JPWO2008117652A1 - 反射防止フィルム、及び反射防止フィルムの製造方法、それを用いた偏光板、及び表示装置 - Google Patents

反射防止フィルム、及び反射防止フィルムの製造方法、それを用いた偏光板、及び表示装置 Download PDF

Info

Publication number
JPWO2008117652A1
JPWO2008117652A1 JP2009506275A JP2009506275A JPWO2008117652A1 JP WO2008117652 A1 JPWO2008117652 A1 JP WO2008117652A1 JP 2009506275 A JP2009506275 A JP 2009506275A JP 2009506275 A JP2009506275 A JP 2009506275A JP WO2008117652 A1 JPWO2008117652 A1 JP WO2008117652A1
Authority
JP
Japan
Prior art keywords
film
refractive index
index layer
acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009506275A
Other languages
English (en)
Other versions
JP5158075B2 (ja
Inventor
岡野 賢
賢 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009506275A priority Critical patent/JP5158075B2/ja
Publication of JPWO2008117652A1 publication Critical patent/JPWO2008117652A1/ja
Application granted granted Critical
Publication of JP5158075B2 publication Critical patent/JP5158075B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、高温高湿下による耐久試験後の耐薬品性、密着性、及び膜強度(耐擦傷性)アップを、1層の低屈折率層よりなる反射防止層で達成でき、低コスト性にも優れる反射防止フィルム、それを用いた偏光板、及び表示装置を提供する。この反射防止フィルムは、低屈折率層が、内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子を含有し、かつ低屈折率層の表面(膜面)pHが2.0〜7.5、好ましくは2.0〜4.0である。好ましくは低屈折率層の表面(膜面)pHの測定条件が、50℃温浴における2時間浸漬後である。低屈折率層が反応性変性シリコーン樹脂、またはイミダゾールもしくはその誘導体を含有することが好ましい。

