコンで構成されたボトムセル59と、透明導電膜からなるバッファ層61と、金属膜からなる裏面電極63とが積層されている。つまり、太陽電池50は、a−Si/微結晶Siタンデム型太陽電池となっている。このようなタンデム構造の太陽電池50では、短波長光をトップセル55で、長波長光をボトムセル59でそれぞれ吸収することにより、発電効率の向上を図ることができる。なお、上部電極53の膜厚は、2000Å〜10000Åの膜厚で形成されている。
トップセル55は、p層(55p)と、i層(55i)と、n層(55n)との3層構造で構成されており、このうちi層(55i)がアモルファスシリコンで形成されている。また、ボトムセル59もトップセル55と同様にp層(59p)と、i層(59i)と、n層(59n)との3層構造で構成されており、このうちi層(59i)が微結晶シリコンで構成されている。
このように構成した太陽電池50は、太陽光に含まれる光子というエネルギー粒子がi層に当たると、光起電力効果により、電子と正孔(hole)とが発生し、電子はn層、正孔はp層に向かって移動する。この光起電力効果により発生した電子を上部電極53と裏面電極63とにより取り出して、光エネルギーを電気エネルギーに変換することができる。
また、トップセル55とボトムセル59との間に中間電極57を設けることにより、トップセル55を通過してボトムセル59に到達する光の一部が中間電極57で反射して再びトップセル55側に入射する。そのため、セルの感度特性が向上し、発電効率の向上に寄与する。
また、ガラス基板51側から入射した太陽光は、各層を通過して裏面電極63で反射される。太陽電池50には、光エネルギーの変換効率を向上させるために、上部電極53に入射した太陽光の光路を伸ばすプリズム効果と、光の閉じ込め効果とを目的とした、テクスチャ構造を採用している。
そして、本実施形態における太陽電池50の上部電極53は、上述したマグネトロンスパッタ装置10を用いて形成されたZnO系膜(透明導電膜)で構成されている。上部電極53はi層で吸収するための光を透過する性質と、光起電力で発生した電子を取り出す電気伝導性とが要求されるため、比抵抗の低さが要求されている。そこで、Alを添加したZnOターゲットを採用してスパッタを行い、Alが添加されたZnO(AZO)膜を形成することで、ZnO系膜の中でも、特に比抵抗が低い透明導電膜を得ることができる。
(太陽電池の製造方法)
本実施形態では、図1〜図3に示すスパッタ装置10を用いて、ガラス基板51上に上部電極53として構成されるAlが添加されたZnO(AZO)膜を形成する。ZnO系膜は、結晶中に酸素空孔が形成され、自由電子が放出されることで、導電性を示すものである。このZnO系膜は非常に酸化されやすいので、脱ガスにより酸化源の影響を低減させるため、加熱成膜を行うことが望ましい。またZnO系膜は、Alなどが結晶中のZnの位置に入り込み、イオンとなって自由電子を放出することで、導電性が向上する性質を有する。この観点からも、マイグレーションの発生しやすい加熱成膜が有利である。
図2に示すターゲット22には、透明導電膜の形成材料として、Alが0.5〜10.0wt%(本実施形態では2.0wt%)添加されたZnOを採用する。成膜室14に無アルカリガラス基板51を搬入し、ヒータ18によりガラス基板51を100〜600℃(本実施形態では200℃)に加熱する。高真空排気手段14pにより成膜室14を高真空排気し、ガス供給手段17からスパッタガスとしてArガスを導入し、成膜室14の圧力を2〜10mTorr(本実施形態では5mTorr)に維持する。磁気回路30を揺動させつつ、DC電源26により背面プレート24に電力密度1〜8W/cm(本実施形態では4W/cm)の電力を投入する。なお、加熱成膜を行うため成膜後のアニール処理を行わないが、成膜後のアニール処理を行ってもよい。
上述したように、ZnO系膜は、Alなどが結晶中のZnの位置に入り込み、イオンとなって自由電子を放出することで、導電性が向上する性質を有する。そこで、Alを添加したZnOターゲットを採用してスパッタを行い、Alが添加されたZnO(AZO)膜を形成することで、ZnO系膜の中でも特に比抵抗が低い透明導電膜を得ることができる。
本願の発明者は、ZnO系膜の比抵抗の磁場強度依存性を評価した。そのため、ターゲット表面の水平磁場強度が300ガウスとなるように磁気回路30を調整した第1水準と、ターゲット表面の水平磁場強度が1500ガウスとなるように磁気回路30を調整した第2水準とで、ZnO系膜を形成した。ZnO系膜の膜厚は、各水準につき2000Å、5000Å、10000Åおよび15000Åとして、比抵抗を測定した。