Description

本発明は、反射防止フィルム、及び反射防止フィルムの製造方法、それを用いた偏光板、及び表示装置に関するものである。
一般に、反射防止フィルムは、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、多層薄膜の光干渉によって、反射率を低減する機能を有しており、ディスプレイの最表面に配置される。
近年、反射防止フィルムは、屋外や室内など、使用環境も様々になってきている。特に屋外用の大画面用途で使用できる膜強度に優れ、かつ環境変化に対して優れた反射防止フィルムが求められている。
従来、反射防止フィルムでは、反射率低減機能(屈折率低下)を維持したまま、膜強度や耐薬品性を向上するため、シリカ系からなる膜が用いられる。一方、シリカ系からなる膜がアルカリ性を有している場合、重縮反応が進み、膜を形成する基本骨格が大きくなる。一般に重縮反応の進行に伴い、膜の機械強度の向上が見られる(非特許文献1参照。)。
しかしながら、光学用途の反射防止フィルムでは、アルカリ性を有したシリカ系膜を用いた場合、膜の反応制御が難しく、基材との密着性が十分となり、強度が得られにくく、特に環境変化(高温高湿下)に対して、膜強度や耐薬品性の劣化が大きかった。
特許文献1には、例えば外殻層を有し、内部が多孔質または空洞となっている中空シリカ微粒子を用いる技術が記載されている。この特許文献は、反射率低減機能(屈折率低下)を維持したまま、膜強度や耐薬品性を向上するというものであった。
特許文献2には、弾性率が3500〜5500Mpaの範囲にある透明フィルム上に、(a)活性エネルギー線硬化樹脂を含むハードコート層、(b)導電性金属酸化物微粒子を含む中屈折率層、(c)酸化チタン微粒子を含む高屈折率層、(d)外殻層を有しかつ内部が多孔質または空洞になっている中空シリカ系微粒子を含む低屈折率層を設けた反射防止フィルムが開示されている。
特開2002−79616号公報 特開2005−266051号公報 S.Shibata, F.Hanawa and M.Nakahara, Electron.Ltt, 21, 24(1985) 1145.
しかしながら、特許文献1で作製した中空シリカ微粒子を含有したフィルムは、表面(膜面)のpHが、アルカリ性を有しており、このフィルムを光学用途の反射防止フィルム上に適用した場合、膜強度が不十分で、特に屋外での使用を想定した高温高湿下での膜強度の耐擦傷性、耐薬品性、並びに密着性について実用上問題があった。
また、特許文献2に記載の反射防止フィルムによれば、確かに、強制劣化試験後の膜強度(耐擦傷性)は上昇するものの、反射防止層を3層構成としているため、高コストにも繋がるという問題があった。
本発明の目的は、上記の従来技術の問題を解決し、高温高湿下による耐久試験後の耐薬品性、密着性、及び膜強度アップを、1層の低屈折率層よりなる反射防止層で達成でき、低コスト性にも優れる反射防止フィルム、それを用いた偏光板、及び表示装置を提供することにある。
本発明の上記目的は以下の構成により達成される。
1.
透明フィルム基材の少なくとも一方の最表面に低屈折率層を有する反射防止フィルムであって、低屈折率層が、内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子を含有し、かつ低屈折率層の表面(膜面)pHが、2.0〜7.5であることを特徴とする、反射防止フィルム。
2.
前記低屈折率層の表面(膜面)pHが、2.0〜4.0であることを特徴とする、1に記載の反射防止フィルム。
3.
前記低屈折率層の表面(膜面)pHの測定条件が、50℃温浴における2時間浸漬後であることを特徴とする、1または2に記載の反射防止フィルム。
4.
低屈折率層が、反応性変性シリコーン樹脂を含有することを特徴とする、1〜3のいずれか1項に記載の反射防止フィルム。
5.
低屈折率層が、下記一般式(1)で示されるイミダゾールまたはその誘導体を含有することを特徴とする、1〜4のいずれか1項に記載の反射防止フィルム。
(R1)nA …(1)
式中、R1は水素原子、アミノ基または水酸基が置換してもよい炭素数1〜3のアルキル基、アルケニル基及びハロゲン原子を表わし、R1が複数の場合は互いに同じでも異なってもよい。R1が表わすアミノ基にはメチル基またはエチル基が1または2個置換していてもよい。またアルキル基及びアルケニル基には炭素数1〜3のアルキル基が置換してもよい。nは1〜3の整数である。Aはイミダゾリル基を表わす。
6.
1〜5のいずれか1項に記載の反射防止フィルムを作製することを特徴とする、反射防止フィルムの製造方法。
7.
1〜5のいずれか1項に記載の反射防止フィルムを一方の面に用いることを特徴とする、偏光板。
8.
1〜5のいずれか1項に記載の反射防止フィルムを用いることを特徴とする、表示装置。
9.
7に記載の偏光板を用いることを特徴とする、表示装置。
本発明によれば、高温高湿下による耐久試験後の耐薬品と密着性、及び膜強度アップを達成することができ、低コスト性に優れた反射防止フィルム得ることができる。また、本発明の反射防止フィルムを用いることにより、光の写り込みが気にならず、視認性に優れた偏光板及び該偏光板を用いた表示装置を得ることができる。
本発明に好ましい液晶表示装置の構成を示す概略図である。
符号の説明
1 本発明に係る反射防止フィルム(偏光板保護フィルム)
2 二色性偏光膜
3 偏光板保護フィルム
4 光拡散板
5 導光板
6 バックライト
7 液晶表示パネル
8 視認側偏光板
つぎに、本発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。
本発明による反射防止フィルムは、透明樹脂フィルムよりなる透明フィルム基材の少なくとも一方の最表面に、透明フィルム基材よりも屈折率の低い、下記に説明する低屈折率層を有する。
また、本発明による反射防止フィルムには、低屈折率層以外にも、低屈折率層と透明フィルム基材の間に、透明フィルム基材よりも屈折率の高い高屈折率層を設けることが、光学干渉によって反射率が減少する点から好ましい。なお、本発明では、低屈折率層の単層、または低屈折率層や高屈折率層等の積層された層を反射防止層ともいう。
反射防止層は、透明フィルム基材側から屈折率の異なる3層を、中屈折率層/高屈折率層/低屈折率層の順に積層されているものが、反射率が減少する点からさらに好ましく用いられる。ここで、中屈折率層とは、透明フィルム基材よりも屈折率が高く、高屈折率層よりも屈折率の低い層を意味する。
つぎに、本発明による反射防止フィルムの低屈折率層について説明する。
本発明による反射防止フィルムの低屈折率層は、透明フィルム基材の屈折率より低い層を低屈折率層という。具体的な屈折率としては、23℃、波長550nmで1.30〜1.45の範囲のものが好ましい。また、低屈折率層の膜厚は、光学干渉層としての特性から、5nm〜0.5μmが好ましく、10nm〜0.3μmがより好ましく、30nm〜0.2μmであることがさらに好ましい。
本発明による反射防止フィルムの低屈折率層は、内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子を含有し、かつpHが2.0〜7.5で有ることを特徴とする。
低屈折率層の表面(膜面)pHが2.0〜7.5にコントロールすることで、低層折率層内での反応を抑制し、基材との密着性にも優れ、特に高温高湿下での耐薬品性及び膜強度、密着性に優れた反射防止フィルムを提供できることを見出し、本発明を完成するに至ったものである。
更に好ましくは、低屈折率層の表面(膜面)pHが2.0〜4.0であり、該範囲において、特に優れた膜強度(耐擦傷性)の効果を発揮する。また、50℃温浴における2時間浸漬後の表面(膜面)のpHが、上記範囲にコントロールされると、安定して本発明の目的効果が得られる事から、特に好ましい。
なお、50℃温浴の水としては、pHが6〜8のイオン交換水を用いる。
つぎに、本発明による反射防止フィルムの低屈折率層に含有される内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子(以下、単に中空微粒子ともいう)について説明する。
中空微粒子は、(1)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(2)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。
なお、空洞粒子は、内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒径は5〜200nm、好ましくは10〜70nmが望ましい。中空微粒子の粒径は変動係数が1〜40%の単分散であることが好ましい。
本発明で用いられる中空シリカ微粒子の平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
本発明で使用する中空微粒子の平均粒径は、形成される低屈折率層の透明被膜の厚さに応じて適宜選択され、透明被膜の膜厚の3/2〜1/10、好ましくは2/3〜1/10が望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。
分散媒としては、水、アルコール(例えばメタノール、エタノール、イソプロピルアルコール)、及びケトン(例えばメチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、プロピレンモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜40nm、好ましくは1〜20nm、さらに好ましくは2〜15nmが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、塗布液成分が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率化の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、塗布液成分が内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率化の効果が十分得られなくなることがある。
また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率化の効果が十分に現れないことがある。
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的にはAl、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。
シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WOとの1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MOx)で表わしたときのモル比:MOx/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。
多孔質粒子のモル比:MOx/SiOが、0.0001未満のものは、得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また多孔質粒子のモル比:MOx/SiOが1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いものを得ることが難しいことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。
また多孔質物質としては、多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1工程〜第3工程を実施するこれによって中空微粒子を製造することができる。
(第1工程:多孔質粒子前駆体の調製)
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
これら水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類、及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。
当該シード粒子としては、特に制限はないが、SiO、Al、TiO、またはZrO等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。さらに上記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。
シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に上記化合物の水溶液を、アルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行なう必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
上記したシリカ原料、及び無機化合物原料は、アルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン、及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、またはシード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行なう必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOx)に換算し、MOx/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。
空洞粒子を調製する場合、MOx/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。
(第2工程:多孔質粒子からのシリカ以外の無機化合物の除去)
第2工程では、第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加して、シリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜40nm、好ましくは0.5〜15nmの厚さであればよい。なお、シリカ保護膜を形成しても、この工程での保護膜は多孔質であり、厚さが薄いので、上記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、上記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく、後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は、粒子が壊れることがないので、必ずしも保護膜を形成する必要はない。
また、空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多すぎると、シリカ保護膜が厚くなりすぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。
シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、下記の一般式(2)
RnSi(OR′)4−n …(2)
式中、RとR′は、アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、nは0、1、2または3を表わす。
で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、多孔質粒子の分散液に加え、アルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。
このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
(第3工程:シリカ被覆層の形成)
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
なお、ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜40nm、好ましくは1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。またシリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜40nm、好ましくは1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
ついで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率化の効果が得られないことがある。
このようにして得られた中空シリカ微粒子の屈折率は、1.42未満と低い。このような中空シリカ微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。
また、塗布組成物に添加したときの安定性の点から中空微粒子としては、表面に炭化水素主鎖を有するポリマーが共有結合している中空シリカ微粒子が好ましい。
つぎに、炭化水素主鎖を有するポリマーが共有結合している中空微粒子について説明する。炭化水素主鎖を有するポリマーとは、直接共有結合、または中空シリカ微粒子の表面のシリカと炭化水素主鎖を有するポリマーとの間に結合剤を介在させ、シリカと結合剤とを共有結合し、結合剤とポリマーとが共有結合しているものも言う。結合剤としては、カップリング剤が好ましく用いられる。
炭化水素主鎖を有するポリマーが共有結合している中空微粒子は、(1)中空シリカ粒子表面を未処理、もしくはカップリング剤などで処理した状態で、中空シリカ微粒子表面と共有結合を形成可能な官能基を有するポリマーを反応させ、中空シリカ粒子表面にポリマーをグラフトさせる方法、あるいは(2)中空シリカ粒子表面を未処理、もしくはカップリング剤などで処理した状態で、中空シリカ微粒子表面から単量体を重合することでポリマー鎖を生長させ、表面グラフトさせる方法等により製造することができる。具体的な製造方法としては、特開2006−257308号公報に記載の方法を用いることができる。
上記製造方法では、表面修飾率向上の観点から、中空シリカ微粒子表面から単量体を重合することでポリマー鎖を生長させ、表面グラフトさせる方法が好ましい。重合開始能、もしくは連鎖移動能を有する官能基を含むカップリング剤で中空シリカ微粒子を表面処理し、そこから単量体を重合し、ポリマー鎖を生長させて表面グラフトさせる方法がさらに好ましい。重合開始能もしくは連鎖移動能を有する官能基を、中空シリカ微粒子に導入するための表面処理剤(カップリング剤)としては、アルコキシ金属化合物(例えばチタンカップリング剤、アルコキシシラン化合物(シランカップリング剤))が好ましく用いられる。
また、中空シリカ微粒子は、導電性金属酸化物被覆層を有する中空シリカ系粒子を用いてもよい。導電性金属酸化物被覆層としては酸化アンチモン被覆層が好ましい。
中空シリカ微粒子は平均粒径の異なる2種以上の中空シリカ微粒子を含有していてもよい。
つぎに、内部が多孔質または空洞である少なくとも中空シリカ微粒子以外の低屈折率層を形成するための塗布組成物について説明する。
低屈折率層の表面(膜面)pHを2.0〜7.5にコントロールすることで、低層折率層内での反応を抑制し、本発明の効果を発揮する。より好ましくは、低屈折率層の表面(膜面)pHは2.0〜4.0である。低屈折率層を形成する組成物には、低屈折率層の表面(膜面)pHをコントロールするため、pKa2〜7の範囲に少なくとも1つのpKa値を持つ化合物を添加することが好ましい。
なお、pKaとは、下記の酸解離反応における酸解離定数で、Kaの対数値であり、pKa=−log10Kaで表される数値である。
HA←→[H][A
Ka=[H][A]/[HA]
ここでいう、Hとは酸性種を表わし、Aとは共役塩基を表わす。
pKa2〜7の範囲に少なくとも1つのpKa値を持つ具体的化合物としては、脂肪族二塩基酸や、下記一般式(1)で示されるイミダゾール、またはその誘導体が挙げられる。特に、下記一般式(1)で示されるイミダゾールまたはその誘導体を低屈折率層形成組成物に含有することが、より過酷な耐久試験後おいても、本発明の目的効果をより発揮する点から好ましい。
(R)nA …(1)
は水素原子、アミノ基または水酸基が置換してもよい炭素数1〜3のアルキル基、アルケニル基及びハロゲン原子を表し、Rが複数の場合は互いに同じでも異なってもよい。Rが表すアミノ基にはメチル基またはエチル基が1または2個置換していてもよい。またアルキル基及びアルケニル基には炭素数1〜3のアルキル基が置換してもよい。nは1〜3の整数である。Aはイミダゾリル基を表す。
つぎに、上記一般式(1)で表されるイミダゾール、またはその誘導体の具体例を示すが、これらに限定されるものではない。また、イミダゾールまたはその誘導体は市販品されているものを購入して使用することができる。
1−メチルイミダゾール
2−メチルイミダゾール
4−メチルイミダゾール
4−(2−ヒドロキシエチル)イミダゾール
4−(2−アミノエチル)イミダゾール
2−(2−ヒドロキシエチル)イミダゾール
2−エチルイミダゾール
2−ビニルイミダゾール
4−プロピルイミダゾール
2,4−ジメチルイミダゾール
2−クロロイミダゾール
4,5−ジ(2−ヒドロキシエチル)イミダゾール
イミダゾール
脂肪族二塩基酸としては、蟻酸、プロピオン酸、マロン酸,コハク酸,酒石酸,リンゴ酸,マレイン酸,フマル酸,グルタル酸,アジピン酸、酢酸等が挙げられ、これらの中では、酢酸が好ましい。
脂肪族二塩基酸や下記一般式(1)で示されるイミダゾールまたはその誘導体は、低屈折率層塗布組成物中に0.05〜10.0質量%であることが、塗布組成物の安定性等の点から好ましい。
低屈折率層を形成する塗布組成物には、有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びブタノールが特に好ましい。
低屈折率層を形成する塗布組成物中の固形分濃度は、1〜4質量%であることが好ましく、固形分濃度を4質量%以下とすることによって、塗布ムラが生じにくくなり、1質量%以上とすることによって、乾燥負荷が軽減される。
低屈折率層を形成する塗布組成物には、フッ素系またはシリコーン系の界面活性剤を含有することが好ましい。上記界面活性剤を含有させることで、塗布ムラを低減したり膜表面の防汚性を向上させるのに有効である。
フッ素系界面活性剤としては、パーフルオロアルキル基を含有するモノマー、オリゴマー、ポリマーを母核としたもので、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン等の誘導体等が挙げられる。
フッ素系界面活性剤は市販品を用いることもでき、例えばサーフロン「S−381」、「S−382」、「SC−101」、「SC−102」、「SC−103」、「SC−104」(何れも旭硝子株式会社製)、フロラード「FC−430」、「FC−431」、「FC−173」(何れもフロロケミカル−住友スリーエム製)、エフトップ「EF352」、「EF301」、「EF303」(何れも新秋田化成株式会社製)、シュベゴーフルアー「8035」、「8036」(何れもシュベグマン社製)、「BM1000」、「BM1100」(いずれもビーエム・ヒミー社製)、メガファック「F−171」、「F−470」(いずれも大日本インキ化学工業株式会社製)、等を挙げることができる。
フッ素系界面活性剤のフッ素含有割合は、0.05〜2質量%、好ましくは0.1〜1質量%である。上記のフッ素系界面活性剤は、1種または2種以上を併用することができる。
つぎに、シリコーン界面活性剤について説明する。
シリコーン界面活性剤は、ケイ素原子に結合した有機基の種類により、ストレートシリコーンオイルと変性シリコーンオイルに大別できる。
ここで、ストレートシリコーンオイルとは、メチル基、フェニル基、水素原子を置換基として結合したものをいう。変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成部分をもつものである。一方、シリコーンオイルの反応性からも分類することができる。これらをまとめると、以下のようになる。
(シリコーンオイル)
1.ストレートシリコーンオイル
1−1.非反応性シリコーンオイル:ジメチル、メチルフェニル置換等。
1−2.反応性シリコーンオイル:メチル水素置換等。
2.変性シリコーンオイル
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが変性シリコーンオイルである。
2−1.非反応性変性シリコーンオイル:アルキル、アルキル/アラルキル、アルキル/ポリエーテル、ポリエーテル、高級脂肪酸エステル置換等。
アルキル/アラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を長鎖アルキル基あるいはフェニルアルキル基が置換したシリコーンオイルである。
ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジメチルシリコーンを導入した界面活性剤である。
高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を高級脂肪酸エステルに置換えたシリコーンオイルである。
アミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつシリコーンオイルである。
エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基含有アルキル基に置換えた構造をもつシリコーンオイルである。
カルボキシル変性あるいはアルコール変性シリコーンオイルは、シリコーンオイルのメチル基の一部をカルボキシル基あるいは水酸基含有アルキル基に置換えた構造をもつシリコーンオイルである。
これらのうち、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば1,000〜100,000、好ましくは2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる。
具体的な商品としては、日本ユニカー株式会社のL−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499、信越化学社のKF96L、KF96、KF96H、KF99、KF54、KF965、KF968、KF56、KF995、KF351、KF351A、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、FL100、ビックケミージャパン社製の界面活性剤BYKシリーズ、BYK−300/302、BYK−306、BYK−307、BYK−310、BYK−315、BYK−320、BYK−322、BYK−323、BYK−325、BYK−330、BYK−331、BYK−333、BYK−337、BYK−340、BYK−344、BYK−370、BYK−375、BYK−377、BYK−352、BYK−354、BYK−355/356、BYK−358N/361N、BYK−357、BYK−390、BYK−392、BYK−UV3500、BYK−UV3510、BYK−UV3570、BYK−Silclean3700、GE東芝シリコーン社製のジメチルシリコーンシリーズ、XC96−723、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897等が挙げられる。
また、シリコーン界面活性剤は、シリコーンオイルのメチル基の一部を親水性基に置換した界面活性剤である。置換の位置は、シリコーンオイルの側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリグリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、4級塩等がある。
シリコーン界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。
非イオン界面活性剤は、水溶液中でイオンに解離する基を有しない界面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。
非イオン界面活性剤の具体例としては、例えば日本ユニカー株式会社製、シリコーン界面活性剤SILWET L−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191、SUPERSILWET SS−2801、SS−2802、SS−2803、SS−2804、SS−2805等が挙げられる。
これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。低屈折率層を形成する塗布組成物を塗布した際のムラ抑制やレベリング性から好ましい。これらの具体例としては、例えば日本ユニカー株式会社製、シリコーン界面活性剤ABN SILWET FZ−2203、FZ−2207、FZ−2208、FZ−2222等が挙げられる。
低屈折率層を形成する塗布組成物には、より過酷な条件下での耐久試験後に本発明の目的効果を発揮しやすい点から、以下に説明する反応性変性シリコーン樹脂(反応性変性シリコーンオイルともいう)を含有することが好ましい。
2−2.反応性変性シリコーンオイル:アミノ、エポキシ、カルボキシル、アルコール置換等。
反応性変性シリコーン樹脂としては、ポリシロキサンの側鎖、片末端または両末端にアミノ、エポキシ、カルボキシル、水酸基、メタクリル、メルカプト、フェノール等で置換された反応性タイプの変性シリコーン樹脂である。アミノ変性シリコーン樹脂として、具体的にはKF−860,KF−861,X−22―161A、X−22―161B(以上、信越化学工業株式会社製)、FM−3311,FM−3325(以上、チッソ株式会社製)、エポキシ変性シリコーン樹脂としては、KF―105、X−22−163A、X−22−163B、KF−101、KF−1001(以上、信越化学工業株式会社製)、ポリエーテル変性シリコーン樹脂としてはX−22−4272、X−22−4952、カルボキシル変性シリコーン樹脂としてはX−22−3701E、X−22−3710(以上、信越化学工業株式会社製)、カルビノール変性シリコーン樹脂としてはKF−6001、KF−6003(以上、信越化学工業株式会社製)、メタクリル変性シリコーン樹脂としてはX−22−164C(以上、信越化学工業株式会社製)、メルカプト変性シリコーン樹脂としてはKF−2001(以上、信越化学工業株式会社製)、フェノール変性シリコーン樹脂としてはX−22−1821(以上、信越化学工業株式会社製)等が挙げられる。水酸基変性シリコーン樹脂としては、FM−4411、FM−4421、FM−DA21,FM−DA26(以上、チッソ株式会社製)。その他、片末端反応性シリコーン樹脂のX−22−170DX、X−22−2426、X−22−176F(信越化学工業株式会社製)等も含まれる。
上記した界面活性剤は他の界面活性剤と併用して用いてもよく、また、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等と併用しても良い。上記した界面活性剤の添加量は、低屈折率層塗布組成物中、0.05〜3.0質量%であることが、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮点から好ましい。
低屈折率層を形成する塗布組成物には、他のシリカ微粒子を含有することもできる。ここで、他のシリカ微粒子としては、特に限定されるものではないが、コロイダルシリカ等が挙げられる。コロイダルシリカの具体例としては、二酸化ケイ素をコロイド状に水または有機溶媒に分散させたものであり、特に限定はされないが球状、針状または数珠状である。
コロイダルシリカの平均粒径は50〜300nmの範囲が好ましく、変動係数が1〜40%の単分散であることが好ましい。平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
コロイダルシリカは、市販されており、例えば日産化学工業社のスノーテックスシリーズ、触媒化成工業社のカタロイド−Sシリーズ、バイエル社のレバシルシリーズ等が挙げられる。また、アルミナゾルや水酸化アルミニウムでカチオン変性したコロイダルシリカやシリカの一次粒子を2価以上の金属イオンで粒子間を結合し、数珠状に連結した数珠状コロイダルシリカも好ましく用いられる。数珠状コロイダルシリカは日産化学工業社のスノーテックス−AKシリーズ、スノーテックス−PSシリーズ、スノーテックス−UPシリーズ等があり、具体的にはIPS−ST−L(イソプロパノール分散、粒子径40〜50nm、固形分30%)、MEK−ST−MS( メチルエチルケトン分散、粒子径17〜23nm、固形分35)等が挙げられる。
低屈折率層形成塗布組成物にコロイダルシリカを含有させる場合、低屈折率層中の固形分に対し10〜60質量%、さらには30〜60質量%であることが膜強度の点から、好ましい。
また、低屈折率層形成塗布組成物には、低屈折率層中の固形分に対し、5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ微粒子等の微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく、低屈折率層の強度を維持できるように調整する。
バインダーとしては、アルコキシ金属化合物、及びその加水分解物あるいはその重縮合物、また、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂、フルオロアクリレート、含フッ素ポリマー等を挙げられる。フッ素ポリマーとしては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。これらの中で好ましくは、パーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
また、アルコキシ金属化合物としては、特にシランカップリング剤が、中空シリカ微粒子に対するバインダーとしての特性が優れる点から好ましい。以下シランカップリング剤について説明する。シランカップリング剤としては、下記の一般式(3)で表わされるシランカップリング剤が好ましい。
(Z−L−Si−(R 4−m+n …(3)
式中、Zは、重合開始能もしくは連鎖移動能を有する官能基である。Lは、炭素原子数10以下の2価の連結基である。
ここで、Lは、好ましくは炭素原子数1〜10のアルキレン基、または複数のアルキレン基を連結基(例、エーテル、エステル、アミド)を介して結合した基である。アルキレン基は、分岐を有していてもよい。アルキレン基は置換基を有していてもよい。置換基の例は、ハロゲン原子、ヒドロキシル、メルカプト、カルボキシル、エポキシ基、アルキル基、アリール基を含む。
また、上記の一般式(3)において、Rは、炭素原子数1〜10のアルキル基である。Rはヒドロキシルまたは加水分解可能な基である。Rは、炭素原子数1〜5のアルコキシ基またはハロゲン原子が好ましく、メトキシ、エトキシまたは塩素原子がさらに好ましい。さらに、1≦m≦3、0≦n≦2であり、かつ1≦m+n≦3である。
上記の一般式(3)で表わされるシランカップリング剤が有することができる置換基の例は、ヒドロキシル、ハロゲン原子(例、Cl、Br、F、I)、シアノ、ニトロ、カルボキシル、スルホ、炭素原子数1〜8のアルキル基(例、メチル、エチル、イソプロピル、ブチル、ヘキシル、シクロプロピル、シクロヘキシル、2−ヒドロキシエチル、4−カルボキシブチル、2−メトキシエチル、2−ジエチルアミノエチル)、炭素原子数2〜8のアルケニル基(例、ビニル、アリル、2−ヘキセニル)、炭素原子数2〜8のアルキニル基(例、エチニル、1−ブチニル、3−ヘキシニル)、炭素原子数7〜12のアラルキル基(例、ベンジル、フェネチル)、炭素原子数6〜10のアリール基(例、フェニル、ナフチル、4−カルボキシフェニル、4−アセトアミドフェニル、3−メタンスルホンアミドフェニル、4−メトキシフェニル、3−カルボキシフェニル、3,5−ジカルボキシフェニル、4−メタンスルホンアミドフェニル、4−ブタンスルホンアミドフェニル)、炭素原子数1〜10のアシル基(例、アセチル、ベンゾイル、プロパノイル、ブタノイル)、炭素原子数2〜10のアルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル)、炭素原子数7〜12のアリーロキシカルボニル基(例、フェノキシカルボニル、ナフトキシカルボニル)、炭素原子数1〜10のカルバモイル基(例、無置換のカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル)、炭素原子数1〜8のアルコキシ基(例、メトキシ、エトキシ、ブトキシ、メトキシエトキシ)、炭素原子数6〜12のアリーロキシ基(例、フェノキシ、4−カルボキシフェノキシ、3−メチルフェノキシ、ナフトキシ)、炭素原子数2〜12のアシルオキシ基(例、アセトキシ、ベンゾイルオキシ)、炭素原子数1〜12のスルホニルオキシ基(例、メチルスルホニルオキシ、フェニルスルホニルオキシ)、アミノ、炭素原子数1〜10の置換アミノ基(例、ジメチルアミノ、ジエチルアミノ、2−カルボキシエチルアミノ)、炭素原子数1〜10のアミド基(例、アセトアミド、ベンズアミド)、炭素原子数1〜8のスルホンアミド基(例、メタンスルホンアミド、ベンゼンスルホンアミド、ブタンスルホンアミド、オクタンスルホンアミド)、炭素原子数1〜10のウレイド基(例、ウレイド、メチルウレイド)、炭素原子数2〜10のアルコキシカルボニルアミノ基(例、メトキシカルボニルアミノ、エトキシカルボニルアミノ)、炭素原子数1〜12のアルキルチオ基(例、メチルチオ、エチルチオ、オクチルチオ)、炭素原子数6〜12のアリールチオ基(例、フェニルチオ、ナフチルチオ)、炭素原子数1〜8のアルキルスルホニル基(例、メチルスルフォニル、ブチルスルホニル)、炭素原子数7〜12のアリールスルホニル基(例、フェニルスルホニル、2−ナフチルスルホニル)、スルファモイル、炭素原子数1〜8の置換スルファモイル基(例、メチルスルファモイル)、複素環基(例、4−ピリジル、ピペリジノ、2−フリル、フルフリル、2−チエニル、2−ピロリル、2−キノリルモルホリノ)が含まれる。
また、下記の一般式(4)で表わされるシランカップリング剤も好ましい。
Z−(CH)n−Si−R …(4)
式中、Zは、上記一般式(3)の場合と同じであり、nは、1〜10の整数を表わす。
は、炭素原子数1〜5のアルコキシ基またはハロゲン原子を表すが、メトキシ、エトキシ、及び塩素原子が好ましい。
つぎに、上記一般式(3)で表わされる重合開始能を有する官能基を含むシランカップリング剤の好ましい例を挙げる。
XCHC(O)O(CHSi(OCH
CHC(H)(X)C(O)O(CHSi(OCH
(CHC(X)C(O)O(CHSi(OCH
XCHC(O)O(CHSi(OCH
CHC(H)(X)C(O)O(CHSi(OCH
(CHC(X)C(O)O(CHSi(OCH
XCHC(O)O(CHSi(OC
CHC(H)(X)C(O)O(CHSi(OC
(CHC(X)C(O)O(CHSi(OC
XCHC(O)O(CHSi(OC
CHC(H)(X)C(O)O(CHSi(OC
(CHC(X)C(O)O(CHSi(OC
XCHC(O)O(CHSiCl
CHC(H)(X)C(O)O(CHSiCl
(CHC(X)C(O)O(CHSiCl
各式において、Xは、塩素、臭素またはヨウ素原子であり、特に臭素原子が好ましい。
また、シランカップリング剤の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、及びβ−シアノエチルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン、及びメチルビニルジエトキシシラン等が挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン、及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン、及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが、特に好ましい。
低屈折率層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、低屈折率層を形成する上記塗布組成物を塗布し、塗布後、加熱乾燥し、必要に応じて硬化処理することで形成される。
塗布量は、ウェット膜厚として0.05〜100μmが適当で、好ましくは、0.1〜50μmである。また、ドライ膜厚が上記膜圧となるように塗布組成物の固形分濃度は調整される。
また、低屈折率層を形成後、温度50〜160℃で加熱処理を行なう工程を含んでも良い。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。硬化方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50〜300℃が好ましく、好ましくは60〜250℃、さらに好ましくは80〜150℃である。光照射によって硬化させる場合は、照射光の露光量は10mJ/cm〜10J/cmであることが好ましく、100mJ/cm〜500mJ/cmがより好ましい。
ここで、照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
つぎに、低屈折率層と透明樹脂フィルムの間に設けることが好ましい支持体よりも屈折率の高い高屈折率層について説明する。
(高屈折率層)
高屈折率層とは、透明フィルム基材の屈折率より高い層を言う。高屈折率層の好ましい屈折率としては、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、以下に説明する金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることがさらに好ましい。また、高屈折率層の膜圧は、光学干渉層としての特性から、5nm〜1μmであることが好ましく、10nm〜0.2μmであることがさらに好ましく、30nm〜0.1μmであることが最も好ましい。
つぎに、高屈折率層の屈折率を調整するのに用いられる金属酸化物微粒子について説明する。金属酸化物微粒子は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1〜5質量%、より好ましくは0.5〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。2種以上の表面処理を組み合わせてもよい。
金属酸化物微粒子と、後述の電離放射線硬化型樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが、体積比で、前者1に対して後者2から、前者2に対して後者1程度が好ましい。
金属酸化物微粒子の使用量は、高屈折率層中に5質量%〜85質量%が好ましく、10〜80質量%であることがより好ましく、20〜75質量%が、最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多すぎると膜強度の劣化などが発生する。
上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。
さらにコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性をさらに向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。
コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。
シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。
コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、さらに好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。
コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。高屈折率層もしくは前述の低屈折率層には、下記一般式(5)で表される化合物またはそのキレート化合物を含有することができ、硬度などの物性を改善させることができる。
AnMBx−n …(5)
式中、Mは、金属原子、Aは、加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは、金属原子Mに共有結合またはイオン結合した原子団を表わす。xは、金属原子Mの原子価、nは、2以上で、x以下の整数を表わす。
加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。
上記一般式(5)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。
また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。
チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。
ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。上記キレート化合物の添加量は、高屈折率層中に0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。
また、高屈折率層には、電離放射線硬化型樹脂を、金属酸化物微粒子のバインダーとして、塗膜の製膜性や物理的特性の向上のために含有させることが好ましい。電離放射線硬化型樹脂としては、紫外線や電子線のような電離放射線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要に応じて光重合開始剤を組み合わせてもよい。このような電離放射線硬化型樹脂としては、ポリオールアクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートもしくはそれらの混合物が用いられる。例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
電離放射線硬化型樹脂の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。
電離放射線硬化型樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを、質量比で3:7〜1:9含有することが好ましい。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
高屈折率層を塗布する際に有機溶媒が用いられることが好ましい。有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
高屈折率層は上記組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて透明樹脂フィルム、あるいはハードコート層表面にウェット膜厚0.1〜100μmで塗布し、塗布後、加熱乾燥し、必要に応じて硬化して形成される。硬化工程は、低屈折率層で記載した内容を用いることができる。
また、ドライ膜厚が上記膜圧になるようにするのは塗布組成物の固形分濃度で調整する。
(ハードコート層:活性線硬化樹脂層)
本発明の反射防止フィルムには、透明樹脂フィルムと反射防止層との間にハードコート層として活性線硬化樹脂を含有する層を設けることが、反射防止フィルムの取り扱い性や反射防止フィルムを後述する偏光板にする際の工程で、傷が付きにくくなることから好ましい。
活性線硬化樹脂層とは、紫外線や電子線のような活性線(以下、活性エネルギー線ともいう。)照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号号公報に記載のものを用いることができる。
例えば、ユニディック17−806(大日本インキ株式会社製)100部とコロネートL(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号公報に記載のものを用いることができる。
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号公報に記載のものを用いることができる。
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
これら紫外線硬化性樹脂の光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光重合開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光重合開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光重合開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化株式会社製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学株式会社製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業株式会社製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー株式会社製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業株式会社製);オーレックスNo.340クリヤ(中国塗料株式会社製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業株式会社製);SP−1509、SP−1507(昭和高分子株式会社製);RCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(東亞合成株式会社製)NKエステル A−DOG、NKエステル A−IBD−2E(新中村化学工業株式会社製)等を適宜選択して利用できる。また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジオキサングリコールアクリレート、エトキシ化アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
また、硬化樹脂層には耐傷性、滑り性や屈折率を調整するために無機化合物または有機化合物の微粒子を含んでもよい。
無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を添加することができる。好ましくい微粒子は、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。
その他、フッ素含有アクリル樹脂粒子を用いても良い。フッ素含有アクリル樹脂粒子としては、例えばフッ素含有のアクリル酸エステル或いはメタクリル酸エステルのモノマーまたはポリマーから形成された粒子である。フッ素含有のアクリル酸エステル或いはメタクリル酸エステルの具体例としては、1H,1H,3H−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H−ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H−ヘキサデカフルオロノニル(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3,3−ペンタフルオロプロピル(メタ)アクリレート、2−(パーフルオロブチル)エチル(メタ)アクリレート、2−(パーフルオロヘキシル)エチル(メタ)アクリレート、2−(パーフルオロオクチル)エチル(メタ)アクリレート、2−パーフルオロデシルエチル(メタ)アクリレート、3−パーフルオロブチル−2−ヒドロキシプロピル(メタ)アクリレート、3−パーフルオロヘキシル−2−ヒドロキシプロピル(メタ)アクリレート、3−パーフルオロオクチル−2−ヒドロキシプロピル(メタ)アクリレート、2−(パーフルオロ−3−メチルブチル)エチル(メタ)アクリレート、2−(パーフルオロ−5−メチルヘキシル)エチル(メタ)アクリレート、2−(パーフルオロ−7−メチルオクチル)エチル(メタ)アクリレート、3−(パーフルオロ−3−メチルブチル−2−ヒドロキシプロピル(メタ)アクリレート、3−(パーフルオロ−5−メチルヘキシル)−2−ヒドロキシプロピル(メタ)アクリレート、3−(パーフルオロ−7−メチルオクチル)−2−ヒドロキシプロピル(メタ)アクリレート、1H−1−(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H−ヘキサフルオロブチル(メタ)アクリレート、トリフルオロエチルメタクリレート、テトラフルオロプロピルメタクリレート、パーフルオロオクチルエチルアクリレート、2−(パーフルオロブチル)エチル−α−フルオロアクリレートが挙げられる。また、フッ素含有アクリル樹脂粒子の中でも、2−(パーフルオロブチル)エチル−α−フルオロアクリレートからなる粒子、フッ素含有ポリメチルメタクリレート粒子、フッ素含有メタアクリル酸を架橋剤の存在下にビニル単量体と共重合させた粒子が好ましく、更に好ましくはフッ素含有ポリメチルメタクリレート粒子である。
フッ素含有(メタ)アクリル酸と共重合可能なビニル単量体としては、ビニル基を有するものであればよく、具体的にはメタクリル酸メチル、メタクリル酸ブチル等のメタクリル酸アルキルエステル、アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル、及びスチレン、α−メチルスチレン等のスチレン類等が挙げられ、これらは単独でまたは混合して用いることができる。重合反応の際に用いられる架橋剤としては、特に限定されないが、2個以上の不飽和基を有するものを用いることが好ましく、例えばエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート等の2官能性ジメタクリレートや、トリメチロールプロパントリメタクリレート、ジビニルベンゼン等が挙げられる。
尚、フッ素含有ポリメチルメタクリレート粒子を製造するための重合反応は、ランダム共重合およびブロック共重合のいずれでもよい。具体的には、例えば特開2000−169658号公報に記載の方法なども挙げることができる。
市販品としては、根上工業製:MF−0043等の市販品が挙げられる。尚、これらのフッ素含有アクリル樹脂粒子は、単独で用いてもよいが、2種以上を組み合わせて用いてもよい。また、これらのフッ素含有アクリル樹脂粒子の状態は、粉体或いはエマルジョン等、どのような状態で加えられても良い。
また、特開2004−83707号公報の段落0028〜0055に記載のフッ素含有架橋粒子を用いても良い。
また粒子の屈折率は、1.45〜1.70であることが好ましく、より好ましくは1.45〜1.65である。尚、粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定できる。
上記粒子の含有量は、上記樹脂100質量部に対して、1質量部〜30質量部が好ましい。
これらの微粒子の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、さらには、0.1〜4.0μmであることがハードコート層を形成する塗布組成物に添加した際の組成物の安定性から好ましい。
また、粒径の異なる2種以上の微粒子を含有しても良い。紫外線硬化性樹脂と微粒子の割合は、樹脂100質量部に対して、0.1〜30質量部となるように配合することが望ましい。
また、ハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、ハードコート層を形成する塗布組成物を塗布し、塗布後、加熱乾燥し、UV硬化処理することで形成できる。塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。また、ドライ膜厚としては平均膜厚0.1〜30μm、好ましくは1〜20μmである。
UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによってさらに平面性優れたフィルムを得ることができる。
ハードコート層の形成する塗布組成物には溶媒が含まれていてもよい。塗布組成物に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒からも適宜選択し、またはこれらを混合し利用できる。
有機溶媒としては、プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等が好ましい。また、有機溶媒の含有量としては塗布組成物中、5〜80質量%が好ましい。
ハードコート層は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層、または微粒子等を添加しRaが0.1〜1μmに調整された防眩性ハードコート層であることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製の非接触表面微細形状計測装置「WYKO NT−2000」を用いて測定することができる。
さらにハードコート層には、低屈折率層で記載した上記シリコーン系界面活性剤あるいはポリオキシエーテル化合物を含有させることが好ましい。これらは塗布性を高める。また、これら成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
ポリオキシエーテル化合物としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル化合物、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシアルキルフェニルエーテル化合物、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルドデシルエーテル等が挙げられる。ポリオキシエチレンアルキルエーテルの市販品としては、エマルゲン1108、エマルゲン1118S−70(以上、花王社製)、ポリオキシエチレンラウリルエーテルの市販品としては、エマルゲン103、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン147、エマルゲン150、エマルゲン130K(以上、花王社製)、ポリオキシエチレンセチルエーテルの市販品としては、エマルゲン210P、エマルゲン220(以上、花王社製)、ポリオキシエチレンステアリルエーテルの市販品としては、エマルゲン220、エマルゲン306P(以上、花王社製)、ポリオキシアルキレンアルキルエーテルの市販品としては、エマルゲンLS−106、エマルゲンLS−110、エマルゲンLS−114、エマルゲンMS−110(以上、花王社製)ポリオキシエチレン高級アルコールエーテルの市販品としては、エマルゲン705,エマルゲン707、エマルゲン709等が挙げられる。
これら非イオン性のポリオキシエーテル化合物の中でも好ましくは、ポリオキシエチレンオレイルエーテル化合物であり、下記の一般式(6)で表わされる化合物である。
1835−O(CO)nH …(6)
式中、nは2〜40を表わす。
オレイル部分に対するエチレンオキシドの平均付加個数(n)は、2〜40であり、好ましくは2〜10である。また、上記一般式(6)の化合物はエチレンオキシドとオレイルアルコールとを反応させて得られる。
具体的商品としては、エマルゲン404〔ポリオキシエチレン(4)オレイルエーテル〕、エマルゲン408〔ポリオキシエチレン(8)オレイルエーテル〕、エマルゲン409P〔ポリオキシエチレン(9)オレイルエーテル〕、エマルゲン420〔ポリオキシエチレン(13)オレイルエーテル〕、エマルゲン430〔ポリオキシエチレン(30)オレイルエーテル〕(以上、花王社製)、日本油脂製NOFABLEEAO−9905(ポリオキシエチレン(5)オレイルエーテル)等が挙げられる。
なお、( )がnの数字を表す。非イオン性のポリオキシエーテル化合物は単独或いは2種以上を併用しても良い。
シリコーン界面活性剤とポリオキシエーテル化合物とのハードコート層中の含有質量比は、1.0:1.0〜0.10:1.0であり、さらに好ましくは0.70:1.0〜0.20:1.0であり、前記質量比で含有することが本発明の効果を得る上で好ましい。
ハードコート層中の非イオン性のポリオキシエーテル化合物とシリコーン界面活性剤の好ましい含有量は、両者の総含有量で0.1質量%〜8.0質量%が好ましく、さらに好ましくは、0.2質量%〜4.0質量%であり、該範囲で添加することでハードコート層で安定に存在する。
また、上記フッ素界面活性剤、アクリル系共重合物、アセチレングリコール系化合物または非イオン性界面活性剤、ラジカル重合性の非イオン性界面活性剤等を併用しても良い。
非イオン性界面活性剤としては、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート等のポリオキシアルキルエステル化合物、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンモノオレート等のソルビタンエステル化合物、等が挙げられる。
アセチレングリコール系化合物としてはサーフィノール104E、サーフィノール104PA、サーフィノール420、サーフィノール440、ダイノール604(以上、日信化学工業株式会社製)などが挙げられる。
ラジカル重合性の非イオン性界面活性剤としては、例えば、「RMA−564」、「RMA−568」、「RMA−1114」[以上、商品名、日本乳化剤株式会社製]等のポリオキシアルキレンアルキルフェニルエーテル(メタ)アクリレート系重合性界面活性剤などを挙げることができる。
その他、フッ素樹脂を含有しても良い。フッ素樹脂としては、シロキサン(ポリシロキサンを含む)及び/またはオルガノシロキサン(オルガノポリシロキサンを含む)をグラフト化等により共重合させて得られるポリマーを好ましく用いることができる。具体的には、富士化成工業株式会社製のZX−022H、ZX−007C、ZX−049、ZX−047−D等を挙げることができる。これら化合物は混合して用いても良い。
また、ハードコート層は、2層以上の重層構造を有していてもよい。その中の1層は例えば導電性微粒子、共役系導電性ポリマーまたは、イオン性ポリマーを含有する所謂帯電防止層としてもよいし、また、種々の表示素子に対する色補正用フィルターとして色調調整機能を有する色調調整剤(染料もしくは顔料等)を含有させてもよいし、また電磁波遮断剤または赤外線吸収剤等を含有させそれぞれの機能を有するようにしてもよい。
π共役系導電性ポリマーとしては、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。
イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。
上記した共役系導電性ポリマー、イオン性化合物導はハードコート層形成用塗布組成物の固形分濃度として、0.01質量%以上、50質量%未満であることが、組成物中で安定に存在する事から好ましい。また、上記した共役系導電性ポリマー、イオン性化合物導は前述する高屈折率層に添加しても良い。
(バックコート層)
本発明の反射防止フィルムは、ハードコート層を設けた側と反対側の面にバックコート層を設けてもよい。バックコート層は、反射防止層を設けることで生じるカールを矯正するために設けられる。すなわち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加されることが好ましい。
バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
これらの中でもでアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明で用いられる反射防止フィルムは、活性エネルギー線硬化樹脂層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
バックコート層の塗布に用いられる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等があげられ、適宜組み合わされて用いられる。
バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。
例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン株式会社製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン株式会社製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が市販されており、この中から好ましいモノを適宜選択することもできる。
例えば、バインダーとして用いられる樹脂としてはセルロースジアセテート、セルロースアセテートプロヒオネートなどのセルロースエステルとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる微粒子を用いて、微粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて透明樹脂フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