図6は、水平磁場強度とスパッタ電圧との関係を示すグラフである。図6に示すように、水平磁場強度が高いほどスパッタ電圧が低くなる関係にある。一般にスパッタ電圧は放電インピーダンス(=ターゲット電圧/ターゲット電流)の影響を受け、放電インピーダンスはターゲット表面の磁場強度の影響を受ける。磁場強度を増加させるとプラズマ密度が大きくなり、その結果スパッタ電圧が低下するのである。上述した第1水準(水平磁場強度が300ガウス)のスパッタ電圧は450V程度に、第2水準(水平磁場強度が1500ガウス)のスパッタ電圧は300V程度になる。
図7は、ZnO系膜の膜厚と比抵抗との関係を示すグラフである。ZnO系材料の比抵抗は、膜厚依存性を有するため、膜厚の増加に伴って比抵抗が減少している。
第2水準(1500ガウス、300V)で成膜したZnO系膜の比抵抗は、第1水準(300ガウス、435V)より小さくなっている。この理由は、以下のように考えられる。比抵抗が膜厚依存性を有することからして、ZnO系材料は結晶格子が整いにくい性質を有する。高いスパッタ電圧(弱い磁場)で形成したZnO系膜は、結晶格子が乱れているため比抵抗が高くなる。この場合でも、膜厚を厚くすることで結晶格子が整って、比抵抗が低下する傾向が見られる。しかしながら、結晶格子の整い方が十分でないため、低いスパッタ電圧(強い磁場)で形成された膜厚の薄いZnO系膜に比べて、比抵抗が高くなるのである。
図8は、基板を200℃に加熱し、膜厚が2000ÅのZnO系膜を形成した場合の、スパッタ電圧と比抵抗との関係を示すグラフである(スパッタ電圧は負電位のまま記載している)。スパッタ電圧の絶対値が340V以下の範囲では比抵抗が400μΩcm前後であるが、スパッタ電圧の絶対値が340Vを超えると比抵抗が急激に増加することがわかる。
したがって、スパッタ電圧を340V以下とし、ターゲット表面における水平磁場強度の最大値を600ガウス以上(図6参照)としてスパッタを行い、ZnO系膜を形成することが望ましい。これにより、結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い(膜厚が薄くても比抵抗が500μΩcm以下の)ZnO系膜を得ることができる。また340V以下の低電圧でスパッタを行うことにより、プラズマにより励起された負イオンが加速されて基板に突入し、下地膜等にダメージが発生するのを抑制することができる。
また、本願の発明者は、ZnO系膜の耐熱性の磁場強度依存性を評価した。具体的には、第1水準および第2水準で5000ÅのZnO系膜を形成し、成膜後のアニール処理を様々な温度で行って、比抵抗を測定した。アニール処理は、150〜600℃(50℃ごと)の温度にて、大気中で1時間行った。
図9Aと図9Bとは、アニール処理温度と比抵抗との関係を示すグラフである。図9Aは、アニール処理温度が350℃以下のグラフであり、図9Bは、アニール処理温度が350℃以上のグラフである。アニール温度が450℃以下の場合には、第1水準および第2水準とも比抵抗の大幅な増加が見られない。これに対して、図9Bに示すようにアニール温度が500℃以上の場合には、第2水準(1500ガウス、300V)のZnO系膜の比抵抗が、第1水準(300ガウス、435V)よりも小さくなっている。
この理由は、以下のように考えられる。ZnO系膜は、酸素空孔が結晶中に形成され自由電子が放出されることで、導電性を示すものである。上述したように、高いスパッタ電圧(弱い磁場)で形成したZnO系膜の結晶格子は乱れているが、結晶格子が乱れているほど酸素と結合しやすくなっている。そのため、高いスパッタ電圧(弱い磁場)で形成したZnO系膜は、成膜後の高温アニールにより酸化されやすく、低いスパッタ電圧(強い磁場)で形成したZnO系膜に比べて比抵抗が高くなるのである。
したがって、上記のようにスパッタ電圧を340V以下(または340V未満)とし、ターゲット表面における水平磁場強度の最大値を600ガウス以上としてスパッタを行い、ZnO系膜を形成することが望ましい。これにより、結晶格子の整ったZnO系膜が形成されるので、成膜後に高温でアニール処理を行っても酸化されにくくなり、比抵抗の増加を抑制することができる。すなわち、耐熱性に優れたZnO系膜を得ることができる。
これに伴って、加熱成膜後の基板を大気中に取出す場合でも、基板の冷却を廃止または簡易化することが可能になり、製造コストを低減することができる。