また、塗布後、加熱乾燥し、必要に応じて硬化処理することで、バックコート層は形成される。硬化処理は低屈折率層で記載した内容を用いることができる。
バックコート層は2回以上に分けて塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねても良い。
上記のように各層を塗布により形成するに際して、透明樹脂フィルムの幅が1.4〜4mでロール状に巻き取られた状態から繰り出して、上記塗布を行い、乾燥・硬化処理した後、ロール状に巻き取られることが好ましい。また、反射防止層を積層した後、ロール状に巻き取った状態で50〜160℃で加熱処理を行う製造方法によって製造されることが、反射防止フィルムを長尺塗布した際の効率性や安定性から好ましい。加熱処理期間は、設定される温度によって適宜決定すればよく、例えば、50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましく、50〜60℃付近で7日間程度行うことが好ましい。
加熱処理を安定して行うためには、温湿度が調整可能な場所で行うことが必要であり、塵のないクリーンルーム等の加熱処理室で行うことが好ましい。
反射防止フィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、特に限定されないが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックが好ましく、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることがさらに好ましく、巻き厚は5cm以上であることが好ましい。
(反射防止フィルムの反射率)
本発明の反射防止フィルムの反射率は、分光光度計、分光測色計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色スプレー、黒色アクリル板の貼り付け等して光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。
LCD等の画像表示装置の最表面に用いた場合の外光反射防止機能が好適に得られる点から、反射率は低いほど好ましいが、可視光領域の波長における平均値の反射率(以下、単に反射率とも言う)が2.5%以下であることが好ましく、最低反射率は1.5%以下であることが好ましい。また、更に好ましくは、反射率が1.5%以下であることが好ましく、最低反射率は1.0%以下である。なお、反射率が2.5%以下であれば、本発明の反射防止フィルムと見なすことができる。
可視光の波長領域において、平坦な形状の反射スペクトルを有することが好ましい。
また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。
この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で、
0.17≦x≦0.27、
0.07≦y≦0.17 である。
高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。
各層を塗布する前に表面処理することが好ましい。表面処理方法としては、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。
コロナ処理とは、大気圧下、電極間に1kV以上の高電圧を印加し、放電することで行う処理のことであり、春日電機株式会社や株式会社トーヨー電機などで市販されている装置を用いて行うことができる。コロナ放電処理の強度は、電極間距離、単位面積当たりの出力、ジェネレーターの周波数に依存する。
コロナ処理装置の一方の電極(A電極)は、市販のものを用いることができるが、材質はアルミニウム、ステンレスなどから選択ができる。もう一方はプラスチックフィルムを抱かせるための電極(B電極)であり、コロナ処理が、安定かつ均一に実施されるように、前記A電極に対して一定の距離に設置されるロール電極である。これも通常市販されているものを用いることができ、材質は、アルミニウム、ステンレス、及びそれらの金属でできたロールに、セラミック、シリコン、EPTゴム、ハイパロンゴムなどがライニングされているロールが好ましく用いられる。
コロナ処理に用いる周波数は、20kHz以上100kHz以下の周波数であり、30kHz〜60kHzの周波数が好ましい。周波数が低下するとコロナ処理の均一性が劣化し、コロナ処理のムラが発生する。また、周波数が大きくなると、高出力のコロナ処理を行う場合には、特に問題ないが、低出力のコロナ処理を実施する場合には、安定した処理を行うことが難しくなり、結果として、処理ムラが発生する。
コロナ処理の出力は、1〜5W・min./mであるが、2〜4W・min./mの出力が好ましい。電極とフィルムとの距離は、5mm以上50mm以下であるが、好ましくは、10mm以上35mm以下である。間隙が開いてくると、一定の出力を維持するためにより高電圧が必要になり、ムラが発生し易くなる。また、間隙が狭くなりすぎると、印加する電圧が低くなりすぎ、ムラが発生し易くなる。さらにまた、フィルムを搬送して連続処理する際に電極にフィルムが接触し傷が発生する。
また、大気圧プラズマ処理、常圧プラズマ処理等のプラズマ処理としては、例えば特開2004−352777号公報、特開2004−352777号公報、特開2007−314707号公報等に開示されているプラズマ処理技術を参考にすることができる。
また、処理装置としては、積水化学工業社製の常圧プラズマ処理装置であるAP−Tシリーズ等を用いることができる。
アルカリ処理方法としては、ハードコート層を塗設したフィルムをアルカリ水溶液に浸す方法であれば特に限定されない。
アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液等が使用可能であり、中でも水酸化ナトリウム水溶液が好ましい。
アルカリ水溶液のアルカリ濃度、例えば水酸化ナトリウム濃度は0.1〜25質量%が好ましく、0.5〜15質量%がより好ましい。アルカリ処理温度は通常10〜80℃、好ましく20〜60℃である。
アルカリ処理時間は5秒〜5分、好ましくは30秒〜3分である。アルカリ処理後のフィルムは酸性水で中和した後、十分に水洗いを行うことが好ましい。
(透明樹脂フィルム)
本発明に用いられる透明樹脂フィルムよりなる透明フィルム基材について、説明する。
透明フィルム基材としては、製造が容易であること、活性線硬化型樹脂層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。
ここでいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。
上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオノア(以上、日本ゼオン社製))、ポリビニルアセタール、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることができる。
中でも、セルロースエステル系フィルム、ポリカーボネート系フィルム、ポリスルホン(ポリエーテルスルホンを含む)系フィルム、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルロースエステル系フィルム(例えば、コニカミノルタタック、製品名KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、KC12UR(以上、コニカミノルタオプト株式会社製)が、製造上、コスト面、透明性、接着性等の観点から好ましく用いられる。
これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
透明フィルム基材としては、セルロースエステル系フィルム(以下セルロースエステルフィルムともいう)を用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。
特に、アセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースエステルフィルムを用いるのが、好ましい。
2.3≦X+Y≦3.0 0.1≦Y≦2.0
特に、2.5≦X+Y≦2.9 3≦Y≦1.2 であることが好ましい。
以下、好ましい透明樹脂フィルムであるセルロースエステルフィルムについて詳細に説明する。
セルロースエステルフィルムは、熱処理による基材変形が少なく、平面性に優れた反射防止フィルムを得る上で、陽電子消滅寿命法により求められる自由体積半径が0.250〜0.310nmであることが好ましい。さらに、全自由体積パラメータが1.0〜2.0であるセルロースエステルフィルムであることがより好ましい。
なお、上記自由体積とは、透明樹脂フィルムの分子鎖に占有されていない空隙部分を表している。これは、陽電子消滅寿命法を用いて測定することができる。具体的には、陽電子を試料に入射してから消滅するまでの時間を測定し、その消滅寿命から原子空孔や自由体積の大きさ、数濃度等に関する情報を非破壊的に観察することにより求めることができる。
(陽電子消滅寿命法による自由体積半径と全自由体積パラメータの測定)
下記測定条件にて陽電子消滅寿命と相対強度を測定した。
(測定条件)
陽電子線源:22NaCl(強度1.85MBq)
ガンマ線検出器:プラスチック製シンチレーター+光電子増倍管
装置時間分解能:290ps
測定温度:23℃
総カウント数:100万カウント
試料サイズ:20mm×15mm
20mm×15mmにカットした試料切片を、20枚重ねて約2mmの厚みにした。試料は測定前に24時間真空乾燥を行った。
照射面積:約10mmφ
1チャンネルあたりの時間:23.3ps/ch
上記の測定条件に従って、陽電子消滅寿命測定を実施し、非線形最小二乗法により3成分解析して、消滅寿命の小さいものから、τ、τ、τとし、それに応じた強度をI,I,I(I+I+I=100%)とした。
最も寿命の長い平均消滅寿命τ3から、下記式を用いて自由体積半径R(nm)を求めた。τが空孔での陽電子消滅に対応し、τが大きいほど空孔サイズが大きいと考えられている。
τ=(1/2)〔1−{R/(R+0.166)}
+(1/2π)sin{2πR/(R+0.166)}〕−1
ここで、0.166(nm)は、空孔の壁から浸出している電子層の厚さに相当する。
さらに、全自由体積パラメータVは、下記式により求めた。
={(4/3)π(R)3}(nm
=I(%)×V(nm
ここでI(%)は、空孔の相対的な数濃度に相当するため、Vは相対的な空孔量に相当する。
以上の測定を2回繰り返し、その平均値を求めた。
陽電子消滅寿命法は、例えばMATERIAL STAGE vol.4,No.5 2004 p21-25、東レリサーチセンター THE TRC NEWS No.80(Jul.2002)p20-22、「ぶんせき」(1988,pp.11-20)に「陽電子消滅法による高分子の自由体積の評価」が掲載されており、これらを参考にすることができる。
セルロースエステルフィルムにおける自由体積半径は、0.250〜0.315nm、好ましくは0.250〜0.310nmであり、さらに好ましい範囲は、0.285〜0.305nmである。自由体積半径が0.250nm未満である。自由体積半径が0.250〜0.315nmでは、熱処理に対する基材変形が小さく、平面性に優れた反射防止フィルムが得られる。
セルロースエステルフィルムを形成するセルロースエステルの原料としては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。
アシル化剤が、酸クロライド(CHCOCl、CCOCl、CCOCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号公報に記載の方法等を参考にして合成することができる。
また、セルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。
アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することができる。
セルロースエステルの数平均分子量は、50000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、さらに好ましくは、80000〜150000である。
セルロースエステルフィルムは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造される。
これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解でき、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることができるが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。
また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。
上記の良溶媒の中でも溶解性に優れるメチレンクロライド、あるいは酢酸メチルが好ましく用いられる。
上記有機溶媒の他に、0.1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。
これらは上記のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。
炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることができる。
これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70〜95質量%に対してエタノール5〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることもできる。このとき、冷却溶解法によりドープを調製してもよい。
セルロースエステルフィルムには、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、脂肪酸エステル系可塑剤、多価カルボン酸エステル系可塑剤等を好ましく用いることができる。
中でも、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等が好ましい。特に多価アルコールエステル系可塑剤を用いることが好ましく、ハードコート層の鉛筆硬度が4H以上を安定に得ることができるため好ましい。
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
多価アルコールは次の一般式(7)で表される。
−(OH)n …(7)
式中、Rはn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表わす。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1〜3個を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
以下に、多価アルコールエステルの具体的化合物を例示する。
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
多価カルボン酸エステル系可塑剤も好ましく用いることができる。具体的には特開2002−265639号公報の段落番号[0015]〜[0020]記載の多価カルボン酸エステルを可塑剤の一つとして添加することが好ましい。
また、他の可塑剤としてリン酸エステル系可塑剤を用いることもでき、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
このほか、特開2003−12859号記載のアクリルポリマーなどを含有させることも好ましい。
〈アクリルポリマー〉
セルロースエステルフィルムは、延伸方向に対して負の配向複屈折性を示す重量平均分子量が500以上30000以下であるアクリルポリマーを含有することが好ましい。
該ポリマーの重量平均分子量が500以上30000以下のもので該ポリマーの組成を制御することで、セルロースエステルと該ポリマーとの相溶性を良好にすることができる。
特に、アクリルポリマー、芳香環を側鎖に有するアクリルポリマーまたはシクロヘキシル基を側鎖に有するアクリルポリマーについて、好ましくは重量平均分子量が500以上10000以下のものであれば、上記に加え、製膜後のセルロースエステルフィルムの透明性が優れ、透湿度も極めて低く、反射防止フィルムとして優れた性能を示す。
該ポリマーは重量平均分子量が500以上30000以下であるから、オリゴマーから低分子量ポリマーの間にあると考えられるものである。このようなポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。
かかる重合方法としては、クメンペルオキシドやt−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000−128911号または同2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、或いは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも好ましく用いられるが、特に、該公報に記載の方法が好ましい。
なお、アクリルポリマーとは、芳香環或いはシクロヘキシル基を有するモノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマーまたはコポリマーを指す。芳香環を側鎖に有するアクリルポリマーというのは、必ず芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリルポリマーである。
また、シクロヘキシル基を側鎖に有するアクリルポリマーというのは、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するアクリルポリマーである。
芳香環及びシクロヘキシル基を有さないアクリル酸エステルモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸(2−メトキシエチル)、アクリル酸(2−エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。
アクリルポリマーは上記モノマーのホモポリマーまたはコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上を有していることが好ましく、また、メタクリル酸メチルエステルモノマー単位が40質量%以上有することが好ましい。特にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。
芳香環を有するアクリル酸またはメタクリル酸エステルモノマーとしては、例えば、アクリル酸フェニル、メタクリル酸フェニル、アクリル酸(2または4−クロロフェニル)、メタクリル酸(2または4−クロロフェニル)、アクリル酸(2または3または4−エトキシカルボニルフェニル)、メタクリル酸(2または3または4−エトキシカルボニルフェニル)、アクリル酸(oまたはmまたはp−トリル)、メタクリル酸(oまたはmまたはp−トリル)、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェネチル、メタクリル酸フェネチル、アクリル酸(2−ナフチル)等を挙げることができるが、アクリル酸ベンジル、メタクリル酸ベンジル、アクリル酸フェニチル、メタクリル酸フェネチルを好ましく用いることができる。
芳香環を側鎖に有するアクリルポリマーの中で、芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位が20〜40質量%を有し、且つアクリル酸またはメタクリル酸メチルエステルモノマー単位を50〜80質量%有することが好ましい。該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20質量%有することが好ましい。
シクロヘキシル基を有するアクリル酸エステルモノマーとしては、例えば、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、アクリル酸(4−メチルシクロヘキシル)、メタクリル酸(4−メチルシクロヘキシル)、アクリル酸(4−エチルシクロヘキシル)、メタクリル酸(4−エチルシクロヘキシル)等を挙げることができるが、アクリル酸シクロヘキシル及びメタクリル酸シクロヘキシルを好ましく用いることができる。
シクロヘキシル基を側鎖に有するアクリルポリマー中、シクロヘキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単位を20〜40質量%を有しかつ50〜80質量%有することが好ましい。また、該ポリマー中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を2〜20質量%有することが好ましい。
上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリルポリマー、芳香環を側鎖に有するアクリルポリマー及びシクロヘキシル基を側鎖に有するアクリルポリマーは何れもセルロース樹脂との相溶性に優れる。
これらの水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリルポリマー中2〜20質量%含有することが好ましい。
また、側鎖に水酸基を有するポリマーも好ましく用いることができる。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、アクリル酸−p−ヒドロキシメチルフェニル、アクリル酸−p−(2−ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸−2−ヒドロキシエチル及びメタクリル酸−2−ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2〜20質量%含有することが好ましく、より好ましくは2〜10質量%である。
前記のようなポリマーが上記の水酸基を有するモノマー単位を2〜20質量%含有したものは、勿論セルロースエステルとの相溶性、保留性、寸法安定性が優れ、透湿度が小さいばかりでなく、偏光板保護フィルムとしての偏光子との接着性に特に優れ、偏光板の耐久性が向上する効果を有している。
アクリルポリマーの主鎖の少なくとも一方の末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2−ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2−メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000−128911号公報は2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、或いは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることができ、特に該公報に記載の方法が好ましい。
この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることができる。上記の末端に水酸基を有するポリマー及び/または側鎖に水酸基を有するポリマーは、本発明において、ポリマーの相溶性、透明性を著しく向上する効果を有する。
さらに、延伸方向に対して負の配向複屈折性を示すエチレン性不飽和モノマーとして、スチレン類を用いたポリマーであることが負の屈折性を発現させるために好ましい。スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、クロロメチルスチレン、メトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステルなどが挙げられるが、これらに限定される物ではない。
前記不飽和エチレン性モノマーとして挙げた例示モノマーと共重合してもよく、また複屈折性を制御する目的で、2種以上の上記ポリマーをもちいてセルロースエステルに相溶させて用いても良い。
さらに、セルロースエステルフィルムは、分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーXと、より好ましくは芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーYとを含有することが好ましい。
(ポリマーX、ポリマーY)
本発明に用いられるポリマーXは、分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上、30000以下のポリマーである。
好ましくは、Xaは、分子内に芳香環と親水性基を有しないアクリルまたはメタクリルモノマー、Xbは、分子内に芳香環を有せず親水性基を有するアクリルまたはメタクリルモノマーである。
ポリマーXは、下記の一般式(8)で表わされる。
−(Xa)m−(Xb)n−(Xc)p− …(8)
さらに好ましくは、下記の一般式(9)で表わされるポリマーである。
−[CH−C(−R)(−CO)]m−[CH−C(−R
(−CO−OH)−]n−[Xc]p− …(9)
(式中、R、Rは、HまたはCHを表わす。Rは炭素数1〜12のアルキル基、シクロアルキル基を表わす。Rは−CH−、−C−または−C−を表わす。Xcは、Xa、Xbに重合可能なモノマー単位を表わす。m、nおよびpは、モル組成比を表わす。ただし、m≠0、n≠0、k≠0、m+n+p=100である。)
本発明において、アクリル系ポリマーXを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
アクリル系ポリマーXにおいて、親水性基とは、水酸基、エチレンオキシド連鎖を有する基をいう。
分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaは、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。
中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i−、n−)であることが好ましい。
分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbは、水酸基を有するモノマー単位として、アクリル酸またはメタクリル酸エステルが好ましく、例えばアクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2−ヒドロキシエチル)、及びメタクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)である。
Xcとしては、Xa、Xb以外のものでかつ共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、芳香環を有していないものが好ましい。
Xa、Xb、及びXcのモル組成比=m:nは、99:1〜65:35の範囲が好ましく、さらに好ましくは95:5〜75:25の範囲である。Xcのpは0〜10である。Xcは複数のモノマー単位であってもよい。
Xaのモル組成比が多いと、セルロースエステルとの相溶性が良化するが、フィルム厚み方向リタデーション(Rt)値が大きくなる。Xbのモル組成比が多いと、上記相溶性が悪くなるが、厚み方向リタデーション(Rt)を低減させる効果が高い。また、Xbのモル組成比が上記範囲を超えると、製膜時にヘイズが出る傾向があり、これらの最適化を図り、Xa、Xbのモル組成比を決めることが好ましい。
ポリマーXの分子量は、重量平均分子量が5000以上30000以下であり、さらに好ましくは8000以上25000以下である。
重量平均分子量を5000以上とすることにより、セルロースエステルフィルムの、高温高湿下における寸法変化が少ない、偏光板保護フィルムとしてカールが少ない等の利点が得られ好ましい。重量平均分子量が30000を以内とした場合は、セルロースエステルとの相溶性がより向上し、高温高湿下においてのブリードアウト、さらには製膜直後でのヘイズの発生が抑制される。
ポリマーXの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。また、重合温度は通常室温から130℃、好ましくは50℃から100℃で行われるが、この温度または重合反応時間を調整することで可能である。
つぎに、ポリマーYは、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上、3000以下のポリマーである。
ここで、ポリマーYの重量平均分子量が500以上では、ポリマーの残存モノマーが減少するので、好ましい。また、ポリマーYの重量平均分子量を3000以下とすることは、厚み方向リタデーション(Rt)値の低下性能を維持するために好ましい。
Yaは、好ましくは芳香環を有さないアクリルまたはメタクリルモノマーである。
ポリマーYは、下記の一般式(10)で表される。
−(Ya)k−(Yb)q− …(10)
さらに好ましくは、下記の一般式(11)で表されるポリマーである。
−[CH−C(−R)(−CO)]k−[Yb]q− …(11)
(式中、Rは、HまたはCHを表わす。Rは、炭素数1〜12のアルキル基またはシクロアルキル基を表わす。Ybは、Yaと共重合可能なモノマー単位を表わす。kおよびqは、モル組成比を表わす。ただし、k≠0、k+q=100である。)
Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はない。Ybは複数であってもよい。k+q=100、qは好ましくは0〜30である。
芳香環を有さないエチレン性不飽和モノマーを重合して得られるポリマーYを構成するエチレン性不飽和モノマーYaは、アクリル酸エステルとして、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸シクロヘキシル、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えばアクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。
Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、ビニルエステルとして、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル等が好ましい。Ybは複数であってもよい。
ポリマーX、及びポリマーYを合成するには、通常の重合では分子量のコントロールが難しく、分子量をあまり大きくしない方法で、できるだけ分子量を揃えることのできる方法を用いることが望ましい。
ポリマーX、及びポリマーYの重合方法としては、クメンペルオキシドやt−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000−128911号公報または同2000−344823号公報に記載された一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができる。
ポリマーYは、分子中にチオール基と2級の水酸基とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。この場合、ポリマーYの末端には、重合触媒および連鎖移動剤に起因する水酸基、チオエーテルを有することとなる。この末端残基により、ポリマーYとセルロースエステルとの相溶性を調整することができる。
ポリマーXおよびポリマーYの水酸基価は30〜150[mgKOH/g]であることが好ましい。
ここで、水酸基価の測定は、JIS K 0070(1992)に準ずる。この水酸基価は、試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。具体的には試料xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95〜100℃のグリセリン浴にて加熱する。1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行ない、得られた滴定曲線の変曲点を終点とする。さらに空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。水酸基価は、つぎの式によって算出する。
水酸基価={(B−C)×f×28.05/x}+D
(式中、Bは、空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは、滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは、0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは、酸価、また28.05は、水酸化カリウムの1mol量56.11の1/2を表わす)
ポリマーXとポリマーYのセルロースエステルフィルム中での含有量は、下記式(i)、式(ii)を満足する範囲であることが好ましい。ポリマーXの含有量をxg(質量%=ポリマーXの質量/セルロースエステルの質量×100)、ポリマーYの含有量をyg(質量%)とすると、
式(i) 5≦xg+yg≦35(質量%)
式(ii) 0.05≦yg/(xg+yg)≦0.4
式(i)の好ましい範囲は、10〜25質量%である。
なお、ポリマーの重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィーを用いて測定することができる。
測定条件は、以下の通りである。
溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G
(昭和電工株式会社製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所株式会社製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK
standard ポリスチレン(東ソー株式会社製)Mw=1,000,000〜500までの13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
ポリマーXとポリマーYは、総量として5質量%以上であれば、厚み方向リタデーション(Rt)値の低減に十分な作用をする。また、総量として35質量%以下であれば、偏光子PVAとの接着性が良好である。
ポリマーXとポリマーYは、後述するドープ液を構成する素材として直接添加、溶解するか、もしくはセルロースエステルを溶解する有機溶媒に予め溶解した後ドープ液に添加することができる。
セルロースエステルフィルム中の上記可塑剤の総含有量は、固形分総量に対し、5〜20質量%が好ましく、6〜16質量%がさらに好ましく、特に好ましくは8〜13質量%である。また、2種の可塑剤の含有量は各々少なくとも1質量%以上であり、好ましくは各々2質量%以上含有することである。
多価アルコールエステル系可塑剤は、1〜15質量%含有することが好ましく、特に3〜11質量%含有することが好ましい。多価アルコールエステル系可塑剤の含有量が、少ないと平面性の劣化が認められ、また多すぎると、ブリードアウトがしやすい。多価アルコールエステル系可塑剤とその他の可塑剤との質量比率は、1:4〜4:1の範囲であることが好ましく、1:3〜3:1であることがさらに好ましい。可塑剤の添加量が多すぎても、また少なすぎてもフィルムが変形しやすく好ましくない。
(溶液流延製膜法)
セルロースエステルフィルムの溶液流延製膜法による製造は、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
まず、ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、さらに好ましくは、15〜25質量%である。
ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70〜98質量%であり、貧溶剤が2〜30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルのアシル基置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
良溶剤は、特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。
また、貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01〜2質量%含有していることが好ましい。
上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤または膨潤させた後、さらに良溶剤を添加して溶解する方法も好ましく用いられる。
加圧は、窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高すぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70℃〜105℃がさらに好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
または冷却溶解法も、好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステルを溶解させることができる。
つぎに、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると濾過材の目詰まりが発生しやすいという問題がある。このため、絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材がさらに好ましい。
濾材の材質は、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
この明細書において、輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、さらに好ましくは50個/m以下であり、さらに好ましくは0〜10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
ドープの濾過は、通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることがさらに好ましい。
濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることがさらに好ましい。
つぎに、ドープの流延について説明する。
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃がさらに好ましい。または、冷却することによって、ウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら、目的の温度よりも高い温度の風を使う場合がある。
特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、さらに好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。
残留溶媒量は、下記式で定義される。
残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mは、ウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、Nは、Mを115℃で1時間の加熱後の質量である。
また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
本発明の反射防止フィルム用のセルロースエステルフィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向に延伸し、さらにウェブの両端をクリップ等で把持するテンター方式で幅方向に延伸を行うことが特に好ましい。縦方向、横方向ともに好ましい延伸倍率は1.01〜1.3倍であり、1.05〜1.15倍がさらに好ましい。縦方向及び横方向延伸により面積が1.12〜1.44倍となっていることが好ましく、1.15〜1.32倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることができる。縦方向と横方向の延伸倍率のいずれかが1.01倍未満ではハードコート層を形成する際の紫外線照射による平面性の劣化が生じやすくなる。
剥離直後に縦方向に延伸するために、剥離張力及びその後の搬送張力によって延伸することが好ましい。例えば剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220〜300N/mである。
ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。
ウェブの乾燥工程における乾燥温度は30〜200℃で段階的に高くしていくことが好ましく、50〜180℃の範囲で段階的に高くすることが寸法安定性をよくするためさらに好ましい。
セルロースエステルフィルムの膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に10〜70μmの薄膜フィルムでは平面性と耐擦傷性に優れた反射防止フィルムを得ることが困難であったが、本発明によれば、平面性と耐擦傷性に優れた薄膜の反射防止フィルムが得られ、また生産性にも優れているため、セルロースエステルフィルムの膜厚は10〜70μmであることが特に好ましい。さらに好ましくは20〜60μmである。最も好ましくは35〜60μmである。また、共流延法によって多層構成としたセルロースエステルフィルムも好ましく用いることができる。セルロースエステルが多層構成の場合でも紫外線吸収剤と可塑剤を含有する層を有しており、それがコア層、スキン層、もしくはその両方であってもよい。
本発明の反射防止フィルムは、幅1m以上であり、幅1.4〜4mのものが好ましく用いられる。特に好ましくは1.4〜3mである。4mを超えると搬送が困難となる。また、セルロースエステルフィルムのハードコート層を設ける面の中心線平均粗さ(Ra)は0.001〜1μmのものを用いることができる。
(溶融流延製膜法)
セルロースエステルフィルムは、溶融流延製膜法によって形成することも、好ましい。
溶液流延製膜法において用いられる溶媒(例えば塩化メチレン等)を用いずに、加熱溶融する溶融流延による成形法は、さらに詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法等に分類できる。これらの中で、機械的強度及び表面精度等に優れるセルロースエステルフィルムを得るためには、溶融押し出し法が優れている。
セルロースエステル及び添加剤の混合物を熱風乾燥または真空乾燥した後、溶融押出し、T型ダイよりフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。冷却ドラムの温度は90〜150℃に維持されていることが好ましい。
セルロースエステルと、その他、必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましく、セルロースエステルと添加剤を加熱前に混合することが、さらに好ましい。混合は、混合機等により行ってもよく、また、セルロースエステル調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサー一般的な混合機を用いることができる。
上記のようにフィルム構成材料を混合した後に、その混合物を押出し機を用いて直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機で溶融して製膜するようにしてもよい。また、フィルム構成材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機に投入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。
押出し機は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でもよい。フィルム構成材料からペレットを作製せずに、直接製膜を行う場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。
押出し機内及び押出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。
押出し機内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィルムのガラス転移温度(Tg)に対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。具体的には、溶融押出し時の温度は、150〜300℃であることが好ましく、特に180〜270℃の範囲であることが好ましい。さらに200〜250℃の範囲であることが好ましい。
押出し時の溶融粘度は、10〜100000ポイズ、好ましくは100〜10000ポイズである。
また、押出し機内でのフィルム構成材料の滞留時間は、短い方が好ましく、5分以内、好ましくは3分以内、より好ましくは2分以内である。滞留時間は、押出し機1の種類、押出す条件にも左右されるが、材料の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。
上記押出し機でフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。冷却ドラムの温度は90〜150℃に維持されていることが好ましい。
本発明に用いられるセルロースエステルフィルムは、幅手方向もしくは製膜方向に延伸製膜されたフィルムであることが特に好ましい。
前述の冷却ドラムから剥離され、得られた未延伸フィルムを複数のロール群及び/または赤外線ヒーター等の加熱装置を介して、セルロースエステルのガラス転移温度(Tg)から、Tg+100℃の範囲内に加熱し、一段または多段縦延伸することが好ましい。
つぎに、上記のようにして得られた縦方向に延伸されたセルロースエステルフィルムを横延伸し、ついで熱処理することが好ましい。
熱処理は、ガラス転移温度(Tg)−20℃〜延伸温度の範囲内で、通常0.5〜300秒間搬送しながら行うことが好ましい。
熱処理されたフィルムは、通常、ガラス転移温度(Tg)以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。また冷却は、最終熱処理温度からガラス転移温度(Tg)までを、毎秒100℃以下の冷却速度で徐冷することが好ましい。
冷却する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながら、これらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。なお、冷却速度は、最終熱処理温度をT1、フィルムが最終熱処理温度からTgに達するまでの時間をtとしたとき、(T1−Tg)/tで求めた値である。
セルロースエステルフィルムには、紫外線吸収剤が好ましく用いられる。
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。また、市販品として、チヌビン(TINUVIN)326、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928、チヌビン(TINUVIN)360(いずれもチバスペシャルティケミカルズ社製)、LA31(旭電化社製)、Sumisorb250(住友化学社製)、RUVA−100(大塚化学製)が挙げられる。
また、特開2001−187825号公報に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
また、セルロースエステルフィルムには滑り性を付与するため、前述の活性線硬化型樹脂を含む塗布層で記載するものと同様の微粒子を用いることができる。
微粒子としては、無機化合物の例としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
微粒子の一次粒子の平均粒子径は5〜50nmが好ましく、さらに好ましいのは7〜20nmである。これらは、主に粒子径0.05〜0.3μmの2次凝集体として含有されることが好ましい。含有量は0.05〜1質量%であることが好ましく、特に0.1〜0.5質量%が好ましい。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、これらの微粒子を使用することができる。
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上、日本アエロジル株式会社製)の商品名で市販されており、使用することができる。
微粒子としてポリマー粒子を用いることもでき、ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、使用することができる。
これらの中でもアエロジル200V、アエロジルR972Vが濁度を低く保ちながら、摩擦係数を下げる効果が大きいため、特に好ましく用いられる。
また、セルロースエステルフィルムには、以下に説明する劣化防止剤を含有することが好ましい。つぎに劣化防止剤について説明する。
(劣化防止剤)
劣化防止剤とは、高分子が熱や酸素、水分、酸などによって分解されることを化学的な作用によって抑制する材料のことである。本発明に用いられる透明基材フィルムは、溶融流延法の場合、特に200℃以上の高温下で成形されるため、高分子の分解・劣化が起きやすい系であり、劣化防止剤をフィルム形成材料中に含有させることが好ましい。
フィルム形成材料の酸化防止、分解して発生した酸の捕捉、光または熱によるラジカル種基因の分解反応を抑制または禁止する等、解明できていない分解反応を含めて、着色や分子量低下に代表される変質や材料の分解による揮発成分の生成を抑制するために劣化防止剤を用いる。
劣化防止剤としては、例えば、酸化防止剤、ヒンダードアミン光安定剤、酸捕捉剤、金属不活性化剤などが挙げられるが、これらに限定されない。これらは、特開平3−199201号公報、特開平5−1907073号公報、特開平5−194789号公報、特開平5−271471号公報、特開平6−107854号公報などに記載がある。これらの中でも、本発明の目的のためには、フィルム形成材料中に劣化防止剤として酸化防止剤を含むことが好ましい。
フィルム形成材料中の劣化防止剤は、少なくとも1種以上選択でき、フィルムの透明性から添加する量は、透明基材フィルムを形成する透明基材樹脂100質量%に対して、劣化防止剤の添加量は0.01質量%以上、10質量%以下が好ましく、より好ましくは0.1質量%以上、5.0質量%以下であり、さらに好ましくは0.2質量%以上、2.0質量%以下である。
フィルム形成材料は、材料の変質や吸湿性を回避する目的で、構成する材料が1種または複数種のペレットに分割して保存することができる。ペレット化は、加熱時の溶融物の混合性または相溶性が向上でき、または得られたフィルムの光学的な均一性が確保できることもある。
(酸化防止剤)
また、セルロースエステルフィルムには以下に説明する酸化防止剤を含有することが好ましい。酸化防止剤としては、酸素によるフィルム形成材料の劣化を抑制する化合物であれば制限なく用いることができるが、中でもフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アルキルラジカル捕捉剤、過酸化物分解剤、酸素スカベンジャー等が挙げられる。これらの中でもフェノール系酸化防止剤、リン系酸化防止剤、アルキルラジカル捕捉剤が好ましいが、フェノール系酸化防止剤とリン系酸化防止剤の2者の組み合わせを用いることがより好ましく、フェノール系酸化防止剤とリン系酸化防止剤とアルキルラジカル捕捉剤の3者の組み合わせを用いることが最も好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、或いは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に用いられるセルロースエステルの質量に対して、0.01質量%以上10質量%以下が好ましく、より好ましくは0.1質量%以上5.0質量%以下であり、さらに好ましくは0.2質量%以上2.0質量%以下である。
(フェノール系酸化防止剤)
フェノール系酸化防止剤は既知の化合物であり、パラ−t−ブチルフェノール、パラ−(1,1,3,3−テトラメチルブチル)フェノール等のアルキル基置換フェノールの他、例えば、米国特許第4,839,405号明細書の第12〜14欄に記載の、2,6−ジアルキルフェノール誘導体化合物、いわゆるヒンダードフェノール系化合物が挙げられるが、これらの中で、ヒンダードフェノール系化合物が好ましい。
ヒンダードフェノールフェノール系化合物の具体例としては、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−アセテート、n−オクタデシル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオ−ドデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−フェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(2−ヒドロキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミドN,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノN,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−l−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリスリトール−テトラキス−[3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]、1,1,1−トリメチロールエタン−トリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル7−(3−メチル−5−tブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオール−ビス[(3′,5′−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)が含まれる。上記タイプのフェノール化合物は、例えば、チバスペシャルティケミカルズから、「IRGANOX1076」及び「IRGANOX1010」という商品名で市販されている。
(リン系酸化防止剤)
リン系酸化防止剤として、ホスファイト系化合物、及びホスホナイト系化合物が挙げられる。ホスファイト系化合物の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチル−5−メチルフェニル)ホスファイト、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン、トリデシルホスファイト等のモノホスファイト系化合物;4,4′−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4′−イソプロピリデン−ビス(フェニル−ジ−アルキル(C12〜C15)ホスファイト)等のジホスファイト系化合物;等が挙げられる。上記タイプのホスファイト系化合物は、例えば、住友化学株式会社から、「SumilizerGP」、旭電化工業株式会社から「ADK STAB PEP−24G」、「ADK STAB PEP−36」、「ADK STAB 3010」、「ADK STAB HP−10」及び「ADK STAB 2112」という商品名で市販されている。
ホスホナイト系化合物の具体例としては、ジメチル−フェニルホスホナイト、ジ−t−ブチル−フェニルホスホナイト、ジフェニル−フェニルホスホナイト、ジ−(4−ペンチル−フェニル)−フェニルホスホナイト、ジ−(2−t−ブチル−フェニル)−フェニルホスホナイト、ジ−(2−メチル−3−ペンチル−フェニル)−フェニルホスホナイト、ジ−(2−メチル−4−オクチル−フェニル)−フェニルホスホナイト、ジ−(3−ブチル−4−メチル−フェニル)−フェニルホスホナイト、ジ−(3−ヘキシル−4−エチル−フェニル)−フェニルホスホナイト、ジ−(2,4,6−トリメチルフェニル)−フェニルホスホナイト、ジ−(2,3−ジメチル−4−エチル−フェニル)−フェニルホスホナイト、ジ−(2,6−ジエチル−3−ブチルフェニル)−フェニルホスホナイト、ジ−(2,3−ジプロピル−5−ブチルフェニル)−フェニルホスホナイト、ジ−(2,4,6−トリ−t−ブチルフェニル)−フェニルホスホナイト、ビス(2,4−ジ−t−ブチル−5−メチルフェニル)ビフェニル−4−イル−ホスホナイト、ビス(2,4−ジ−t−ブチル−5−メチルフェニル)−4′−(ビス(2,4−ジ−t−ブチル−5−メチルフェノキシ)ホスフィノ)ビフェニル−4−イル−ホスホナイト、テトラキス(2,4−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(3,5−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリメチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−5−エチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−4−プロピルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−5−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジメチル−4−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジエチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジエチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4,5−トリエチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジエチル−4−プロピルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジエチル−6−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジエチル−5−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジエチル−6−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジプロピル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジプロピル−6−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−5−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−6−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−6−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−6−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−6−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4,6−トリ−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト等が挙げられる。上記タイプのリン系化合物は、例えば、チバ・スペシャルティ・ケミカルズ株式会社から「IRGAFOSP−EPQ」、堺化学工業株式会社から「GSY−P101」という商品名で市販されている。
リン系酸化防止剤として、ホスホナイト系化合物が好ましく、中でも、テトラキス(2,4−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト等の4,4′−ビフェニレンジホスホナイト化合物が好ましく、特に好ましいものはテトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイトである。
(アルキルラジカル捕捉剤)
セルロースエステルフィルムには以下に説明するアルキルラジカル捕捉剤を含有することが好ましい。ここでいうアルキルラジカル捕捉剤とは、アルキルラジカルが速やかに反応しうる基を有し、かつアルキルラジカルと反応後に後続反応が起こらない安定な生成物を与える化合物を意味する。
アルキルラジカル捕捉剤として、住友化学株式会社から、「SumilizerGM」、「SumilizerGS」という商品名で市販されている。
(ヒンダードアミン光安定剤)
セルロースエステルフィルムには、フィルム形成材料の熱溶融時の劣化防止剤、また製造後に偏光子保護フィルムとして晒される外光や液晶ディスプレイのバックライトからの光に対する劣化防止剤として、ヒンダードアミン光安定剤(HALS)化合物を添加することが好ましい。ヒンダードアミン光安定剤としては、例えば、米国特許第4,619,956号明細書の第5〜11欄及び米国特許第4,839,405号明細書の第3〜5欄に記載されているように、2,2,6,6−テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が含まれる。
ヒンダードアミン光安定剤の具体例としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)スクシネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(N−オクトキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(N−ベンジルオキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(N−シクロヘキシルオキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、ビス(1−アクロイル−2,2,6,6−テトラメチル−4−ピペリジル)2,2−ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)デカンジオエート、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−1−[2−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)エチル]−2,2,6,6−テトラメチルピペリジン、2−メチル−2−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ−N−(2,2,6,6−テトラメチル−4−ピペリジル)プロピオンアミド、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート等が挙げられる。
また、高分子タイプの化合物でもよく、具体例としては、N,N′,N″,N″′−テトラキス−[4,6−ビス−〔ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ〕−トリアジン−2−イル]−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミンと1,3,5−トリアジン−N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ジブチルアミンと1,3,5−トリアジンとN,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、1,6−ヘキサンジアミン−N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル)とモルホリン−2,4,6−トリクロロ−1,3,5−トリアジンとの重縮合物、ポリ[(6−モルホリノ−s−トリアジン−2,4−ジイル)〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕−ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕]等の、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールと3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物等の、ピペリジン環がエステル結合を介して結合した化合物等が挙げられるが、これらに限定されるものではない。