上述のようにガラス基板51上に上部電極53を形成した後、トップセル55を形成する。トップセル55を形成した後、トップセル55上に、中間電極57として構成されるAlが添加されたZnO(AZO)膜を、上部電極53と同様の方法で形成する。なお、中間電極57を形成する際には、AlではなくGaが添加されたZnO(GZO)膜を形成してもよい。
中間電極57を形成した後、ボトムセル59を形成する。ボトムセル59を形成した後、ボトムセル59上に、バッファ層61として構成されるAlが添加されたZnO(AZO)膜を、上部電極53および中間電極57と同様の方法で形成する。なお、バッファ層61を形成する際には、AlではなくGaが添加されたZnO(GZO)膜を形成してもよい。
そして、バッファ層61を形成した後、AgやAlなどの金属膜からなる裏面電極63を形成することで、太陽電池50が製造される。なお、中間電極57とバッファ層61とを形成する際には、発電層(トップセル55またはボトムセル59)の耐熱性を考慮して200℃以下で形成することが望ましい。
本実施形態によれば、光入射側の電力取り出し電極として機能する上部電極53が、ZnOを基本構成元素とする透明導電膜からなる太陽電池50の製造方法であって、透明導電膜の形成材料を備えたターゲット22にスパッタ電圧を印加しつつ、ターゲット22の表面に水平磁場を発生させてスパッタを行うことにより、上部電極53を形成する工程を備え、上部電極53の形成工程では、スパッタ電圧を340V以下にしてスパッタを行うようにした。
また、ターゲット22に備えられた透明導電膜の形成材料は、Alを含む物質をZnOに添加した材料とした。
さらに、ターゲット22の表面における水平磁場強度の最大値を600ガウス以上にしてスパッタを行うようにした。
この構成によれば、結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い透明導電膜を得ることができる。また、結晶格子の整ったZnO系膜が形成されるので、高温に加熱しても酸化されにくくなり、耐熱性に優れた透明導電膜を得ることができる。また、太陽電池50の上部電極53にこの透明導電膜を構成することで、隣接するように形成されたトップセル55に対して光を透過することができ、また、光起電力で発生した電子を取り出す電気伝導性を確保することができる。
さらに、比抵抗を低下させることができるため、上部電極53の膜厚を薄くすることが可能になり、製造コストを低減することができる。また、上部電極53の膜厚を薄くすることができるため、上部電極53の光透過率を向上させることもできる。
なお、本発明の技術範囲は、上述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した各実施形態に種々の変更を加えたものを含む。
すなわち、各実施形態で挙げた具体的な材料や構成などは、ほんの一例に過ぎず、適宜変更が可能である。
例えば、実施形態のスパッタ装置は、基板を縦型支持してスパッタを行うものであるが、基板を水平支持するスパッタ装置で本発明を実施することも可能である。
また、実施形態の磁気回路ユニットは、第1極性の第1磁石の周囲に第2極性の第2磁石を配置して構成されていたが、これに加えて第2磁石の周囲に第1極性の第3磁石を配置して磁気回路ユニットを構成してもよい。
また、本実施形態ではタンデム構造の太陽電池の場合について説明したが、シングル接合型の太陽電池にも適用できる。なお、シングル接合型の太陽電池とは、図5に示す太陽電池の中間電極とボトムセルとが形成されていない構成の太陽電池である。
さらに、実施形態のスパッタカソード機構ではDC電源を採用したが、DC電源およびRF電源を併用することも可能である。DC電源のみを採用した場合には、図8に示すように、スパッタ電圧300Vで成膜したZnO系膜(膜厚2000Å)の比抵抗が436.6μΩcmであった。これに対して、例えば低電流4A設定のDC電源と、350WのRF電源とを併用した場合には、ZnO−2wt%Alターゲットに対するスパッタ電圧を100V程度として成膜したZnO系膜(膜厚2000Å)の比抵抗が389.4μΩcmであった。このように、DC電源にRF電源を併用することでスパッタ電圧が低下し、スパッタ電圧の低下に伴ってZnO系膜の比抵抗も低下する。すなわち、磁場強度だけでなく電源面からスパッタ電圧を低下させることによっても、ZnO系膜の低抵抗化が可能になる。
結晶格子の整ったZnO系膜を形成することが可能になり、比抵抗が低い透明導電膜を得ることができる。また、太陽電池の上部電極にこの透明導電膜を構成することで、上部電極に隣接して形成されているセルに対して光を透過することができ、また、光起電力で発生した電子を取り出す電気伝導性を確保することができる。