これらの中でも、ジブチルアミンと1,3,5−トリアジンとN,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物等で、数平均分子量(Mn)が2,000〜5,000のものが好ましい。
上記タイプのヒンダードアミン化合物は、例えばチバスペシャルティケミカルズから、「TINUVIN144」及び「TINUVIN770」、旭電化工業株式会社から「ADK STAB LA−52」という商品名で市販されている。
ヒンダードアミン光安定剤は、本発明に用いられるセルロースエステルの質量に対して、
0.1〜10質量%添加することが好ましく、さらに0.2〜5質量%添加することが好ましく、さらに0.5〜2質量%添加することが好ましい。これらは2種以上を併用してもよい。
(酸捕捉剤)
セルロースエステルフィルムには、酸捕捉剤が、高温環境下では酸による分解を抑制することから、含有されることが好ましい。酸捕捉剤としては、酸と反応して酸を不活性化する化合物であれば制限なく用いることができるが、中でも米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物が好ましい。
このような酸捕捉剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシド等の縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテル等、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(すなわち、4,4′−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22個の炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)等)、及び種々のエポキシ化長鎖脂肪酸トリグリセリド等(例えば、エポキシ化大豆油、エポキシ化亜麻仁油等)の組成物によって代表され例示され得るエポキシ化植物油及び他の不飽和天然油(これらはときとしてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している)が含まれる。また、市販のエポキシ基含有エポキシド樹脂化合物として、EPON 815Cやその他のエポキシ化エーテルオリゴマー縮合生成物も好ましく用いることができる。
さらに上記以外に用いることが可能な酸捕捉剤としては、オキセタン化合物やオキサゾリン化合物、あるいはアルカリ土類金属の有機酸塩やアセチルアセトナート錯体、特開平5−194788号公報の段落番号[0068]〜[0105]に記載されているものが含まれる。
本発明においては、酸捕捉剤は、本発明に用いられるセルロースエステルの質量に対して、0.1〜10質量%添加することが好ましく、さらに0.2〜5質量%添加することが好ましく、さらに0.5〜2質量%添加することが好ましい。これらは2種以上を併用してもよい。
なお酸捕捉剤は、酸掃去剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、本発明においてはこれらの呼称による差異なく用いることができる。
(金属不活性剤)
セルロースエステルフィルムには、金属不活性剤も含まれることも好ましい。金属不活性剤とは、酸化反応において開始剤あるいは触媒として作用する金属イオン不活性化する化合物を意味し、ヒドラジド系化合物、シュウ酸ジアミド系化合物、トリアゾール系化合物等が挙げられ、例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン、2−ヒドロキシエチルシュウ酸ジアミド、2−ヒドロキシ−N−(1H−1,2,4−トリアゾール−3−イル)ベンズアミド、N−(5−tert−ブチル−2−エトキシフェニル)−N′−(2−エチルフェニル)シュウ酸アミド等が挙げられる。
金属不活性剤は、透明基材フィルムの樹脂100質量%に対して、0.0002〜2質量%添加することが好ましく、さらに0.0005〜2質量%添加することが好ましく、さらに0.001〜1質量%添加することが好ましい。これらは2種以上を併用してもよい。
(その他の添加剤)
セルロースエステルフィルムには、その他の添加剤として、例えば、染料、顔料、蛍光体、二色性色素、リターデーション制御剤、屈折率調整剤、ガス透過抑制剤、抗菌剤、生分解性付与剤などを添加しても良い。
そして、これらの添加剤をセルロースエステルフィルムに含有させる方法としては、各々の材料を固体或いは液体のまま混合し、加熱溶融し混練して均一な溶融物とした後、流延してセルロースエステルフィルムを形成する方法であっても、予め全ての材料を溶媒等を用いて、溶解して均一溶液とした後、溶媒を除去して、添加剤とセルロースエステルフィルムの混合物で含有させても良い。
(偏光板)
本発明による反射防止フィルムを用いた偏光板について述べる。
偏光板は、一般的な方法で作製することができる。本発明の反射防止フィルムの裏面側をアルカリ鹸化処理し、処理した反射防止フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該反射防止フィルムを用いても、別の偏光板保護フィルムを用いてもよい。
本発明の反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは、面内リタデーション(Ro)が、20〜70nm、厚み方向リタデーション(Rt)が100〜400nmの位相差を有する光学補償フィルム(位相差フィルム)であることが好ましい。
なお、リタデーション値Ro、Rtは、自動複屈折率計を用いて測定することができる。例えば、KOBRA−21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長が590nmで求めることができる。
これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。または、さらにディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。あるいは面内リタデーション(Ro)が、0〜5nm、厚み方向リタデーション(Rt)が−20〜+20nmの無配向フィルムも好ましく用いられる。
本発明の反射防止フィルムと組み合わせて使用することによって、耐久性及び膜強度に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2(コニカミノルタオプト株式会社製)等が好ましく用いられる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明の反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
(表示装置)
本発明の反射防止フィルム面を表示装置の鑑賞面側に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することができる。
本発明の反射防止フィルムは、偏光板に組み込まれ、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の反射防止フィルムは耐久性及び膜強度に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。
本発明の反射防止フィルムを組み込んだ液晶表示装置の具体例を図1に示す。本発明の液晶表示装置は、光反射板4、バックライト7、導光板5、光拡散板6に隣接して、本発明に係る偏光板10(本発明に係る反射防止フィルムとしての偏光板保護フィルム1/二色性偏光膜2/偏光板保護フィルム3の構成)、液晶表示パネル8、視認側偏光板9の順位積層された構成を取ることが好ましい。
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
実施例1
(セルロースエステルフィルム1の製造)
(ドープ液Aの調製)
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Aを得た。
セルローストリアセテート(アセチル基置換度2.9) 100質量部
トリメチロールプロパントリベンゾエート 5質量部
エチルフタリルエチルグリコレート 5質量部
酸化ケイ素微粒子 0.1質量部
(アエロジルR972V、日本アエロジル株式会社製)
チヌビン109(チバスペシャルティケミカルズ社製) 1質量部
チヌビン171(チバスペシャルティケミカルズ社製) 1質量部
メチレンクロライド 400質量部
エタノール 40質量部
ブタノール 5質量部
つぎに、得られたドープ液Aを、温度35℃に保温した流延ダイを通より、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
剥離後のウェブを、上下に複数配置したロールによる搬送乾燥工程で90℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、温度130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で、温度135℃の乾燥風にて乾燥させた。乾燥工程の雰囲気置換率15(回/時間)とした雰囲気内で15分間熱処理した後、室温まで冷却して巻き取り、幅1.5m、膜厚80μm、長さ4000m、屈折率1.49の長尺のセルロースエステルフィルム1を作製した。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向の延伸倍率は、1.1倍であった。
(反射防止フィルムの作製)
上記作製したセルロースエステルフィルム1に下記手順により反射防止フィルムを作製した。
(ハードコートフィルムの作製)
こうして作製したセルロースエステルフィルム1上に、下記のハードコート層組成物1を、孔径0.4μmのポリプロピレン製フィルターで濾過して、ハードコート層塗布液を調製し、これをマイクログラビアコーターを用いてセルロースエステルフィルム1の表面に塗布し、温度90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.2J/cmとして塗布層を硬化させ、ドライ膜厚10μmのハードコート層を形成しハードコートフィルムを作製した。
つぎに、下記バックコート層組成物1をウェット膜厚14μmとなるように、セルロースエステルフィルム1のハードコート層を塗布した面とは反対の面に押出しコーターで塗布し、温度85℃にて乾燥した。
(ハードコート層組成物1)
下記材料を攪拌、混合しハードコート層組成物1とした。
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 60質量部
ウレタンアクリレート 50質量部
(新中村化学工業社製 商品名U−4HA)
イルガキュア184 20質量部
(チバスペシャルティケミカルズ株式会社製)
イルガキュア907 12質量部
(チバスペシャルティケミカルズ株式会社製)
ポリエーテル変性シリコーンオイル 0.8質量部
(信越化学社製 KF−351)
ポリオキシアルキルエーテル 1.0質量部
(花王社製 エマルゲン1108)
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
(バックコート層組成物1)
アセトン 54質量部
メチルエチルケトン 24質量部
メタノール 22質量部
セルロースアセテートプロピオネート 0.6質量部
(アセチル基置換度1.9、プロピオニル基置換度0.8
超微粒子シリカ2%アセトン分散液 0.2質量部
(日本アエロジル株式会社製アエロジル200V)
上記のように作製したハードコートフィルムの表面上に、下記の高屈折率層、ついで、低屈折率層の順に反射防止層を塗設し、反射防止フィルムを作製した。
(粒子分散液Aの作製)
まず、メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業株式会社製、アンチモン酸亜鉛ゾル、商品名:セルナックスCX−Z610M−F2)6.0kgに、イソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、粒子分散液Aを調製した。
(高屈折率層塗布組成物1)
PGME(プロピレングリコールモノメチルエーテル) 40質量部
イソプロピルアルコール 25質量部
メチルエチルケトン 25質量部
ペンタエリスリトールトリアクリレート 0.9質量部
ペンタエリスリトールテトラアクリレート 1.0質量部
ウレタンアクリレート 0.6質量部
(商品名:U−4HA、新中村化学工業社製)
NKエステル A−DOG(新中村化学工業社製) 0.5質量部
粒子分散液A 20質量部
イルガキュア184 0.4質量部
(チバ・スペシャルティ・ケミカルズ社製)
イルガキュア907 0.2質量部
(チバ・スペシャルティ・ケミカルズ社製)
シリコーン系界面活性剤(FZ−2207、日本ユニカー株式会社
製)の10%プロピレングリコールモノメチルエーテル液 0.4質量部
(高屈折率層)
ハードコートフィルムの表面上に、上記の高屈折率層塗布組成物1を押出しコーターで塗布し、温度80℃で1分間乾燥させ、ついで紫外線を0.15J/cm照射して硬化させ、厚さが78nmとなるように、高屈折率層1を設けた。この高屈折率層の屈折率は、1.6であった。
(テトラエトキシシラン加水分解物Aの調製)
まず、テトラエトキシシラン230gとエタノール440gを混合し、これに2%酢酸水溶液120gを添加した後に、室温(25℃)にて18時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
(低屈折率層塗布組成物1)
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
テトラエトキシシラン加水分解物A 120質量部
γ−メタクリロキシプロピルトリメトキシシラン 4質量部
(商品名:KBM503、信越化学工業社製)
イソプロピルアルコール分散中空シリカ微粒子ゾル 45質量部
(固形分20%、触媒化成工業社製のシリカゾル、商品名:
ELCOM V−8209)
アルミニウムエチルアセトアセテート・ジイソプロピレート 3質量部
シリコーン系界面活性剤(FZ−2207、日本ユニカー株式会社
製)の10%プロピレングリコールモノメチルエーテル液 3質量部
酢酸 4質量部
(低屈折率層)
上記のハードコートフィルムの高屈折率層1の表面上に、上記低屈折率層塗布組成物1を押出しコーターで塗布し、100℃で1分間乾燥させた後、紫外線を0.15J/cm照射して硬化させ、さらに120℃で5分間熱硬化させ、厚さ95nmとなるように低屈折率層を設け、本発明による反射防止フィルムを作製した。
得られた反射防止フィルムの低屈折率層の屈折率は1.37であった。また、この反射防止フィルムを50℃のイオン交換水を用いた温浴に2時間浸漬し、浸漬後の表面(膜面)pHを測定したところ、3.8であった。この実施例1の反射防止フィルムの低屈折率層の含有微粒子の種類、及び表面(膜面)pHを、下記の表1に記載した。
なお、pHメーターとしては、HM―30G(東亜ディーケーケー株式会社製)、及びpH電極はGST―5723S(東亜ディーケーケー株式会社製)を使用した。また、pH測定は、反射防止フィルムを2cm×2cmにカットし、反射防止フィルムの低屈折率層が表面となるように、また空気が入らないようにして基材レス両面テープを貼ったアクリル板の上に貼り付けて試料を準備した。
つぎに、アクリル板に貼り付けた試料の低屈折率層面とpH電極を接触させ、接触させた隙間から、マイクロピペット(デジフィット)を用いて10μLのイオン交換水を滴下し、滴下後1分後の値を測定した。なお、イオン交換水のpHは、6.5であった。
実施例2〜9(反射防止フィルム102〜109)、及び比較例1〜4(反射防止フィルム110〜113)の作製
低屈折率層塗布組成物1の酢酸量の調整、及び10%水酸化ナトリウム、10%塩酸を適宜添加して50℃のイオン交換水を用いた温浴に2時間浸漬後の反射防止フィルムの表面(膜面)pHが表1記載となるようにした以外は、実施例1と同様にして、実施例2〜9の反射防止フィルム102〜109、及び比較例1〜4の反射防止フィルム110〜113を作製した。
比較例5(反射防止フィルム114)の作製
低屈折率層塗布組成物1のイソプロピルアルコール分散中空シリカ微粒子ゾルを、コロイダルシリカゾルのIPS−ST−L(イソプロパノール分散、固形分30%、日産化学工業株式会社製)に変更、添加量を30質量部に変更した以外は、同様にして比較例5の反射防止フィルム114を作製した。50℃のイオン交換水を用いた温浴に2時間浸漬後の反射防止フィルムの表面(膜面)pHは、3.8であった。
比較例6(反射防止フィルム115)の作製
低屈折率層塗布組成物1のイソプロピルアルコール分散中空シリカ微粒子ゾルを、コロイダルシリカゾルのIPS−ST−L(イソプロパノール分散、固形分30%、日産化学工業株式会社製)に変更、添加量を30質量部に変更し、10%塩酸を適宜添加して50℃のイオン交換水を用いた温浴に2時間浸漬後の反射防止フィルムの表面(膜面)pHが2.1となるようにた以外は、同様にして比較例6の反射防止フィルム115を作製した。
実施例10(反射防止フィルム116)の作製
低屈折率層塗布組成物1を下記の低屈折率層塗布組成物2に変更した以外は、同様にして、実施例10の反射防止フィルム116を作製した。50℃のイオン交換水を用いた温浴に2時間浸漬後の反射防止フィルムの表面(膜面)pHは、4.2であった。
(低屈折率層用塗布組成物2)
含フッ素ポリマー1、及びゾル液Iを調製した後、低屈折率層用塗布組成物2を調製した。
(含フッ素ポリマー1の調製)
内容量100mlのステンレス製撹拌機付オートクレーブに、酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7g、および過酸化ジラウロイル0.55gを仕込み、反応系内を脱気して、窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して、温度65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は、5.4kg/cmであった。オートクレーブ内の温度をそのまま保持し、8時間反応を続け、圧力が3.2kg/cmに達した時点で加熱をやめ、放冷した。室温まで内温が下がった時点で、未反応のモノマーを追い出し、オートクレーブを開放して、反応液を取り出した。
得られた反応液を、大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより、沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解して、ヘキサンから2回再沈殿を行なうことによって、残存モノマーを完全に除去し、乾燥し、ポリマーを28g得た。つぎに、該ポリマーの20gをN,N−ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることにより、含フッ素ポリマー1を19g得た。
(ゾル液Iの調製)
攪拌機、還流冷却器を備えた反応器に、下記の材料を入れて混合した。
メチルエチルケトン 120質量部
アクリロイルオキシプロピルトリメトキシシラン 100質量部
(KBM−5103、信越化学工業株式会社製)
ジイソプロポキシアルミニウムエチルアセトアセテート 3質量部
その後、これらの混合物に、イオン交換水30質量部を加え、温度60℃で4時間反応させたのち、室温まで冷却し、ゾル液Iを得た。
ゾル液I中の反応生成物の質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100質量%であった。またガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは、全く残存していなかった。
(低屈折率層用塗布組成物2)
メチルエチルケトン 450質量部
シクロヘキサノン 300質量部
含フッ素ポリマー1 30質量部
メタクリレート基含有シリコーン樹脂 1質量部
(商品名、RMS−033、Gelest株式会社製)
光ラジカル発生剤(商品名、イルガキュア907) 3質量部
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトール
ヘキサアクリレートの混合物(日本化薬株式会社製) 7質量部
ゾル液I(溶媒揮発後の固形分として27質量部) 45質量部
イソプロピルアルコール分散中空シリカ微粒子ゾル 40質量部
(固形分20%、触媒化成工業社製シリカゾル、商品名:ELCOM V−8209)
酢酸 3.5質量部
上記の低屈折率層用塗布組成物2のうち、メチルエチルケトン、及びシクロヘキサノンに対して、先に調製した含フッ素ポリマー1、メタクリレート基含有シリコーン樹脂、光ラジカル発生剤、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物を、上記の配合割合で加えて溶解した後に、ゾル液Iと、イソプロピルアルコール分散中空シリカ微粒子ゾルを上記の配合割合で添加し、最後に酢酸を添加した。
(評価)
上記作製した実施例1〜10及び比較例1〜6の反射防止フィルムについて、下記方法により評価した。得られた結果を表1に示した。
(反射率測定)
温浴浸漬していない実施例1〜10及び比較例1〜6の反射防止フィルムを、温度23℃、相対湿度60%の条件で2時間調湿した後、裏面反射を防ぐために、試料を黒いアクリル板上に基材レス両面テープで貼り付け、コニカミノルタ製分光測色計、CM−3700dで反射率を測定した。なお、反射率は低いほど、性能が良い。
(高温高湿下による耐久試験サンプルの作製)
実施例1〜10及び比較例1〜6の反射防止フィルムを、それぞれA4サイズにカットし、反射防止層を表面にして、温度80℃、湿度90%RHの高温高湿サーモにて、250時間保存後、反射防止フィルムを、温度23℃、相対湿度60%の条件で、2時間調湿して、湿熱耐久性試験用のフィルム試料を作製した。これらの湿熱耐久性試験用のフィルム試料について、下記の耐擦性(膜強度)、密着性、及び耐薬品性について評価し、湿熱耐久性試験を行なった。
(膜強度)
実施例1〜10、及び比較例1〜6の反射防止フィルムの湿熱耐久性試験用のフィルム試料について、それぞれ日本スチールウール株式会社製の品番#0000のスチールウール(SW)の上に、1000g/cmの荷重をかけて、20往復させたときの反射防止フィルム1cm幅当たりに生じた傷の本数を測定した。反射防止フィルムの傷の本数が、実用上の点から、5本/cm幅以下が好ましく、3本/cm幅以下がより好ましく、更に好ましくは1本/cm幅以下である。なお、スチールウールを往復させた装置は、新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度4000mm/min.)を使用した。得られた結果を下記の表1にあわせて示した。
(密着性)
実施例1〜10、及び比較例1〜6の反射防止フィルムの湿熱耐久性試験用のフィルム試料の反射防止層表面に、片刃のカミソリの刃を面に対して90°の角度で切り込みを1mm間隔で縦横に11本入れ、1mm角の碁盤目を100個作製した。この上に市販のセロハン製テープを貼り付け、その一端を手で持って垂直に力強く引っ張って剥がし、切り込み線からの貼られたテープ面積に対する薄膜が剥がされた面積の割合を目視で観察し、下記の基準で評価した。得られた結果を表1にあわせて示した。
密着性評価
◎:全く剥離されなかった
○:剥離された面積割合が5%未満であった
△:剥離された面積割合が10%未満であった
×:剥離された面積割合が10%以上であった
(耐薬品性)
耐薬品性1:エタノール
実施例1〜10、及び比較例1〜6の反射防止フィルムの湿熱耐久性試験用のフィルム試料の表面を、エタノール(関東化学社製)を染み込ませたベンコット(旭化成株式会社製、製品名M−3)を用いて、同一箇所を20往復擦り、擦った後の状態を観察し、以下の基準で評価した。
耐薬品性2:リグロイン
実施例1〜10、及び比較例1〜6の反射防止フィルムの湿熱耐久性試験用のフィルム試料の表面を、リグロイン(和光純薬社製)を染み込ませたベンコット(旭化成株式会社製、製品名M−3)を用いて、同一箇所を20往復擦り、擦った後の状態を観察し、以下の基準で評価した。
得られた結果を表1にあわせて示した。なお、反射防止フィルム表面の擦りには、以下の装置を使用した。
表面擦り装置:新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度4000mm/min.)
荷重1000g/cm、先端部接触面積:1cm×1cm
耐薬品性1:エタノール、及び耐薬品性2:リグロインの評価基準
◎:剥離無し
○:僅かな剥離が見られるレベル(実用上問題なし)
△:剥離が見られる
×:擦った箇所が全て剥離している。
表1の結果から明らかなように、低屈折率層が、内部が多孔質または空洞である中空シリカ微粒子を含有し、50℃温浴における2時間浸漬後の低屈折率層の表面(膜面)pHが2.0〜7.5である本発明の反射防止フィルムは、比較例の反射防止フィルムに比べて、反射率、湿熱耐久試験後の密着性、膜強度(耐擦性)及び耐薬品性(エタノール、リグロイン)、全てにおいて優れていることが判る。中でも低屈折率層の表面(膜面)pHが2.0〜4.0である本発明の反射防止フィルムは湿熱耐久試験後の膜強度(耐擦性)及び耐薬品性(エタノール)において特に優れていることが判る。
実施例11〜22(反射防止フィルム117〜128)の作製
実施例1の反射防止フィルムの作製において、低屈折率層用塗布組成物1に表2に記載の添加剤を更に添加したこと、及び50℃のイオン交換水を用いた温浴に2時間浸漬後の反射防止フィルムの表面(膜面)pHが一定となるように酢酸量の調整、及び10%水酸化ナトリウム、10%塩酸を適宜添加したこと以外は、実施例1と同様にして、反射防止フィルム117〜128を作製した。なお、上記作製した反射防止フィルムの50℃のイオン交換水を用いた温浴に2時間浸漬後の表面(膜面)pHを表2に記載した。
つぎに、上記作製した実施例11〜22の反射防止フィルム117〜128、及び実施例1の反射防止フィルム101、及び実施例8の反射防止フィルム108を、A4サイズにカットし、反射防止層を表面にして、温度80℃、湿度90%RHの高温高湿サーモにて500時間保存後、反射防止フィルムを、温度23℃、相対湿度60%の条件で、2時間調湿し、上記方法で密着性、耐擦性(膜強度)、及び耐薬品性について評価し、湿熱耐久性試験を行なった。得られた結果を下記の表2に示した。
なお、表2に記載の添加剤の詳細は、以下の通りである。
水酸基変性シリコーン樹脂:FM−DA26、チッソ株式会社製
エポキシ変性シリコーン樹脂:X−22−163B、信越化学工業株式会社製
アミノ変性シリコーン樹脂:X−22―161A、信越化学工業株式会社製
カルビノール変性シリコーン樹脂:KF−6003、信越化学工業株式会社製
イミダゾール(日本合成化学株式会社製)
1−メチルイミダゾール(日本合成化学株式会社製)
上記表2の結果から明らかなように、より過酷な湿熱耐久評価では、低屈折率層が反応性変性シリコーン樹脂或いはイミダゾールまたはその誘導体を含有することで、湿熱耐久試験後の密着性、膜強度(耐擦性)及び耐薬品性(エタノール、リグロイン)において特に優れていることが判る。
実施例23
実施例1〜22、及び比較例1〜6で作製した反射防止フィルム101〜128を用いて、下記のようにして偏光板を作製し、これらの偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
下記の方法に従って、上記実施例1〜22及び比較例1〜6の反射防止フィルムとセルロースエステル系光学補償フィルムであるKC8UCR5(コニカミノルタオプト株式会社製)とを用いて偏光板を作成した。即ち、各反射防止フィルムと上記光学補償フィルムの各々1枚づつを、偏光膜の表裏に貼り付ける偏光板保護フィルムとして用い、偏光板201〜228を作製した。
(a)偏光膜の作製
けん化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、及び水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理して、PVAフィルムを得た。得られたPVAフィルムは、平均厚みが40μm、水分率が4.4%、フィルム幅が3mであった。
つぎに、得られたPVAフィルムを、予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して、偏光膜を作製した。
すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、さらに温度100℃で5分間熱処理を行った。得られた偏光膜は、平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。
(b)偏光板の作製
ついで、下記工程1〜5に従って、実施例1〜22及び比較例1〜6の反射防止フィルム101〜128とセルロースエステル系光学補償フィルムとを偏光板保護フィルムとして、上記偏光膜の表裏に貼り合わせて、実施例1〜22及び比較例1〜6の反射防止フィルム101〜128に対応する偏光板201〜228を作製した。
工程1:偏光板保護フィルムとして、実施例1〜22及び比較例1〜6の反射防止フィルムを60℃の2mol/Lの水酸化ナトリウム溶液に、90秒間浸漬し、ついで水洗、乾燥して、偏光膜と貼合する側をケン化した。
同様に、偏光膜の反対側の偏光板保護フィルムとして、市販のセルロースエステルフィルムKC8UCR5のケン化も行った。
工程2:前述の偏光膜を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、この偏光膜を、工程1で処理したセルロースエステルフィルムKC8UCR5のケン化した面と反射防止フィルムのケン化した面とで挟み込んで、積層し、偏光板とした。
工程4:工程3で作成した偏光板を2つの回転するローラにて、20〜30N/cmの圧力で約2m/minの速度で貼合した。
工程5:工程4で作製した偏光板を、温度80℃の乾燥機中にて2分間乾燥処理し、偏光板201〜228を作製した。
つぎに、上記作成した偏光板201〜228を用いて以下の評価を実施した。
市販の液晶表示パネル(VA型)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた各偏光板201〜228を張り付け、液晶パネル301〜328を作成した。
こうして得られた液晶パネル301〜328を、床から80cmの高さの机上に配置し、床から3mの高さの天井部に、昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業株式会社製)40W×2本を1セットとして、1.5m間隔で10セット配置した。この場合、評価者が液晶表示パネルの表示面の正面にいるときに、評価者の頭上より後方に向けて天井部に蛍光灯がくるように配置した。各液晶パネルは机に対する垂直方向から25°傾けて、蛍光灯が写り込むようにして画面の見易さ(視認性)を、下記のランクに分けて評価した。
また、上記作製した液晶パネル301〜328の輝点異物についても下記ランクで評価した。
(評価)
(視認性)
A:最も近い蛍光灯の写り込みが気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写り込みはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写り込みも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写り込みがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことはできない
(輝点異物)
液晶パネル301〜328の表示を全面黒表示にして、ルーペで輝点異物の直径及び数を
カウントし、下記基準で評価した。なお、この時のルーペの倍率は50倍であった。
○:100μm以上の異物は認められない
×:100μm以上の異物が認められる。実用上問題となるレベル。
評価結果を表3に示す。
表3の評価結果より、本発明の反射防止フィルム101〜109及び116〜128、並びに本発明の偏光板201〜209及び216〜228を用いた液晶パネル301〜309及び316〜328は、何れもB以上の評価結果であり、比較例の反射防止フィルム110〜115、及び比較例の偏光板210〜215を用いた液晶パネル310〜315より視認性が良好であった。また、本発明の液晶パネルは、輝点異物も100μm以上がなく、良好であった。