Claims (7)

  1. 光入射側の電力取り出し電極として機能する上部電極が、ZnOを基本構成元素とする透明導電膜からなる太陽電池の製造方法であって、
    前記透明導電膜の形成材料を備えたターゲットに、340V以下のスパッタ電圧を印加しつつ、前記ターゲットの表面に水平磁場を発生させてスパッタを行うことにより、前記上部電極を形成する工程を備える
    ことを特徴とする太陽電池の製造方法。
  2. 請求項1に記載の太陽電池の製造方法であって、
    前記ターゲットに備えられた前記透明導電膜の形成材料は、Alを含む物質をZnOに添加した材料である。
  3. 請求項1に記載の太陽電池の製造方法であって、
    前記上部電極の形成工程では、前記ターゲットの表面における前記水平磁場の強度の最大値を600ガウス以上にしてスパッタを行う。
  4. 請求項1に記載の太陽電池の製造方法であって、
    前記ターゲットの表面に前記水平磁場を発生させる磁場発生手段は、前記ターゲットの裏面に沿って配置された第1極性の第1磁石および第2極性の第2磁石を備え、
    前記第2磁石は、前記第1磁石を包囲するように配置されている。
  5. 請求項1に記載の太陽電池の製造方法であって、
    前記上部電極の形成工程では、前記ターゲットの表面に前記水平磁場を発生させる磁場発生手段と前記ターゲットとの相対位置を変化させつつスパッタを行う。
  6. 請求項1に記載の太陽電池の製造方法であって、
    前記上部電極の形成工程では、前記上部電極を形成する基板と前記ターゲットとの相対位置を変化させつつスパッタを行う。
  7. 請求項1に記載の太陽電池の製造方法であって、
    前記スパッタ電圧の印加は、直流電源および高周波電源を併用して行う。
JP2009533160A 2007-09-19 2008-09-17 太陽電池の製造方法 Pending JPWO2009038094A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007242608 2007-09-19
JP2007242608 2007-09-19
PCT/JP2008/066771 WO2009038094A1 (ja) 2007-09-19 2008-09-17 太陽電池の製造方法