Claims (9)

  1. 透明フィルム基材の少なくとも一方の最表面に低屈折率層を有する反射防止フィルムであって、低屈折率層が、内部が多孔質または空洞である少なくとも1種の中空シリカ微粒子を含有し、かつ低屈折率層の表面(膜面)pHが、2.0〜7.5であることを特徴とする、反射防止フィルム。
  2. 前記低屈折率層の表面(膜面)pHが、2.0〜4.0であることを特徴とする、請求の範囲第1項に記載の反射防止フィルム。
  3. 前記低屈折率層の表面(膜面)pHの測定条件が、50℃温浴における2時間浸漬後であることを特徴とする、請求の範囲第1項または第2項に記載の反射防止フィルム。
  4. 低屈折率層が、反応性変性シリコーン樹脂を含有することを特徴とする、請求の範囲第1項〜第3項のいずれか1項に記載の反射防止フィルム。
  5. 低屈折率層が、下記一般式(1)で示されるイミダゾールまたはその誘導体を含有することを特徴とする、請求の範囲第1項〜第4項のいずれか1項に記載の反射防止フィルム。
    (R1)nA …(1)
    式中、R1は水素原子、アミノ基または水酸基が置換してもよい炭素数1〜3のアルキル基、アルケニル基及びハロゲン原子を表わし、R1が複数の場合は互いに同じでも異なってもよい。R1が表わすアミノ基にはメチル基またはエチル基が1または2個置換していてもよい。またアルキル基及びアルケニル基には炭素数1〜3のアルキル基が置換してもよい。nは1〜3の整数である。Aはイミダゾリル基を表わす。
  6. 請求の範囲第1項〜第5項のいずれか1項に記載の反射防止フィルムを作製することを特徴とする、反射防止フィルムの製造方法。
  7. 請求の範囲第1項〜第5項のいずれか1項に記載の反射防止フィルムを一方の面に用いることを特徴とする、偏光板。
  8. 請求の範囲第1項〜第5項のいずれか1項に記載の反射防止フィルムを用いることを特徴とする、表示装置。
  9. 請求の範囲第7項に記載の偏光板を用いることを特徴とする、表示装置。
JP2009506275A 2007-03-28 2008-03-10 反射防止フィルム、それを用いた偏光板、及び表示装置 Active JP5158075B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009506275A JP5158075B2 (ja) 2007-03-28 2008-03-10 反射防止フィルム、それを用いた偏光板、及び表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007084414 2007-03-28
JP2007084414 2007-03-28
JP2009506275A JP5158075B2 (ja) 2007-03-28 2008-03-10 反射防止フィルム、それを用いた偏光板、及び表示装置
PCT/JP2008/054287 WO2008117652A1 (ja) 2007-03-28 2008-03-10 反射防止フィルム、及び反射防止フィルムの製造方法、それを用いた偏光板、及び表示装置

Publications (2)

Publication Number Publication Date
JPWO2008117652A1 true JPWO2008117652A1 (ja) 2010-07-15
JP5158075B2 JP5158075B2 (ja) 2013-03-06

Family

ID=39788388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009506275A Active JP5158075B2 (ja) 2007-03-28 2008-03-10 反射防止フィルム、それを用いた偏光板、及び表示装置

Country Status (3)

Country Link
JP (1) JP5158075B2 (ja)
TW (1) TWI448719B (ja)
WO (1) WO2008117652A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066965A (ja) * 2007-09-14 2009-04-02 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP5600869B2 (ja) * 2008-11-05 2014-10-08 横浜ゴム株式会社 加熱硬化性光半導体封止用樹脂組成物およびこれを用いる光半導体封止体
JP5703855B2 (ja) * 2011-03-07 2015-04-22 コニカミノルタ株式会社 近赤外反射フィルム、近赤外反射フィルムの製造方法及び近赤外反射体
JP2013006157A (ja) * 2011-06-24 2013-01-10 Seiko Epson Corp 塗膜
JP5884586B2 (ja) * 2012-03-22 2016-03-15 日本ゼオン株式会社 反射防止フィルム、表示装置、及びタッチパネル一体型表示装置
JP6771383B2 (ja) * 2014-09-30 2020-10-21 日本板硝子株式会社 低反射コーティング、低反射コーティングを製造する方法、ガラス板、ガラス基板、及び光電変換装置
EP3141934B1 (en) * 2015-09-11 2020-10-07 Canon Kabushiki Kaisha Optical member comprising an antireflective film including a porous layer and method for manufacturing the same
CN113885103B (zh) * 2021-09-26 2023-03-10 中国人民解放军国防科技大学 一种新型红外隐身材料、制备方法及应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343502A (ja) * 2000-05-30 2001-12-14 Teijin Ltd 反射防止フィルム
JP2004354740A (ja) * 2003-05-29 2004-12-16 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
JP4737401B2 (ja) * 2004-10-13 2011-08-03 信越化学工業株式会社 反射防止膜、反射防止膜形成用コーティング剤組成物及び反射防止膜を備えた物品
JP2006212987A (ja) * 2005-02-04 2006-08-17 Kuraray Co Ltd 転写材
JP2006293329A (ja) * 2005-03-14 2006-10-26 Fuji Photo Film Co Ltd 反射防止フィルム及びその製造方法、並びにそのような反射防止フィルムを用いた偏光板、及びそのような反射防止フィルム又は偏光板を用いた画像表示装置。
JP2006301126A (ja) * 2005-04-18 2006-11-02 Hitachi Chem Co Ltd 低屈折率膜
JP4952047B2 (ja) * 2005-05-02 2012-06-13 Jsr株式会社 硬化性樹脂組成物、硬化膜及び反射防止膜積層体
JP2006330397A (ja) * 2005-05-26 2006-12-07 Nippon Zeon Co Ltd 反射防止積層体及びその製造方法
JP5057199B2 (ja) * 2005-06-02 2012-10-24 旭硝子株式会社 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
JP2007011033A (ja) * 2005-06-30 2007-01-18 Fujifilm Holdings Corp 反射防止フィルム、それを用いた偏光板及びディスプレイ装置
JP5167812B2 (ja) * 2005-07-15 2013-03-21 コニカミノルタアドバンストレイヤー株式会社 光学フィルムの処理方法、光学フィルムの処理装置及び光学フィルムの製造方法

Also Published As

Publication number Publication date
TW200907400A (en) 2009-02-16
WO2008117652A1 (ja) 2008-10-02
JP5158075B2 (ja) 2013-03-06
TWI448719B (zh) 2014-08-11

Similar Documents

Publication Publication Date Title
JP5321456B2 (ja) クリアーハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP4924344B2 (ja) 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置
JP5218411B2 (ja) 光学フィルム、偏光板及び液晶表示装置
JP5038625B2 (ja) 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
KR101182002B1 (ko) 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및표시 장치
JP2009036818A (ja) 防眩性フィルム、防眩性反射防止フィルム、偏光板および画像表示装置
JP5170083B2 (ja) 防眩性反射防止フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置
JP5158075B2 (ja) 反射防止フィルム、それを用いた偏光板、及び表示装置
WO2010024115A1 (ja) 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP4857801B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP2009196202A (ja) ハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP5109783B2 (ja) 偏光板、及び液晶表示装置
JP4935393B2 (ja) 反射防止フィルム、及びそれを用いた偏光板、表示装置
JPWO2008105117A1 (ja) 防眩性フィルム、防眩性反射防止フィルム、これらを用いた偏光板、及び表示装置
JP5168278B2 (ja) 防眩性フィルム、これを用いた防眩性反射防止フィルム、偏光板、及び表示装置
JP2010097005A (ja) 反射防止フィルム、その製造方法、反射防止フィルムを用いた偏光板、及び表示装置
JP2006227162A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JPWO2008123101A1 (ja) 反射防止フィルム、それを用いた偏光板、及び画像表示装置
JP2010039418A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置
JP2009036817A (ja) 反射防止フィルム、それを用いた偏光板、及び画像表示装置
JP2005338549A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2007025329A (ja) 反射防止フィルム、その製造方法、偏光板及び表示装置
JP2009186773A (ja) 反射防止フィルム、これを用いた偏光板、及び表示装置
JP2008003359A (ja) 反射防止フィルム、偏光板、及び液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5158075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350