Publications (1)

Publication Number Publication Date
JPWO2009038094A1 true JPWO2009038094A1 (ja) 2011-01-06

Family

ID=40467904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533160A Pending JPWO2009038094A1 (ja) 2007-09-19 2008-09-17 太陽電池の製造方法

Country Status (7)

Country Link
US (1) US20100206719A1 (ja)
EP (1) EP2197044A4 (ja)
JP (1) JPWO2009038094A1 (ja)
KR (1) KR20100036382A (ja)
CN (1) CN101790795A (ja)
TW (1) TW200937661A (ja)
WO (1) WO2009038094A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222634A (ja) * 2010-04-06 2011-11-04 Ulvac Japan Ltd 太陽電池の製造方法
JP5533448B2 (ja) * 2010-08-30 2014-06-25 住友金属鉱山株式会社 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
JP6174251B2 (ja) * 2014-05-22 2017-08-02 東芝三菱電機産業システム株式会社 バッファ層の成膜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987833A (ja) * 1995-09-26 1997-03-31 Asahi Glass Co Ltd 透明導電膜の製造方法
JP2003239069A (ja) * 2002-02-15 2003-08-27 Ulvac Japan Ltd 薄膜の製造方法及び装置
JP2004169138A (ja) * 2002-11-21 2004-06-17 Ulvac Japan Ltd 透明導電膜の製造方法及び製造装置
JP2004260014A (ja) * 2003-02-26 2004-09-16 Kyocera Corp 多層型薄膜光電変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772346B2 (ja) * 1989-03-03 1995-08-02 日本真空技術株式会社 低抵抗透明導電膜の製造方法
JP2936276B2 (ja) * 1990-02-27 1999-08-23 日本真空技術株式会社 透明導電膜の製造方法およびその製造装置
US5458759A (en) * 1991-08-02 1995-10-17 Anelva Corporation Magnetron sputtering cathode apparatus
JP2899190B2 (ja) * 1993-01-08 1999-06-02 信越化学工業株式会社 マグネトロンプラズマ用永久磁石磁気回路
KR100846484B1 (ko) * 2002-03-14 2008-07-17 삼성전자주식회사 Rmim 전극 및 그 제조방법 및 이를 채용하는 스퍼터링장치
KR100917463B1 (ko) * 2003-01-15 2009-09-14 삼성전자주식회사 마그네트론 캐소드 및 이를 채용하는 마그네트론 스퍼터링장치
DE10336422A1 (de) * 2003-08-08 2005-03-17 Applied Films Gmbh & Co. Kg Vorrichtung zur Kathodenzerstäubung
JP4737555B2 (ja) 2006-02-10 2011-08-03 東芝ライテック株式会社 電球形蛍光ランプおよび照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987833A (ja) * 1995-09-26 1997-03-31 Asahi Glass Co Ltd 透明導電膜の製造方法
JP2003239069A (ja) * 2002-02-15 2003-08-27 Ulvac Japan Ltd 薄膜の製造方法及び装置
JP2004169138A (ja) * 2002-11-21 2004-06-17 Ulvac Japan Ltd 透明導電膜の製造方法及び製造装置
JP2004260014A (ja) * 2003-02-26 2004-09-16 Kyocera Corp 多層型薄膜光電変換装置

Also Published As

Publication number Publication date
WO2009038094A1 (ja) 2009-03-26
EP2197044A4 (en) 2012-06-27
EP2197044A1 (en) 2010-06-16
US20100206719A1 (en) 2010-08-19
TW200937661A (en) 2009-09-01
CN101790795A (zh) 2010-07-28
KR20100036382A (ko) 2010-04-07

Similar Documents

Publication Publication Date Title
US20100258433A1 (en) Film forming method and film forming apparatus for transparent electrically conductive film
JP5165765B2 (ja) 太陽電池の製造方法
JPWO2009038091A1 (ja) 太陽電池の製造方法
JP5155335B2 (ja) 太陽電池の製造方法
CN102282677A (zh) 太阳能电池的制造方法和太阳能电池
JP2009176927A (ja) 太陽電池の製造方法
JP5145342B2 (ja) 透明導電膜の形成方法
JPWO2009038094A1 (ja) 太陽電池の製造方法
JP2009021607A (ja) 透明導電性酸化物コーティングの製造方法
US8420436B2 (en) Method for manufacturing solar cell, etching device, and CVD device
WO2010032490A1 (ja) 太陽電池及びその製造方法
JP2005126758A (ja) 透明導電膜の製造方法
JP2004214541A (ja) 薄膜太陽電池及びその製造方法
JP2010215948A (ja) 透明導電膜の製造方法
KR20150136721A (ko) 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
JP2011222634A (ja) 太陽電池の製造方法
JP2012243981A (ja) 太陽電池、太陽電池用透明導電膜付き基板及びそれらの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703